1
|
Zhang R, Li Y, Guan F, Fu G, Liu P, Bai X, Yang Y, Sun C, Zhang T. A homogalacturonan-rich pectic polysaccharide isolated from Lonicera japonica Thunb. modulates galectin-4-mediated bioactivity and anti-hepatocellular carcinoma activity. Int J Biol Macromol 2025; 302:140618. [PMID: 39900157 DOI: 10.1016/j.ijbiomac.2025.140618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
L. japonica is a traditional Chinese medicine with dual-use properties. Herein, a HG-rich pectic polysaccharide, WLJP-03A, was purified from the dried flowers of L. japonica, which composed of Rha (5 %), GalA (60 %), Gal (5 %), and Ara (30 %), with a molecular weight of 28.1 kDa. WLJP-03A could be defined as an HG backbone with α-(1 → 3,5)-linked and α-(1 → 5)-linked arabinan, β-(1 → 3,6)-linked and β-(1 → 3)-linked galactan, and type II arabinogalactan side chains. Its interaction with two truncated structural domain proteins of galectin-4 (Gal-4) revealed stronger binding of WLJP-03A to Gal-4C (MIC = 15 μg/mL) than to Gal-4N (MIC = 62 μg/mL), indicating that WLJP-03A mainly interacted with the C-terminal CRD to inhibit the biological activity of Gal-4. Furthermore, in vitro antitumor assays showed that WLJP-03A could inhibit the cellular proliferation and migration of HCCLM3 cells induced by Gal-4. These results provide new insights into the structure-activity relationship between L. japonica polysaccharide and Gal-4.
Collapse
Affiliation(s)
- Renqun Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Yiqing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Fanqi Guan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Guixia Fu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Ping Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xinyu Bai
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
2
|
Suri J, Gilmour R. Expediting Glycospace Exploration: Therapeutic Glycans via Automated Synthesis. Angew Chem Int Ed Engl 2025; 64:e202422766. [PMID: 39936247 PMCID: PMC11933530 DOI: 10.1002/anie.202422766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Glycans regulate a vast spectrum of disease-related processes, yet effectively leveraging these important mediators in a therapeutic context remains a frontier in contemporary medicine. Unlike many other classes of clinically important biopolymers, carbohydrates derive from discrete biosynthetic pathways and are not produced directly from genes. The conspicuous absence of a biological blueprint to achieve amplification creates a persistent challenge in obtaining well-defined glycostructures for therapeutic translation. Isolating purified sugars from biological sources is not without challenge, rendering synthetic organic chemistry the nexus of this advancing field. Chemical synthesis has proven to be an unfaltering pillar in the production of complex glycans, but laborious syntheses coupled with purification challenges frequently introduce reproducibility issues. In an effort to reconcile these preparative challenges with the societal importance of glycans, automated glycan synthesis was conceptualised at the start of the 21st century. This rapidly expanding, multifaceted field of scientific endeavor has effectively merged synthetic chemistry with technology and engineering to expedite the precision synthesis of target glycans. This minireview describes the structural diversity and function of glycans generated by automated glycan synthesis platforms over the last five years. The translational impact of these advances is discussed together with current limitations and future directions.
Collapse
Affiliation(s)
- James Suri
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| | - Ryan Gilmour
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| |
Collapse
|
3
|
Cagnoni AJ, Massaro M, Cutine AM, Gimeno A, Pérez-Sáez JM, Manselle Cocco MN, Maller SM, Di Lella S, Jiménez-Barbero J, Ardá A, Rabinovich GA, Mariño KV. Exploring galectin interactions with human milk oligosaccharides and blood group antigens identifies BGA6 as a functional galectin-4 ligand. J Biol Chem 2024; 300:107573. [PMID: 39009340 PMCID: PMC11367503 DOI: 10.1016/j.jbc.2024.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as β-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mora Massaro
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Juan M Pérez-Sáez
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián M Maller
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Di Lella
- Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology University of the Basque Country, EHU-UPV, Leioa, Spain; Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Quintana JI, Massaro M, Cagnoni AJ, Nuñez-Franco R, Delgado S, Jiménez-Osés G, Mariño KV, Rabinovich GA, Jiménez-Barbero J, Ardá A. Different roles of the heterodimer architecture of galectin-4 in selective recognition of oligosaccharides and lipopolysaccharides having ABH antigens. J Biol Chem 2024; 300:107577. [PMID: 39019214 PMCID: PMC11362799 DOI: 10.1016/j.jbc.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain; Centro de investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
5
|
Jan HM, Wu SC, Stowell CJ, Vallecillo-Zúniga ML, Paul A, Patel KR, Muthusamy S, Lin HY, Ayona D, Jajosky RP, Varadkar SP, Nakahara H, Chan R, Bhave D, Lane WJ, Yeung MY, Hollenhorst MA, Rakoff-Nahoum S, Cummings RD, Arthur CM, Stowell SR. Galectin-4 Antimicrobial Activity Primarily Occurs Through its C-Terminal Domain. Mol Cell Proteomics 2024; 23:100747. [PMID: 38490531 PMCID: PMC11097083 DOI: 10.1016/j.mcpro.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasikala Muthusamy
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsien-Ya Lin
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samata P Varadkar
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Chan
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Devika Bhave
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Y Yeung
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Hollenhorst
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Pei X, Zhu J, Wang Y, Zhang F, He Y, Li Y, Si Y. Placental galectins: a subfamily of galectins lose the ability to bind β-galactosides with new structural features†. Biol Reprod 2023; 109:799-811. [PMID: 37672213 DOI: 10.1093/biolre/ioad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of β-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.
