1
|
Moud BN, Ober F, O’Neill TJ, Krappmann D. MALT1 substrate cleavage: what is it good for? Front Immunol 2024; 15:1412347. [PMID: 38863711 PMCID: PMC11165066 DOI: 10.3389/fimmu.2024.1412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes. By recruiting TRAF6, MALT1 acts as a molecular scaffold that initiates IκB kinase (IKK)/NF-κB and c-Jun N-terminal kinase (JNK)/AP-1 signaling. In parallel, proximity-induced dimerization of the paracaspase domain activates the MALT1 protease which exerts its function by cleaving a set of specific substrates. While complete MALT1 ablation leads to immune deficiency, selective destruction of either scaffolding or protease function provokes autoimmune inflammation. Thus, balanced MALT1-TRAF6 recruitment and MALT1 substrate cleavage are critical to maintain immune homeostasis and to promote optimal immune activation. Further, MALT1 protease activity drives the survival of aggressive lymphomas and other non-hematologic solid cancers. However, little is known about the relevance of the cleavage of individual substrates for the pathophysiological functions of MALT1. Unbiased serendipity, screening and computational predictions have identified and validated ~20 substrates, indicating that MALT1 targets a quite distinct set of proteins. Known substrates are involved in CBM auto-regulation (MALT1, BCL10 and CARD10), regulation of signaling and adhesion (A20, CYLD, HOIL-1 and Tensin-3), or transcription (RelB) and mRNA stability/translation (Regnase-1, Roquin-1/2 and N4BP1), indicating that MALT1 often targets multiple proteins involved in similar cellular processes. Here, we will summarize what is known about the fate and functions of individual MALT1 substrates and how their cleavage contributes to the biological functions of the MALT1 protease. We will outline what is needed to better connect critical pathophysiological roles of the MALT1 protease with the cleavage of distinct substrates.
Collapse
Affiliation(s)
| | | | | | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
2
|
Kerzeli IK, Nasi A, Fletcher E, Chourlia A, Kallin A, Finnberg N, Ersmark K, Lampinen M, Albertella M, Öberg F, Mangsbo SM. MALT1 inhibition suppresses antigen-specific T cell responses. Cell Immunol 2024; 397-398:104814. [PMID: 38422979 DOI: 10.1016/j.cellimm.2024.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to assess the potential use of a selective small molecule MALT1 inhibitor in solid tumor treatment as an immunotherapy targeting regulatory T-cells (Tregs). In vitro, MALT1 inhibition suppressed the proteolytic cleavage of the MALT1-substrate HOIL1 and blocked IL-2 secretion in Jurkat cells. It selectively suppressed the proliferation of PBMC-derived Tregs, with no effect on conventional CD4+T-cells. In vivo, however, no evident anti-tumor effect was achieved by MALT1 inhibition monotherapy or in combination with anti-CTLA4 in the MB49 cancer model. Despite decreased Treg-frequencies in lymph nodes of tumor-bearing animals, intratumoral Treg depletion was not observed. We also showed that MALT1-inhibition caused a reduction of antigen-specific CD8+T-cells in an adoptive T-cell transfer model. Thus, selective targeting of Tregs would be required to improve the immunotherapeutic effect of MALT1-inhibition. Also, various dosing schedules and combination therapy strategies should be carefully designed and evaluated further.
Collapse
Affiliation(s)
- Iliana K Kerzeli
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aikaterini Nasi
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erika Fletcher
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aikaterini Chourlia
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | - Maria Lampinen
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Sara M Mangsbo
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Juilland M, Alouche N, Ubezzi I, Gonzalez M, Rashid HO, Scarpellino L, Erdmann T, Grau M, Lenz G, Luther SA, Thome M. Identification of Tensin-3 as a MALT1 substrate that controls B cell adhesion and lymphoma dissemination. Proc Natl Acad Sci U S A 2023; 120:e2301155120. [PMID: 38109544 PMCID: PMC10756297 DOI: 10.1073/pnas.2301155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/24/2023] [Indexed: 12/20/2023] Open
Abstract
The protease MALT1 promotes lymphocyte activation and lymphomagenesis by cleaving a limited set of cellular substrates, most of which control gene expression. Here, we identified the integrin-binding scaffold protein Tensin-3 as a MALT1 substrate in activated human B cells. Activated B cells lacking Tensin-3 showed decreased integrin-dependent adhesion but exhibited comparable NF-κB1 and Jun N-terminal kinase transcriptional responses. Cells expressing a noncleavable form of Tensin-3, on the other hand, showed increased adhesion. To test the role of Tensin-3 cleavage in vivo, mice expressing a noncleavable version of Tensin-3 were generated, which showed a partial reduction in the T cell-dependent B cell response. Interestingly, human diffuse large B cell lymphomas and mantle cell lymphomas with constitutive MALT1 activity showed strong constitutive Tensin-3 cleavage and a decrease in uncleaved Tensin-3 levels. Moreover, silencing of Tensin-3 expression in MALT1-driven lymphoma promoted dissemination of xenografted lymphoma cells to the bone marrow and spleen. Thus, MALT1-dependent Tensin-3 cleavage reveals a unique aspect of the function of MALT1, which negatively regulates integrin-dependent B cell adhesion and facilitates metastatic spread of B cell lymphomas.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Ivana Ubezzi
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Montserrat Gonzalez
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Harun-Or Rashid
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Leonardo Scarpellino
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Michael Grau
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Münster, MünsterD-48149, Germany
| | - Sanjiv A. Luther
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| | - Margot Thome
- Department of Immunobiology, University of Lausanne, EpalingesCH-1066, Switzerland
| |
Collapse
|
4
