1
|
Fu J, Chen J, Wang Y, Luo D, Zhang Q, Wang T. Resuscitation-promoting factor diversity of Rhodococcus erythropolis KB1 and their promoting effect on bacterial growth and viable but non-culturable cell resuscitation. Lett Appl Microbiol 2025; 78:ovaf068. [PMID: 40312777 DOI: 10.1093/lambio/ovaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/03/2025]
Abstract
Resuscitation-promoting factors (Rpfs) are proteins essential for reactivating microorganisms from the viable but non-culturable (VBNC) state and exhibit considerable diversity across bacterial species. Rhodococcus erythropolis KB1 is an efficient petroleum-degrading actinomycete with strong environmental adaptability. Its genome encodes a variety of Rpf proteins. In this study, we characterized these Rpfs through multiple sequence alignments, domain analysis, tertiary structure modeling, and biological activity assays. Each protein harbors a conserved Rpf domain of ∼70 amino acids and auxiliary domains such as DUF348, G5, and LysM. Reverse Transcription Quantitative Polymerase Chain (RT-qPCR) analysis revealed that rpf1 was highly expressed during the logarithmic phase in R. erythropolis KB1, while rpf4 and rpf5 exhibited lower expression levels. All recombinant proteins, expressed and purified from Escherichia coli, demonstrated muralytic activity. Notably, the muralytic activity was independent of auxiliary domain complexity, with Rpf5 showing the highest activity (18.24 ± 1.06 U nmol-1). Furthermore, all Rpfs promoted the growth and resuscitation of VBNC R. erythropolis KB1 cells, with Rpf5 providing the greatest effect. The efficiencies of the recombinant proteins in promoting bacterial growth and VBNC cell resuscitation varied significantly, and these variations were strongly correlated with their muralytic activities.
Collapse
Affiliation(s)
- Jianhui Fu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dan Luo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qingfang Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tianfeng Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
2
|
Huang W, Xu S, Shen L, Chen D, Liu H, Tang Y, Liu X, Xiao W, Zhou Z, Zhang S, Li J, Fan X, Chu Y, Zhang L. DNA Subunit Vaccine and Recombinant BCG Based on Mycobacterial Lipoprotein LprO Enhance Anti-Tuberculosis Protection in the Lungs of Mice. Vaccines (Basel) 2025; 13:400. [PMID: 40333296 PMCID: PMC12031346 DOI: 10.3390/vaccines13040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Over the past two centuries, tuberculosis (TB) has been responsible for approximately one billion deaths and continues to represent a significant global health challenge. Despite extensive research efforts, fully effective strategies for the prevention or eradication of TB remain elusive, highlighting the urgent demand for novel vaccines with enhanced safety profiles and efficacy. Lipoproteins, integral surface proteins of mycobacteria, are frequently associated with virulence and display notable immunogenicity, rendering them promising candidates for vaccine development. This study investigates the potential of the mycobacterial lipoprotein, LprO, as a vaccine antigen against TB. Methods: A pcDNA-lprO DNA vaccine was constructed, and its immunogenicity was evaluated using a murine model. Its protective efficacy was further assessed using a Mycobacterium marinum (M. marinum)-infected zebrafish model. Additionally, a recombinant BCG vaccine strain, BCG Japan::pNBV1-lprO, was generated. Its immunogenicity was tested in mice, and its safety was evaluated in SCID mice. Both vaccine candidates were further assessed in regard to their protective efficacy in a murine Mycobacterium tuberculosis (M. tb) infection model. Results: The pcDNA-lprO vaccine increased the M. tb-specific IFN-γ-secreting lymphocytes in murine spleens and prolonged the survival of zebrafish infected with M. marinum. The recombinant BCG Japan::pNBV1-lprO vaccine elicited M. tb-specific Th1-type immune responses in mice compared to the standard BCG Japan strain. Both vaccines effectively reduced the bacterial burden of M. tb in murine lungs, offering superior protection relative to the control groups. Conclusions: These findings establish LprO as a compelling candidate for TB vaccine development, with both LprO-based DNA and recombinant BCG vaccines demonstrating robust protective effects against TB.
Collapse
Affiliation(s)
- Weili Huang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Shuqin Xu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Lifang Shen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Dan Chen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Hanmei Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Yuting Tang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Xiaolin Liu
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK;
| | - Wenxuan Xiao
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Ziwei Zhou
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Shifeng Zhang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Jixi Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
| | - Xiaoyong Fan
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Lu Zhang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China; (W.H.); (S.X.); (L.S.); (D.C.); (H.L.); (Y.T.); (W.X.); (Z.Z.); (S.Z.); (J.L.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, Shanghai 200438, China
| |
Collapse
|
3
|
Xie Y, Liu J, Ma J, Shi N, Zhang X. Excavation of resources of Streptomyces species in frozen soils of the Qinghai-Tibet Plateau based on RpfA protein of Streptomyces coelicolor. Front Microbiol 2025; 16:1557511. [PMID: 40264977 PMCID: PMC12011840 DOI: 10.3389/fmicb.2025.1557511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
This study is aimed at the actual demand for exploring new species resources of Streptomyces, and aims to solve the technical bottleneck of Streptomyces isolation and culture. A new method was established based on the resuscitation function of the RpfA protein from Streptomyces coelicolor CGMCC 4.1658T to isolate unculturable or difficult-to-culture Streptomyces species, and it was applied to explore Streptomyces species resources in special habitats in the frozen soils of the Qinghai-Tibet Plateau. The RpfA protein of S. coelicolor was heterologously expressed and validated for its in vitro activity. The purified RpfA protein was then used to isolate Streptomyces from soil samples in the frozen soils of the Qinghai-Tibet Plateau, followed by an investigation into the impact of the RpfA protein on the cultivability of Streptomyces species. The results showed that the RpfA protein had a significant promoting effect on the germination of spores of both S. coelicolor itself and other species of the Streptomyces genus, and when a suitable concentration of RpfA protein was added to the culture medium, it could significantly improve the culturability of members of phylum Actinomycetota, especially Streptomyces species. In addition, many new species of the genus Streptomyces and other genera of phylum Actinomycetota were discovered. This study provides a new approach for further exploring Streptomyces species resources in special environments such as the Qinghai-Tibet Plateau and developing new biologically active substances produced by Streptomyces.
