1
|
Wang S, Zhou S, Jiang X, Yang D, He J, Xiu M. Acute hypoxia induces sleep disorders via sima/HIF-1α regulation of circadian rhythms in adult Drosophila. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110192. [PMID: 40086680 DOI: 10.1016/j.cbpc.2025.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
The atmospheric oxygen concentration is significantly reduced in highland regions compared to lowland areas. The first entering the plateau can induce sleep disorders in individuals, primarily attributed to insufficient oxygen supply. This study used Drosophila melanogaster as a model organism to better understand the molecular mechanism of acute hypoxia-induced sleep disorders. The Drosophila activity monitoring system (DAMS) was employed to observe the sleep-wake in adult (w1118, simaKG07607, and clockjrk) female flies. Quantifying the relative mRNA expression levels of sima and circadian clock genes in the head of flies was accomplished by utilizing qRT-PCR. Acute hypoxia caused sleep disorders in w1118 flies, such as shortened sleep duration and length, and prolonged sleep latency. PCR results showed that sima and clock genes were up-regulated in ZT6 and ZT12 and down-regulated in ZT0 and ZT18 in acute hypoxic w1118 flies compared to normoxic w1118 flies. Under normoxic conditions, sleep indexes in simaKG07607 flies were not substantially different from w1118 flies. However, clockjrk flies demonstrated a reduced sleep duration, decreased sleep bout length, and increased sleep latency and activities. Sleep and gene expression in simaKG07607 flies under acute hypoxic conditions were not significantly different from those under normoxic conditions. Surprisingly, sleep and gene expression in clockjrk flies showed opposite trends to w1118 flies. The present study indicates that acute hypoxia disrupt circadian rhythms through the activation of sima/HIF-1α, leading to the onset of sleep disorders, with Clock signaling potentially serving as a contributing factor.
Collapse
Affiliation(s)
- Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaolin Jiang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Dan Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
2
|
Gaspar LS, Pyakurel S, Xu N, D'Souza SP, Koritala BSC. Circadian Biology in Obstructive Sleep Apnea-Associated Cardiovascular Disease. J Mol Cell Cardiol 2025; 202:116-132. [PMID: 40107345 DOI: 10.1016/j.yjmcc.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A dysregulated circadian system is independently associated with both Obstructive Sleep Apnea (OSA) and cardiovascular disease (CVD). OSA and CVD coexistence is often seen in patients with prolonged untreated OSA. However, the role of circadian dysregulation in their relationship is unclear. Half of the human genes, associated biological pathways, and physiological functions exhibit circadian rhythms, including blood pressure and heart rate regulation. Mechanisms related to circadian dysregulation and heart function are potentially involved in the coexistence of OSA and CVD. In this article, we provide a comprehensive overview of circadian dysregulation in OSA and associated CVD. We also discuss feasible animal models and new avenues for future research to understand their relationship. Oxygen-sensing pathways, inflammation, dysregulation of cardiovascular processes, oxidative stress, metabolic regulation, hormone signaling, and epigenetics are potential clock-regulated mechanisms connecting OSA and CVD.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Santoshi Pyakurel
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Na Xu
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Bala S C Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| |
Collapse
|
3
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
5
|
Lear CA, Maeda Y, King VJ, Dhillon SK, Beacom MJ, Gunning MI, Lear BA, Davidson JO, Stone PR, Ikeda T, Gunn AJ, Bennet L. Circadian patterns of heart rate variability in fetal sheep after hypoxia-ischaemia: A biomarker of evolving brain injury. J Physiol 2024; 602:6553-6569. [PMID: 37432936 PMCID: PMC11607889 DOI: 10.1113/jp284560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.
Collapse
Affiliation(s)
- Christopher A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Yoshiki Maeda
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Victoria J. King
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Michael J. Beacom
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Mark I. Gunning
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Benjamin A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Joanne O. Davidson
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Peter R. Stone
- The Department of Obstetrics and GynaecologyThe University of AucklandAucklandNew Zealand
| | - Tomoaki Ikeda
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Alistair J. Gunn
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Laura Bennet
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| |
Collapse
|
6
|
Kambe G, Kobayashi M, Ishikita H, Koyasu S, Hammond EM, Harada H. ZBTB7A forms a heterodimer with ZBTB2 and inhibits ZBTB2 homodimerization required for full activation of HIF-1. Biochem Biophys Res Commun 2024; 733:150604. [PMID: 39197198 DOI: 10.1016/j.bbrc.2024.150604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Hypoxia-inducible factor 1 (HIF-1), recognized as a master transcription factor for adaptation to hypoxia, is associated with malignant characteristics and therapy resistance in cancers. It has become clear that cofactors such as ZBTB2 are critical for the full activation of HIF-1; however, the mechanisms downregulating the ZBTB2-HIF-1 axis remain poorly understood. In this study, we identified ZBTB7A as a negative regulator of ZBTB2 by analyzing protein sequences and structures. We found that ZBTB7A forms a heterodimer with ZBTB2, inhibits ZBTB2 homodimerization necessary for the full expression of ZBTB2-HIF-1 downstream genes, and ultimately delays the proliferation of cancer cells under hypoxic conditions. The Cancer Genome Atlas (TCGA) analyses revealed that overall survival is better in patients with high ZBTB7A expression in their tumor tissues. These findings highlight the potential of targeting the ZBTB7A-ZBTB2 interaction as a novel therapeutic strategy to inhibit HIF-1 activity and improve treatment outcomes in hypoxia-related cancers.