Collapse
Affiliation(s)
- Xuejing Pei
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Xuzhou Tongshan Maocun High School, Xuzhou 221135, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuchen Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Fali Zhang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yufeng He
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yuchun Li
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yunlong Si
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
7
|
Duarte JDA, Oliveira Neto JED, Torres RCF, Sousa ARDO, Andrade AL, Chaves RP, Carneiro RF, Vasconcelos MAD, Teixeira CS, Teixeira EH, Nagano CS, Sampaio AH. Structural characterization of a galectin from the marine sponge Aplysina lactuca (ALL) with synergistic effects when associated with antibiotics against bacteria. Biochimie 2023; 214:165-175. [PMID: 37437685 DOI: 10.1016/j.biochi.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Lectins presents the ability to interact with glycans and trigger varied responses, including the inhibition of the development of various pathogens. Structural studies of these proteins are essential to better understand their functions. In marine sponges, so far only a few lectins have their primary structures completely determined. Thus, the objective of this work was to structurally characterize and evaluate antibacterial potential, in association with different antibiotics, of the lectin isolated from the marine sponge Aplysina lactuta (ALL). ALL is a homotetramer of 60 kDa formed by four 15 kDa-subunits. The lectin showed affinity only for the glycoproteins fetuin, asialofetuin, mucin type III, and bovine submaxillary mucin type I. The complete amino acid sequences of two isoforms of ALL, named ALL-a and ALL-b, were determined by a combination of Edman degradation and overlapped peptides sequenced by tandem mass spectrometry. ALL-a and ALL-b have 144 amino acids with molecular masses of 15,736 Da and 15,985 Da, respectively. Both structures contain conserved residues typical of the galectin family. ALL is a protein with antibacterial potential, when in association with ampicillin and oxacillin the lectin potentiates its antibiotic effect, included Methicillin-resistant Staphylococcus strains. Thus, ALL shows to be a molecule with potential for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Jéssica de Assis Duarte
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - José Eduardo de Oliveira Neto
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Renato Cézar Farias Torres
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | | | - Alexandre Lopes Andrade
- Integrated Biomolecules Laboratory - LIBS, Departament of Pathology and Legal Medicine, Federal University of Ceará S/N, Monsenhor Furtado, 60430-160, Fortaleza, CE, Brazil
| | - Renata Pinheiro Chaves
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Rômulo Farias Carneiro
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Mayron Alves de Vasconcelos
- Integrated Biomolecules Laboratory - LIBS, Departament of Pathology and Legal Medicine, Federal University of Ceará S/N, Monsenhor Furtado, 60430-160, Fortaleza, CE, Brazil; State University of Minas Gerais, Unidade de Divinópolis, 35501-170, Divinópolis, MG, Brazil; Faculdade de Ciências Exatas e Naturais Universidade Do Estado Do Rio Grande Do Norte, 59610-210, Mossoró, RN, Brazil
| | - Claudener Souza Teixeira
- Center for Agricutural Scienses and Biodiversity, Federal University of Cariri, Crato, CE, Brazil
| | - Edson Holanda Teixeira
- Integrated Biomolecules Laboratory - LIBS, Departament of Pathology and Legal Medicine, Federal University of Ceará S/N, Monsenhor Furtado, 60430-160, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil
| | - Alexandre Holanda Sampaio
- Marine Biotecnology Laboratory - BioMar-Lab, Departament of Fishing Engineering S/N, Bloco 871, 60440-970, Fortaleza-CE, Brazil.
| |
Collapse
|
8
|
Lalithamaheswari B, Anu Radha C. Structural and binding studies of 2'- and 3-fucosyllactose and its complexes with norovirus capsid protein by molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:10230-10243. [PMID: 36476051 DOI: 10.1080/07391102.2022.2153923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Human breast milk contains free oligosaccharides (Human Milk Oligosaccharides-HMOs) that help to protect breastfed infants against a variety of infectious diseases and act as decoy receptors. In breast milk, HMOs are the third most abundant compounds after lactose and lipids. Structural and conformational models of HMOs are quite crucial to studying the interaction with proteins and molecular recognition phenomenon. Molecular dynamics simulations for two trisaccharides HMOs (2'-FL and 3-FL) were carried out for 250 ns and the conformational models were subsequently substantiated by three replicate simulations. The conformer models of HMOs 2'-FL and 3-FL were deposited in the 3-Dimensional Structural Database for Sialic acid-containing CARbohydrates (3DSDSCAR) database website (www.3dsdscar.in). HMOs were then docked into the active site of norovirus capsid protein and are simulated for 100 ns duration. Each complex system was stabilized by direct and water-mediated hydrogen bonding interactions. Binding free energy calculations predict two possible binding modes for each complex system. The conformational flexibility and binding stability of the complex systems were calculated. The protein folding/unfolding and compactness seem to be better for the two HMOs. From a general perspective, we found that both 2'-FL and 3-FL exhibited higher binding efficacy towards norovirus capsid protein and according to the structural stability, 3-FL might be used as a preventive inhibitor for norovirus infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- B Lalithamaheswari
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Anu Radha