Collapse
Affiliation(s)
- Yuxiao Xie
- College of Life Sciences, Hebei University, Baoding, China
| | - Jingjing Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Jun Ma
- College of Life Sciences, Hebei University, Baoding, China
| | - Nan Shi
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding, China
| | - Xiumin Zhang
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding, China
| |
Collapse
|
4
|
Zhang Y, Zhang XL, Ding H, Li M, Liu XW. Streamlined Access to Peptidoglycan Biosynthesis Terminator GlcNAc-1,6-anhydro-MurNAc. Org Lett 2025; 27:698-703. [PMID: 39761199 DOI: 10.1021/acs.orglett.4c04620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
GlcNAc-1,6-anhydro-MurNAc is a key peptidoglycan elongation terminator of biological and medicinal importance. Herein, we present a concise approach to this molecule in 12 steps with an overall 25% yield using d-glucosamine as the sole starting material. Our synthesis features the formation of a 1,6-anhydro-MurNAc building block by an intramolecular glycosylation and the selective conversion of the phthalimido group of the MurNPhth moiety, paving the way for antibiotics with a new killing mechanism by targeting bacterial transglycosylase.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Ming Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xue-Wei Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
5
|
Shleeva MO, Demina GR, Kaprelyants AS. Biochemistry of Reactivation of Dormant Mycobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S193-S213. [PMID: 40164159 DOI: 10.1134/s0006297924603757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 08/23/2024] [Indexed: 04/02/2025]
Abstract
An important aspect of medical microbiology is identification of the causes and mechanisms of reactivation (resuscitation) of dormant non-sporulating bacteria. In particular, dormant Mycobacterium tuberculosis (Mtb) can cause latent tuberculosis (TB), which could be reactivated in the human organism to the active form of the disease. Analysis of experimental data suggested that reactivation of mycobacteria and reversion of the growth processes include several stages. The initial stage is associated with breakdown of the storage substances like trehalose upon the action of trehalase and with peptidoglycan hydrolysis. Demethylation of tetramethyl porphyrins accumulated in hydrophobic sites (membranes) of the dormant cell also occur in this stage. Metabolic reactivation, starting with cAMP synthesis and subsequent activation of metabolic reactions and biosynthetic processes take place at the stage two as has been shown in the omics studies. Mechanisms of cell reactivation by exogenous free fatty acids via activation of adenylate cyclase and cAMP production have been also suggested. Onset of the cell division is a key benchmark of the third and final stage. Hydrolysis of peptidoglycan as a result of enzymatic action of peptidoglycan hydrolases of the Rpf family is an important process in reactivation of the dormant mycobacteria. Two possible mechanisms for participation of Rpf proteins in reactivation of the dormant bacteria are discussed. On the one hand, muropeptides could be formed as products of peptidoglycan hydrolysis, which could interact with appropriate receptors in bacterial cells transducing activating signal via the PknB phosphotransferase. On the other hand, Rpf protein could presumably change structure of the cell wall, making it more permeable to nutrients and substrates. Both hypotheses were examined in this review. Upon reactivation, independent enzymatic reactions resume their functioning from the beginning of reactivation. Such activation of the entire metabolism occurs rather stochastically, which concludes in combining all biochemical processes in one. This review presents current knowledge regarding biochemical mechanisms of the dormant mycobacteria reactivation, which is important for both fundamental and medical microbiology.
Collapse
Affiliation(s)
- Margarita O Shleeva
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Galina R Demina
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Arseny S Kaprelyants
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
6
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
7
|
Li X, Ren Q, Sun Z, Wu Y, Pan H. Resuscitation Promotion Factor: A Pronounced Bacterial Cytokine in Propelling Bacterial Resuscitation. Microorganisms 2024; 12:1528. [PMID: 39203370 PMCID: PMC11356341 DOI: 10.3390/microorganisms12081528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
While confronted with unfavorable growth conditions, bacteria may transform into the dormant state, such as viable but nonculturable (VBNC) state, which is a reversible state characterized by low metabolic activity and lack of division. These dormant cells can be reactivated through the influence of the resuscitation promoting factor (Rpf) family, which are classified as autocrine growth factors and possess peptidoglycan hydrolase activities. To date, with the significant resuscitation or growth promotion ability of Rpf, it has been extensively applied to increasing bacterial diversity and isolating functional microbial species. This review provides a comprehensive analysis of the distribution, mode of action, and functional mechanisms of Rpf proteins in various bacterial species. The aim is to create opportunities for decoding microbial communities and extracting microbial resources from real samples across different research fields.
Collapse
Affiliation(s)
| | | | | | | | - Hanxu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (Q.R.); (Z.S.); (Y.W.)
| |
Collapse
|
8
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
9
|
Kwon KW, Choi HG, Choi HH, Choi E, Kim H, Kim HJ, Shin SJ. Immunogenicity and protective efficacy of RipA, a peptidoglycan hydrolase, against Mycobacterium tuberculosis Beijing outbreak strains. Vaccine 2024; 42:1941-1952. [PMID: 38368223 DOI: 10.1016/j.vaccine.2024.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eunsol Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hagyu Kim
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|
10
|
Nair G, Jain V. An intramolecular cross-talk in D29 mycobacteriophage endolysin governs the lytic cycle and phage-host population dynamics. SCIENCE ADVANCES 2024; 10:eadh9812. [PMID: 38335296 PMCID: PMC10857449 DOI: 10.1126/sciadv.adh9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
D29 mycobacteriophage encodes LysA endolysin, which mediates mycobacterial host cell lysis by targeting its peptidoglycan layer, thus projecting itself as a potential therapeutic. However, the regulatory mechanism of LysA during the phage lytic cycle remains ill defined. Here, we show that during D29 lytic cycle, structural and functional regulation of LysA not only orchestrates host cell lysis but also is critical for maintaining phage-host population dynamics by governing various phases of lytic cycle. We report that LysA exists in two conformations, of which only one is active, and the protein undergoes a host peptidoglycan-dependent conformational switch to become active for carrying out endogenous host cell lysis. D29 maintains a pool of inactive LysA, allowing complete assembly of phage progeny, thus helping avoid premature host lysis. In addition, we show that the switch reverses after lysis, thus preventing exogenous targeting of bystanders, which otherwise negatively affects phage propagation in the environment.
Collapse
Affiliation(s)
- Gokul Nair
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | | |
Collapse
|
11
|
Kwan JMC, Liang Y, Ng EWL, Sviriaeva E, Li C, Zhao Y, Zhang XL, Liu XW, Wong SH, Qiao Y. In silico MS/MS prediction for peptidoglycan profiling uncovers novel anti-inflammatory peptidoglycan fragments of the gut microbiota. Chem Sci 2024; 15:1846-1859. [PMID: 38303944 PMCID: PMC10829024 DOI: 10.1039/d3sc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Peptidoglycan is an essential exoskeletal polymer across all bacteria. Gut microbiota-derived peptidoglycan fragments (PGNs) are increasingly recognized as key effector molecules that impact host biology. However, the current peptidoglycan analysis workflow relies on laborious manual identification from tandem mass spectrometry (MS/MS) data, impeding the discovery of novel bioactive PGNs in the gut microbiota. In this work, we built a computational tool PGN_MS2 that reliably simulates MS/MS spectra of PGNs and integrated it into the user-defined MS library of in silico PGN search space, facilitating automated PGN identification. Empowered by PGN_MS2, we comprehensively profiled gut bacterial peptidoglycan composition. Strikingly, the probiotic Bifidobacterium spp. manifests an abundant amount of the 1,6-anhydro-MurNAc moiety that is distinct from Gram-positive bacteria. In addition to biochemical characterization of three putative lytic transglycosylases (LTs) that are responsible for anhydro-PGN production in Bifidobacterium, we established that these 1,6-anhydro-PGNs exhibit potent anti-inflammatory activity in vitro, offering novel insights into Bifidobacterium-derived PGNs as molecular signals in gut microbiota-host crosstalk.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Evan Wei Long Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Ekaterina Sviriaeva
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Chenyu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
12
|
Guzman J, Raval D, Hauck D, Titz A, Poehlein A, Degenkolb T, Daniel R, Vilcinskas A. The resuscitation-promoting factor (Rpf) from Micrococcus luteus and its putative reaction product 1,6-anhydro-MurNAc increase culturability of environmental bacteria. Access Microbiol 2023; 5:000647.v4. [PMID: 37841103 PMCID: PMC10569661 DOI: 10.1099/acmi.0.000647.v4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Dormant bacterial cells do not divide and are not immediately culturable, but they persist in a state of low metabolic activity, a physiological state having clinical relevance, for instance in latent tuberculosis. Resuscitation-promoting factors (Rpfs) are proteins that act as signalling molecules mediating growth and replication. In this study we aimed to test the effect of Rpfs from Micrococcus luteus on the number and diversity of cultured bacteria using insect and soil samples, and to examine if the increase in culturability could be reproduced with the putative reaction product of Rpf, 1,6-anhydro-N-acetylmuramic acid (1,6-anhydro-MurNAc). The rpf gene from Micrococcus luteus was amplified and cloned into a pET21b expression vector and the protein was expressed in Escherichia coli BL21(DE3) cells and purified by affinity chromatography using a hexa-histidine tag. 1,6-Anhydro-MurNAc was prepared using reported chemical synthesis methods. Recombinant Rpf protein or 1,6-anhydro-MurNAc were added to R2A cultivation media, and their effect on the culturability of bacteria from eight environmental samples including four cockroach guts and four soils was examined. Colony-forming units, 16S rRNA gene copies and Illumina amplicon sequencing of the 16S rRNA gene were measured for all eight samples subjected to three different treatments: Rpf, 1,6-anhydro-MurNAc or blank control. Both Rpf and 1,6-anhydro-MurNAc increased the number of colony-forming units and of 16S rRNA gene copies across the samples although the protein was more effective. The Rpf and 1,6-anhydro-MurNAc promoted the cultivation of a diverse set of bacteria and in particular certain clades of the phyla Actinomycetota and Bacillota . This study opens the path for improved cultivation strategies aiming to isolate and study yet undescribed living bacterial organisms.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dipansi Raval
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
13
|
Berisio R, Ruggiero A. Virulence Factors in Mycobacterium tuberculosis Infection: Structural and Functional Studies. Biomolecules 2023; 13:1201. [PMID: 37627265 PMCID: PMC10452091 DOI: 10.3390/biom13081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) remains one of the main causes of death by infection, especially in immunocompromised patients [...].