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Walinda E, Sugase K, Ishii N, Shirakawa M, Iwai K, Morimoto D. Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity. J Biol Chem 2023; 299:105165. [PMID: 37595872 PMCID: PMC10511788 DOI: 10.1016/j.jbc.2023.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Attachment of polyubiquitin (poly-Ub) chains to proteins is a major posttranslational modification in eukaryotes. Linear ubiquitin chain assembly complex, consisting of HOIP (HOIL-1-interacting protein), HOIL-1L (heme-oxidized IRP2 Ub ligase 1), and SHARPIN (Shank-associated RH domain-interacting protein), specifically synthesizes "head-to-tail" poly-Ub chains, which are linked via the N-terminal methionine α-amino and C-terminal carboxylate of adjacent Ub units and are thus commonly called "linear" poly-Ub chains. Linear ubiquitin chain assembly complex-assembled linear poly-Ub chains play key roles in immune signaling and suppression of cell death and have been associated with immune diseases and cancer; HOIL-1L is one of the proteins known to selectively bind linear poly-Ub via its Npl4 zinc finger (NZF) domain. Although the structure of the bound form of the HOIL-1L NZF domain with linear di-Ub is known, several aspects of the recognition specificity remain unexplained. Here, we show using NMR and orthogonal biophysical methods, how the NZF domain evolves from a free to the specific linear di-Ub-bound state while rejecting other potential Ub species after weak initial binding. The solution structure of the free NZF domain revealed changes in conformational stability upon linear Ub binding, and interactions between the NZF core and tail revealed conserved electrostatic contacts, which were sensitive to charge modulation at a reported phosphorylation site: threonine-207. Phosphomimetic mutations reduced linear Ub affinity by weakening the integrity of the linear di-Ub-bound conformation. The described molecular determinants of linear di-Ub binding provide insight into the dynamic aspects of the Ub code and the NZF domain's role in full-length HOIL-1L.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Ishii
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
O'Neill TJ, Tofaute MJ, Krappmann D. Function and targeting of MALT1 paracaspase in cancer. Cancer Treat Rev 2023; 117:102568. [PMID: 37126937 DOI: 10.1016/j.ctrv.2023.102568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
7
|
Peng ZM, Zhang YY, Wei D, Zhang XJ, Liu B, Peng J, Luo XJ. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Arch Biochem Biophys 2023; 735:109502. [PMID: 36603698 DOI: 10.1016/j.abb.2023.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Necroptosis has been demonstrated to contribute to brain injury in ischemic stroke, whereas A20 can exert anti-necroptosis effect via deubiquitinating receptor-interacting protein kinase (RIPK3) at k63 and it can be cleaved by MALT1. This study aims to explore whether MALT1 is upregulated in the brain during ischemic stroke and promotes brain cell necroptosis through enhancing the degradation of A20. Ischemic stroke model was established in Sprague Dawley rats by occlusion of the middle cerebral artery (MCA) for 2 h, followed by 24 h reperfusion, which showed brain injury (increase in neurological deficit score and infarct volume) concomitant with an upregulation of MALT1, a decrease in A20 level, and increases in necroptosis-associated protein levels [RIPK3, mixed lineage kinase domain-like protein (MLKL) and p-MLKL] and k63-ubiquitination of RIPK3 in brain tissues. Administration of MALT1 inhibitor (Ml-2) at 8 or 15 mg/kg (i.p.) at 1 h after ischemia significantly improved neurological function and reduced infarct volume together with a downregulation of MALT1, an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Similarly, knockdown of MALT1 could also reduce oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in the cultured HT22 cells coincident with an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Based on these observations, we conclude that MALT1 promotes necroptosis in stroke rat brain via enhancing the degradation of A20, which leads to a decrease in the capability of A20 to deubiquitinate RIPK3 at k63 and a subsequent compromise in counteraction against the brain cell necroptosis.
Collapse
Affiliation(s)
- Zi-Mei Peng
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Bin Liu
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
9
|
Hailfinger S, Schulze-Osthoff K. The paracaspase MALT1 in psoriasis. Biol Chem 2021; 402:1583-1589. [PMID: 34192836 DOI: 10.1515/hsz-2021-0250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Psoriasis is a frequent autoimmune-related skin disease, which involves various cell types such as T cells, keratinocytes and dendritic cells. Genetic variations, such as mutations of CARD14, can promote the development of the disease. CARD14 mutations as well as the stimulation of immune and cytokine receptors activate the paracaspase MALT1, a potent activator of the transcription factors NF-κB and AP-1. The disease-promoting role of MALT1 for psoriasis is mediated by both its protease activity as well as its molecular scaffold function. Here, we review the importance of MALT1-mediated signaling and its therapeutic implications in psoriasis.
Collapse
Affiliation(s)
- Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Domagkstr. 3, D-48149 Münster, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
10
|
Fung SY, Lu HY, Sharma M, Sharma AA, Saferali A, Jia A, Abraham L, Klein T, Gold MR, Noterangelo LD, Overall CM, Turvey SE. MALT1-Dependent Cleavage of HOIL1 Modulates Canonical NF-κB Signaling and Inflammatory Responsiveness. Front Immunol 2021; 12:749794. [PMID: 34721419 PMCID: PMC8552041 DOI: 10.3389/fimmu.2021.749794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) is a critical transcription factor involved in regulating cell activation, inflammation, and survival. The linear ubiquitin chain assembly complex (LUBAC) which consists of HOIL1, HOIP, and SHARPIN, catalyzes the linear ubiquitination of target proteins—a post-translational modification that is essential for NF-κB activation. Human germline pathogenic variants that dysregulate linear ubiquitination and NF-κB signaling are associated with immunodeficiency and/or autoinflammation including dermatitis, recurrent fevers, systemic inflammation and enteropathy. We previously identified MALT1 paracaspase as a novel negative regulator of LUBAC by proteolytic cleavage of HOIL1. To directly investigate the impact of HOIL1 cleavage activity on the inflammatory response, we employed a stable transduction system to express and directly compare non-cleavable HOIL1 with wild-type HOIL1 in primary HOIL1-deficient patient skin fibroblasts. We discovered that non-cleavable HOIL1 resulted in enhanced NF-κB signaling in response to innate stimuli. Transcriptomics revealed enrichment of inflammation and proinflammatory cytokine-related pathways after stimulation. Multiplexed cytokine assays confirmed a ‘hyperinflammatory’ phenotype in these cells. This work highlights the physiological importance of MALT1-dependent cleavage and modulation of HOIL1 on NF-κB signaling and inflammation, provides a mechanism for the autoinflammation observed in MALT1-deficient patients, and will inform the development of therapeutics that target MALT1 paracaspase and LUBAC function in treating autoinflammatory skin diseases.
Collapse
Affiliation(s)
- Shan-Yu Fung
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alicia Jia
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Libin Abraham
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Theo Klein
- Department of Analytical Solutions, Ducares/Triskelion BV, Utrecht, Netherlands
| | - Michael R Gold
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Luigi D Noterangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Science, Center for Blood Research, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Fuseya Y, Iwai K. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Cells 2021; 10:cells10102706. [PMID: 34685685 PMCID: PMC8534859 DOI: 10.3390/cells10102706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.
