1
|
Guo X, Lei Y, Xu Y, Du X, Lin L, Luo Y, Xi Y, Guo Y, Niu X, Wang Z, Chen G. PRL2 negatively regulates FcεRI mediated activation of mast cells. Cell Death Dis 2025; 16:322. [PMID: 40258807 PMCID: PMC12012171 DOI: 10.1038/s41419-025-07649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Mast cells play a central role in allergic reactions, acting as key effector cells that initiate and amplify the inflammatory response. In this study, we demonstrate that phosphatase of regenerating liver 2 (PRL2) functions as a negative regulator of FcεRI-mediated mast cell activation. In PRL2-deficient myeloid cells, PRL2 conditional knockout mice developed more severe passive systemic anaphylaxis (PSA). Although PRL2 deficiency does not impact mast cell development, in the absence of PRL2 FcεRI-mediated mast cell activation is enhanced. In the presence of IgE the expression of mast cell PRL2 is downregulated, leading to modulation of the cellular response. In PRL2-deficient mast cells, the PI3K signaling pathway is upregulated, resulting in increased calcium influx. This, in turn, enhances mast cell degranulation and the production of inflammatory mediators. Moreover, hydroxychloroquine (an inhibitor of PRL2 degradation) reduces the severity of PSA in wild-type mice. Our findings suggest that PRL2 acts as a negative regulator of FcεRI-mediated mast cell activation. Therefore, therapeutic strategies aimed at enhancing PRL2 activity in mast cells may offer a promising approach for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Xin Guo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Xu
- Department of Allergy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinshi Guo
- Department of Allergy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Li Q, Bai Y, Cavender SM, Miao Y, Nguele Meke F, Lasse-Opsahl EL, Zhu P, Doody GM, Tao WA, Zhang ZY. The PRL2 phosphatase up-regulates miR-21 through activation of the JAK2/STAT3 pathway to down-regulate the PTEN tumor suppressor. Biochem J 2025; 482:341-356. [PMID: 39665584 DOI: 10.1042/bcj20240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
The phosphatases of regenerating liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally down-regulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here, we report that PRLs can also reduce PTEN expression by up-regulating microRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors. We observe a broad correlation between PRL and miR-21 levels in multiple human cancers. Mechanistically, PRL2, the most abundant and ubiquitously expressed PRL family member, promotes the JAK2/STAT3 pathway-mediated miR-21 expression by directly dephosphorylating JAK2 at Tyr570. Finally, we confirm that the PRL2-mediated miR-21 expression contributes to its oncogenic potential in breast cancer cells. Our study defines a new functional role of PRL2 in PTEN regulation through a miR-21-dependent post-transcriptional mechanism, in addition to our previously reported NEDD4-dependent post-translational PTEN regulation. Together, these studies further establish the PRLs as negative regulators of PTEN.
Collapse
Affiliation(s)
- Qinglin Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Current address: Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Sarah M Cavender
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Frederick Nguele Meke
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Emily L Lasse-Opsahl
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, U.K
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
3
|
Han X, Shi Q, Tu Y, Zhang J, Wang M, Li W, Liu Y, Zheng R, Wei J, Ye S, Zhang Y, Ye B, Wang Y, Ying H, Liang G. Cardiomyocyte PRL2 Promotes Cardiac Hypertrophy via Directly Dephosphorylating AMPKα2. Circ Res 2025; 136:645-663. [PMID: 39950300 DOI: 10.1161/circresaha.124.325262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy can result in heart failure. Protein dephosphorylation plays a primary role in the mediation of various cellular processes in cardiomyocytes. Here, we investigated the effects of a protein tyrosine phosphatase, PRL2 (phosphatase of regenerative liver 2), on pathological cardiac hypertrophy. METHODS The PRL2 knockout mice were subjected to angiotensin II infusion or transverse aortic constriction to induce myocardial hypertrophy and cardiac dysfunction. RNA-sequencing analysis was performed to explore the underlying mechanisms. Mass spectrometry and bio-layer interferometry assays were used to identify AMPKα2 (AMP-activated protein kinase α2) as an interacting protein of PRL2. Mutant plasmids of AMPKα2 were used to clarify how PRL2 interacts and dephosphorylates AMPKα2. RESULTS A significant upregulation of PRL2 was observed in hypertrophic myocardium tissues in mice and