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| |
Collapse
|
14
|
Konorev MR, Tyshevich EN, Pavlyukov RA. Application of N-Acetyl-Glucosaminil-N-Acetyl-Muramyl Dipeptide during Triple Component Anti-Helicobacter Pylori Therapy in the Period of Coronavirus Infection COVID-19. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:60-69. [DOI: 10.22416/1382-4376-2023-33-2-60-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Aim: evaluation of the incidence of COVID-19 infection after three-component H. pylori eradication therapy while taking N-acetyl-glucosaminyl-N-acetyl-muramyl dipeptide (GMDP).Materials and methods. A prospective randomized comparative clinical study was carried out. The study included 208 patients (147 men, 61 women; mean age — 48.1 ± 14.5 years) with duodenal ulcer associated with Helicobacter pylori (H. pylori) who underwent eradication therapy. H. pylori in the gastric mucosa was detected by a morphological method and a rapid urease test before treatment and 6-8 weeks after the end of treatment and the withdrawal of all drugs. Patients were divided into three groups according to treatment protocols: omeprazole 0.04 g/day, clarithromycin 1 g/day, amoxicillin 2 g/day (OСA; n = 103); omeprazole 0.04 g/day, clarithromycin 1 g/day, amoxicillin 2 g/day + GMDP 0.001 g/day (OCAL1; n = 61) or 0.01 g/day (OCAL10; n = 44) for 10 days. Detection of SARS-CoV-2 RNA by PCR was carried out from April 2020 to April 2022. Tracking completeness was 96.6 %.Results. The frequency of H. pylori eradication depending on “intention to treat” (ITT) and “per protocol” (PP): OCA — 79 % (95 % CI: 71-87) and 83 % (95 % CI: 75-91); OCAL1 — 95 % (95 % CI: 88-100) and 97 % (95 % CI: 92-100); OCAL10 — 96 % (95 % CI: 89-100) and 98 % (95 % CI: 93-100) respectively. The frequency of adverse reactions depending on ITT and PP: OCA — 24 % (95 % CI: 16-33) and 26 % (95 % CI: 17-35); OCAL1 — 2 % (95 % CI: 0.01-8) and 2 % (95 % CI: 0.01-8); OCAL10 — 2 % (95 % CI: 0.01-7) and 2 % (95 % CI: 0.01-7). The incidence of COVID-19 infection depending on ITT and PP: OCA — 9 % (95 % CI: 3-14) and 9 % (95 % CI: 3-15); OCAL1 + OCAL10 — 1 % (95 % CI: 0.003-1.9) and 1 % (95 % CI: 0.001-2.9), respectively.Conclusions. In H. pylori-infected patients, GMDP (an immunomodulator based on L. bulgaricus) at a dose of 1-10 mg/day, during a 10-day triple eradication therapy, allows a significant (p < 0.05) increase in the frequency of H. pylori eradication and reduce the incidence of adverse reactions compared with a 10-day protocol without adjuvant therapy with GMDP. There was a significant (p < 0.05) decrease in the incidence of COVID-19 infection after H. pylori eradication therapy with GMDP.
Collapse
|
15
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
16
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
17
|
Peters JS, McIvor A, Papadopoulos AO, Masangana T, Gordhan BG, Waja Z, Otwombe K, Letutu M, Kamariza M, Sterling TR, Bertozzi CR, Martinson NA, Kana BD. Differentially culturable tubercle bacteria as a measure of tuberculosis treatment response. Front Cell Infect Microbiol 2023; 12:1064148. [PMID: 36710965 PMCID: PMC9877613 DOI: 10.3389/fcimb.2022.1064148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Routine efficacy assessments of new tuberculosis (TB) treatments include quantitative solid culture or routine liquid culture, which likely miss quantification of drug tolerant bacteria. To improve these assessments, comparative analyses using additional measures such as quantification of differentially culturable tubercle bacteria (DCTB) are required. Essential for enabling this is a comparative measure of TB treatment responses using routine solid and liquid culture with liquid limiting dilutions (LLDs) that detect DCTB in sputum. Methods We recruited treatment-naïve TB patients, with and without HIV-infection, and serially quantified their sputum for DCTB over the course of treatment. Results Serial sputum sampling in 73 individuals during their first 14 days of treatment demonstrated that clearance of DCTB was slower compared to routine solid culture. Treatment response appeared to be characterized by four patterns: (1) Classic bi-phasic bacterial clearance; (2) early non-responders with slower clearance; (3) paradoxical worsening with an increase in bacterial count upon treatment initiation; and (4) non-responders with no change in bacterial load. During treatment, LLDs displayed greater bacterial yield when compared with quantitative solid culture. Upon treatment completion, 74% [46/62] of specimens displayed residual DCTB and within this group, two recurrences were diagnosed. Residual DCTB upon treatment completion was associated with a higher proportion of MGIT culture, GeneXpert, and smear positivity at two months post treatment. No recurrences occurred in the group without residual DCTB. Discussion These data indicate that DCTB assays detect distinct subpopulations of organisms in sputum that are missed by routine solid and liquid culture, and offer important alternatives for efficacy assessments of new TB treatments. The residual DCTB observed upon treatment completion suggests that TB treatment does not always eliminate all bacterial populations, a finding that should be investigated in larger cohorts.
Collapse
Affiliation(s)
- Julian S. Peters
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda McIvor
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea O. Papadopoulos
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tshepiso Masangana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bhavna G. Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Matebogo Letutu
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Neil A. Martinson
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa,Johns Hopkins University Center for TB Research, Baltimore, MD, United States
| | - Bavesh D. Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, The National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Bavesh D. Kana,
| |
Collapse
|
18
|
Pan H, Ren Q. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods 2022; 12:82. [PMID: 36613298 PMCID: PMC9818539 DOI: 10.3390/foods12010082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
The viable but nonculturable (VBNC) state is a survival strategy for bacteria when encountered with unfavorable conditions. Under favorable environments such as nutrient supplementation, external stress elimination, or supplementation with resuscitation-promoting substances, bacteria will recover from the VBNC state, which is termed "resuscitation". The resuscitation phenomenon is necessary for proof of VBNC existence, which has been confirmed in different ways to exclude the possibility of culturable-cell regrowth. The resuscitation of VBNC cells has been widely studied for the purpose of risk control of recovered pathogenic or spoilage bacteria. From another aspect, the resuscitation of functional bacteria can also be considered a promising field to explore. To support this point, the resuscitation mechanisms were comprehensively reviewed, which could provide the theoretical foundations for the application of resuscitated VBNC cells. In addition, the proposed applications, as well as the prospects for further applications of resuscitated VBNC bacteria in the food industry are discussed in this review.