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Rapoport EM, Ryzhov IM, Slivka EV, Korchagina EY, Popova IS, Khaidukov SV, André S, Kaltner H, Gabius HJ, Henry S, Bovin NV. Galectin-9 as a Potential Modulator of Lymphocyte Adhesion to Endothelium via Binding to Blood Group H Glycan. Biomolecules 2023; 13:1166. [PMID: 37627231 PMCID: PMC10452646 DOI: 10.3390/biom13081166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The recruitment of leukocytes from blood is one of the most important cellular processes in response to tissue damage and inflammation. This multi-step process includes rolling leukocytes and their adhesion to endothelial cells (EC), culminating in crossing the EC barrier to reach the inflamed tissue. Galectin-8 and galectin-9 expressed on the immune system cells are part of this process and can induce cell adhesion via binding to oligolactosamine glycans. Similarly, these galectins have an order of magnitude higher affinity towards glycans of the ABH blood group system, widely represented on ECs. However, the roles of gal-8 and gal-9 as mediators of adhesion to endothelial ABH antigens are practically unknown. In this work, we investigated whether H antigen-gal-9-mediated adhesion occurred between Jurkat cells (of lymphocytic origin and known to have gal-9) and EA.hy 926 cells (immortalized endothelial cells and known to have blood group H antigen). Baseline experiments showed that Jurkat cells adhered to EA.hy 926 cells; however when these EA.hy 926 cells were defucosylated (despite the unmasking of lactosamine chains), adherence was abolished. Restoration of fucosylation by insertion of synthetic glycolipids in the form of H (type 2) trisaccharide Fucα1-2Galβ1-4GlcNAc restored adhesion. The degree of lymphocyte adhesion to native and the "H-restored" (glycolipid-loaded) EA.hy 926 cells was comparable. If this gal-9/H (type 2) interaction is similar to processes that occur in vivo, this suggests that only the short (trisaccharide) H glycan on ECs is required.
Collapse
Affiliation(s)
- Eugenia M. Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Ivan M. Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Ekaterina V. Slivka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Elena Yu. Korchagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Inna S. Popova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Sergey V. Khaidukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Sabine André
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinär Str. 13, D-80539 Munich, Germany (H.K.)
| | - Herbert Kaltner
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinär Str. 13, D-80539 Munich, Germany (H.K.)
| | - Hans-J. Gabius
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinär Str. 13, D-80539 Munich, Germany (H.K.)
| | - Stephen Henry
- School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Nicolai V. Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
- School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Slámová K, Červený J, Mészáros Z, Friede T, Vrbata D, Křen V, Bojarová P. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules 2023; 28:molecules28104039. [PMID: 37241779 DOI: 10.3390/molecules28104039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Galectins are carbohydrate-binding lectins that modulate the proliferation, apoptosis, adhesion, or migration of cells by cross-linking glycans on cell membranes or extracellular matrix components. Galectin-4 (Gal-4) is a tandem-repeat-type galectin expressed mainly in the epithelial cells of the gastrointestinal tract. It consists of an N- and a C-terminal carbohydrate-binding domain (CRD), each with distinct binding affinities, interconnected with a peptide linker. Compared to other more abundant galectins, the knowledge of the pathophysiology of Gal-4 is sparse. Its altered expression in tumor tissue is associated with, for example, colon, colorectal, and liver cancers, and it increases in tumor progression, and metastasis. There is also very limited information on the preferences of Gal-4 for its carbohydrate ligands, particularly with respect to Gal-4 subunits. Similarly, there is virtually no information on the interaction of Gal-4 with multivalent ligands. This work shows the expression and purification of Gal-4 and its subunits and presents a structure-affinity relationship study with a library of oligosaccharide ligands. Furthermore, the influence of multivalency is demonstrated in the interaction with a model lactosyl-decorated synthetic glycoconjugate. The present data may be used in biomedical research for the design of efficient ligands of Gal-4 with diagnostic or therapeutic potential.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, 160 00 Prague 6, Czech Republic
| | - Tereza Friede
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague 4, Czech Republic
| |
Collapse
|
11
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
12
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Li CC, Yi H, Wang YM, Tang XY, Zhu YB, Song YJ, Zhao NL, Huang Q, Mou XY, Luo GH, Liu TG, Yang GL, Zeng YJ, Wang LJ, Tang H, Fan G, Bao R. Nucleotide binding as an allosteric regulatory mechanism for Akkermansia muciniphila β- N-acetylhexosaminidase Am2136. Gut Microbes 2022; 14:2143221. [PMID: 36394293 PMCID: PMC9673926 DOI: 10.1080/19490976.2022.2143221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β-N-acetylhexosaminidases (EC3.2.1.52), which belong to the glycosyl hydrolase family GH20, are important enzymes for oligosaccharides modification. Numerous microbial β-N-acetylhexosaminidases have been investigated for applications in biology, biomedicine and biotechnology. Akkermansia muciniphila is an anaerobic intestinal commensal bacterium which possesses specific β-N-acetylhexosaminidases for gut mucosal layer colonization and mucin degradation. In this study, we assessed the in vitro mucin glycan cleavage activity of the A. muciniphila β-N-acetylhexosaminidase Am2136 and demonstrated its ability that hydrolyzing the β-linkages joining N-acetylglucosamine to a wide variety of aglycone residues, which indicated that Am2136 may be a generalist β-N-acetylhexosaminidase. Structural and enzyme activity assay experiments allowed us to probe the essential function of the inter-domain interactions in β23-β33. Importantly, we revealed that the hydrolysis activity of Am2136 was enhanced by nucleotides. We further speculated that this activation mechanism might be associated with the conformational motions between domain III and IV. To our knowledge, this is the first report of nucleotide effector regulated β-N-acetylhexosaminidase, to reveal its novel biological functions. These findings contribute to understanding the distinct properties within the GH20 family and lay a certain foundation to develop controllable glycan hydrolyzing catalysts.Abbreviations: OD600 - optical cell densities at 600 nm; LB - Luria-Bertani; IPTG - isopropyl β-D-1-thiogalactopyranoside; PMSF - phenylmethanesulfonyl fluoride; rmsd - root mean square deviation; GlcNAc - N-acetyl-β-D-glucosamine; GalNAc - N-acetyl-β-D-galactosamine; Gal - galactose.