Collapse
Affiliation(s)
- Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Dandavate V, Bolshette N, Van Drunen R, Manella G, Bueno-Levy H, Zerbib M, Kawano I, Golik M, Adamovich Y, Asher G. Hepatic BMAL1 and HIF1α regulate a time-dependent hypoxic response and prevent hepatopulmonary-like syndrome. Cell Metab 2024; 36:2038-2053.e5. [PMID: 39106859 DOI: 10.1016/j.cmet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024]
Abstract
The transcriptional response to hypoxia is temporally regulated, yet the molecular underpinnings and physiological implications are unknown. We examined the roles of hepatic Bmal1 and Hif1α in the circadian response to hypoxia in mice. We found that the majority of the transcriptional response to hypoxia is dependent on either Bmal1 or Hif1α, through shared and distinct roles that are daytime determined. We further show that hypoxia-inducible factor (HIF)1α accumulation upon hypoxia is temporally regulated and Bmal1 dependent. Unexpectedly, mice lacking both hepatic Bmal1 and Hif1α are hypoxemic and exhibit increased mortality upon hypoxic exposure in a daytime-dependent manner. These mice display mild liver dysfunction with pulmonary vasodilation likely due to extracellular signaling regulated kinase (ERK) activation, endothelial nitric oxide synthase, and nitric oxide accumulation in lungs, suggestive of hepatopulmonary syndrome. Our findings indicate that hepatic BMAL1 and HIF1α are key time-dependent regulators of the hypoxic response and can provide molecular insights into the pathophysiology of hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rachel Van Drunen
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hanna Bueno-Levy
- Department of the Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mirie Zerbib
- Department of the Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ippei Kawano
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
8
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Juhász KZ, Hajdú T, Kovács P, Vágó J, Matta C, Takács R. Hypoxic Conditions Modulate Chondrogenesis through the Circadian Clock: The Role of Hypoxia-Inducible Factor-1α. Cells 2024; 13:512. [PMID: 38534356 PMCID: PMC10969332 DOI: 10.3390/cells13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer transcription factor composed of an alpha and a beta subunit. HIF-1α is a master regulator of cellular response to hypoxia by activating the transcription of genes that facilitate metabolic adaptation to hypoxia. Since chondrocytes in mature articular cartilage reside in a hypoxic environment, HIF-1α plays an important role in chondrogenesis and in the physiological lifecycle of articular cartilage. Accumulating evidence suggests interactions between the HIF pathways and the circadian clock. The circadian clock is an emerging regulator in both developing and mature chondrocytes. However, how circadian rhythm is established during the early steps of cartilage formation and through what signaling pathways it promotes the healthy chondrocyte phenotype is still not entirely known. This narrative review aims to deliver a concise analysis of the existing understanding of the dynamic interplay between HIF-1α and the molecular clock in chondrocytes, in states of both health and disease, while also incorporating creative interpretations. We explore diverse hypotheses regarding the intricate interactions among these pathways and propose relevant therapeutic strategies for cartilage disorders such as osteoarthritis.
Collapse
|
10
|
Shirai Y, Suwa T, Kobayashi M, Koyasu S, Harada H. DDX5 enhances HIF-1 activity by promoting the interaction of HIF-1α with HIF-1β and recruiting the resulting heterodimer to its target gene loci. Biol Cell 2024; 116:e2300077. [PMID: 38031929 DOI: 10.1111/boc.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND INFORMATION Cancer cells acquire malignant characteristics and therapy resistance by employing the hypoxia-inducible factor 1 (HIF-1)-dependent adaptive response to hypoxic microenvironment in solid tumors. Since the underlying molecular mechanisms remain unclear, difficulties are associated with establishing effective therapeutic strategies. RESULTS We herein identified DEAD-box helicase 5 (DDX5) as a novel activator of HIF-1 and found that it enhanced the heterodimer formation of HIF-1α and HIF-1β and facilitated the recruitment of the resulting HIF-1 to its recognition sequence, hypoxia-response element (HRE), leading to the expression of a subset of cancer-related genes under hypoxia. CONCLUSIONS This study reveals that the regulation of HIF-1 recruitment to HRE is an important regulatory step in the control of HIF-1 activity. SIGNIFICANCE The present study provides novel insights for the development of strategies to inhibit the HIF-1-dependent expression of cancer-related genes.
Collapse
Affiliation(s)
- Yukari Shirai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Yu Y, Chen G, Jiang C, Guo T, Tang H, Yuan Z, Wang Y, Tan X, Chen J, Zhang E, Wang X. USP31 serves as a potential biomarker for predicting prognosis and immune responses for clear cell renal cell carcinoma via single-cell and bulk RNA-sequencing. J Gene Med 2024; 26:e3594. [PMID: 37699648 DOI: 10.1002/jgm.3594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Currently, there is no research available on the prognosis, potential effect and therapeutic value of USP31 in clear cell renal cell carcinoma (ccRCC). To address this gap, the present study aimed to shed light on its potential roles and possible mechanisms in ccRCC. METHODS R software was utilized to conduct bioinformatics analyses with the data derived from The Cancer Genome Atlas (i.e. KIRC) and Gene Expression Omnibus datasets. The expression of USP31 in ccRCC was validated by a PCR. The independent prognostic ability of USP31 was evaluated by Cox regression analysis. We conducted gene set enrichment analysis (GSEA) to explore the potential USP31-related pathways. We also discussed the relationships between USP31 and immunity, by predicting its possible upstream transcription factors (TFs) by ChEA3. RESULTS In ccRCC, USP31 demonstrated a high level of expression and this increased expression was correlated with a poor prognosis (p < 0.05). Through univariate and multivariate Cox regression analysis, USP31 was identified as an independent prognostic factor for ccRCC (p < 0.05). Furthermore, eight USP31-related pathways were identified by GSEA (p < 0.05). Moreover, USP31 was found to be associated with microsatellite instability, tumor microenvironment, a variety of immune cells and immune checkpoints and immune infiltration (p < 0.05). Additionally, Patients with high USP31 expression in ccRCC were shown to have better curative effects after immunotherapy (p < 0.05). Finally, we found that AR, USF1, MXI1 and CLOCK could be the potential upstream TFs of USP31. CONCLUSIONS USP31 could serve as a potential biomarker for predicting both prognosis and immune responses, revealing its potential mechanisms of TF-USP31 mRNA networks in ccRCC.
Collapse
Affiliation(s)
- Yaoyu Yu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Jiang
- Laoximen Street Community Health Service Center, Huangpu District, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heting Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyin Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyuan Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Kashino G, Kobashigawa S, Uchikoshi A, Tamari Y. VEGF affects mitochondrial ROS generation in glioma cells and acts as a radioresistance factor. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:213-220. [PMID: 36941405 DOI: 10.1007/s00411-023-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/08/2023] [Indexed: 05/18/2023]
Abstract
Vascular endothelial growth factor (VEGF) is closely related to angiogenesis. Anticancer therapy by inhibiting VEGF signaling is well established. However, the role of VEGF in cell-cell communication during the response to ionizing radiation is not well understood. Here, we examined the role of VEGF on radiosensitivity of cells. The addition of recombinant VEGF (rVEGF) on cultured rat C6 glioma cells showed a radioprotective effects on X-ray irradiation and reduced oxidative stress. These effects were also observed by endogenous VEGF in supernatant of C6 glioma cells. Reduction of oxidative stress by VEGF is suggested to underlie the radioprotective effects. The mechanism of VEGF-induced reduction of oxidative stress was indicated by a decreased oxygen consumption rate (OCR) in mitochondria. However, the number of DNA double-strand breaks (DSB) immediately after irradiation was not reduced by the treatment with VEGF. These results suggest that VEGF plays a role in cell survival after irradiation by controlling the oxidative condition through mitochondrial function that is independent of the efficiency of DSB induction.