Collapse
|
12
|
Rodriguez Carvajal A, Grishkovskaya I, Gomez Diaz C, Vogel A, Sonn-Segev A, Kushwah MS, Schodl K, Deszcz L, Orban-Nemeth Z, Sakamoto S, Mechtler K, Kukura P, Clausen T, Haselbach D, Ikeda F. The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. eLife 2021; 10:e60660. [PMID: 34142657 PMCID: PMC8245127 DOI: 10.7554/elife.60660] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is the only known ubiquitin ligase for linear/Met1-linked ubiquitin chain formation. One of the LUBAC components, heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), was recently shown to catalyse oxyester bond formation between ubiquitin and some substrates. However, oxyester bond formation in the context of LUBAC has not been directly observed. Here, we present the first 3D reconstruction of human LUBAC obtained by electron microscopy and report its generation of heterotypic ubiquitin chains containing linear linkages with oxyester-linked branches. We found that this event depends on HOIL-1L catalytic activity. By cross-linking mass spectrometry showing proximity between the catalytic RING-in-between-RING (RBR) domains, a coordinated ubiquitin relay mechanism between the HOIL-1-interacting protein (HOIP) and HOIL-1L ligases is suggested. In mouse embryonic fibroblasts, these heterotypic chains were induced by TNF, which is reduced in cells expressing an HOIL-1L catalytic inactive mutant. In conclusion, we demonstrate that LUBAC assembles heterotypic ubiquitin chains by the concerted action of HOIP and HOIL-1L.
Collapse
Affiliation(s)
- Alan Rodriguez Carvajal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Carlos Gomez Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Antonia Vogel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Adar Sonn-Segev
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Manish S Kushwah
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Katrin Schodl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Luiza Deszcz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Medical Institute of Bioregulation (MIB), Kyushu UniversityFukuokaJapan
| |
Collapse
|
13
|
CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo. Oncogenesis 2021; 10:32. [PMID: 33824280 PMCID: PMC8024357 DOI: 10.1038/s41389-021-00321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
Collapse
|
14
|
Serine 165 phosphorylation of SHARPIN regulates the activation of NF-κB. iScience 2021; 24:101939. [PMID: 33392484 PMCID: PMC7773595 DOI: 10.1016/j.isci.2020.101939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
The adaptor SHARPIN composes, together with the E3 ligases HOIP and HOIL1, the linear ubiquitin chain assembly complex (LUBAC). This enzymatic complex catalyzes and stamps atypical linear ubiquitin chains onto substrates to modify their fate and has been linked to the regulation of the NF-κB pathway downstream of most immunoreceptors, inflammation, and cell death. However, how this signaling complex is regulated is not fully understood. Here, we report that a portion of SHARPIN is constitutively phosphorylated on the serine at position 165 in lymphoblastoid cells and can be further induced following T cell receptor stimulation. Analysis of a phosphorylation-resistant mutant of SHARPIN revealed that this mark controls the linear ubiquitination of the NF-κB regulator NEMO and allows the optimal activation of NF-κB in response to TNFα. These results identify an additional layer of regulation of the LUBAC and unveil potential strategies to modulate its action. Part of SHARPIN is constitutively phosphorylated on S165 in lymphoblastoid cells SHARPIN S165 phosphorylation governs TNFα-mediated linear ubiquitination of NEMO Mutation of S165 hinders NF-κB activation
Collapse
|
15
|
Oikawa D, Hatanaka N, Suzuki T, Tokunaga F. Cellular and Mathematical Analyses of LUBAC Involvement in T Cell Receptor-Mediated NF-κB Activation Pathway. Front Immunol 2020; 11:601926. [PMID: 33329596 PMCID: PMC7732508 DOI: 10.3389/fimmu.2020.601926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 02/02/2023] Open
Abstract
The LUBAC ubiquitin ligase complex, composed of the HOIP, HOIL-1L, and SHARPIN subunits, stimulates the canonical nuclear factor-κB (NF-κB) activation pathways through its Met1-linked linear ubiquitination activity. Here we performed cellular and mathematical modeling analyses of the LUBAC involvement in the T cell receptor (TCR)-mediated NF-κB activation pathway, using the Jurkat human T cell line. LUBAC is indispensable for TCR-induced NF-κB and T cell activation, and transiently associates with and linearly ubiquitinates the CARMA1-BCL10-MALT1 (CBM) complex, through the catalytic HOIP subunit. In contrast, the linear ubiquitination of NEMO, a substrate of the TNF-α-induced canonical NF-κB activation pathway, was limited during the TCR pathway. Among deubiquitinases, OTULIN, but not CYLD, plays a major role in downregulating LUBAC-mediated TCR signaling. Mathematical modeling indicated that linear ubiquitination of the CBM complex accelerates the activation of IκB kinase (IKK), as compared with the activity induced by linear ubiquitination of NEMO alone. Moreover, simulations of the sequential linear ubiquitination of the CBM complex suggested that the allosteric regulation of linear (de)ubiquitination of CBM subunits is controlled by the ubiquitin-linkage lengths. These results indicated that, unlike the TNF-α-induced NF-κB activation pathway, the TCR-mediated NF-κB activation in T lymphocytes has a characteristic mechanism to induce LUBAC-mediated NF-κB activation.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoya Hatanaka
- Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Takashi Suzuki
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
16
|
Dumont C, Sivars U, Andreasson T, Odqvist L, Mattsson J, DeMicco A, Pardali K, Johansson G, Yrlid L, Cox RJ, Seeliger F, Larsson M, Gehrmann U, Davis AM, Vaarala O. A MALT1 inhibitor suppresses human myeloid DC, effector T-cell and B-cell responses and retains Th1/regulatory T-cell homeostasis. PLoS One 2020; 15:e0222548. [PMID: 32870913 PMCID: PMC7462277 DOI: 10.1371/journal.pone.0222548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
The paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) regulates nuclear-factor-kappa-B (NF-κB) activation downstream of surface receptors with immunoreceptor tyrosine-based activation motifs (ITAMs), such as the B-cell or T-cell receptor and has thus emerged as a therapeutic target for autoimmune diseases. However, recent reports demonstrate the development of lethal autoimmune inflammation due to the excessive production of interferon gamma (IFN-ɣ) and defective differentiation of regulatory T-cells in genetically modified mice deficient in MALT1 paracaspase activity. To address this issue, we explored the effects of pharmacological MALT1 inhibition on the balance between T-effector and regulatory T-cells. Here we demonstrate that allosteric inhibition of MALT1 suppressed Th1, Th17 and Th1/Th17 effector responses, and inhibited T-cell dependent B-cell proliferation and antibody production. Allosteric MALT1 inhibition did not interfere with the suppressive function of human T-regulatory cells, although it impaired de novo differentiation of regulatory T-cells from naïve T-cells. Treatment with an allosteric MALT1 inhibitor alleviated the cytokine storm, including IFN-ɣ, in a mouse model of acute T-cell activation, and long-term treatment did not lead to an increase in IFN-ɣ producing CD4 cells or tissue inflammation. Together, our data demonstrate that the effects of allosteric inhibition of MALT1 differ from those seen in mice with proteolytically inactive MALT1, and thus we believe that MALT1 is a viable target for B and T-cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Celine Dumont