Collapse
Affiliation(s)
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
19
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
20
|
Demina GR, Shleeva MO, Bagaeva DI, Vostroknutova GV, Kaprelyants AS. Detection of “Non-culturable” Mycobacterium tuberculosis Cells by Culture Methods. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
21
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
22
|
Mishra S, Saito K. Clinically encountered growth phenotypes of tuberculosis-causing bacilli and their in vitro study: A review. Front Cell Infect Microbiol 2022; 12:1029111. [PMID: 36439231 PMCID: PMC9684195 DOI: 10.3389/fcimb.2022.1029111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 07/11/2024] Open
Abstract
The clinical manifestations of tuberculosis (TB) vary widely in severity, site of infection, and outcomes of treatment-leading to simultaneous efforts to individualize therapy safely and to search for shorter regimens that can be successfully used across the clinical spectrum. In these endeavors, clinicians and researchers alike employ mycobacterial culture in rich media. However, even within the same patient, individual bacilli among the population can exhibit substantial variability in their culturability. Bacilli in vitro also demonstrate substantial heterogeneity in replication rate and cultivation requirements, as well as susceptibility to killing by antimicrobials. Understanding parallels in clinical, ex vivo and in vitro growth phenotype diversity may be key to identifying those phenotypes responsible for treatment failure, relapse, and the reactivation of bacilli that progresses TB infection to disease. This review briefly summarizes the current role of mycobacterial culture in the care of patients with TB and the ex vivo evidence of variability in TB culturability. We then discuss current advances in in vitro models that study heterogenous subpopulations within a genetically identical bulk culture, with an emphasis on the effect of oxidative stress on bacillary cultivation requirements. The review highlights the complexity that heterogeneity in mycobacterial growth brings to the interpretation of culture in clinical settings and research. It also underscores the intricacies present in the interplay between growth phenotypes and antimicrobial susceptibility. Better understanding of population dynamics and growth requirements over time and space promises to aid both the attempts to individualize TB treatment and to find uniformly effective therapies.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
23
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
24
|
Ruggiero A, Choi HG, Barra G, Squeglia F, Back YW, Kim HJ, Berisio R. Structure based design of effective HtpG-derived vaccine antigens against M. tuberculosis. Front Mol Biosci 2022; 9:964645. [PMID: 36032688 PMCID: PMC9403545 DOI: 10.3389/fmolb.2022.964645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Vaccine development against Tuberculosis is a strong need, given the low efficacy of the sole vaccine hitherto used, the Bacillus Calmette–Guérin (BCG) vaccine. The chaperone-like protein HtpGMtb of M. tuberculosis is a large dimeric and multi-domain protein with promising antigenic properties. We here used biophysical and biochemical studies to improve our understanding of the structural basis of HtpGMtb functional role and immunogenicity, a precious information to engineer improved antigens. We showed that HtpGMtb is a dimeric nucleotide-binding protein and identified the dimerisation interface on the C-terminal domain of the protein. We also showed that the most immunoreactive regions of the molecule are located on the C-terminal and middle domains of the protein, whereas no role is played by the catalytic N-terminal domain in the elicitation of the immune response. Based on these observations, we experimentally validated our predictions in mice, using a plethora of immunological assays. As an outcome, we designed vaccine antigens with enhanced biophysical properties and ease of production, albeit conserved or enhanced antigenic properties. Our results prove the efficacy of structural vaccinology approaches in improving our understanding of the structural basis of immunogenicity, a precious information to engineer more stable, homogeneous, efficiently produced, and effective vaccine antigens.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Young Woo Back
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- *Correspondence: Hwa-Jung Kim, ; Rita Berisio,
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
- *Correspondence: Hwa-Jung Kim, ; Rita Berisio,
| |
Collapse
|
25
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Guryanova SV. Regulation of Immune Homeostasis via Muramyl Peptides-Low Molecular Weight Bioregulators of Bacterial Origin. Microorganisms 2022; 10:1526. [PMID: 36013944 PMCID: PMC9413341 DOI: 10.3390/microorganisms10081526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Metabolites and fragments of bacterial cells play an important role in the formation of immune homeostasis. Formed in the course of evolution, symbiotic relationships between microorganisms and a macroorganism are manifested, in particular, in the regulation of numerous physiological functions of the human body by the innate immunity receptors. Low molecular weight bioregulators of bacterial origin have recently attracted more and more attention as drugs in the prevention and composition of complex therapy for a wide range of diseases of bacterial and viral etiology. Signaling networks show cascades of causal relationships of deterministic phenomena that support the homeostasis of multicellular organisms at different levels. To create networks, data from numerous biomedical and clinical research databases were used to prepare expert systems for use in pharmacological and biomedical research with an emphasis on muramyl dipeptides. Muramyl peptides are the fragments of the cell wall of Gram-positive and Gram-negative bacteria. Binding of muramyl peptides with intracellular NOD2 receptors is crucial for an immune response on pathogens. Depending on the microenvironment and duration of action, muramyl peptides possess positive or negative regulation of inflammation. Other factors, such as genetic, pollutions, method of application and stress also contribute and should be taken into account. A system biology approach should be used in order to systemize all experimental data for rigorous analysis, with the aim of understanding intrinsic pathways of homeostasis, in order to define precise medicine therapy and drug design.
Collapse
Affiliation(s)
- Svetlana V Guryanova
- Medical Institute, Peoples' Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
27
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
28
|
McIvor A, Gordhan BG, Waja Z, Otwombe K, Martinson NA, Kana BD. Supplementation of sputum cultures with culture filtrate to detect tuberculosis in a cross-sectional study of HIV-infected individuals. Tuberculosis (Edinb) 2021; 129:102103. [PMID: 34144375 DOI: 10.1016/j.tube.2021.102103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
While some healthcare systems have shifted to molecular diagnostics, culture still remains the gold standard for tuberculosis diagnosis, but it is limited by its long duration to a positive result. Methods to reduce time to culture positivity (TTP) are urgently required. We determined if growth factor supplementation in the mycobacterial growth indicator tube (MGIT) culture system reduces TTP. MGITs were supplemented with fresh culture filtrate (CF) as a source of growth stimulatory molecules from axenic Mycobacterium tuberculosis culture. Different volumes of CF and media components were tested. The performance of these modified MGITs was assessed with sputum from HIV-TB co-infected individuals. Reducing the volume of MGIT cultures and removal of detergent from cultures grown to generate CF had a marginal but significant benefit on reducing TTP. In a subset of specimens, CF inhibited growth. Following optimization of methods, a reduced TTP occurred in specimens with low bacillary load as measured by GeneXpert, smear microscopy and colony forming units. Three specimens that were negative under standard conditions flagged positive following CF supplementation. Our data provide preliminary evidence that addition of CF to MGIT cultures can enhance detection of M. tuberculosis in HIV-TB co-infected patients with low sputum bacillary loads.