Collapse
Affiliation(s)
- Genro Kashino
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan.
| | - Shinko Kobashigawa
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan
| | - Aoki Uchikoshi
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan
| | - Yuki Tamari
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Šmon J, Kočar E, Pintar T, Dolenc-Grošelj L, Rozman D. Is obstructive sleep apnea a circadian rhythm disorder? J Sleep Res 2023:e13875. [PMID: 36922163 DOI: 10.1111/jsr.13875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder worldwide and remains underdiagnosed. Its multiple associated comorbidities contribute to a decreased quality of life and work performance as well as an increased risk of death. Standard treatment seems to have limited effects on cardiovascular and metabolic aspects of the disease, emphasising the need for early diagnosis and additional therapeutic approaches. Recent evidence suggests that the dysregulation of circadian rhythms, processes with endogenous rhythmicity that are adjusted to the environment through various cues, is involved in the pathogenesis of comorbidities. In patients with obstructive sleep apnea, altered circadian gene expression patterns have been demonstrated. Obstructive respiratory events may promote circadian dysregulation through the effects of sleep disturbance and intermittent hypoxia, with subsequent inflammation and disruption of neural and hormonal homeostasis. In this review, current knowledge on obstructive sleep apnea, circadian rhythm regulation, and circadian rhythm sleep disorders is summarised. Studies that connect obstructive sleep apnea to circadian rhythm abnormalities are critically evaluated. Furthermore, pathogenetic mechanisms that may underlie this association, most notably hypoxia signalling, are presented. A bidirectional relationship between obstructive sleep apnea and circadian rhythm dysregulation is proposed. Approaching obstructive sleep apnea as a circadian rhythm disorder may prove beneficial for the development of new, personalised diagnostic, therapeutic and prognostic tools. However, further studies are needed before the clinical approach to obstructive sleep apnea includes targeting the circadian system.
Collapse
Affiliation(s)
- Julija Šmon
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc-Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Martini T, Naef F, Tchorz JS. Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2023; 18:439-466. [PMID: 36693201 DOI: 10.1146/annurev-pathmechdis-031521-024831] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland;
| |
Collapse
|
17
|
Koyasu S, Horita S, Saito K, Kobayashi M, Ishikita H, Chow CCT, Kambe G, Nishikawa S, Menju T, Morinibu A, Okochi Y, Tabuchi Y, Onodera Y, Takeda N, Date H, Semenza GL, Hammond EM, Harada H. ZBTB2 links p53 deficiency to HIF-1-mediated hypoxia signaling to promote cancer aggressiveness. EMBO Rep 2023; 24:e54042. [PMID: 36341521 PMCID: PMC9827547 DOI: 10.15252/embr.202154042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.
Collapse
Affiliation(s)
- Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological MedicineFukushima Medical UniversityFukushimaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Christalle CT Chow
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Yasushi Okochi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Faculty of MedicineKyoto UniversityKyotoJapan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research CenterUniversity of ToyamaToyamaJapan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Gregg L Semenza
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ester M Hammond
- MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
18
|
RBCK1 regulates the progression of ER-positive breast cancer through the HIF1α signaling. Cell Death Dis 2022; 13:1023. [PMID: 36473847 PMCID: PMC9726878 DOI: 10.1038/s41419-022-05473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignancy in women on a global scale. It can generally be divided into four main categories, of which estrogen receptor ER-positive breast cancer accounts for most breast cancer cases. RBCK1 protein is an E3 ubiquitin ligase containing the UBL, NZF, and RBR domains. It is well known to exhibit abnormal expression in breast tumors, making it a valuable diagnostic marker and drug target. Additionally, studies have confirmed that in breast cancer, about 25 to 40% of tumors appear as visible hypoxic regions, while in hypoxia, tumor cells can activate the hypoxia-inducing factor HIF1 pathway and widely activate the expression of downstream genes. Previous studies have confirmed that in the hypoxic environment of tumors, HIF1α promotes the remodeling of extracellular matrix, induces the recruitment of tumor-associated macrophages (TAM) and immunosuppression of allogeneic tumors, thereby influencing tumor recurrence and metastasis. This research aims to identify RBCK1 as an important regulator of HIF1α signaling pathway. Targeted therapy with RBCK1 could be a promising treatment strategy for ER-positive breast cancer.
Collapse
|
19
|
Raza GS, Sodum N, Kaya Y, Herzig KH. Role of Circadian Transcription Factor Rev-Erb in Metabolism and Tissue Fibrosis. Int J Mol Sci 2022; 23:12954. [PMID: 36361737 PMCID: PMC9655416 DOI: 10.3390/ijms232112954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/12/2023] Open
Abstract
Circadian rhythms significantly affect metabolism, and their disruption leads to cardiometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart, lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism, mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pulmonary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass. In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but more specific tools and studies would be needed to increase the information base for the therapeutic potential of these substances interfering with the molecular clock.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Yagmur Kaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, 34854 Istanbul, Turkey
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| |
Collapse
|
20
|
Effects of Hypoxia-Inducible Factor 1 (HIF-1) Signaling Pathway on Acute Ischemic Stroke. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1860925. [DOI: 10.1155/2022/1860925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Background. Epidemiological surveys show that a large number of cerebrovascular diseases occur in China every year, and among these cerebrovascular diseases, ischemic diseases are predominant. Ischemia leads to irreversible degenerative necrosis of a large number of brain neurons and severe neurological deficits. Aims. This study is aimed at exploring the mechanism of the major regulatory effect of hypoxia-inducible factor 1 (HIF-1) pathway on proangiogenesis and providing new ideas for the treatment of ischemic stroke. Materials and Methods. The rats were randomly divided into normal and ischemic control groups, and the ischemic control group was subjected to the middle cerebral artery occlusion (MCAO) cerebral ischemia model by the wire embolization method, and the rats were executed in batches at 6 h, 1 d, and 3 d after ischemia-reperfusion, and the brain tissue specimens were taken for examination to investigate the effect of hypoxia-inducible factor 1 (HIF-l) signaling pathway on acute ischemic stroke. Results. At 3 d, the number of VEGFR2 positive cells increased significantly, and there was a significant difference compared with the control group (
). At 3 d, the number of HIF-1α-positive cells increased significantly, and there was a significant difference compared with the control group (
). The number of Hes1+factor VIII positive cells in the ischemic cortex increased significantly on the 1st and 3rd day, and there was a significant difference compared with the control group (
). The expression of Hes1 protein was significantly lower than the normal level after 6 h of ischemia, and the protein expression was significantly increased at 1 d and 3 d after ischemia (
). Conclusion. By detecting the expression changes of Hesl+factor VII in the ischemic area, the results show that ischemia and hypoxia activate the HIF-1, making the HIF-l the main regulatory pathway in the process of angiogenesis after ischemia.