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Ulf Sivars
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Theresa Andreasson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Lina Odqvist
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Amy DeMicco
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Katerina Pardali
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Gustav Johansson
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rhona J. Cox
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals Gothenburg, Sweden
| | - Marie Larsson
- Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals Gothenburg, Sweden
| | - Ulf Gehrmann
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
- * E-mail: (AD); (UG)
| | - Andrew M. Davis
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
- * E-mail: (AD); (UG)
| | - Outi Vaarala
- Research & Early Development, Respiratory, Inflammation & Autoimmune, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
17
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Hughes N, Erbel P, Bornancin F, Wiesmann C, Schiering N, Villard F, Decock A, Rubi B, Melkko S, Spanka C, Buschmann N, Pissot‐Soldermann C, Simic O, Beerli R, Sorge M, Tintelnot‐Blomley M, Beltz K, Régnier CH, Quancard J, Schlapbach A, Langlois J, Renatus M. Stabilizing Inactive Conformations of MALT1 as an Effective Approach to Inhibit Its Protease Activity. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nicola Hughes
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Paul Erbel
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Christian Wiesmann
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Nikolaus Schiering
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Frédéric Villard
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Arnaud Decock
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Bertran Rubi
- Laboratorium für Organische Chemie Zürich CH‐8093 Switzerland
| | - Samu Melkko
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Carsten Spanka
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Nicole Buschmann
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | | | - Oliver Simic
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - René Beerli
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Mickael Sorge
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | | | - Karen Beltz
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Catherine H. Régnier
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Jean Quancard
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Achim Schlapbach
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Jean‐Baptiste Langlois
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| | - Martin Renatus
- Novartis Institutes for Biomedical Reseach (NIBR) Novartis Campus Basel CH‐4002 Switzerland
| |
Collapse
|
19
|
Douanne T, Chapelier S, Rottapel R, Gavard J, Bidère N. The LUBAC participates in lysophosphatidic acid-induced NF-κB activation. Cell Immunol 2020; 353:104133. [PMID: 32450431 DOI: 10.1016/j.cellimm.2020.104133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM complex has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF-κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165. The expression of a MALT1-insensitive version of HOIL1 reveals that this processing is involved in the optimal production of the NF-κB target cytokine interleukin-6. Lastly, we provide evidence that the guanine exchange factor GEF-H1 favors MALT1-mediated cleavage of HOIL1 and NF-κB signaling in this context. Together, our results unveil a critical role for the LUBAC as a positive regulator of NF-κB signaling downstream of LPA receptors.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France
| | - Sarah Chapelier
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie Gavard
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France; Institut de Cancérologie de l'Ouest, Site René Gauducheau, 44800 Saint-Herblain, France
| | - Nicolas Bidère
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France.
| |
Collapse
|
20
|
Douglas T, Saleh M. Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation. J Biol Chem 2020; 295:5216-5228. [PMID: 32122970 PMCID: PMC7170516 DOI: 10.1074/jbc.ra119.011622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Indexed: 11/06/2022] Open
Abstract
The linear ubiquitin assembly complex (LUBAC) is an essential component of the innate and adaptive immune system. Modification of cellular substrates with linear polyubiquitin chains is a key regulatory step in signal transduction that impacts cell death and inflammatory signaling downstream of various innate immunity receptors. Loss-of-function mutations in the LUBAC components HOIP and HOIL-1 yield a systemic autoinflammatory disease in humans, whereas their genetic ablation is embryonically lethal in mice. Deficiency of the LUBAC adaptor protein Sharpin results in a multi-organ inflammatory disease in mice characterized by chronic proliferative dermatitis (cpdm), which is propagated by TNFR1-induced and RIPK1-mediated keratinocyte cell death. We have previously shown that caspase-1 and -11 promoted the dermatitis pathology of cpdm mice and mediated cell death in the skin. Here, we describe a reciprocal regulation of caspase-1 and LUBAC activities in keratinocytes. We show that LUBAC interacted with caspase-1 via HOIP and modified its CARD domain with linear polyubiquitin and that depletion of HOIP or Sharpin resulted in heightened caspase-1 activation and cell death in response to inflammasome activation, unlike what is observed in macrophages. Reciprocally, caspase-1, as well as caspase-8, regulated LUBAC activity by proteolytically processing HOIP at Asp-348 and Asp-387 during the execution of cell death. HOIP processing impeded substrate ubiquitination in the NF-κB pathway and resulted in enhanced apoptosis. These results highlight a regulatory mechanism underlying efficient apoptosis in keratinocytes and provide further evidence of a cross-talk between inflammatory and cell death pathways.
Collapse
Affiliation(s)
- Todd Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3G 0B1, Canada; Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
21
|
Physiological and Pathological Functions of CARD9 Signaling in the Innate Immune System. Curr Top Microbiol Immunol 2020; 429:177-203. [PMID: 32415389 DOI: 10.1007/82_2020_211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain protein 9 (CARD9) forms essential signaling complexes in the innate immune system that integrate cues from C-type lectin receptors and specific intracellular pattern recognition receptors. These CARD9-mediated signals are pivotal for host defense against fungi, and they mediate immunity against certain bacteria, viruses and parasites. Furthermore, CARD9-regulated pathways are involved in sterile inflammatory responses critical for immune homeostasis and can control pro- and antitumor immunity in cancer microenvironments. Consequently, multiple genetic alterations of human CARD9 are connected to primary immunodeficiencies or prevalent inflammatory disorders in patients. This review will summarize our current understanding of CARD9 signaling in the innate immune system, its physiological and pathological functions and their implications for human immune-mediated diseases.