patients with heart failure. PRL2 deficiency alleviated cardiac hypertrophy, fibrosis, and dysfunction in mice challenged with angiotensin II infusion or transverse aortic constriction. Transcriptomic and biochemical analyses showed that PRL2 knockout or silence maintained AMPKT172 phosphorylation and subsequent mitochondrial integrity in angiotensin II-challenged heart tissues or cardiomyocytes. Mass spectrometry-based interactome assay indicated AMPKα2 subunit as the substrate of PRL2. Mechanistically, PRL2 binds to the C-terminal domain of AMPKα2 and then dephosphorylates AMPKα2T172 via its active site C46. Adeno-associated virus 9-mediated deficiency of cardiomyocyte PRL2 also protected cardiac mitochondrial function and showed cardioprotective effects in angiotensin II-challenged mice, but these benefits were not observed in AMPKα2-/- mice. CONCLUSIONS This study reveals that PRL2, as a novel AMPK-regulating phosphatase, promotes mitochondrial instability and hypertrophic injury in cardiomyocytes and provides PLR2 as a potential target for future drug development treating heart failure.
Collapse
Affiliation(s)
- Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China (M.W.)
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Yanan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Shiju Ye
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yanmei Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| | - Yi Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research (X.H., Q.S., Y.T., J.Z., W.L., Y.L., R.Z., J.W., H.Y.), Hangzhou Medical College, Zhejiang, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital (X.H., Y.Z., Y.W., G.L.), Hangzhou Medical College, Zhejiang, China
- School of Pharmaceutical Sciences (S.Y., Y.Z., G.L.), Hangzhou Medical College, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (X.H., S.Y., B.Y., G.L.)
| |
Collapse
|
4
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Mingledorff GA, Sharlow ER. Deletion of PTP4A3 phosphatase in high-grade serous ovarian cancer cells decreases tumorigenicity and produces marked changes in intracellular signaling pathways and cytokine release. J Pharmacol Exp Ther 2025; 392:100010. [PMID: 39892999 DOI: 10.1124/jpet.124.002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The oncogenic protein tyrosine phosphatase PTP4A3 is frequently overexpressed in human ovarian cancers and is associated with poor patient prognosis. PTP4A3 is thought to regulate multiple oncogenic signaling pathways, including STAT3, SRC, and extracellular signal-regulated kinase. The objective of this study was to generate ovarian cancer cells with genetically depleted PTP4A3, to assess their tumorigenicity, to examine their cellular phenotype, and to uncover changes in their intracellular signaling pathways and cytokine release profiles. Genetic deletion of PTP4A3 using CRISPR/CRISPR-associated protein 9 enabled the generation of individual clones derived from single cells isolated from the polyclonal knockout population. We observed a >90% depletion of PTP4A3 protein levels by western blotting in the clonal cell lines compared with the sham-transfected wild-type population. The wild-type and polyclonal knockout cell lines shared similar monolayer growth rates, whereas the isolated clonal populations 2B4, 3C9, and 3C12 exhibited significantly lower monolayer growth characteristics consistent with their lower PTP4A3 levels. The clonal Ptp4a3 knockout cell lines also had substantially lower in vitro colony formation efficiencies compared with the wild-type cells and were less tumorigenic in vivo. The clonal knockout cells were markedly less responsive to interleukin-6-stimulated migration in a scratch wound assay compared with the wild-type cells. Antibody microarray assays documented differences in cytokine release and intracellular phosphorylation patterns in the Ptp4a3-deleted clones. Bioinformatic network analyses indicated alterations in cellular signaling nodes. These biochemical changes could ultimately form the foundation for pharmacodynamic endpoints useful for emerging anti-PTP4A3 therapeutics. SIGNIFICANCE STATEMENT: Clones of high-grade serous ovarian cancer cells were isolated, in which the oncogenic phosphatase Ptp4a3 gene was deleted using CRISPR/CRISPR-associated protein 9 methodologies. The Ptp4a3-null cells exhibited loss of in vitro proliferation, colony formation, and migration and reduced in vivo tumorigenesis. Marked differences in intracellular protein phosphorylation and cytokine release were seen. The newly developed Ptp4a3 knockout cells should provide useful tools to probe the role of PTP4A3 phosphatase in ovarian cancer cell survival, tumorigenicity, and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia.
| | | | | | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | | | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia
| |
Collapse
|
5
|
Bennett GM, Starczewski J, dela Cerna MVC. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Biochem Biophys Rep 2024; 39:101767. [PMID: 39050014 PMCID: PMC11267023 DOI: 10.1016/j.bbrep.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Protein tyrosine phosphatases (PTP) have emerged as targets in diseases characterized by aberrant phosphorylations such as cancers. The activity of the phosphatase of regenerating liver 3, PRL3, has been linked to several oncogenic and metastatic pathways, particularly in breast, ovarian, colorectal, and blood cancers. Development of small molecules that directly target PRL3, however, has been challenging. This is partly due to the lack of structural information on how PRL3 interacts with its inhibitors. Here, computational methods are used to bridge this gap by evaluating the druggability of PRL3. In particular, web-based pocket prediction tools, DoGSite3 and FTMap, were used to identify binding pockets using structures of PRL3 currently available in the Protein Data Bank. Druggability assessment by molecular dynamics simulations with probes was also performed to validate these results and to predict the strength of binding in the identified pockets. While several druggable pockets were identified, those in the closed conformation show more promise given their volume and depth. These two pockets flank the active site loops and roughly correspond to pockets predicted by molecular docking in previous papers. Notably, druggability simulations predict the possibility of low nanomolar affinity inhibitors in these sites implying the potential to identify highly potent small molecule inhibitors for PRL3. Putative pockets identified here can be leveraged for high-throughput virtual screening to further accelerate the drug discovery against PRL3 and development of PRL3-directed therapeutics.
Collapse
Affiliation(s)
- Grace M. Bennett
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Julia Starczewski
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Mark Vincent C. dela Cerna
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| |
Collapse
|
6
|
Zou J, Ma Q, Gao C, Yang M, Wen J, Xu L, Guo X, Zhong X, Duan Y. WTAP promotes proliferation of esophageal squamous cell carcinoma via m 6A-dependent epigenetic promoting of PTP4A1. Cancer Sci 2024; 115:2254-2268. [PMID: 38746998 PMCID: PMC11247548 DOI: 10.1111/cas.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/13/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) represents a frequently seen malignancy with high prevalence worldwide. Although current studies have shown that Wilms' tumor 1-associated protein (WTAP), a major part in the methyltransferase complex, is involved in various tumor pathological processes, its specific role in ESCC remains unclear. Therefore, the present work focused on exploring WTAP's function and mechanism in ESCC progression using clinical ESCC specimens, ESCC cells, and mammalian models. Firstly, we proved WTAP was significantly upregulated within ESCC, and WTAP mRNA expression showed a good diagnostic performance for ESCC. Functionally, WTAP positively regulated in-vivo and in-vitro ESCC cells' malignant phenotype through the AKT-mTOR signaling pathway. Meanwhile, WTAP positively regulated the N6-methyladenosine (m6A) modification levels in ESCC cells. Protein tyrosine phase type IVA member 1 (PTP4A1) was confirmed to be the m6A target of WTAP, and WTAP positively regulated the expression of PTP4A1. Further study revealed that PTP4A1 showed high expression within ESCC. Silencing PTP4A1 inhibited the AKT-mTOR signaling pathway to suppress ESCC cells' proliferation. Rescue experiments showed that silencing PTP4A1 partially reversed the WTAP-promoting effect on ESCC cells' proliferation ability. Mechanistically, WTAP regulated PTP4A1 expression to activate the AKT-mTOR pathway, promoting the proliferation of ESCC cells. Our study demonstrated that WTAP regulates the progression of ESCC through the m6A-PTP4A1-AKT-mTOR signaling axis and that WTAP is a potential target for diagnosing and treating ESCC.