Collapse
|
21
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
22
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
23
|
Liu Y, Yi J, Li Y, Hussain R, Zhu S, Li Y, Ouyang Z, Mehmood K, Hu L, Pan J, Tang Z, Li Y, Zhang H. Residue of thiram in food, suppresses immune system stress signals and disturbs sphingolipid metabolism in chickens. Vet Immunol Immunopathol 2022; 247:110415. [PMID: 35344810 DOI: 10.1016/j.vetimm.2022.110415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Thiram, a well-known sulfur containing organic compound is frequently and extensively used in agriculture because of high biological activity to control different pests. In certain cases, due to long persistence in the environment pesticides and other environmental contaminants induce undesirable toxic impacts to public health and environment. To ascertain the potential mechanisms of toxicity of thiram on different immune organs of broilers, a total of 100 one-day-old chicks were obtained and randomly divided into two groups including thiram group (50 mg/kg) and untreated control group. Thymus and spleen tissues were collected at the age of 14 days from the experimental birds. At necropsy level, thymus was congested, enlarged and hyperemic while spleen had no obvious lesions. The results on mechanisms (apoptosis and autophagy) of immunotoxicity showed significantly increased expression of bax, caspase3, cytc, ATG5, beclin1 and p62 in spleen of treated mice. Results indicated significantly decreased expression of m-TOR and bcl2 to activate apoptosis and autophagy. The expressions of bax, p53 and m-TOR were up-regulated in the thymus while the expressions of ATG5 and Beclin1 were down-regulated to mediate cell apoptosis and inhibit autophagy. The results on different metabolome investigation showed that the sphingolipid metabolism in the thymus of chicks exposed to thiram was disrupted resulting in up-regulation of metabolites related to cell membrane components such as SM, galactosylceramide and lactosylceramide. The results of our experimental research suggest that thiram can interfere with the sphingolipid metabolism in thymus and angiogenesis, inhibit the proliferation of vascular endothelial cells to induce potential toxic effects in chicken.
Collapse
Affiliation(s)
- Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqing Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Xie T, Guo D, Luo J, Guo Z, Zhang S, Wang A, Wang X, Wang X, Cao W, Su L, Guo J, Huang R, Xiao Y. The Relationship Between HIF1α and Clock Gene Expression in Patients with Obstructive Sleep Apnea. Nat Sci Sleep 2022; 14:381-392. [PMID: 35299629 PMCID: PMC8922359 DOI: 10.2147/nss.s348580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/27/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose In this study, we aimed to investigate the precise relationship between hypoxia-inducible factor 1α (HIF1α), circadian clock genes, and OSA. Methods We recruited 21 patients with OSA and 22 age-matched controls who underwent polysomnography and had their peripheral blood collected on the evening before and the morning after sleep. OSA was defined as an apnea hypopnea index (AHI) ≥15 events/h. Patients in which T90 > 0 were defined as having nocturnal hypoxemia (NH) and were referred to as the NH group. The mRNA levels of HIF1α, HIF1β and several clock genes (Timeless, Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Ck1δ, Rorα, NR1D1, and NPAS2) were determined by RT-qPCR. The percentage difference in gene expression levels when compared between the morning and evening was then determined as referred to as morning-evening variation (MEV). Results The MEV for HIF1α mRNA expression in OSA patients increased significantly by 23% (P = 0.008) when compared to patients without OSA. The gene expression levels of Timeless (P = 0.038) and Cry2 (P = 0.012) decreased with AHI. The MEV of Bmal1, Rorα, and HIF1α mRNA levels were upregulated by 16% (P = 0.006), 14% (P = 0.027), and 25% (P = 0.005), respectively, in participants with NH when compared to those without NH. Furthermore, the MEV for HIF1α mRNA levels was positively correlated with the MEV of Bmal1, Cry1, and CK1δ mRNA levels (R = 0.638, P < 0.001; R = 0.327, P = 0.002; R = 0.332, P = 0.001, respectively) and negatively correlated with LSpO2 (R = -0.464, P =0.009) and Mean SpO2 (R = -0.500, P = 0.003). Conclusion Our data suggest that patients with OSA or NH tend to develop circadian rhythm disorders that may be induced by the hypoxia-mediated augmentation of HIF1α gene expression in OSA.
Collapse
Affiliation(s)
- Ting Xie
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dan Guo
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jinmei Luo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zijian Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sumei Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Anqi Wang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoxi Wang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaona Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenhao Cao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Linfan Su
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Junwei Guo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Rong Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Xiao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Sutovska H, Babarikova K, Zeman M, Molcan L. Prenatal Hypoxia Affects Foetal Cardiovascular Regulatory Mechanisms in a Sex- and Circadian-Dependent Manner: A Review. Int J Mol Sci 2022; 23:2885. [PMID: 35270026 PMCID: PMC8910900 DOI: 10.3390/ijms23052885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal hypoxia during the prenatal period can interfere with the developmental trajectory and lead to developing hypertension in adulthood. Prenatal hypoxia is often associated with intrauterine growth restriction that interferes with metabolism and can lead to multilevel changes. Therefore, we analysed the effects of prenatal hypoxia predominantly not associated with intrauterine growth restriction using publications up to September 2021. We focused on: (1) The response of cardiovascular regulatory mechanisms, such as the chemoreflex, adenosine, nitric oxide, and angiotensin II on prenatal hypoxia. (2) The role of the placenta in causing and attenuating the effects of hypoxia. (3) Environmental conditions and the mother's health contribution to the development of prenatal hypoxia. (4) The sex-dependent effects of prenatal hypoxia on cardiovascular regulatory mechanisms and the connection between hypoxia-inducible factors and circadian variability. We identified that the possible relationship between the effects of prenatal hypoxia on the cardiovascular regulatory mechanism may vary depending on circadian variability and phase of the days. In summary, even short-term prenatal hypoxia significantly affects cardiovascular regulatory mechanisms and programs hypertension in adulthood, while prenatal programming effects are not only dependent on the critical period, and sensitivity can change within circadian oscillations.