Collapse
|
22
|
Wang Z, Hutcherson SM, Yang C, Jattani RP, Tritapoe JM, Yang YK, Pomerantz JL. Coordinated regulation of scaffold opening and enzymatic activity during CARD11 signaling. J Biol Chem 2019; 294:14648-14660. [PMID: 31391255 PMCID: PMC6779434 DOI: 10.1074/jbc.ra119.009551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
The activation of key signaling pathways downstream of antigen receptor engagement is critically required for normal lymphocyte activation during the adaptive immune response. CARD11 is a multidomain signaling scaffold protein required for antigen receptor signaling to NF-κB, c-Jun N-terminal kinase, and mTOR. Germline mutations in the CARD11 gene result in at least four types of primary immunodeficiency, and somatic CARD11 gain-of-function mutations drive constitutive NF-κB activity in diffuse large B cell lymphoma and other lymphoid cancers. In response to antigen receptor triggering, CARD11 transitions from a closed, inactive state to an open, active scaffold that recruits multiple signaling partners into a complex to relay downstream signaling. However, how this signal-induced CARD11 conversion occurs remains poorly understood. Here we investigate the role of Inducible Element 1 (IE1), a short regulatory element in the CARD11 Inhibitory Domain, in the CARD11 signaling cycle. We find that IE1 controls the signal-dependent Opening Step that makes CARD11 accessible to the binding of cofactors, including Bcl10, MALT1, and the HOIP catalytic subunit of the linear ubiquitin chain assembly complex. Surprisingly, we find that IE1 is also required at an independent step for the maximal activation of HOIP and MALT1 enzymatic activity after cofactor recruitment to CARD11. This role of IE1 reveals that there is an Enzymatic Activation Step in the CARD11 signaling cycle that is distinct from the Cofactor Association Step. Our results indicate that CARD11 has evolved to actively coordinate scaffold opening and the induction of enzymatic activity among recruited cofactors during antigen receptor signaling.
Collapse
Affiliation(s)
- Zhaoquan Wang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rakhi P Jattani
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia M Tritapoe
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
23
|
Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, Staal J, Beyaert R. MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. Front Immunol 2019; 10:2330. [PMID: 31632405 PMCID: PMC6779721 DOI: 10.3389/fimmu.2019.02330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
MALT1 plays an important role in innate and adaptive immune signaling by acting as a scaffold protein that mediates NF-κB signaling. In addition, MALT1 is a cysteine protease that further fine tunes proinflammatory signaling by cleaving specific substrates. Deregulated MALT1 activity has been associated with immunodeficiency, autoimmunity, and cancer in mice and humans. Genetically engineered mice expressing catalytically inactive MALT1, still exerting its scaffold function, were previously shown to spontaneously develop autoimmunity due to a decrease in Tregs associated with increased effector T cell activation. In contrast, complete absence of MALT1 does not lead to autoimmunity, which has been explained by the impaired effector T cell activation due to the absence of MALT1-mediated signaling. However, here we report that MALT1-deficient mice develop atopic-like dermatitis upon aging, which is preceded by Th2 skewing, an increase in serum IgE, and a decrease in Treg frequency and surface expression of the Treg functionality marker CTLA-4.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - David Muyllaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M, Staal J, Beyaert R. MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Front Immunol 2019; 10:1898. [PMID: 31474984 PMCID: PMC6702287 DOI: 10.3389/fimmu.2019.01898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-κB and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Malt1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4+ T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ioannis Skordos
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery (CISTIM), Leuven, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nat Commun 2019; 10:701. [PMID: 30741923 PMCID: PMC6370850 DOI: 10.1038/s41467-019-08605-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/19/2019] [Indexed: 12/19/2022] Open
Abstract
Polyubiquitination promotes proteasomal degradation, or signaling and localization, of targeted proteins. Here we show that the E3 ubiquitin ligase Hectd3 is necessary for pathogenic Th17 cell generation in experimental autoimmune encephalomyelitis (EAE), a mouse model for human multiple sclerosis. Hectd3-deficient mice have lower EAE severity, reduced Th17 program and inefficient Th17 cell differentiation. However, Stat3, but not RORγt, has decreased polyubiquitination, as well as diminished tyrosine-705 activating phosphorylation. Additionally, non-degradative polyubiquitination of Malt1, critical for NF-κB activation and Th17 cell function, is reduced. Mechanistically, Hectd3 promotes K27-linked and K29-linked polyubiquitin chains on Malt1, and K27-linked polyubiquitin chains on Stat3. Moreover, Stat3 K180 and Malt1 K648 are targeted by Hectd3 for non-degradative polyubiquitination to mediate robust generation of RORγt+IL-17Ahi effector CD4+ T cells. Thus, our studies delineate a mechanism connecting signaling related polyubiquitination of Malt1 and Stat3, leading to NF-kB activation and RORγt expression, to pathogenic Th17 cell function in EAE. Ubiquitination may control protein stability or function. Here the authors show that an ubiquitination enzyme, Hectd3, ubiquitinates Stat3 and Malt1 to modulate their function but not degradation in T cells, and thereby promoting the differentiation of pathogenic Th17 cells and susceptibility to a mouse model of multiple sclerosis.
Collapse
|
26
|
An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat Chem Biol 2019; 15:304-313. [PMID: 30692685 DOI: 10.1038/s41589-018-0222-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability, reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency, we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein, the most potent of the allosteric inhibitors rescued NF-κB and JNK signaling in patient lymphocytes. Following compound washout, MALT1 substrate cleavage was partly recovered. Thus, a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue, inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.
Collapse
|
27
|
Abstract
The master pro-inflammatory cytokine, tumour necrosis factor (TNF), has been shown to modulate multiple signalling pathways, with wide-ranging downstream effects. TNF plays a vital role in the typical immune response through the regulation of a number of pathways encompassing an immediate inflammatory reaction with significant innate immune involvement as well as cellular activation with subsequent proliferation and programmed cell death or necrosis. As might be expected with such a broad spectrum of cellular effects and complex signalling pathways, TNF has also been implicated in a number of disease states, such as rheumatoid arthritis, ankylosing spondylitis, and Crohn’s disease. Since the time of its discovery over 40 years ago, TNF ligand and its receptors, TNF receptor (TNFR) 1 and 2, have been categorised into two complementary superfamilies, namely TNF (TNFSF) and TNFR (TNFRSF), and 19 ligands and 29 receptors have been identified to date. There have been significant advances in our understanding of TNF signalling pathways in the last decade, and this short review aims to elucidate some of the most recent advances involving TNF signalling in health and disease.
Collapse
Affiliation(s)
- Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Heledd Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Michael McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| |
Collapse
|
28
|
Meloni L, Verstrepen L, Kreike M, Staal J, Driege Y, Afonina IS, Beyaert R. Mepazine Inhibits RANK-Induced Osteoclastogenesis Independent of Its MALT1 Inhibitory Function. Molecules 2018; 23:molecules23123144. [PMID: 30513612 PMCID: PMC6320945 DOI: 10.3390/molecules23123144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an intracellular cysteine protease (paracaspase) that plays an integral role in innate and adaptive immunity. The phenothiazine mepazine has been shown to inhibit the proteolytic activity of MALT1 and is frequently used to study its biological role. MALT1 has recently been suggested as a therapeutic target in rheumatoid arthritis. Here, we analyzed the effect of mepazine on the receptor activator of nuclear factor κ-B (RANK)-induced osteoclastogenesis. The treatment of mouse bone marrow precursor cells with mepazine strongly inhibited the RANK ligand (RANKL)-induced formation of osteoclasts, as well as the expression of several osteoclast markers, such as TRAP, cathepsin K, and calcitonin. However, RANKL induced osteoclastogenesis equally well in bone marrow cells derived from wild-type and Malt1 knock-out mice. Furthermore, the protective effect of mepazine was not affected by MALT1 deficiency. Additionally, the absence of MALT1 did not affect RANK-induced nuclear factor κB (NF-κB) and activator protein 1 (AP-1) activation. Overall, these studies demonstrate that MALT1 is not essential for RANK-induced osteoclastogenesis, and implicate a MALT1-independent mechanism of action of mepazine that should be taken into account in future studies using this compound.