Collapse
Affiliation(s)
- Jiang Zou
- Research Center of Analytical Instrumentation, Key Laboratory of Bio‐resource and Eco‐environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchongChina
| | - Qiang Ma
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Chuanli Gao
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Miyuan Yang
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Jilin Wen
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Lei Xu
- Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchongChina
| | - Xiaolan Guo
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Xiaowu Zhong
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchongChina
- Department of Laboratory MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio‐resource and Eco‐environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| |
Collapse
|
7
|
Chouleur T, Emanuelli A, Souleyreau W, Derieppe MA, Leboucq T, Hardy S, Mathivet T, Tremblay ML, Bikfalvi A. PTP4A2 Promotes Glioblastoma Progression and Macrophage Polarization under Microenvironmental Pressure. CANCER RESEARCH COMMUNICATIONS 2024; 4:1702-1714. [PMID: 38904264 PMCID: PMC11238266 DOI: 10.1158/2767-9764.crc-23-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Phosphatase of regenerating liver 2 (also known as PTP4A2) has been linked to cancer progression. Still, its exact role in glioblastoma (GBM), the most aggressive type of primary brain tumor, remains elusive. In this study, we report that pharmacologic treatment using JMS-053, a pan-phosphatase of regenerating liver inhibitor, inhibits GBM cell viability and spheroid growth. We also show that PTP4A2 is associated with a poor prognosis in gliomas, and its expression correlates with GBM aggressiveness. Using a GBM orthotopic xenograft model, we show that PTP4A2 overexpression promotes tumor growth and reduces mouse survival. Furthermore, PTP4A2 deletion leads to increased apoptosis and proinflammatory signals. Using a syngeneic GBM model, we show that depletion of PTP4A2 reduces tumor growth and induces a shift in the tumor microenvironment (TME) toward an immunosuppressive state. In vitro assays show that cell proliferation is not affected in PTP4A2-deficient or -overexpressing cells, highlighting the importance of the microenvironment in PTP4A2 functions. Collectively, our results indicate that PTP4A2 promotes GBM growth in response to microenvironmental pressure and support the rationale for targeting PTP4A2 as a therapeutic strategy against GBM. SIGNIFICANCE High levels of PTP4A2 are associated with poor outcomes in patients with glioma and in mouse models. PTP4A2 depletion increases apoptosis and proinflammatory signals in GBM xenograft models, significantly impacts tumor growth, and rewires the TME in an immunocompetent host. PTP4A2 effects in GBM are dependent on the presence of the TME.
Collapse
Affiliation(s)
- Tiffanie Chouleur
- INSERM U1312 BRIC, Université de Bordeaux, Pessac, France.
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| | | | | | - Marie-Alix Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, Université de Bordeaux Bordeaux, France.
| | - Téo Leboucq
- INSERM U1312 BRIC, Université de Bordeaux, Pessac, France.
| | - Serge Hardy
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| | | | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| | | |
Collapse
|
8
|
Xiao S, Chen H, Bai Y, Zhang ZY, Liu Y. Targeting PRL phosphatases in hematological malignancies. Expert Opin Ther Targets 2024; 28:259-271. [PMID: 38653737 DOI: 10.1080/14728222.2024.2344695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxia Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Yan Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Du X, Ren B, Li C, Li Q, Kan S, Wang X, Bai W, Wu C, Kassegne K, Yan H, Niu X, Yan M, Xu W, Wassmer SC, Wang J, Chen G, Wang Z. PRL2 regulates neutrophil extracellular trap formation which contributes to severe malaria and acute lung injury. Nat Commun 2024; 15:881. [PMID: 38286811 PMCID: PMC10825202 DOI: 10.1038/s41467-024-45210-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Excessive host immune responses contribute to severe malaria with high mortality. Here, we show that PRL2 in innate immune cells is highly related to experimental malaria disease progression, especially the development of murine severe malaria. In the absence of PRL2 in myeloid cells, Plasmodium berghei infection results in augmented lung injury, leading to significantly increased mortality. Intravital imaging revealed greater neutrophilic inflammation and NET formation in the lungs of PRL2 myeloid conditional knockout mice. Depletion of neutrophils prior to the onset of severe disease protected mice from NETs associated lung injury, and eliminated the difference between WT and PRL2 CKO mice. PRL2 regulates neutrophil activation and NET accumulation via the Rac-ROS pathway, thus contributing to NETs associated ALI. Hydroxychloroquine, an inhibitor of PRL2 degradation alleviates NETs associated tissue damage in vivo. Our findings suggest that PRL2 serves as an indicator of progression to severe malaria and ALI. In addition, our study indicated the importance of PRL2 in NET formation and tissue injury. It might open a promising path for adjunctive treatment of NET-associated disease.