Collapse
Affiliation(s)
| | | | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia; (H.S.); (K.B.); (L.M.)
| | | |
Collapse
|
26
|
Adamovich Y, Dandavate V, Asher G. Circadian clocks' interactions with oxygen sensing and signalling. Acta Physiol (Oxf) 2022; 234:e13770. [PMID: 34984824 DOI: 10.1111/apha.13770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022]
Abstract
In mammals, physiology and metabolism are shaped both by immediate and anticipatory responses to environmental changes through the myriad of molecular mechanisms. Whilst the former is mostly mediated through different acute signalling pathways the latter is primarily orchestrated by the circadian clock. Oxygen is vital for life and as such mammals have evolved different mechanisms to cope with changes in oxygen levels. It is widely accepted that oxygen sensing through the HIF-1 signalling pathway is paramount for the acute response to changes in oxygen levels. Circadian clocks are molecular oscillators that control 24 hours rhythms in various aspects of physiology and behaviour. Evidence emerging in recent years points towards pervasive molecular and functional interactions between these two pathways on multiple levels. Daily oscillations in oxygen levels are circadian clock-controlled and can reset the clock through HIF-1. Furthermore, the circadian clock appears to modulate the hypoxic response. We review herein the literature related to the crosstalk between the circadian clockwork and the oxygen-signalling pathway in mammals at the molecular and physiological level both under normal and pathologic conditions.
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| | - Gad Asher
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
27
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
28
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
29
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
30
|
A multidisciplinary perspective on the complex interactions between sleep, circadian, and metabolic disruption in cancer patients. Cancer Metastasis Rev 2021; 40:1055-1071. [PMID: 34958429 PMCID: PMC8825432 DOI: 10.1007/s10555-021-10010-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 01/24/2023]
Abstract
Sleep is a basic need that is frequently set aside in modern societies. This leads to profound but complex physiological maladaptations in the body commonly referred to as circadian disruption, which recently has been characterized as a carcinogenic factor and reason for poor treatment outcomes, shortened survival, and reduced quality of life in cancer patients. As sleep and circadian physiology in cancer patients spans several disciplines including nursing science, neurology, oncology, molecular biology and medical technology, there is a lack of comprehensive and integrated approaches to deal with this serious and growing issue and at best a fractionated understanding of only part of the problem among researchers within each of these segments. Here, we take a multidisciplinary approach to comprehensively review the diagnosis and impact of sleep and circadian disruption in cancer patients. We discuss recent discoveries on molecular regulation of the circadian clock in healthy and malignant cells, the neurological and endocrine pathways controlling sleep and circadian rhythmicity, and their inputs to and outputs from the organism. The benefits and drawbacks of the various technologies, devices, and instruments used to assess sleep and circadian function, as well as the known consequences of sleep disruption and how sleep can be corrected in cancer patients, will be analyzed. We will throughout the review highlight the extensive crosstalk between sleep, circadian rhythms, and metabolic pathways involved in malignancy and identify current knowledge gaps and barriers for addressing the issue of sleep and circadian disruption in cancer patients. By addressing these issues, we hope to provide a foundation for further research as well as better and more effective care for the patients in the future.
Collapse
|
31
|
PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to Ischemia/Reperfusion Injury in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6256399. [PMID: 34659637 PMCID: PMC8519710 DOI: 10.1155/2021/6256399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.
Collapse
|
32
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
33
|
Uba T, Matsuo Y, Sumi C, Shoji T, Nishi K, Kusunoki M, Harada H, Kimura H, Bono H, Hirota K. Polysulfide inhibits hypoxia-elicited hypoxia-inducible factor activation in a mitochondria-dependent manner. Mitochondrion 2021; 59:255-266. [PMID: 34133955 DOI: 10.1016/j.mito.2021.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
In cellular signaling, the diverse physiological actions of biological gases, including O2, CO, NO, and H2S, have attracted much interest. Hypoxia-inducible factors (HIFs), including HIF-1 and HIF-2, are transcription factors that respond to reduced intracellular O2 availability. Polysulfides are substances containing varying numbers of sulfur atoms (H2Sn) that are generated endogenously from H2S by 3-mercaptopyruvate sulfurtransferase in the presence of O2, and regulate ion channels, specific tumor suppressors, and protein kinases. However, the effect of polysulfides on HIF activation in hypoxic mammalian cells is largely unknown. Here, we have investigated the effect of polysulfide on cells in vitro. In established cell lines, polysulfide donors reversibly reduced cellular O2 consumption and inhibited hypoxia-induced HIF-1α protein accumulation and the expression of genes downstream of HIFs; however, these effects were not observed in anoxia. In Von Hippel-Lindau tumor suppressor (VHL)- and mitochondria-deficient cells, polysulfides did not affect HIF-1α protein synthesis but destabilized it in a VHL- and mitochondria-dependent manner. For the first time, we show that polysulfides modulate intracellular O2 homeostasis and regulate HIF activation and subsequent hypoxia-induced gene expression in a VHL- and mitochondria-dependent manner.
Collapse
Affiliation(s)
- Takeo Uba
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan; Department of Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Chisato Sumi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Tomohiro Shoji
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan; Department of Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Kenichiro Nishi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Munenori Kusunoki
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan.
| |
Collapse
|
34
|
Koritala BSC, Conroy Z, Smith DF. Circadian Biology in Obstructive Sleep Apnea. Diagnostics (Basel) 2021; 11:1082. [PMID: 34199193 PMCID: PMC8231795 DOI: 10.3390/diagnostics11061082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a complex process that can lead to the dysregulation of the molecular clock, as well as 24 h rhythms of sleep and wake, blood pressure, and other associated biological processes. Previous work has demonstrated crosstalk between the circadian clock and hypoxia-responsive pathways. However, even in the absence of OSA, disrupted clocks can exacerbate OSA-associated outcomes (e.g., cardiovascular or cognitive outcomes). As we expand our understanding of circadian biology in the setting of OSA, this information could play a significant role in the diagnosis and treatment of OSA. Here, we summarize the pre-existing knowledge of circadian biology in patients with OSA and examine the utility of circadian biomarkers as alternative clinical tools.
Collapse
Affiliation(s)
- Bala S. C. Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Zachary Conroy
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - David F. Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- The Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- The Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
35
|
Lo EH, Albers GW, Dichgans M, Donnan G, Esposito E, Foster R, Howells DW, Huang YG, Ji X, Klerman EB, Lee S, Li W, Liebeskind DS, Lizasoain I, Mandeville ET, Moro MA, Ning M, Ray D, Sakadžić S, Saver JL, Scheer FAJL, Selim M, Tiedt S, Zhang F, Buchan AM. Circadian Biology and Stroke. Stroke 2021; 52:2180-2190. [PMID: 33940951 DOI: 10.1161/strokeaha.120.031742] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian biology modulates almost all aspects of mammalian physiology, disease, and response to therapies. Emerging data suggest that circadian biology may significantly affect the mechanisms of susceptibility, injury, recovery, and the response to therapy in stroke. In this review/perspective, we survey the accumulating literature and attempt to connect molecular, cellular, and physiological pathways in circadian biology to clinical consequences in stroke. Accounting for the complex and multifactorial effects of circadian rhythm may improve translational opportunities for stroke diagnostics and therapeutics.