Collapse
Affiliation(s)
- Chang-Cheng Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Mei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Xin-Yue Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Bo Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Jie Song
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Lin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Huang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Yu Mou
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Gui-Hua Luo
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Tong-Gen Liu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Gang-Long Yang
- School of Biotechnology, Jiangnan University, Chengdu, China
| | - Yu-Jiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Hong Tang Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University. Chengdu. China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Gang Fan State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine. Chengdu. China
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,CONTACT Rui Bao
| |
Collapse
|
14
|
Bum-Erdene K, Collins PM, Hugo MW, Tarighat SS, Fei F, Kishor C, Leffler H, Nilsson UJ, Groffen J, Grice ID, Heisterkamp N, Blanchard H. Novel Selective Galectin-3 Antagonists Are Cytotoxic to Acute Lymphoblastic Leukemia. J Med Chem 2022; 65:5975-5989. [DOI: 10.1021/acs.jmedchem.1c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patrick M. Collins
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Matthew W. Hugo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Fei Fei
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Ulf. J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Nora Heisterkamp
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
15
|
Tyrikos-Ergas T, Sletten ET, Huang JY, Seeberger PH, Delbianco M. On resin synthesis of sulfated oligosaccharides. Chem Sci 2022; 13:2115-2120. [PMID: 35308866 PMCID: PMC8848854 DOI: 10.1039/d1sc06063e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/29/2022] [Indexed: 01/19/2023] Open
Abstract
Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
16
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
17
|
Oligosaccharide Presentation Modulates the Molecular Recognition of Glycolipids by Galectins on Membrane Surfaces. Pharmaceuticals (Basel) 2022; 15:ph15020145. [PMID: 35215258 PMCID: PMC8878398 DOI: 10.3390/ph15020145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Galectins are a family of glycan binding proteins that stand out for the wide range of biological phenomena in which they are involved. Most galectin functions are associated with their glycan binding capacities, which are generally well characterized at the oligosaccharide level, but not at the glycoprotein or glycolipid level. Glycolipids form the part of cell membranes where they can act as galectin cellular receptors. In this scenario, glycan presentation as well as the membrane chemical and structural features are expected to have a strong impact in these molecular association processes. Herein, liposomes were used as membrane mimicking scaffolds for the presentation of glycosphingolipids (GSLs) and to investigate their interaction with Galectin-3 and the N-domain of Galectin-8 (Gal8N). The binding towards GM3 and GM1 and their non-silaylated GSLs was compared to the binding to the free glycans, devoid of lipid. The analysis was carried out using a combination of NMR methods, membrane perturbation studies, and molecular modeling. Our results showed a different tendency of the two galectins in their binding capacities towards the glycans, depending on whether they were free oligosaccharides or as part of GSL inserted into a lipid bilayer, highlighting the significance of GSL glycan presentation on membranes in lectin binding.
Collapse
|
18
|
Nielsen MI, Wandall HH. Dissecting Context-Specific Galectin Binding Using Glycoengineered Cell Libraries. Methods Mol Biol 2022; 2442:205-214. [PMID: 35320528 DOI: 10.1007/978-1-0716-2055-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The family of galectins has critical functions in a wide range of biological processes, primarily based on their broad interactions with proteins carrying β-galactoside-containing glycans. To understand the diversity of functions governed by galectins, it is essential to define the binding specificity of the carbohydrate recognition domain (CRDs) of the individual galectins. The binding specificity of galectins has primarily been examined with glycoarrays, but now the ability to probe and dissect binding to defined glycans in the context of a cellular membrane is facilitated by the generations of glycoengineered cell libraries with defined glyco-phenotypes. The following section will show how galectin specificities can be probed in the natural context of cellular surfaces using glycoengineered cell libraries, and how binding to glycoproteins can be measured in solution with fluorescence anisotropy.