Collapse
Affiliation(s)
- Xinyue Du
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Baiyang Ren
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, P.R. China
| | - Chang Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, P.R. China
| | - Qi Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Shuo Kan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, P.R. China
| | - Wenjuan Bai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Chenyun Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Kokouvi Kassegne
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Huibo Yan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, P.R. China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing, 400038, P.R. China
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| | - Guangjie Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| | - Zhaojun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| |
Collapse
|
10
|
Nguele Meke F, Bai Y, Ruiz-Avila D, Carlock C, Ayub J, Miao J, Hu Y, Li Q, Zhang ZY. Inhibition of PRL2 Upregulates PTEN and Attenuates Tumor Growth in Tp53-deficient Sarcoma and Lymphoma Mouse Models. CANCER RESEARCH COMMUNICATIONS 2024; 4:5-17. [PMID: 38047587 PMCID: PMC10764713 DOI: 10.1158/2767-9764.crc-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The phosphatases of regenerating liver (PRL) are oncogenic when overexpressed. We previously found that PRL2 deletion increases PTEN, decreases Akt activity, and suppresses tumor development in a partial Pten-deficient mouse model. The current study aims to further establish the mechanism of PTEN regulation by PRL2 and expand the therapeutic potential for PTEN augmentation mediated by PRL2 inhibition in cancers initiated without PTEN alteration. The TP53 gene is the most mutated tumor suppressor in human cancers, and heterozygous or complete deletion of Tp53 in mice leads to the development of sarcomas and thymic lymphomas, respectively. There remains a lack of adequate therapies for the treatment of cancers driven by Tp53 deficiency or mutations. We show that Prl2 deletion leads to PTEN elevation and attenuation of Akt signaling in sarcomas and lymphomas developed in Tp53 deficiency mouse models. This results in increased survival and reduced tumor incidence because of impaired tumor cell proliferation. In addition, inhibition of PRL2 with a small-molecule inhibitor phenocopies the effect of genetic deletion of Prl2 and reduces Tp53 deficiency-induced tumor growth. Taken together, the results further establish PRL2 as a negative regulator of PTEN and highlight the potential of PRL2 inhibition for PTEN augmentation therapy in cancers with wild-type PTEN expression. SIGNIFICANCE Prl2 deletion attenuates Tp53 deficiency-induced tumor growth by increasing PTEN and reducing Akt activity. Targeting Tp53-null lymphoma with PRL inhibitors lead to reduced tumor burden, providing a therapeutic approach via PTEN augmentation.
Collapse
Affiliation(s)
- Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Diego Ruiz-Avila
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinan Ayub
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
11
|
Carlock C, Bai Y, Paige-Hood A, Li Q, Nguele Meke F, Zhang ZY. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight 2023; 8:e170065. [PMID: 37665633 PMCID: PMC10619439 DOI: 10.1172/jci.insight.170065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.