Collapse
Affiliation(s)
- Eng H Lo
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregory W Albers
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Stanford Stroke Center, Stanford University, Palo Alto (G.W.A., S.L.)
| | - Martin Dichgans
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,German Center for Neurodegenerative Diseases (DZNE, Munich) and Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.).,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D., S.T.)
| | - Geoffrey Donnan
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Australia (G.D.)
| | - Elga Esposito
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Russell Foster
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences (R.F.), University of Oxford, United Kingdom
| | - David W Howells
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Tasmanian School of Medicine, University of Tasmania, Australia (D.W.H.)
| | - Yi-Ge Huang
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Stroke Medicine (Y.H., A.M.B.), University of Oxford, United Kingdom
| | - Xunming Ji
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Beijing Institute for Brain Disorders, China (X.J.)
| | - Elizabeth B Klerman
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Neurology (E.B.K., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sarah Lee
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Stanford Stroke Center, Stanford University, Palo Alto (G.W.A., S.L.)
| | - Wenlu Li
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David S Liebeskind
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Geffen School of Medicine, University of California Los Angeles (J.L.S., D.S.L.)
| | - Ignacio Lizasoain
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain (I.L.)
| | - Emiri T Mandeville
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria A Moro
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain (M.A.M.)
| | - MingMing Ning
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Neurology (E.B.K., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Ray
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom (D.R.)
| | - Sava Sakadžić
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey L Saver
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Geffen School of Medicine, University of California Los Angeles (J.L.S., D.S.L.)
| | - Frank A J L Scheer
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Medicine and Neurology, Brigham & Women's Hospital (F.A.J.L.S.), Harvard Medical School, Boston
| | - Magdy Selim
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Beth Israel Deaconess Medical Center (M.S.), Harvard Medical School, Boston
| | - Steffen Tiedt
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D., S.T.)
| | - Fang Zhang
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alastair M Buchan
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Stroke Medicine (Y.H., A.M.B.), University of Oxford, United Kingdom
| |
Collapse
|
36
|
Wu G, Lee YY, Gulla EM, Potter A, Kitzmiller J, Ruben MD, Salomonis N, Whitsett JA, Francey LJ, Hogenesch JB, Smith DF. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. eLife 2021; 10:63003. [PMID: 33599610 PMCID: PMC7909952 DOI: 10.7554/elife.63003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) results from episodes of airway collapse and intermittent hypoxia (IH) and is associated with a host of health complications. Although the lung is the first organ to sense changes in oxygen levels, little is known about the consequences of IH to the lung hypoxia-inducible factor-responsive pathways. We hypothesized that exposure to IH would lead to cell-specific up- and downregulation of diverse expression pathways. We identified changes in circadian and immune pathways in lungs from mice exposed to IH. Among all cell types, endothelial cells showed the most prominent transcriptional changes. Upregulated genes in myofibroblast cells were enriched for genes associated with pulmonary hypertension and included targets of several drugs currently used to treat chronic pulmonary diseases. A better understanding of the pathophysiologic mechanisms underlying diseases associated with OSA could improve our therapeutic approaches, directing therapies to the most relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Evelyn M Gulla
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Nathan Salomonis
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeffery A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - David F Smith
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
37
|
Cigarette Smoke Extract Activates Hypoxia-Inducible Factors in a Reactive Oxygen Species-Dependent Manner in Stroma Cells from Human Endometrium. Antioxidants (Basel) 2021; 10:antiox10010048. [PMID: 33401600 PMCID: PMC7823731 DOI: 10.3390/antiox10010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking (CS) is a major contributing factor in the development of a large number of fatal and debilitating disorders, including degenerative diseases and cancers. Smoking and passive smoking also affect the establishment and maintenance of pregnancy. However, to the best of our knowledge, the effects of smoking on the human endometrium remain poorly understood. In this study, we investigated the regulatory mechanism underlying CS-induced hypoxia-inducible factor (HIF)-1α activation using primary human endometrial stromal cells and an immortalized cell line (KC02-44D). We found that the CS extract (CSE) increased reactive oxygen species levels and stimulated HIF-1α protein stabilization in endometrial stromal cells, and that CS-induced HIF-1α-dependent gene expression under non-hypoxic conditions in a concentration- and time-dependent manner. Additionally, we revealed the upregulated expression of a hypoxia-induced gene set following the CSE treatment, even under normoxic conditions. These results indicated that HIF-1α might play an important role in CS-exposure-induced cellular stress, inflammation, and endometrial remodeling.
Collapse
|
38
|
Abstract
Circadian rhythms govern a large array of physiological and metabolic functions. Perturbations of the daily cycle have been linked to elevated risk of developing cancer as well as poor prognosis in patients with cancer. Also, expression of core clock genes or proteins is remarkably attenuated particularly in tumours of a higher stage or that are more aggressive, possibly linking the circadian clock to cellular differentiation. Emerging evidence indicates that metabolic control by the circadian clock underpins specific hallmarks of cancer metabolism. Indeed, to support cell proliferation and biomass production, the clock may direct metabolic processes of cancer cells in concert with non-clock transcription factors to control how nutrients and metabolites are utilized in a time-specific manner. We hypothesize that the metabolic switch between differentiation or stemness of cancer may be coupled to the molecular clockwork. Moreover, circadian rhythms of host organisms appear to dictate tumour growth and proliferation. This Review outlines recent discoveries of the interplay between circadian rhythms, proliferative metabolism and cancer, highlighting potential opportunities in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
39
|
Oyama Y, Bartman CM, Bonney S, Lee JS, Walker LA, Han J, Borchers CH, Buttrick PM, Aherne CM, Clendenen N, Colgan SP, Eckle T. Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Rep 2020; 28:1471-1484.e11. [PMID: 31390562 PMCID: PMC6708043 DOI: 10.1016/j.celrep.2019.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023] Open
Abstract
Consistent daylight oscillations and abundant oxygen availability are fundamental to human health. Here, we investigate the intersection between light-sensing (Period 2 [PER2]) and oxygen-sensing (hypoxia-inducible factor [HIF1A]) pathways in cellular adaptation to myocardial ischemia. We demonstrate that intense light is cardioprotective via circadian PER2 amplitude enhancement, mimicking hypoxia-elicited adenosine- and HIF1A-metabolic adaptation to myocardial ischemia under normoxic conditions. Whole-genome array from intense light-exposed wild-type or Per2-/- mice and myocardial ischemia in endothelial-specific PER2-deficient mice uncover a critical role for intense light in maintaining endothelial barrier function via light-enhanced HIF1A transcription. A proteomics screen in human endothelia reveals a dominant role for PER2 in metabolic reprogramming to hypoxia via mitochondrial translocation, tricarboxylic acid (TCA) cycle enzyme activity regulation, and HIF1A transcriptional adaption to hypoxia. Translational investigation of intense light in human subjects identifies similar PER2 mechanisms, implicating the use of intense light for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Colleen M Bartman
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie Bonney
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Scott Lee
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jun Han
- Department of Biochemistry and Microbiology, Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Christoph H Borchers
- Department of Biochemistry and Microbiology, Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Peter M Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carol M Aherne
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Clendenen
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tobias Eckle
- Mucosal Inflammation Program, Departments of Medicine and Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
40
|
O'Connell EJ, Martinez CA, Liang YG, Cistulli PA, Cook KM. Out of breath, out of time: interactions between HIF and circadian rhythms. Am J Physiol Cell Physiol 2020; 319:C533-C540. [PMID: 32726159 DOI: 10.1152/ajpcell.00305.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans have internal circadian clocks that ensure that important physiological functions occur at specific times of the day. These molecular clocks are regulated at the genomic level and exist in most cells of the body. Multiple circadian resetting cues have been identified, including light, temperature, and food. Recently, oxygen has been identified as a resetting cue, and emerging science indicates that this occurs through interactions at the cellular level between the circadian transcription-translation feedback loop and the hypoxia-inducible pathway (hypoxia-inducible factor; subject of the 2019 Nobel Prize in Physiology or Medicine). This review will cover recently identified relationships between HIF and proteins of the circadian clock. Interactions between the circadian clock and hypoxia could have wide-reaching implications for human diseases, and understanding the molecular mechanisms regulating these overlapping pathways may open up new strategies for drug discovery.