Collapse
Affiliation(s)
- Mathias Ingemann Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
20
|
McKitrick TR, Bernard SM, Noll AJ, Collins BC, Goth CK, McQuillan AM, Heimburg-Molinaro J, Herrin BR, Wilson IA, Cooper MD, Cummings RD. Novel lamprey antibody recognizes terminal sulfated galactose epitopes on mammalian glycoproteins. Commun Biol 2021; 4:674. [PMID: 34083726 PMCID: PMC8175384 DOI: 10.1038/s42003-021-02199-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
The terminal galactose residues of N- and O-glycans in animal glycoproteins are often sialylated and/or fucosylated, but sulfation, such as 3-O-sulfated galactose (3-O-SGal), represents an additional, but poorly understood modification. To this end, we have developed a novel sea lamprey variable lymphocyte receptor (VLR) termed O6 to explore 3-O-SGal expression. O6 was engineered as a recombinant murine IgG chimera and its specificity and affinity to the 3-O-SGal epitope was defined using a variety of approaches, including glycan and glycoprotein microarray analyses, isothermal calorimetry, ligand-bound crystal structure, FACS, and immunohistochemistry of human tissue macroarrays. 3-O-SGal is expressed on N-glycans of many plasma and tissue glycoproteins, but recognition by O6 is often masked by sialic acid and thus exposed by treatment with neuraminidase. O6 recognizes many human tissues, consistent with expression of the cognate sulfotransferases (GAL3ST-2 and GAL3ST-3). The availability of O6 for exploring 3-O-SGal expression could lead to new biomarkers for disease and aid in understanding the functional roles of terminal modifications of glycans and relationships between terminal sulfation, sialylation and fucosylation.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander J Noll
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Enteric Disease Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Bernard C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Acceleron Pharma, Boston, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Quintana JI, Delgado S, Núñez-Franco R, Cañada FJ, Jiménez-Osés G, Jiménez-Barbero J, Ardá A. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Front Chem 2021; 9:664097. [PMID: 33968903 PMCID: PMC8097242 DOI: 10.3389/fchem.2021.664097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
The tandem-repeat Galectin-4 (Gal-4) contains two different domains covalently linked through a short flexible peptide. Both domains have been shown to bind preferentially to A and B histo blood group antigens with different affinities, although the binding details are not yet available. The biological relevance of these associations is unknown, although it could be related to its attributed role in pathogen recognition. The presentation of A and B histo blood group antigens in terms of peripheral core structures differs among tissues and from that of the antigen-mimicking structures produced by pathogens. Herein, the binding of the N-terminal domain of Gal-4 toward a group of differently presented A and B oligosaccharide antigens in solution has been studied through a combination of NMR, isothermal titration calorimetry (ITC), and molecular modeling. The data presented in this paper allow the identification of the specific effects that subtle chemical modifications within this antigenic family have in the binding to the N-terminal domain of Gal-4 in terms of affinity and intermolecular interactions, providing a structural-based rationale for the observed trend in the binding preferences.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - F Javier Cañada
- Margarita Salas Center for Biological Research, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Murphy PV, Romero A, Xiao Q, Ludwig AK, Jogula S, Shilova NV, Singh T, Gabba A, Javed B, Zhang D, Medrano FJ, Kaltner H, Kopitz J, Bovin NV, Wu AM, Klein ML, Percec V, Gabius HJ. Probing sulfatide-tissue lectin recognition with functionalized glycodendrimersomes. iScience 2020; 24:101919. [PMID: 33409472 PMCID: PMC7773886 DOI: 10.1016/j.isci.2020.101919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/19/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
The small 3-O-sulfated galactose head group of sulfatides, an abundant glycosphingolipid class, poses the (sphinx-like) riddle on involvement of glycan bridging by tissue lectins (sugar code). First, synthesis of head group derivatives for functionalization of amphiphilic dendrimers is performed. Aggregation of resulting (biomimetic) vesicles, alone or in combination with lactose, demonstrates bridging by a tissue lectin (galectin-4). Physiologically, this can stabilize glycolipid-rich microdomains (rafts) and associate sulfatide-rich regions with specific glycoproteins. Further testing documents importance of heterobivalency and linker length. Structurally, sulfatide recognition by galectin-8 is shown to involve sphingosine's OH group as substitute for the 3′-hydroxyl of glucose of lactose. These discoveries underscore functionality of this small determinant on biomembranes intracellularly and on the cell surface. Moreover, they provide a role model to examine counterreceptor capacity of more complex glycans of glycosphingolipids and to start their bottom-up glycotope surface programming. Nanoparticle programming detects sulfatide-(N)-glycan bridging by galectins-4 and -8 Protein design (linker/domain type) is a switch for aggregation activity Sphingosine's OH group is involved in contact building with a galectin
Collapse
Affiliation(s)
- Paul V Murphy
- CÚRAM - SFI Research Centre for Medical Devices and the School of Chemistry, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Antonio Romero
- Department of Structural and Chemical Biology, CIB Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Qi Xiao
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Srinivas Jogula
- CÚRAM - SFI Research Centre for Medical Devices and the School of Chemistry, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Nadezhda V Shilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117437 Moscow, Russian Federation.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparina str, 117997 Moscow, Russian Federation
| | - Tanuja Singh
- Glyco-Immunology Research Laboratory, Institute of Molecular and Cellular Biology, Chang-Gung-Medical College, Kwei-san, Tao-yuan 333, Taiwan
| | - Adele Gabba
- CÚRAM - SFI Research Centre for Medical Devices and the School of Chemistry, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Bilal Javed
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Francisco J Medrano
- Department of Structural and Chemical Biology, CIB Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Zentrum Pathologie, Institut für Angewandte Tumorbiologie, Medizinische Fakultät der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117437 Moscow, Russian Federation
| | - Albert M Wu
- Glyco-Immunology Research Laboratory, Institute of Molecular and Cellular Biology, Chang-Gung-Medical College, Kwei-san, Tao-yuan 333, Taiwan
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
23
|
Si Y, Yao Y, Jaramillo Ayala G, Li X, Han Q, Zhang W, Xu X, Tai G, Mayo KH, Zhou Y, Su J. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochim Biophys Acta Gen Subj 2020; 1865:129755. [PMID: 33011338 DOI: 10.1016/j.bbagen.2020.129755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The structure of human galectin-16 (Gal-16) has yet to be solved, and its function has remained elusive. METHODS X-ray crystallography was used to determine the atomic structures of Gal-16 and two of its mutants. The Gal-16 oligomer state was investigated by gel filtration, its hemagglutination activity was determined along with its ability to bind lactose using ITC. The cellular distribution of EGFP-tagged Gal-16 in various cell lines was also investigated, and the interaction between Gal-16 and c-Rel was assessed by pull-down studies, microscale thermophoresis and immunofluorescence. RESULTS Unlike other galectins, Gal-16 lacks the ability to bind the β-galactoside lactose. Lactose binding could be regained by replacing an arginine (Arg55) with asparagine, as shown in the crystal structures of two lactose-loaded Gal-16 mutants (R55N and R55N/H57R). Gal-16 was also shown to be monomeric by gel filtration, as well as in crystal structures. Thus, this galectin could not induce erythrocyte agglutination. EGFP-tagged Gal-16 was found to be localized mostly in the nucleus of various cell types, and can interact with c-Rel, a member of NF-κB family. CONCLUSIONS Gal-16 exists as a monomer and its ligand binding is significantly different from that of other prototype galectins, suggesting that it has a novel function(s). The interaction between Gal-16 and c-Rel indicates that Gal-16 may regulate signal transduction pathways via the c-Rel hub in B or T cells at the maternal-fetal interface. GENERAL SIGNIFICANCE The present study lays the foundation for further studies into the cellular and physiological functions of Gal-16.