Collapse
Affiliation(s)
- Amanda McIvor
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa
| | - Bhavna Gowan Gordhan
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Neil A Martinson
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa; Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa; John Hopkins University, Centre for Tuberculosis Research, Baltimore, MD, USA
| | - Bavesh Davandra Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, South Africa; CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
29
|
Guryanova SV, Khaitov RM. Strategies for Using Muramyl Peptides - Modulators of Innate Immunity of Bacterial Origin - in Medicine. Front Immunol 2021; 12:607178. [PMID: 33959120 PMCID: PMC8093441 DOI: 10.3389/fimmu.2021.607178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
The spread of infectious diseases is rampant. The emergence of new infections, the irrational use of antibiotics in medicine and their widespread use in agriculture contribute to the emergence of microorganisms that are resistant to antimicrobial drugs. By 2050, mortality from antibiotic-resistant strains of bacteria is projected to increase up to 10 million people per year, which will exceed mortality from cancer. Mutations in bacteria and viruses are occurring faster than new drugs and vaccines are being introduced to the market. In search of effective protection against infections, new strategies and approaches are being developed, one of which is the use of innate immunity activators in combination with etiotropic chemotherapy drugs. Muramyl peptides, which are part of peptidoglycan of cell walls of all known bacteria, regularly formed in the body during the breakdown of microflora and considered to be natural regulators of immunity. Their interaction with intracellular receptors launches a sequence of processes that ultimately leads to the increased expression of genes of MHC molecules, pro-inflammatory mediators, cytokines and their soluble and membrane-associated receptors. As a result, all subpopulations of immunocompetent cells are activated: macrophages and dendritic cells, neutrophils, T-, B- lymphocytes and natural killer cells for an adequate response to foreign or transformed antigens, manifested both in the regulation of the inflammatory response and in providing immunological tolerance. Muramyl peptides take part in the process of hematopoiesis, stimulating production of colony-stimulating factors, which is the basis for their use in the treatment of oncological diseases. In this review we highlight clinical trials of drugs based on muramyl peptides, as well as clinical efficacy of drugs mifamurtide, lycopid, liasten and polimuramil. Such a multifactorial effect of muramyl peptides and a well-known mechanism of activity make them promising drugs in the treatment and preventing of infectious, allergic and oncological diseases, and in the composition of vaccines.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biology and General Genetics, Medical Institute, RUDN University, Moscow, Russia
| | - Rahim M. Khaitov
- National Research Center – Institute of Immunology of Federal Medico-Biological Agency, Moscow, Russia
- Department of Immunology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
30
|
Hoang HH, Wang PC, Chen SC. Recombinant resuscitation-promoting factor protein of Nocardia seriolae, a promissing vaccine candidate for largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 111:127-139. [PMID: 33545184 DOI: 10.1016/j.fsi.2021.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Nocardia seriolae is an important pathogenic bacterium that causes nocardiosis in various fish species and leads to economic losses in the fish industry. To develop an effective subunit vaccine against nocardial infection, the truncated resuscitation-promoting factor (tRPF) of N. seriolae was selected and recombinantly produced using the Escherichia coli expression system. Western blotting results indicated that the recombinant protein could be strongly recognised by largemouth bass anti-N. seriolae antibodies. The protective efficacy of tRPF recombinant protein was assessed in combination with the commercial adjuvant Montanide™ ISA 763 A VG. The results showed that emulsified tRPF + ISA significantly induced high serum antibody response and serum lysozyme activity in the vaccinated fish. Quantitative reverse transcription polymerase chain reaction analysis indicated that tRPF + ISA could notably enhance the expression of immune-related genes in both the head kidney and spleen of the vaccinated fish. Finally, vaccinated largemouth bass displayed higher immuno-protection with a relative percent survival of 69.23% compared to the control groups. Taken together, the combination of tRPF + ISA is an ideal vaccine candidate against N. seriolae infection.
Collapse
Affiliation(s)
- Huy Hoa Hoang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan; Southern Taiwan Fish Disease Centre, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan; Southern Taiwan Fish Disease Centre, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan; Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
31
|
Gordhan BG, Peters JS, McIvor A, Machowski EE, Ealand C, Waja Z, Martinson N, Kana BD. Detection of differentially culturable tubercle bacteria in sputum using mycobacterial culture filtrates. Sci Rep 2021; 11:6493. [PMID: 33753820 PMCID: PMC7985135 DOI: 10.1038/s41598-021-86054-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Rapid detection of tuberculosis (TB) infection is paramount to curb further transmission. The gold standard for this remains mycobacterial culture, however emerging evidence confirms the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens. These bacteria do not grow under standard culture conditions and require the presence of culture filtrate (CF), from axenic cultures of Mycobacterium tuberculosis (Mtb), to emerge. It has been hypothesized that molecules such as resuscitation promoting factors (Rpfs), fatty acids and cyclic-AMP (cAMP) present in CF are responsible for the growth stimulatory activity. Herein, we tested the ability of CF from the non-pathogenic bacterium Mycobacterium smegmatis (Msm) to stimulate the growth of DCTB, as this organism provides a more tractable source of CF. We also interrogated the role of Mtb Rpfs in stimulation of DCTB by creating recombinant strains of Msm that express Mtb rpf genes in various combinations. CF derived from this panel of strains was tested on sputum from individuals with drug susceptible TB prior to treatment. CF from wild type Msm did not enable detection of DCTB in a manner akin to Mtb CF preparations and whilst the addition of RpfABMtb and RpfABCDEMtb to an Msm mutant devoid of its native rpfs did improve detection of DCTB compared to the no CF control, it was not statistically different to the empty vector control. To further investigate the role of Rpfs, we compared the growth stimulatory activity of CF from Mtb, with and without Rpfs and found these to be equivalent. Next, we tested chemically diverse fatty acids and cAMP for growth stimulation and whilst some selective stimulatory effect was observed, this was not significantly higher than the media control and not comparable to CF. Together, these data indicate that the growth stimulatory effect observed with Mtb CF is most likely the result of a combination of factors. Future work aimed at identifying the nature of these growth stimulatory molecules may facilitate improvement of culture-based diagnostics for TB.
Collapse
Affiliation(s)
- Bhavna G Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Julian S Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Amanda McIvor
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Edith E Machowski
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Christopher Ealand
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa.,Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa.
| |
Collapse
|
32
|
PE_PGRS33, an Important Virulence Factor of Mycobacterium tuberculosis and Potential Target of Host Humoral Immune Response. Cells 2021; 10:cells10010161. [PMID: 33467487 PMCID: PMC7830552 DOI: 10.3390/cells10010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
PE_PGRS proteins are surface antigens of Mycobacterium tuberculosis (Mtb) and a few other pathogenic mycobacteria. The PE_PGRS33 protein is among the most studied PE_PGRSs. It is known that the PE domain of PE_PGRS33 is required for the protein translocation through the mycobacterial cell wall, where the PGRS domain remains available for interaction with host receptors. Interaction with Toll like receptor 2 (TLR2) promotes secretion of inflammatory chemokines and cytokines, which are key in the immunopathogenesis of tuberculosis (TB). In this review, we briefly address some key challenges in the development of a TB vaccine and attempt to provide a rationale for the development of new vaccines aimed at fostering a humoral response against Mtb. Using PE_PGRS33 as a model for a surface-exposed antigen, we exploit the availability of current structural data using homology modeling to gather insights on the PGRS domain features. Our study suggests that the PGRS domain of PE_PGRS33 exposes four PGII sandwiches on the outer surface, which, we propose, are directly involved through their loops in the interactions with the host receptors and, as such, are promising targets for a vaccination strategy aimed at inducing a humoral response.