Collapse
Affiliation(s)
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology
- Department of Chemistry
- Institute for Cancer Research, and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Lazo JS, Colunga-Biancatelli RML, Solopov PA, Catravas JD. An acute respiratory distress syndrome drug development collaboration stimulated by the Virginia Drug Discovery Consortium. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:249-254. [PMID: 36796645 PMCID: PMC9930264 DOI: 10.1016/j.slasd.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, Old Dominion University, and a university spinout company, KeViRx, Inc., partnered under a NIH Small Business Innovation Research grant, to produce potential therapeutics for acute respiratory distress syndrome resulting from the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| | | | - Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
13
|
Cho MJ, Lee DG, Lee JW, Hwang B, Yoon SJ, Lee SJ, Park YJ, Park SH, Lee HG, Kim YH, Lee CH, Lee J, Lee NK, Han TS, Cho HS, Moon JH, Lee GS, Bae KH, Hwang GS, Lee SH, Chung SJ, Shim S, Cho J, Oh GT, Kwon YG, Park JG, Min JK. Endothelial PTP4A1 mitigates vascular inflammation via USF1/A20 axis-mediated NF-κB inactivation. Cardiovasc Res 2023; 119:1265-1278. [PMID: 36534975 PMCID: PMC10411943 DOI: 10.1093/cvr/cvac193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 09/08/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs. METHODS AND RESULTS In human tissues, human umbilical artery ECs, and mouse models for loss of function and gain of function of PTP4A1, we conducted histological analysis, immunostaining, laser-captured microdissection assay, lentiviral infection, small interfering RNA transfection, quantitative real-time PCR and reverse transcription-PCR, as well as luciferase reporter gene and chromatin immunoprecipitation assays. Short hairpin RNA-mediated knockdown of PTP4A1 and overexpression of PTP4A1 in ECs indicated that PTP4A1 is critical for inhibiting the expression of cell adhesion molecules (CAMs). PTP4A1 increased the transcriptional activity of upstream stimulatory factor 1 (USF1) by dephosphorylating its S309 residue and subsequently inducing the transcription of tumour necrosis factor-alpha-induced protein 3 (TNFAIP3/A20) and the inhibition of NF-κB activity. Studies on Ptp4a1 knockout or transgenic mice demonstrated that PTP4A1 potently regulates the interleukin 1β-induced expression of CAMs in vivo. In addition, we verified that PTP4A1 deficiency in apolipoprotein E knockout mice exacerbated high-fat high-cholesterol diet-induced atherogenesis with upregulated expression of CAMs. CONCLUSION Our data indicate that PTP4A1 is a novel negative regulator of vascular inflammation by inducing USF1/A20 axis-mediated NF-κB inactivation. Therefore, the expression and/or activation of PTP4A1 in ECs might be useful for the treatment of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung-Ho Park
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Disease Target Structure Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Centre, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Jaehyung Cho
- Division of Haematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Centre, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Bai Y, Yu G, Zhou HM, Amarasinghe O, Zhou Y, Zhu P, Li Q, Zhang L, Nguele Meke F, Miao Y, Chapman E, Tao WA, Zhang ZY. PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. Autophagy 2023; 19:1562-1581. [PMID: 36300783 PMCID: PMC10240998 DOI: 10.1080/15548627.2022.2140558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022] Open
Abstract
Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Guimei Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yuan Zhou
- Department of Biochemistry, Purdue University, West Lafayette, USA
| | - Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, USA
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Lujuan Zhang
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, A, USA
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, USA
- Department of Biochemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
- Department of Chemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
15
|
Hardy S, Zolotarov Y, Coleman J, Roitman S, Khursheed H, Aubry I, Uetani N, Tremblay M. PRL-1/2 phosphatases control TRPM7 magnesium-dependent function to regulate cellular bioenergetics. Proc Natl Acad Sci U S A 2023; 120:e2221083120. [PMID: 36972446 PMCID: PMC10083557 DOI: 10.1073/pnas.2221083120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.