Collapse
Affiliation(s)
- Yunlong Si
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuan Yao
- Media Academy, Jilin Engineering Normal University, Changchun, China
| | - Gabriela Jaramillo Ayala
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xumin Li
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Qiuyu Han
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenlu Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
24
|
Sindrewicz P, Li X, Yates EA, Turnbull JE, Lian LY, Yu LG. Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions. Sci Rep 2019; 9:11851. [PMID: 31413267 PMCID: PMC6694196 DOI: 10.1038/s41598-019-47658-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Galectins are involved in the regulation of divergent physiological and pathological processes and are increasingly recognized to play important roles in a number of diseases. However, a simple and effective way in assessing galectin-ligand interactions is lacking. Our examination of the sequence of all 12 human galectin members reveals the presence of one or more tryptophan residues in the carbohydrate-recognition domains of each galectin. This led us to investigate the possibility that alteration of the galectin intrinsic tryptophan fluorescence could be used in determining the strength of galectin-ligand interactions. One representative member from each of the three subtype galectins, galectin-2 (proto-), galectin-3 (chimera-) and galectin-4 (tandem repeat-type), was selected and analysed for galectin interaction with three ligands of different affinities: galactose, lactose and N-acetyl-lactosamine using tryptophan fluorescence spectroscopy (TFS) and, as a comparison, isothermal titration calorimetry (ITC). Good agreement between TFS and ITC measurements were revealed in ligand bindings of all galectin members. Moreover, TFS detected very weak galectin binding where ITC could not reliably do so. The reliability of TFS in determining galectin-ligand interactions was further validated by analysis of galectin-3 interaction with a semisynthetic ligand, F3. Thus, TFS can be used as a simple, sensitive and reliable way to determine galectin-ligand interactions and also as a drug-discovery platform in developing galectin-targeted therapeutic drugs.
Collapse
Affiliation(s)
- Paulina Sindrewicz
- Department of Cellular and Molecular Physiology, Institute of translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Xiaoxin Li
- Department of Cellular and Molecular Physiology, Institute of translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Lu-Yun Lian
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Lu-Gang Yu
- Department of Cellular and Molecular Physiology, Institute of translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
25
|
Bai Y, Niu D, Li Y, Bai Y, Lan T, Peng M, Dong Z, Sun F, Li J. Identification and characterisation of a novel small galectin in razor clam (Sinonovacula constricta) with multiple innate immune functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:11-17. [PMID: 30389517 DOI: 10.1016/j.dci.2018.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Galectins are lectins possessing an evolutionarily conserved carbohydrate recognition domain (CRD) with affinity for β-galactoside. The key role played by innate immunity in invertebrates has recently become apparent. Herein, a full-length galectin (ScGal) was identified in razor clam (Sinonovacula constricta). The 528 bp open reading frame encodes a polypeptide of 176 amino acids with a single CRD and no signal peptide. ScGal mRNA transcripts were mainly expressed in hemolymph and gill, and were significantly up-regulated following bacterial challenge. Recombinant rScGal protein binds to and aggregates various bacteria, and has affinity for peptidoglycan, lipoteichoic acid and d-galactose. The protein also stimulates hemocytes to phagocytose invading bacterial pathogens. ScGal is an important immune factor in innate immunity, and a small protein with multiple important functions.