Collapse
Affiliation(s)
- Laura Meloni
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Lynn Verstrepen
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
29
|
Ruland J, Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat Rev Immunol 2018; 19:118-134. [DOI: 10.1038/s41577-018-0087-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Thys A, Douanne T, Bidère N. Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma. Front Oncol 2018; 8:498. [PMID: 30474008 PMCID: PMC6237847 DOI: 10.3389/fonc.2018.00498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Piracy of the NF-κB transcription factors signaling pathway, to sustain its activity, is a mechanism often deployed in B-cell lymphoma to promote unlimited growth and survival. The aggressive activated B-cell like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) exploits a multi-protein complex of CARMA1, BCL10, and MALT1 (CBM complex), which normally conveys NF-κB signaling upon antigen receptors engagement. Once assembled, the CBM also unleashes MALT1 protease activity to finely tune the immune response. As a result, ABC DLBCL tumors develop a profound addiction to NF-κB and to MALT1 enzyme, leaving open a breach for therapeutics. However, the pleiotropic nature of NF-κB jeopardizes the success of its targeting and urges us to develop new strategies. In this review, we discuss how post-translational modifications, such as phosphorylation and ubiquitination of the CBM components, as well as, MALT1 proteolytic activity, shape the CBM activity in lymphocytes and ABC DLBCL, and may provide new avenues to restore vulnerability in lymphoma.
Collapse
Affiliation(s)
- An Thys
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Tiphaine Douanne
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| |
Collapse
|
31
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
32
|
Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL. Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol 2018; 9:2105. [PMID: 30283447 PMCID: PMC6156143 DOI: 10.3389/fimmu.2018.02105] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte activation during the adaptive immune response. Somatic mutations in CARD11 are frequently found in Non-Hodgkin lymphoma, and at least three classes of germline CARD11 mutations have been described as the basis for primary immunodeficiency. In this review, we summarize our current understanding of how CARD11 signals, how its activity is regulated, and how mutations bypass normal regulation to cause disease.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katelynn E Deibel
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shelby M Hutcherson
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler A Jones
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoquan Wang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chao Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong-Kang Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Juilland M, Thome M. Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling. Front Immunol 2018; 9:1927. [PMID: 30214442 PMCID: PMC6125328 DOI: 10.3389/fimmu.2018.01927] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
The scaffold proteins CARMA1-3 (encoded by the genes CARD11, -14 and -10) and CARD9 play major roles in signaling downstream of receptors with immunoreceptor tyrosine activation motifs (ITAMs), G-protein coupled receptors (GPCR) and receptor tyrosine kinases (RTK). These receptors trigger the formation of oligomeric CARMA/CARD-BCL10-MALT1 (CBM) complexes via kinases of the PKC family. The CBM in turn regulates gene expression by the activation of NF-κB and AP-1 transcription factors and controls transcript stability. The paracaspase MALT1 is the only CBM component having an enzymatic (proteolytic) activity and has therefore recently gained attention as a potential drug target. Here we review recent advances in the understanding of the molecular function of the protease MALT1 and summarize how MALT1 scaffold and protease function contribute to the transmission of CBM signals. Finally, we will highlight how dysregulation of MALT1 function can cause pathologies such as immunodeficiency, autoimmunity, psoriasis, and cancer.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
35
|
Fontán L, Qiao Q, Hatcher JM, Casalena G, Us I, Teater M, Durant M, Du G, Xia M, Bilchuk N, Chennamadhavuni S, Palladino G, Inghirami G, Philippar U, Wu H, Scott DA, Gray NS, Melnick A. Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth. J Clin Invest 2018; 128:4397-4412. [PMID: 30024860 DOI: 10.1172/jci99436] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The paracaspase MALT1 plays an essential role in activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) downstream of B cell and TLR pathway genes mutated in these tumors. Although MALT1 is considered a compelling therapeutic target, the development of tractable and specific MALT1 protease inhibitors has thus far been elusive. Here, we developed a target engagement assay that provides a quantitative readout for specific MALT1-inhibitory effects in living cells. This enabled a structure-guided medicinal chemistry effort culminating in the discovery of pharmacologically tractable, irreversible substrate-mimetic compounds that bind the MALT1 active site. We confirmed that MALT1 targeting with compound 3 is effective at suppressing ABC DLBCL cells in vitro and in vivo. We show that a reduction in serum IL-10 levels exquisitely correlates with the drug pharmacokinetics and degree of MALT1 inhibition in vitro and in vivo and could constitute a useful pharmacodynamic biomarker to evaluate these compounds in clinical trials. Compound 3 revealed insights into the biology of MALT1 in ABC DLBCL, such as the role of MALT1 in driving JAK/STAT signaling and suppressing the type I IFN response and MHC class II expression, suggesting that MALT1 inhibition could prime lymphomas for immune recognition by cytotoxic immune cells.
Collapse
Affiliation(s)
- Lorena Fontán
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - John M Hatcher
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriella Casalena
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Ilkay Us
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Matt Durant
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Guangyan Du
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Xia
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Natalia Bilchuk
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Spandan Chennamadhavuni
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Palladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ulrike Philippar
- Oncology Discovery, Janssen Research and Development, Beerse, Belgium
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Scott
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
36
|
Wu CH, Yang YH, Chen MR, Tsai CH, Cheng AL, Doong SL. Autocleavage of the paracaspase MALT1 at Arg-781 attenuates NF-κB signaling and regulates the growth of activated B-cell like diffuse large B-cell lymphoma cells. PLoS One 2018; 13:e0199779. [PMID: 29953499 PMCID: PMC6023146 DOI: 10.1371/journal.pone.0199779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
MALT1 controls several receptors-mediated signaling to nuclear factor κB (NF-κB) through both its scaffold and protease function. MALT1 protease activity is shown to inactivate several negative regulators of NF-κB signaling and augment NF-κB activation ability. In this study, MALT1 was demonstrated to autoprocess itself in the presence of oligomerization-competent BCL10. Cleavage occurred after Arginine 781 located in the C-terminus of MALT1. Shortened MALT1 cleavage products showed attenuated binding ability with TRAF6. Its NF-κB activation ability was also weakened. Various MALT1 constructs including wild type, catalytically-inactive (MALT1_C464A), cleavage-defective (MALT1_R781L), or truncated (MALT1_1–781) form of MALT1 was introduced into MALT1-knocked-down-Jurkat T cells. Cleavage-defective MALT1_R781L retained its proteolytic and initial IκBα phosphorylation activity as MALT1. Truncated MALT1_1–781 mutant showed weakness in IκBα phosphorylation and the expression of NF-κB targets IL-2 and IFN-γ. Cleavage at R781 was detectable but marginal after activation with TPA/ionomycin or anti-CD3 antibody in lymphocytes. However, cleavage at R781 was evident in ABC-DLBCL cells such as OCI-Ly3, HBL-1. HBL-1 cells with induced expression of catalytically-inactive MALT1_C464A or cleavage-defective MALT1_R781L exhibited characteristic of retarded-growth. These findings suggested that cleavage at R781 of MALT1 played a role in the survival of ABC-DLBCL cells.