Collapse
Affiliation(s)
- Emma J O'Connell
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Chloe-Anne Martinez
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Yichuan G Liang
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Peter A Cistulli
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - Kristina M Cook
- University of Sydney, Faculty of Medicine and Health and Charles Perkins Centre, Camperdown, New South Wales, Australia
| |
Collapse
|
41
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
42
|
Peek CB. Metabolic Implications of Circadian-HIF Crosstalk. Trends Endocrinol Metab 2020; 31:459-468. [PMID: 32396846 DOI: 10.1016/j.tem.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Research over the past few decades has shed light on the mechanisms underlying the link between circadian disruption and the development of metabolic diseases such as obesity, type 2 diabetes, and cancer. However, how the clock network interacts with tissue-specificnutrient-sensing pathways during conditions of nutrient stress or pathological states remains incompletely understood. Recent work has demonstrated that the circadian clock can 'reprogram' the transcriptome to control distinct sets of genes during altered nutrient conditions, such as high fat diet, aging, and exercise. In this review, I discuss connections between circadian clock transcription factors and the oxygen- and nutrient-responsivehypoxia-inducible factor (HIF) pathway. I highlight recently uncovered mechanistic insights underlying these pathway interactions and address potential implications for the role of circadian disruption in metabolic diseases.
Collapse
Affiliation(s)
- Clara B Peek
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Carriazo S, Ramos AM, Sanz AB, Sanchez-Niño MD, Kanbay M, Ortiz A. Chronodisruption: A Poorly Recognized Feature of CKD. Toxins (Basel) 2020; 12:E151. [PMID: 32121234 PMCID: PMC7150823 DOI: 10.3390/toxins12030151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.
Collapse
Affiliation(s)
- Sol Carriazo
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Adrián M Ramos
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey;
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| |
Collapse
|
44
|
Bartman CM, Eckle T. Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Curr Pharm Des 2020; 25:1075-1090. [PMID: 31096895 DOI: 10.2174/1381612825666190516081612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as 'circadian rhythm.' Single-cellular to multisystem organisms use circadian biology to synchronize to the external environment and provide predictive adaptation to changes in cellular homeostasis. Dysregulation of circadian biology has been implicated in numerous prevalent human diseases, and subsequently targeting the circadian machinery may provide innovative preventative or treatment strategies. Discovery of 'peripheral circadian clocks' unleashed widespread investigations into the potential roles of clock biology in cellular, tissue, and organ function in healthy and diseased states. Particularly, oxygen-sensing pathways (e.g. hypoxia inducible factor, HIF1), are critical for adaptation to changes in oxygen availability in diseases such as myocardial ischemia. Recent investigations have identified a connection between the circadian rhythm protein Period 2 (PER2) and HIF1A that may elucidate an evolutionarily conserved cellular network that can be targeted to manipulate metabolic function in stressed conditions like hypoxia or ischemia. Understanding the link between circadian and hypoxia pathways may provide insights and subsequent innovative therapeutic strategies for patients with myocardial ischemia. This review addresses our current understanding of the connection between light-sensing pathways (PER2), and oxygen-sensing pathways (HIF1A), in the context of myocardial ischemia and lays the groundwork for future studies to take advantage of these two evolutionarily conserved pathways in the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
45
|
Zhou L, Sui H, Wang T, Jia R, Zhang Z, Fu J, Feng Y, Liu N, Ji Q, Wang Y, Zhang B, Li Q, Li Y. Tanshinone IIA reduces secretion of pro‑angiogenic factors and inhibits angiogenesis in human colorectal cancer. Oncol Rep 2020; 43:1159-1168. [PMID: 32323837 PMCID: PMC7057926 DOI: 10.3892/or.2020.7498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor angiogenesis is an important factor which precipitates recurrence and metastasis of colorectal cancer (CRC). Angiogenesis is also a significant feature which accompanies invasion and metastasis of CRC. Tumor hypoxia activates hypoxia inducible factor (HIF), which promotes angiogenesis in CRC. HIF significantly promotes cell proliferation and angiogenesis in CRC, facilitating invasion and metastasis. Tanshinone IIA (Tan IIA) has been revealed to effectively inhibit angiogenesis in CRC, although the underlying mechanism remains to be determined. The aim of the present study was to determine the effects of HIF-1α on hypoxia induced angiogenesis in CRC cells, the effects of Tan IIA on the expression of pro-angiogenic factors in CRC cells, and on human umbilical vein endothelial cell (HUVEC) tube formation in normal and hypoxic conditions. The results of the present study revealed that Tan IIA not only decreased HIF-1α expression and inhibited the secretion level of vascular endothelial growth factor and basic fibroblast growth factor, but also efficiently decreased proliferation, tube formation and metastasis of HUVECs. The results highlight the potential of Tan IIA-mediated targeting of HIF-1α as a potential therapeutic option for treatment of patients with CRC.