Collapse
Affiliation(s)
- Serge Hardy
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Yevgen Zolotarov
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Jacob Coleman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Simon Roitman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Hira Khursheed
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Noriko Uetani
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Michel L. Tremblay
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| |
Collapse
|
16
|
Yu Y, Chen J, An L, Huang T, Wang W, Cheng Z, Wang L, Xu X, Zhao Z, Fu X, Ma J. Knockdown of phosphatases of regenerating liver-1 prolongs the lifespan of Caenorhabditis elegans via activating DAF-16/FOXO. FASEB J 2023; 37:e22844. [PMID: 36906287 DOI: 10.1096/fj.202202003r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
Phosphatases of regenerating liver (PRLs) are dual-specificity protein phosphatases. The aberrant expression of PRLs threatens human health, but their biological functions and pathogenic mechanisms are unclear yet. Herein, the structure and biological functions of PRLs were investigated using the Caenorhabditis elegans (C. elegans). Structurally, this phosphatase in C. elegans, named PRL-1, consisted of a conserved signature sequence WPD loop and a single C(X)5 R domain. Besides, by Western blot, immunohistochemistry and immunofluorescence staining, PRL-1 was proved to mainly express in larval stages and express in intestinal tissues. Afterward, by feeding-based RNA-interference method, knockdown of prl-1 prolonged the lifespan of C. elegans but also improved their healthspan, such as locomotion, pharyngeal pumping frequency, and defecation interval time. Furthermore, the above effects of prl-1 appeared to be taken without acting on germline signaling, diet restriction pathway, insulin/insulin-like growth factor 1 signaling pathway, and SIR-2.1 but through a DAF-16-dependent pathway. Moreover, knockdown of prl-1 induced the nuclear translocation of DAF-16, and upregulated the expression of daf-16, sod-3, mtl-1, and ctl-2. Finally, suppression of prl-1 also reduced the ROS. In conclusion, suppression of prl-1 enhanced the lifespan and survival quality of C. elegans, which provides a theoretical basis for the pathogenesis of PRLs in related human diseases.
Collapse
Affiliation(s)
- Yaoru Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jing Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lu An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianci Huang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wenbo Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhizhuang Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
17
|
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
18
|
Fakih R, Goldstein RH, Kozlov G, Gehring K. Burst kinetics and CNNM binding are evolutionarily conserved properties of phosphatases of regenerating liver. J Biol Chem 2023; 299:103055. [PMID: 36822330 PMCID: PMC10040874 DOI: 10.1016/j.jbc.2023.103055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Phosphatases of regenerating liver (PRL or PTP4A) are a family of enigmatic protein phosphatases implicated in cell growth and metabolism. Despite their relevance in metastatic cancer, much remains unknown about the PRL family. They act as pseudophosphatases to regulate the CNNM family of magnesium transporters yet also have enzymatic activity on unknown substrates. In mammals, PRLs are mostly found trapped in an intermediate state that regulates their pseudophosphatase activity. Phosphocysteine, which is formed as an intermediate in the phosphatase catalytic cycle, is inefficiently hydrolyzed leading to burst enzyme kinetics and turnover numbers of less than one per hour. In flies, PRLs have recently been shown to have neuroprotective and neurodevelopmental roles raising the question whether they act as phosphatases, pseudophosphatases, or both. Here, we characterize the evolutionary development of PRLs and ask whether their unique structural and functional properties are conserved. We purified recombinant PRL proteins from 15 phylogenetically diverse organisms and characterized their catalytic activities and ability to bind CNNM proteins. We observed PRLs from humans to amoebae form a stable phosphocysteine intermediate and exhibit burst kinetics. Isothermal titration calorimetry experiments confirmed that the PRL-CNNM interaction is broadly conserved with nanomolar affinity in vertebrates. Lastly, we determined the crystal structure of the Drosophila melanogaster PRL-CNNM complex and identified mutants that specifically impair either phosphatase activity or CNNM binding. Our results reveal the unique properties of PRLs are conserved throughout the animal kingdom and open the door to using model organisms to dissect PRL function in cell signaling.