Collapse
Affiliation(s)
- Chun-Hsien Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Yang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Lian Doong
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Proteomic approaches beyond expression profiling and PTM analysis. Anal Bioanal Chem 2018; 410:4051-4060. [PMID: 29637251 DOI: 10.1007/s00216-018-1021-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
Essentially, all cellular functions are executed by proteins. Different physiological and pathological conditions dynamically control various properties of proteins, including expression levels, post-translational modifications (PTMs), protein-protein interactions, enzymatic activity, etc. Thus far, the vast majority of proteomic efforts have been focused on quantitative profiling of protein abundance/expression and their PTMs. In this article, we review some recent exciting progress in the development of proteomic approaches to examine protein functions from perspectives other than expression levels and PTMs. Specifically, we discuss advancements in proximity-based labeling, analysis of protein termini and newly synthesized proteins, and activity-based protein profiling.
Collapse
|
38
|
Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines 2018; 6:biomedicines6020038. [PMID: 29587428 PMCID: PMC6027339 DOI: 10.3390/biomedicines6020038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The NF-κB transcription factor family plays a crucial role in lymphocyte proliferation and survival. Consequently, aberrant NF-κB activation has been described in a variety of lymphoid malignancies, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and adult T-cell leukemia. Several factors, such as persistent infections (e.g., with Helicobacter pylori), the pro-inflammatory microenvironment of the cancer, self-reactive immune receptors as well as genetic lesions altering the function of key signaling effectors, contribute to constitutive NF-κB activity in these malignancies. In this review, we will discuss the molecular consequences of recurrent genetic lesions affecting key regulators of NF-κB signaling. We will particularly focus on the oncogenic mechanisms by which these alterations drive deregulated NF-κB activity and thus promote the growth and survival of the malignant cells. As the concept of a targeted therapy based on the mutational status of the malignancy has been supported by several recent preclinical and clinical studies, further insight in the function of NF-κB modulators and in the molecular mechanisms governing aberrant NF-κB activation observed in lymphoid malignancies might lead to the development of additional treatment strategies and thus improve lymphoma therapy.
Collapse
Affiliation(s)
- Paula Grondona
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| | - Anja Schmitt
- Interfaculty Institute for Biochemistry, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany.
| |
Collapse
|
39
|
Chenette EJ, Martin SJ. 50 years of The FEBS Journal: looking back as well as ahead. FEBS J 2018; 284:4162-4171. [PMID: 29251437 DOI: 10.1111/febs.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this last issue of 2017, we're celebrating the 50th anniversary of The FEBS Journal. This Editorial considers how the journal has grown and changed from volume 1, issue 1 and outlines our exciting plans for the future.
Collapse
Affiliation(s)
| | - Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
40
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
41
|
Bardet M, Unterreiner A, Malinverni C, Lafossas F, Vedrine C, Boesch D, Kolb Y, Kaiser D, Glück A, Schneider MA, Katopodis A, Renatus M, Simic O, Schlapbach A, Quancard J, Régnier CH, Bold G, Pissot-Soldermann C, Carballido JM, Kovarik J, Calzascia T, Bornancin F. The T-cell fingerprint of MALT1 paracaspase revealed by selective inhibition. Immunol Cell Biol 2017; 96:81-99. [DOI: 10.1111/imcb.1018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/01/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Maureen Bardet
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Adeline Unterreiner
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Claire Malinverni
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Frédérique Lafossas
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Corinne Vedrine
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Danielle Boesch
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Yeter Kolb
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Daniel Kaiser
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Anton Glück
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Martin A Schneider
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Andreas Katopodis
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Oliver Simic
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Achim Schlapbach
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Jean Quancard
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Catherine H Régnier
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Guido Bold
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | | | - José M Carballido
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Jiri Kovarik
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research; Novartis Campus; Basel Switzerland
| |
Collapse
|
42
|
Hrdinka M, Gyrd-Hansen M. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. Mol Cell 2017; 68:265-280. [PMID: 29053955 DOI: 10.1016/j.molcel.2017.09.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/21/2017] [Accepted: 08/31/2017] [Indexed: 01/24/2023]
Abstract
The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.
Collapse
Affiliation(s)
- Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
43
|
Abstract
Purpose of review The CARMA1/BCL10/MALT1 (CBM) complex is a multimeric signaling complex controlling several important aspects of lymphocyte activation. Gain-of-function mutations in the genes encoding CBM proteins or their upstream regulators are associated with lymphoid malignancies, whereas loss-of-function mutations lead to immunodeficiency. This review reports on recent findings advancing our understanding of how CBM proteins contribute to malignant and nonmalignant hematological diseases in humans. Recent findings Somatic gain-of-function mutations of CARMA1 (also known as CARD11), originally described for patients with diffuse large B-cell lymphoma, have recently been identified in patients with acute T-cell leukemia/lymphoma or Sézary syndrome, and in patients with a B-cell lymphoproliferative disorder known as BENTA. Loss-of-function mutations of CARMA1 and MALT1, on the other hand, have been reported to underlie human immunodeficiency. Lately, it has become clear that CBM-dependent signaling promotes lymphomagenesis not only via NF-κB activation, but also via the AP-1 family of transcription factors. The identification of new substrates of the protease MALT1 and the characterization of mice expressing catalytically inactive MALT1 have deepened our understanding of how the CBM complex controls lymphocyte proliferation through promoting MALT1's protease activity. Summary The discovery of CARMA1 gain-of-function mutations in T-cell malignancies and BENTA patients, as well as the association of CARMA1 and MALT1 mutations with human immunodeficiency highlight the importance of CBM proteins in the regulation of lymphocyte functions, and suggest that the protease activity of MALT1 might be targeted to treat specific lymphoid malignancies.