Collapse
Affiliation(s)
- Yuqi Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yulin Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianyi Lan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Fanyue Sun
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
26
|
Nielsen MI, Stegmayr J, Grant OC, Yang Z, Nilsson UJ, Boos I, Carlsson MC, Woods RJ, Unverzagt C, Leffler H, Wandall HH. Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin-glycan specificities in a natural context. J Biol Chem 2018; 293:20249-20262. [PMID: 30385505 DOI: 10.1074/jbc.ra118.004636] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Galectins compose a protein family defined by a conserved sequence motif conferring affinity for β-galactose-containing glycans. Moreover, galectins gain higher affinity and fine-tune specificity by glycan interactions at sites adjacent to their β-galactoside-binding site, as revealed by extensive testing against panels of purified glycans. However, in cells, galectins bind glycans on glycoproteins and glycolipids in the context of other cellular components, such as at the cell surface. Because of difficulties in characterizing natural cellular environments, we currently lack a detailed understanding of galectin-binding specificities in the cellular context. To address this challenge, we used a panel of genetically stable glycosylation mutated CHO cells that express defined glycans to evaluate the binding affinities of 10 different carbohydrate-recognition domains in galectins to N-glycans and mucin-type O-glycans. Using flow cytometry, we measured the cell-surface binding of the galectins. Moreover, we used fluorescence anisotropy to determine the galectin affinities to recombinant erythropoietin used as a reporter glycoprotein produced by the glycoengineered cells and to synthetic N-glycans with defined branch structures. We found that all galectins, apart from galectin-8N, require complex N-glycans for high-affinity binding. Galectin-8N targeted both N- and O-linked glycans with high affinity, preferring 2,3-sialylated N-acetyllactosamine (LacNAc) structures. Furthermore, we found that 2,3-sialylation suppresses high-affinity binding of select galectins, including galectin-2, -3, -4N, and -7. Structural modeling provided a basis for interpreting the observed binding preferences. These results underscore the power of a glycoengineered platform to dissect the glycan-binding specificities of carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Mathias Ingemann Nielsen
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - John Stegmayr
- the Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Oliver C Grant
- the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Zhang Yang
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ulf J Nilsson
- the Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 22100 Lund, Sweden, and
| | - Irene Boos
- the Bioorganische Chemie, Universität Bayreuth, Gebäude NW I, 95440 Bayreuth, Germany
| | - Michael C Carlsson
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,; the Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Robert J Woods
- the Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Carlo Unverzagt
- the Bioorganische Chemie, Universität Bayreuth, Gebäude NW I, 95440 Bayreuth, Germany
| | - Hakon Leffler
- the Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,.
| |
Collapse
|
27
|
Iwaki J, Hirabayashi J. Carbohydrate-Binding Specificity of Human Galectins: An Overview by Frontal Affinity Chromatography. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1728.1se] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jun Iwaki
- National Institute of Advanced Industrial Science and Technology
| | - Jun Hirabayashi
- National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
28
|
Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115:E2509-E2518. [PMID: 29382751 PMCID: PMC5856548 DOI: 10.1073/pnas.1720055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells are decorated with charged and uncharged carbohydrate ligands known as glycans, which are responsible for several key functions, including their interactions with proteins known as lectins. Here, a platform consisting of synthetic nanoscale vesicles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays reveal the extent of cross-linking of these biomimetic nanoscale vesicles—presenting both anionic and neutral ligands in a bioactive manner—with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these fundamental interactions. Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.
Collapse
|
29
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
30
|
Ruiz FM, Gilles U, Ludwig AK, Sehad C, Shiao TC, García Caballero G, Kaltner H, Lindner I, Roy R, Reusch D, Romero A, Gabius HJ. Chicken GRIFIN: Structural characterization in crystals and in solution. Biochimie 2017; 146:127-138. [PMID: 29248541 PMCID: PMC7115793 DOI: 10.1016/j.biochi.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Despite its natural abundance in lenses of vertebrates the physiological function(s) of the galectin-related inter-fiber protein (GRIFIN) is (are) still unclear. The same holds true for the significance of the unique interspecies (fish/birds vs mammals) variability in the capacity to bind lactose. In solution, ultracentrifugation and small angle X-ray scattering (at concentrations up to 9 mg/mL) characterize the protein as compact and stable homodimer without evidence for aggregation. The crystal structure of chicken (C-)GRIFIN at seven pH values from 4.2 to 8.5 is reported, revealing compelling stability. Binding of lactose despite the Arg71Val deviation from the sequence signature of galectins matched the otherwise canonical contact pattern with thermodynamics of an enthalpically driven process. Upon lactose accommodation, the side chain of Arg50 is shifted for hydrogen bonding to the 3-hydroxyl of glucose. No evidence for a further ligand-dependent structural alteration was obtained in solution by measuring hydrogen/deuterium exchange mass spectrometrically in peptic fingerprints. The introduction of the Asn48Lys mutation, characteristic for mammalian GRIFINs that have lost lectin activity, lets labeled C-GRIFIN maintain capacity to stain tissue sections. Binding is no longer inhibitable by lactose, as seen for the wild-type protein. These results establish the basis for detailed structure-activity considerations and are a step to complete the structural description of all seven members of the galectin network in chicken. First crystal structure of an eye lens GRIFIN defines differences to galectins. pH screening discloses high degree of structural stability in crystals. Hydrogen-deuterium exchange reveals unusually rigid structure in solution. Lectin histochemical assays identify critical sites for in situ ligand binding.