Collapse
|
33
|
Xie M, Li Y, Xu L, Zhang S, Ye H, Sun F, Mei R, Su X. Optimization of bacterial cytokine protein production by response surface methodology for environmental bioremediation. RSC Adv 2021; 11:36105-36115. [PMID: 35492803 PMCID: PMC9043431 DOI: 10.1039/d1ra03565g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
In natural and engineered systems, most microorganisms would enter a state of dormancy termed as “viable but non-culturable” (VBNC) state when they are exposed to unpredictable environmental stress. One of the major advances in resuscitating from such a state is the discovery of a kind of bacterial cytokine protein called resuscitation-promoting factor (Rpf), which is secreted from Micrococcus luteus. In this study, the optimization of Rpf production was investigated by the response surface methodology (RSM). Results showed that an empirical quadratic model well predicted the Rpf yield, and the highest Rpf protein yield could be obtained at the optimal conditions of 59.56 mg L−1 IPTG, cell density 0.69, induction temperature 20.82 °C and culture time 7.72 h. Importantly, Phyre2 web portal characterized the structure of the Rpf domain to have a shared homology with lysozymes, and the highest lysozyme activity was at pH 5 and 50 °C. This study broadens the knowledge of Rpf production and provided potential strategies to apply Rpf as a bioactivator for environmental bioremediation. A group of secreted proteins from M. luteus, recognized as resuscitation promoting factors (Rpf) can resuscitate the viable but non-culturable (VBNC) state bacteria which have the potential function of environmental bioremediation.![]()
Collapse
Affiliation(s)
- Mengqi Xie
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Luning Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Hongyu Ye
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Rongwu Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| |
Collapse
|
34
|
Shleeva M, Savitsky A, Kaprelyants A. Corynebacterium jeikeium Dormant Cell Formation and Photodynamic Inactivation. Front Microbiol 2020; 11:605899. [PMID: 33391228 PMCID: PMC7775403 DOI: 10.3389/fmicb.2020.605899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Pathogenic non-spore forming bacteria enter a dormant state under stressful conditions, which likely allows them to acquire resistance to various antibiotics. This work revealed the efficient formation of dormant "non-culturable" (NC) Corynebacterium jeikeium cells in stationary phase upon gradual acidification of the growth medium. Such cells were unable to form colonies and existed in a prolonged stationary phase. At an early stage of dormancy (approximately 14 days post-inoculation), dormant cells are able for resuscitation in liquid medium. However, those stored for long time in dormant state needed addition of supernatant taking from active C. jeikeium cultures for successful resuscitation. NC cells possessed low RNA synthesis and significant tolerance to antibiotics (rifampicin and vancomycin). They also accumulated free porphyrins, and 5-aminolevulinic acid addition enhanced free porphyrin accumulation which makes them potentially sensitive to photodynamic inactivation (PDI). PDI of dormant bacteria was accomplished by exposing cells to a 565 nm wavelength of light using a SOLIS-4C light-emitting diode for 60 min. This revealed that increased porphyrin concentrations were correlated with elevated PDI sensitivity. Results shown here demonstrate the potential utility of employing PDI to minimize levels of dormant, persistent corynebacteria and the C. jeikeium dormancy model developed here may be useful for finding new drugs and techniques for combatting persistent corynebacteria.
Collapse
Affiliation(s)
- Margarita Shleeva
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow, Russia
| | | | | |
Collapse
|
35
|
Prakash C, Pandey M, Talwar S, Singh Y, Kanojiya S, Pandey AK, Kumar N. Extra-ribosomal functions of Mtb RpsB in imparting stress resilience and drug tolerance to mycobacteria. Biochimie 2020; 177:87-97. [PMID: 32828823 DOI: 10.1016/j.biochi.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 01/21/2023]
Abstract
Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria.
Collapse
Affiliation(s)
- Chetan Prakash
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India
| | - Manitosh Pandey
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India; Department of Life Sciences, ITM University, Gwalior 475001, Madhya Pradesh, India
| | - Sakshi Talwar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yatendra Singh
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Amit Kumar Pandey
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Ext, Sector 10, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
36
|
Sexton DL, Herlihey FA, Brott AS, Crisante DA, Shepherdson E, Clarke AJ, Elliot MA. Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. J Biol Chem 2020; 295:9171-9182. [PMID: 32434927 PMCID: PMC7335776 DOI: 10.1074/jbc.ra120.013994] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial dormancy can take many forms, including formation of Bacillus endospores, Streptomyces exospores, and metabolically latent Mycobacterium cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate. Here, to address this question, we used mutagenesis and peptidoglycan binding and cleavage assays to first gain broader insight into the biochemical function of diverse Rpf enzymes. We show that their LysM and LytM domains enhance Rpf enzyme activity; their LytM domain and, in some cases their LysM domain, also promoted peptidoglycan binding. We further demonstrate that the Rpfs function as endo-acting lytic transglycosylases, cleaving within the peptidoglycan backbone. We also found that unlike in other systems, Rpf activity in the streptomycetes is not correlated with peptidoglycan-responsive Ser/Thr kinases for cell signaling, and the germination of rpf mutant strains could not be stimulated by the addition of known germinants. Collectively, these results suggest that in Streptomyces, Rpfs have a structural rather than signaling function during spore germination, and that in the actinobacteria, any signaling function associated with spore resuscitation requires the activity of additional yet to be identified enzymes.
Collapse
Affiliation(s)
- Danielle L Sexton
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - David A Crisante
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Evan Shepherdson
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Marie A Elliot
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
37
|
Moreira M, Ruggiero A, Esposito L, Choi HG, Kim HJ, Berisio R. Structural features of HtpG Mtb and HtpG-ESAT6 Mtb vaccine antigens against tuberculosis: Molecular determinants of antigenic synergy and cytotoxicity modulation. Int J Biol Macromol 2020; 158:305-317. [PMID: 32380102 DOI: 10.1016/j.ijbiomac.2020.04.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 11/26/2022]
Abstract
Vaccine development against tuberculosis is an urgent need as the only available vaccine, M. bovis Bacillus Calmette Guerin (BCG), is unable to provide significant protection in adults. Among newly identified antigens, Rv2299c is an excellent candidate for the rational design of an effective multi-antigenic TB vaccine. Also, when fused to the T cell antigen ESAT6, it becomes highly effective in boosting BCG immunization and it adopts low cytotoxicity compared to ESAT6. We here characterize these proteins by coupling various biophysical techniques to cytofluorimetry and computational studies. Altogether, our data provide an experimental evidence of the role of Rv2299c as a dimeric and highly thermostable molecular chaperone, here denoted as HtpGMtb. Molecular dynamics simulations show that ATP rigidly anchors the ATP-binding loop in a conformation incompatible with the structure of the free enzyme. We also show that HtpGMtb dimeric state is an important molecular feature for the improved antigenic and cytotoxic properties of HtpG-ESAT6Mtb. Indeed, structural features of HtpG-ESAT6Mtb show that not only does this molecule combine the antigenic properties of HtpGMtb and ESAT6, but HtpGMtb locks ESAT6 in a dimeric state, thus improving its cytotoxicity properties. The data presented here provide solid basis for the rational design of upgraded antigens.