Collapse
|
44
|
Schreuder MI, van den Brand M, Hebeda KM, Groenen PJTA, van Krieken JH, Scheijen B. Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma. J Hematop 2017; 10:91-107. [PMID: 29225710 PMCID: PMC5712330 DOI: 10.1007/s12308-017-0302-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
Extranodal marginal zone lymphoma (EMZL), mostly represented by mucosa-associated lymphoid tissue (MALT) type, also referred to as MALT lymphoma, is a clinically heterogeneous entity within the group of low-grade B cell lymphomas that arises in a wide range of different extranodal sites, including the stomach, lung, ocular adnexa, and skin. It represents the third most common non-Hodgkin lymphoma in the Western world, and the median age of occurrence is around 60 years. One characteristic aspect in a subset of EMZL detectable in about 25% of the cases is the presence of specific chromosomal translocations involving the genes MALT1 and BCL10, which lead to activation of the NF-κB signaling pathway. Another unique aspect is that several infectious agents, such as Helicobacter pylori in the case of gastric EMZL, and autoimmune disorders, like Sjögren syndrome, have been implicated in the pathogenesis of this cancer. Recent findings as summarized in this review have further improved our understanding of the complex pathobiology of this disease and have been essential to better define novel treatment strategies. In addition, many of these specific features are currently being implemented for the diagnosis of EMZL.
Collapse
Affiliation(s)
- Max I Schreuder
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 AG Nijmegen, The Netherlands
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 AG Nijmegen, The Netherlands.,Pathology-DNA, Rijnstate Hospital, Arnhem, The Netherlands
| | - Konnie M Hebeda
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 AG Nijmegen, The Netherlands
| | - Patricia J T A Groenen
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 AG Nijmegen, The Netherlands
| | - J Han van Krieken
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 AG Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 AG Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Molecular basis for specificity of the Met1-linked polyubiquitin signal. Biochem Soc Trans 2017; 44:1581-1602. [PMID: 27913667 PMCID: PMC5135002 DOI: 10.1042/bst20160227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
Abstract
The post-translational modification of proteins provides a rapid and versatile system for regulating all signalling pathways. Protein ubiquitination is one such type of post-translational modification involved in controlling numerous cellular processes. The unique ability of ubiquitin to form polyubiquitin chains creates a highly complex code responsible for different subsequent signalling outcomes. Specialised enzymes ('writers') generate the ubiquitin code, whereas other enzymes ('erasers') disassemble it. Importantly, the ubiquitin code is deciphered by different ubiquitin-binding proteins ('readers') functioning to elicit particular cellular responses. Ten years ago, the methionine1 (Met1)-linked (linear) polyubiquitin code was first identified and the intervening years have witnessed a seismic shift in our understanding of Met1-linked polyubiquitin in cellular processes, particularly inflammatory signalling. This review will discuss the molecular mechanisms of specificity determination within Met1-linked polyubiquitin signalling.
Collapse
|
46
|
Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem 2017; 397:1315-1333. [PMID: 27420898 DOI: 10.1515/hsz-2016-0216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.
Collapse
|
47
|
Rittinger K, Ikeda F. Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biol 2017; 7:170026. [PMID: 28446710 PMCID: PMC5413910 DOI: 10.1098/rsob.170026] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases.
Collapse
Affiliation(s)
- Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Dr Bohr-gasse 3, 1030 Vienna, Austria
| |
Collapse
|
48
|
Williams EJ, Baines KJ, Berthon BS, Wood LG. Effects of an Encapsulated Fruit and Vegetable Juice Concentrate on Obesity-Induced Systemic Inflammation: A Randomised Controlled Trial. Nutrients 2017; 9:E116. [PMID: 28208713 PMCID: PMC5331547 DOI: 10.3390/nu9020116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Phytochemicals from fruit and vegetables reduce systemic inflammation. This study examined the effects of an encapsulated fruit and vegetable (F&V) juice concentrate on systemic inflammation and other risk factors for chronic disease in overweight and obese adults. A double-blinded, parallel, randomized placebo-controlled trial was conducted in 56 adults aged ≥40 years with a body mass index (BMI) ≥28 kg/m². Before and after eight weeks daily treatment with six capsules of F&V juice concentrate or placebo, peripheral blood gene expression (microarray, quantitative polymerase chain reaction (qPCR)), plasma tumour necrosis factor (TNF)α (enzyme-linked immunosorbent assay (ELISA)), body composition (Dual-energy X-ray absorptiometry (DEXA)) and lipid profiles were assessed. Following consumption of juice concentrate, total cholesterol, low-density lipoprotein (LDL) cholesterol and plasma TNFα decreased and total lean mass increased, while there was no change in the placebo group. In subjects with high systemic inflammation at baseline (serum C-reactive protein (CRP) ≥3.0 mg/mL) who were supplemented with the F&V juice concentrate (n = 16), these effects were greater, with decreased total cholesterol, LDL cholesterol and plasma TNFα and increased total lean mass; plasma CRP was unchanged by the F&V juice concentrate following both analyses. The expression of several genes involved in lipogenesis, the nuclear factor-κB (NF-κB) and 5' adenosine monophosphate-activated protein kinase (AMPK) signalling pathways was altered, including phosphomevalonate kinase (PMVK), zinc finger AN1-type containing 5 (ZFAND5) and calcium binding protein 39 (CAB39), respectively. Therefore, F&V juice concentrate improves the metabolic profile, by reducing systemic inflammation and blood lipid profiles and, thus, may be useful in reducing the risk of obesity-induced chronic disease.
Collapse
Affiliation(s)
- Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
49
|
Ginster S, Bardet M, Unterreiner A, Malinverni C, Renner F, Lam S, Freuler F, Gerrits B, Voshol J, Calzascia T, Régnier CH, Renatus M, Nikolay R, Israël L, Bornancin F. Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation. PLoS One 2017; 12:e0169026. [PMID: 28052131 PMCID: PMC5214165 DOI: 10.1371/journal.pone.0169026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.
Collapse
Affiliation(s)
- Stefanie Ginster
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Maureen Bardet
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Adeline Unterreiner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Claire Malinverni
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Renner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen Lam
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Felix Freuler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Bertran Gerrits
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Johannes Voshol
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Catherine H. Régnier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Rainer Nikolay
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Laura Israël
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| |
Collapse
|
50
|
B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood 2016; 129:333-346. [PMID: 27864294 DOI: 10.1182/blood-2016-05-718775] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients.
Collapse
|