Collapse
Affiliation(s)
- Federico M Ruiz
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ulrich Gilles
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany
| | - Celia Sehad
- Pharmaqam and Nanoqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam and Nanoqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - René Roy
- Pharmaqam and Nanoqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
31
|
Helwa R, Heller A, Knappskog S, Bauer AS. Tumor cells interact with red blood cells via galectin-4 - a short report. Cell Oncol (Dordr) 2017; 40:401-409. [PMID: 28293788 DOI: 10.1007/s13402-017-0317-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The ability of tumor cells to invade and metastasize is relevant to the process of cancer progression and, as such, it represents an obstacle to cancer cure. So far, limited information is available on interactions between circulating tumor cells and blood cells. It is well-documented that galectin-4 is upregulated in many types of tumor cells and is involved in metastasis. Here, we address the hypothesis that tumor cells may interact with red blood cells (RBCs) via galectin-4. METHODS High galectin-4 expressing colon, normal pancreatic and pancreatic cancer-derived cell lines (n = 5) were incubated with peripheral blood cells from different donors. Their interactions and associated proteins were examined by immunostaining and live cell imaging. RESULTS We found that (endogenous or exogenous) galectin-4 expressing tumor cells interact directly with RBCs. We also observed an accumulation of galectin-4 and human blood group antigens at the contact sites between these cells. By comparing the number of RBCs attaching to each tumor cell, we found that cells with high pre-incubation expression levels of galectin-4 attached significantly more RBCs than those with low expression levels (p < 1 × 10-7). Conversely, we found that RBC attachment induces galectin-4 expression in tumor cells. CONCLUSIONS From our data we conclude that tumor cells directly interact with red blood cells via galectin-4.
Collapse
Affiliation(s)
- Reham Helwa
- Molecular Cell Biology Lab, Zoology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt. .,Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Anette Heller
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Andrea S Bauer
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Bohari MH, Yu X, Zick Y, Blanchard H. Structure-based rationale for differential recognition of lacto- and neolacto- series glycosphingolipids by the N-terminal domain of human galectin-8. Sci Rep 2016; 6:39556. [PMID: 28000747 PMCID: PMC5175137 DOI: 10.1038/srep39556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Glycosphingolipids are ubiquitous cell surface molecules undertaking fundamental cellular processes. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are the representative core structures for lacto- and neolacto-series glycosphingolipids. These glycolipids are the carriers to the blood group antigen and human natural killer antigens mainly found on blood cells, and are also principal components in human milk, contributing to infant health. The β-galactoside recognising galectins mediate various cellular functions of these glycosphingolipids. We report crystallographic structures of the galectin-8 N-terminal domain (galectin-8N) in complex with LNT and LNnT. We reveal the first example in which the non-reducing end of LNT binds to the primary binding site of a galectin, and provide a structure-based rationale for the significant ten-fold difference in binding affinities of galectin-8N toward LNT compared to LNnT, such a magnitude of difference not being observed for any other galectin. In addition, the LNnT complex showed that the unique Arg59 has ability to adopt a new orientation, and comparison of glycerol- and lactose-bound galectin-8N structures reveals a minimum atomic framework for ligand recognition. Overall, these results enhance our understanding of glycosphingolipids interactions with galectin-8N, and highlight a structure-based rationale for its significantly different affinity for components of biologically relevant glycosphingolipids.
Collapse
Affiliation(s)
- Mohammad H. Bohari
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| | - Xing Yu
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| |
Collapse
|
33
|
Rustiguel JK, Soares ROS, Meisburger SP, Davis KM, Malzbender KL, Ando N, Dias-Baruffi M, Nonato MC. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication. Sci Rep 2016; 6:33633. [PMID: 27642006 PMCID: PMC5027518 DOI: 10.1038/srep33633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by β-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins.
Collapse
Affiliation(s)
- Joane K. Rustiguel
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - Ricardo O. S. Soares
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | | | | | | | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
34
|
Abstract
Galectin-4, a tandem repeat member of the β-galactoside-binding proteins, possesses two carbohydrate-recognition domains (CRD) in a single peptide chain. This lectin is mostly expressed in epithelial cells of the intestinal tract and secreted to the extracellular. The two domains have 40% similarity in amino acid sequence, but distinctly binding to various ligands. Just because the two domains bind to different ligands simultaneously, galectin-4 can be a crosslinker and crucial regulator in a large number of biological processes. Recent evidence shows that galectin-4 plays an important role in lipid raft stabilization, protein apical trafficking, cell adhesion, wound healing, intestinal inflammation, tumor progression, etc. This article reviews the physiological and pathological features of galectin-4 and its important role in such processes.
Collapse
|
35
|
Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3'-sulfo-lactose, and 2'-fucosyllactose. Sci Rep 2016; 6:20289. [PMID: 26828567 PMCID: PMC4734333 DOI: 10.1038/srep20289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
Galectin-4 is a tandem-repeat galectin with two distinct carbohydrate recognition domains (CRD). Galectin-4 is expressed mainly in the alimentary tract and is proposed to function as a lipid raft and adherens junction stabilizer by its glycan cross-linking capacity. Galectin-4 plays divergent roles in cancer and inflammatory conditions, either promoting or inhibiting each disease progression, depending on the specific pathological condition. The study of galectin-4's ligand-binding profile may help decipher its roles under specific conditions. Here we present the X-ray structures of human galectin-4 N-terminal CRD (galectin-4N) bound to different saccharide ligands. Galectin-4's overall fold and its core interactions to lactose are similar to other galectin CRDs. Galectin-4N recognises the sulfate cap of 3'-sulfated glycans by a weak interaction through Arg45 and two water-mediated hydrogen bonds via Trp84 and Asn49. When galectin-4N interacts with the H-antigen mimic, 2'-fucosyllactose, an interaction is formed between the ring oxygen of fucose and Arg45. The extended binding site of galectin-4N may not be well suited to the A/B-antigen determinants, α-GalNAc/α-Gal, specifically due to clashes with residue Phe47. Overall, galectin-4N favours sulfated glycans whilst galectin-4C prefers blood group determinants. However, the two CRDs of galectin-4 can, to a less extent, recognise each other's ligands.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-22184 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|