Collapse
Affiliation(s)
- Miguel Moreira
- Istituto di Biostrutture e Bioimmagini, C.N.R., Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Alessia Ruggiero
- Istituto di Biostrutture e Bioimmagini, C.N.R., Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Luciana Esposito
- Istituto di Biostrutture e Bioimmagini, C.N.R., Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Rita Berisio
- Istituto di Biostrutture e Bioimmagini, C.N.R., Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
38
|
Gordhan BG, Peters J, Kana BD. Application of model systems to study adaptive responses of Mycobacterium tuberculosis during infection and disease. ADVANCES IN APPLIED MICROBIOLOGY 2019; 108:115-161. [PMID: 31495404 DOI: 10.1016/bs.aambs.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) claims more human lives than any other infectious organism. The lethal synergy between TB-HIV infection and the rapid emergence of drug resistant strains has created a global public health threat that requires urgent attention. Mycobacterium tuberculosis, the causative agent of TB is an exquisitely well-adapted human pathogen, displaying the ability to promptly remodel metabolism when encountering stressful environments during pathogenesis. A careful study of the mechanisms that enable this adaptation will enhance the understanding of key aspects related to the microbiology of TB disease. However, these efforts require microbiological model systems that mimic host conditions in the laboratory. Herein, we describe several in vitro model systems that generate non-replicating and differentially culturable mycobacteria. The changes that occur in the metabolism of M. tuberculosis in some of these models and how these relate to those reported for human TB disease are discussed. We describe mechanisms that tubercle bacteria use to resuscitate from these non-replicating conditions, together with phenotypic heterogeneity in terms of culturabiliy of M. tuberculosis in sputum. Transcriptional changes in M. tuberculosis that allow for adaptation of the organism to the lung environment are also summarized. Finally, given the emerging importance of the microbiome in various infectious diseases, we provide a description of how the lung and gut microbiome affect susceptibility to TB infection and response to treatment. Consideration of these collective aspects will enhance the understanding of basic metabolism, physiology, drug tolerance and persistence in M. tuberculosis to enable development of new therapeutic interventions.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Julian Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh Davandra Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
39
|
Squeglia F, Moreira M, Ruggiero A, Berisio R. The Cell Wall Hydrolytic NlpC/P60 Endopeptidases in Mycobacterial Cytokinesis: A Structural Perspective. Cells 2019; 8:cells8060609. [PMID: 31216697 PMCID: PMC6628586 DOI: 10.3390/cells8060609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
In preparation for division, bacteria replicate their DNA and segregate the newly formed chromosomes. A division septum then assembles between the chromosomes, and the mother cell splits into two identical daughters due to septum degradation. A major constituent of bacterial septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), cross-linked by short peptide stems. Depending on the amino acid located at the third position of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type. Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal bacteria with multiple septa. This review provides an update of structural and functional data highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic activity, which involves multiple molecular partners.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Miguel Moreira
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| |
Collapse
|
40
|
The hydrolase LpqI primes mycobacterial peptidoglycan recycling. Nat Commun 2019; 10:2647. [PMID: 31201321 PMCID: PMC6572805 DOI: 10.1038/s41467-019-10586-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Growth and division by most bacteria requires remodelling and cleavage of their cell wall. A byproduct of this process is the generation of free peptidoglycan (PG) fragments known as muropeptides, which are recycled in many model organisms. Bacteria and hosts can harness the unique nature of muropeptides as a signal for cell wall damage and infection, respectively. Despite this critical role for muropeptides, it has long been thought that pathogenic mycobacteria such as Mycobacterium tuberculosis do not recycle their PG. Herein we show that M. tuberculosis and Mycobacterium bovis BCG are able to recycle components of their PG. We demonstrate that the core mycobacterial gene lpqI, encodes an authentic NagZ β-N-acetylglucosaminidase and that it is essential for PG-derived amino sugar recycling via an unusual pathway. Together these data provide a critical first step in understanding how mycobacteria recycle their peptidoglycan. Bacterial growth and division require remodelling of the cell wall, which generates free peptidoglycan fragments. Here, Moynihan et al. show that Mycobacterium tuberculosis can recycle components of their peptidoglycan, and characterise a crucial enzyme required for this process.
Collapse
|
41
|
Luo D, Chen J, Xie G, Yue L, Wang Y. Enzyme characterization and biological activities of a resuscitation promoting factor from an oil degrading bacterium Rhodococcus erythropolis KB1. PeerJ 2019; 7:e6951. [PMID: 31149404 PMCID: PMC6534110 DOI: 10.7717/peerj.6951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/14/2019] [Indexed: 01/28/2023] Open
Abstract
Resuscitation-promoting factors (Rpf) are a class of muralytic enzymes, which participate in recovery of dormant cells and promoting bacteria growth in poor media. In the present study the expression vector of the rpf-1 gene from an oil-degrading bacterium Rhodococcus erythropolis KB1 was constructed and expressed in Escherichia coli. The expressed protein was purified by Ni2+-affinity chromatography, and showed muralytic activity when measured with 4-methylumbelliferyl-β-D-N,N',N″-triacetyl chitotrioside as substrate. Addition of purified Rpf-1 to R. erythropolis culture efficiently improved bacterial cell growth. The purified protein also increased resuscitation of viable but nonculturable cells of R. erythropolis to culturable state. The conserved amino acid residues including Asp45, Glu51, Cys50, Thr60, Gln69, Thr74, Trp75 and Cys114 of the Rpf-1 were replaced with different amino acids. The mutant proteins were also expressed and purified with Ni2+-affinity chromatography. The muralytic activities of the mutant proteins decreased to different extents when compared with that of the wild type Rpf-1. Gln69 was found to play the most important role in the enzyme activity, substitution of Gln69 with lysine (Q69K) resulted in the greatest decrease of muralytic activity. The other amino acid residues such as Asp45, Glu51, Cys50 and Cys114 were also found to be very important in maintaining muralytic activity and biological function of the Rpf-1. Our results indicated that Rpf-1 from R. erythropolis showed muralytic activities and weak protease activity, but the muralytic activity was responsible for its growth promotion and resuscitation activity.
Collapse
Affiliation(s)
- Dan Luo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Gang Xie
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Liang Yue
- School of Petrochemical Engineering, Lanzhou University of Technology, Lan Zhou, China
| | - Yonggang Wang
- School of Life science and Engineering, Lanzhou University of Technology, Lan Zhou, China
| |
Collapse
|
42
|
Abstract
The Lpp lipoprotein of Escherichia coli is the first identified protein with a covalently linked lipid. It is chemically bound by its C-terminus to murein (peptidoglycan) and inserts by the lipid at the N-terminus into the outer membrane. As the most abundant protein in E. coli (106 molecules per cell) it plays an important role for the integrity of the cell envelope. Lpp represents the type protein of a large variety of lipoproteins found in Gram-negative and Gram-positive bacteria and in archaea that have in common the lipid structure for anchoring the proteins to membranes but otherwise strongly vary in sequence, structure, and function. Predicted lipoproteins in known prokaryotic genomes comprise 2.7% of all proteins. Lipoproteins are modified by a unique phospholipid pathway and transferred from the cytoplasmic membrane into the outer membrane by a special system. They are involved in protein incorporation into the outer membrane, protein secretion across the cytoplasmic membrane, periplasm and outer membrane, signal transduction, conjugation, cell wall metabolism, antibiotic resistance, biofilm formation, and adhesion to host tissues. They are only found in bacteria and function as signal molecules for the innate immune system of vertebrates, where they cause inflammation and elicit innate and adaptive immune response through Toll-like receptors. This review discusses various aspects of Lpp and other lipoproteins of Gram-negative and Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Klaus Hantke
- IMIT, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
43
|
Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem J 2018; 475:3123-3140. [PMID: 30315001 DOI: 10.1042/bcj20180482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The scenario of chemical reactions prompted by the infection by Mycobacterium tuberculosis is huge. The infection generates a localized inflammatory response, with the recruitment of neutrophils, monocytes, and T-lymphocytes. Consequences of this immune reaction can be the eradication or containment of the infection, but these events can be deleterious to the host inasmuch as lung tissue can be destroyed. Indeed, a hallmark of tuberculosis (TB) is the formation of lung cavities, which increase disease development and transmission, as they are sites of high mycobacterial burden. Pulmonary cavitation is associated with antibiotic failure and the emergence of antibiotic resistance. For cavities to form, M. tuberculosis induces the overexpression of host proteases, like matrix metalloproteinases and cathepsin, which are secreted from monocyte-derived cells, neutrophils, and stromal cells. These proteases destroy the lung parenchyma, in particular the collagen constituent of the extracellular matrix (ECM). Namely, in an attempt to destroy infected cells, the immune reactions prompted by mycobacterial infections induce the destruction of vital regions of the lung, in a process that can become fatal. Here, we review structure and function of the main molecular actors of ECM degradation due to M. tuberculosis infection and the proposed mechanisms of tissue destruction, mainly attacking fibrillar collagen. Importantly, enzymes responsible for collagen destruction are emerging as key targets for adjunctive therapies to limit immunopathology in TB.