Collapse
Affiliation(s)
- Lihong Zhou
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ting Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhaozhou Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Fu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
46
|
Oyama Y, Shuff S, Davizon-Castillo P, Clendenen N, Eckle T. Intense light as anticoagulant therapy in humans. PLoS One 2020; 15:e0244792. [PMID: 33382840 PMCID: PMC7775081 DOI: 10.1371/journal.pone.0244792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Blood coagulation is central to myocardial ischemia and reperfusion (IR) injury. Studies on the light elicited circadian rhythm protein Period 2 (PER2) using whole body Per2-/- mice found deficient platelet function and reduced clotting which would be expected to protect from myocardial IR-injury. In contrast, intense light induction of PER2 protected from myocardial IR-injury while Per2 deficiency was detrimental. Based on these conflicting data, we sought to evaluate the role of platelet specific PER2 in coagulation and myocardial ischemia and reperfusion injury. We demonstrated that platelets from mice with tissue-specific deletion of Per2 in the megakaryocyte lineage (Per2loxP/loxP-PF4-CRE) significantly clot faster than platelets from control mice. We further found increases in infarct sizes or plasma troponin levels in Per2loxP/loxP-PF4-CRE mice when compared to controls. As intense light increases PER2 protein in human tissues, we also performed translational studies and tested the effects of intense light therapy on coagulation in healthy human subjects. Our human studies revealed that intense light therapy repressed procoagulant pathways in human plasma samples and significantly reduced the clot rate. Based on these results we conclude that intense light elicited PER2 has an inhibitory function on platelet aggregation in mice. Further, we suggest intense light as a novel therapy to prevent or treat clotting in a clinical setting.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sydney Shuff
- Department of Anesthesiology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pavel Davizon-Castillo
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nathan Clendenen
- Department of Anesthesiology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc Natl Acad Sci U S A 2019; 117:779-786. [PMID: 31848250 DOI: 10.1073/pnas.1914112117] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The occurrence and sequelae of disorders that lead to hypoxic spells such as asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea (OSA) exhibit daily variance. This prompted us to examine the interaction between the hypoxic response and the circadian clock in vivo. We found that the global transcriptional response to acute hypoxia is tissue-specific and time-of-day-dependent. In particular, clock components differentially responded at the transcriptional and posttranscriptional level, and these responses depended on an intact circadian clock. Importantly, exposure to hypoxia phase-shifted clocks in a tissue-dependent manner led to intertissue circadian clock misalignment. This differential response relied on the intrinsic properties of each tissue and could be recapitulated ex vivo. Notably, circadian misalignment was also elicited by intermittent hypoxia, a widely used model for OSA. Given that phase coherence between circadian clocks is considered favorable, we propose that hypoxia leads to circadian misalignment, contributing to the pathophysiology of OSA and potentially other diseases that involve hypoxia.
Collapse
|
48
|
The Cancer Clock Is (Not) Ticking: Links between Circadian Rhythms and Cancer. Clocks Sleep 2019; 1:435-458. [PMID: 33089179 PMCID: PMC7445810 DOI: 10.3390/clockssleep1040034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms regulate many physiological and behavioral processes, including sleep, metabolism and cell division, which have a 24-h oscillation pattern. Rhythmicity is generated by a transcriptional–translational feedback loop in individual cells, which are synchronized by the central pacemaker in the brain and external cues. Epidemiological and clinical studies indicate that disruption of these rhythms can increase both tumorigenesis and cancer progression. Environmental changes (shift work, jet lag, exposure to light at night), mutations in circadian regulating genes, and changes to clock gene expression are recognized forms of disruption and are associated with cancer risk and/or cancer progression. Experimental data in animals and cell cultures further supports the role of the cellular circadian clock in coordinating cell division and DNA repair, and disrupted cellular clocks accelerate cancer cell growth. This review will summarize studies linking circadian disruption to cancer biology and explore how such disruptions may be further altered by common characteristics of tumors including hypoxia and acidosis. We will highlight how circadian rhythms might be exploited for cancer drug development, including how delivery of current chemotherapies may be enhanced using chronotherapy. Understanding the role of circadian rhythms in carcinogenesis and tumor progression will enable us to better understand causes of cancer and how to treat them.
Collapse
|
49
|
Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int 2019; 19:182. [PMID: 31346317 PMCID: PMC6636133 DOI: 10.1186/s12935-019-0902-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Metastasis is an important factor in the poor prognosis of breast cancer. As an important core clock protein, brain and muscle arnt-like 1 (BMAL1) is closely related to tumorigenesis. However, the molecular mechanisms that mediate the role of BMAL1 in invasion and metastasis remain largely unknown. In this study, we investigated the BMAL1 may take a crucial effect in the progression of breast cancer cells. Methods BMAL1 and MMP9 expression was measured in breast cell lines. Transwell and scratch wound-healing assays were used to detect the movement of cells and MTT assays and clonal formation assays were used to assess cells’ proliferation. The effects of BMAL1 on the MMP9/NF-κB pathway were examined by western blotting, co-immunoprecipitation and mammalian two-hybrid. Results In our study, it showed that cell migration and invasion were significantly enhanced when overexpressed BMAL1. Functionally, overexpression BMAL1 significantly increased the mRNA and protein level of matrix metalloproteinase9 (MMP9) and improved the activity of MMP9. Moreover, BMAL1 activated the NF-κB signaling pathway by increasing the phosphorylation of IκB and promoted human MMP9 promoter activity by interacting with NF-kB p65, leading to increased expression of MMP9. When overexpressed BMAL1, CBP (CREB binding protein) was recruited to enhance the activity of p65 and further activate the NF-κB signaling pathway to regulate the expression of its downstream target genes, including MMP9, TNFα, uPA and IL8, and then promote the invasion and metastasis of breast cancer cells. Conclusions This study confirmed a new mechanism by which BMAL1 up-regulated MMP9 expression to increase breast cancer metastasis, to provide research support for the prevention and treatment of breast cancer.
Collapse
|
50
|
Dimova EY, Jakupovic M, Kubaichuk K, Mennerich D, Chi TF, Tamanini F, Oklejewicz M, Hänig J, Byts N, Mäkelä KA, Herzig KH, Koivunen P, Chaves I, van der Horst G, Kietzmann T. The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1α. iScience 2019; 13:284-304. [PMID: 30875610 PMCID: PMC6416729 DOI: 10.1016/j.isci.2019.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Mirza Jakupovic
- Department of Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Filippo Tamanini
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Małgorzata Oklejewicz
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Jens Hänig
- Novartis Pharma GmbH, 97082 Würzburg, Germany
| | - Nadiya Byts
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Kari A Mäkelä
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Ines Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Gijsbertus van der Horst
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| |
Collapse
|