Collapse
|
44
|
Raghavendra T, Patil S, Mukherjee R. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 2018; 35:421-432. [DOI: 10.1007/s10719-018-9842-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
|
45
|
Resuscitation-Promoting Factors Are Required for Mycobacterium smegmatis Biofilm Formation. Appl Environ Microbiol 2018; 84:AEM.00687-18. [PMID: 29915116 DOI: 10.1128/aem.00687-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022] Open
Abstract
Resuscitation-promoting factors (Rpfs) have previously been shown to act as growth-stimulatory molecules via their lysozyme-like activity on peptidoglycan in the bacterial cell wall. In this study, we investigated the ability of Mycobacterium smegmatis strains lacking rpf genes to form biofilms and tested their susceptibilities to cell wall-targeting agents. M. smegmatis contains four distinct rpf homologues, namely, MSMEG_5700 (rpfA), MSMEG_5439 (rpfB), MSMEG_4640 (rpfE2), and MSMEG_4643 (rpfE). During axenic growth of the wild-type strain, all four mRNA transcripts were expressed to various degrees, but the expression of MSMEG_4643 was significantly greater during exponential growth. Similarly, all rpf mRNA transcripts could be detected in biofilms grown for 7, 14, and 28 days, with MSMEG_4643 expressed at the highest abundance after 7 days. In-frame unmarked deletion mutants (single and combinatorial) were generated and displayed altered colony morphologies and the inability to form typical biofilms. Moreover, any strain lacking rpfA and rpfB simultaneously exhibited increased susceptibility to rifampin, vancomycin, and SDS. Exogenous Rpf supplementation in the form of culture filtrate failed to restore biofilm formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of peptidoglycan (PG) suggested a reduction in 4-3 cross-linked PG in the ΔrpfABEE2 mutant strain. In addition, the level of PG-repeat units terminating in 1,6-anhydroMurNAc appeared to be significantly reduced in the quadruple rpf mutant. Collectively, our data have shown that Rpfs play an important role in biofilm formation, possibly through alterations in PG cross-linking and the production of signaling molecules.IMPORTANCE The cell wall of pathogenic mycobacteria is composed of peptidoglycan, arabinogalactan, mycolic acids, and an outer capsule. This inherent complexity renders it resistant to many antibiotics. Consequently, its biosynthesis and remodeling during growth directly impact viability. Resuscitation-promoting factors (Rpfs), enzymes with lytic transglycosylase activity, have been associated with the revival of dormant cells and subsequent resumption of vegetative growth. Mycobacterium smegmatis, a soil saprophyte and close relative of the human pathogen Mycobacterium tuberculosis, encodes four distinct Rpfs. Herein, we assessed the relationship between Rpfs and biofilm formation, which is used as a model to study drug tolerance and bacterial signaling in mycobacteria. We demonstrated that progressive deletion of rpf genes hampered the development of biofilms and reduced drug tolerance. These effects were accompanied by a reduction in muropeptide production and altered peptidoglycan cross-linking. Collectively, these observations point to an important role for Rpfs in mycobacterial communication and drug tolerance.
Collapse
|
46
|
Calvanese L, Falcigno L, Squeglia F, Berisio R, D’Auria G. PASTA sequence composition is a predictive tool for protein class identification. Amino Acids 2018; 50:1441-1450. [DOI: 10.1007/s00726-018-2621-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
|
47
|
Uhía I, Krishnan N, Robertson BD. Characterising resuscitation promoting factor fluorescent-fusions in mycobacteria. BMC Microbiol 2018; 18:30. [PMID: 29649975 PMCID: PMC5898023 DOI: 10.1186/s12866-018-1165-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/15/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Resuscitation promoting factor proteins (Rpfs) are peptidoglycan glycosidases capable of resuscitating dormant mycobacteria, and have been found to play a role in the pathogenesis of tuberculosis. However, the specific roles and localisation of each of the 5 Rpfs in Mycobacterium tuberculosis remain mostly unknown. In this work our aim was to construct fluorescent fusions of M. tuberculosis Rpf proteins as tools to investigate their function. RESULTS We found that Rpf-fusions to the fluorescent protein mCherry are functional and able to promote cell growth under different conditions. However, fusions to Enhanced Green Fluorescent Protein (EGFP) were non-functional in the assays used and none were secreted into the extracellular medium, which suggests Rpfs may be secreted via the Sec pathway. No specific cellular localization was observed for either set of fusions using time-lapse video microscopy. CONCLUSIONS We present the validation and testing of five M. tuberculosis Rpfs fused to mCherry, which are functional in resuscitation assays, but do not show any specific cellular localisation under the conditions tested. Our results suggest that Rpfs are likely to be secreted via the Sec pathway. We propose that such mCherry fusions will be useful tools for the further study of Rpf localisation, individual expression, and function.
Collapse
Affiliation(s)
- Iria Uhía
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
48
|
Squeglia F, Ruggiero A, De Simone A, Berisio R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci 2017; 27:369-380. [PMID: 29139177 DOI: 10.1002/pro.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non-pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin-binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host-pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| |
Collapse
|
49
|
Squeglia F, Ruggiero A, Berisio R. Chemistry of Peptidoglycan in Mycobacterium tuberculosis
Life Cycle: An off-the-wall Balance of Synthesis and Degradation. Chemistry 2017; 24:2533-2546. [DOI: 10.1002/chem.201702973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| |
Collapse
|
50
|
Demina GR, Nikitushkin VD, Shleeva MO, Riabova OB, Lepioshkin AY, Makarov VA, Kaprelyants AS. Benzoylphenyl thiocyanates are new, effective inhibitors of the mycobacterial resuscitation promoting factor B protein. Ann Clin Microbiol Antimicrob 2017; 16:69. [PMID: 29096645 PMCID: PMC5667462 DOI: 10.1186/s12941-017-0244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022] Open
Abstract
Background Resuscitation promoting factors (Rpfs) are the proteins involved in the process of reactivation of the dormant cells of mycobacteria. Recently a new class of nitrophenylthiocyanates (NPTs), capable of inhibiting the biological and enzymatic activities of Rpfs has been discovered. In the current study the inhibitory properties of the compounds containing both nitro and thiocyanate groups alongside with the compounds with the modified number and different spatial location of the substituents are compared. Methods New benzoylphenyl thiocyanates alongside with nitrophenylthiocyanates were tested in the enzymatic assay of bacterial peptidoglycan hydrolysis as well as against strains of several actinobacteria (Mycobacterium smegmatis, Mycobacterium tuberculosis) on in-lab developed models of resuscitation of the dormant forms. Results Introduction of the additional nitro and thiocyanate groups to the benzophenone scaffold did not influence the inhibitory activity of the compounds. Removal of the nitro groups analogously did not impair the functional properties of the molecules. Among the tested compounds two molecules without nitro group: 3-benzoylphenyl thiocyanate and 4-benzoylphenyl thiocyanate demonstrated the maximum activity in both enzymatic assay (inhibition of the Rpf-mediated peptidoglycan hydrolysis) and in the resuscitation assay of the dormant M. tuberculosis cells. Conclusions The current study demonstrates dispensability of the nitro group in the NPT’s structure for inhibition of the enzymatic and biological activities of the Rpf protein molecules. These findings provide new prospects in anti-TB drug discovery especially in finding of molecular scaffolds effective for the latent infection treatment. Electronic supplementary material The online version of this article (10.1186/s12941-017-0244-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Galina R Demina
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Vadim D Nikitushkin
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia.
| | - Margarita O Shleeva
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Olga B Riabova
- Laboratory of Biomedicinal Chemistry, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Alexander Yu Lepioshkin
- Laboratory of Biomedicinal Chemistry, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Vadim A Makarov
- Laboratory of Biomedicinal Chemistry, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Arseny S Kaprelyants
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| |
Collapse
|