Collapse
Affiliation(s)
- Rayan Fakih
- Department of Biochemistry, Centre for Structural Biology, McGill University, Montreal, Quebec, Canada
| | - Robert H Goldstein
- Department of Biochemistry, Centre for Structural Biology, McGill University, Montreal, Quebec, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, Centre for Structural Biology, McGill University, Montreal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, Centre for Structural Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Li CJ, Tsai HW, Chen YL, Wang CI, Lin YH, Chu PM, Chi HC, Huang YC, Chen CY. Cisplatin or Doxorubicin Reduces Cell Viability via the PTPIVA3-JAK2-STAT3 Cascade in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:123-138. [PMID: 36741246 PMCID: PMC9896975 DOI: 10.2147/jhc.s385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) accounts for 80% of all liver cancers and is the 2nd leading cause of cancer-related death in Taiwan. Various factors, including rapid cell growth, a high recurrence rate and drug resistance, make HCC difficult to cure. Moreover, the survival rate of advanced HCC patients treated with systemic chemotherapy remains unsatisfactory. Hence, the identification of novel molecular targets and the underlying mechanisms of chemoresistance in HCC and the development more effective therapeutic regimens are desperately needed. Methods An MTT assay was used to determine the cell viability after cisplatin or doxorubicin treatment. Western blotting, qRT‒PCR and immunohistochemistry were utilized to examine the protein tyrosine phosphatase IVA3 (PTP4A3) level and associated signaling pathways. ELISA was utilized to analyze the levels of the inflammatory cytokine IL-6 influenced by cisplatin, doxorubicin and PTP4A3 silencing. Results In this study, we found that PTP4A3 in the cisplatin/doxorubicin-resistant microarray was closely associated with the overall and recurrence-free survival rates of HCC patients. Cisplatin or doxorubicin significantly reduced cell viability and decreased PTP4A3 expression in hepatoma cells. IL-6 secretion increased with cisplatin or doxorubicin treatment and after PTP4A3 silencing. Furthermore, PTP4A3 was highly expressed in tumor tissues versus adjacent normal tissues from HCC patients. In addition, we evaluated the IL-6-associated signaling pathway involving STAT3 and JAK2, and the levels of p-STAT3, p-JAK2, STAT3 and JAK2 were obviously reduced with cisplatin or doxorubicin treatment in HCC cells using Western blotting and were also decreased after silencing PTP4A3. Collectively, we suggest that cisplatin or doxorubicin decreases HCC cell viability via downregulation of PTP4A3 expression through the IL-6R-JAK2-STAT3 cascade. Discussion Therefore, emerging evidence provides a deep understanding of the roles of PTP4A3 in HCC cisplatin/doxorubicin chemoresistance, which can be applied to develop early diagnosis strategies and reveal prognostic factors to establish novel targeted therapeutics to specifically treat HCC.
Collapse
Affiliation(s)
- Chao-Jen Li
- Department of General & Gastroenterological Surgery, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Ching Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Correspondence: Cheng-Yi Chen, Tel/Fax +886-6-2353535#5329, Email
| |
Collapse
|
20
|
Wang B, Gan J, Liu Z, Hui Z, Wei J, Gu X, Mu Y, Zang G. An organoid library of salivary gland tumors reveals subtype-specific characteristics and biomarkers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:350. [PMID: 36527158 PMCID: PMC9758872 DOI: 10.1186/s13046-022-02561-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Salivary gland tumors (SGTs) include a large group of rare neoplasms in the head and neck region, and the heterogeneous and overlapping features among the subtypes frequently make diagnostic difficulties. There is an urgent need to understand the cellular mechanisms underlying the heterogeneity and overlap among the subtypes, and explore the subtype-specific diagnostic biomarkers. METHODS The tumor tissue and the adjacent normal tissue from the 6 most common types of SGTs were processed for organoid culture which only maintained tumor epithelial cells. Organoids were histologically evaluated based on phenotype markers, followed by transcriptional profiling using RNA-sequencing. The transcriptomic similarities and differences among the subtypes were analyzed by subtype consensus clustering and hierarchical clustering. Furthermore, by comparative transcriptional analysis for these 6 types of SGTs and the matched organoids, the potential diagnostic biomarkers from tumor epithelium were identified, in which two selected biomarkers were evaluated by qPCR and confirmed by immunohistochemistry staining using a tissue microarray. RESULTS We generated a biobank of patient-derived organoids (PDOs) with 6 subtypes of SGTs, including 21 benign and 24 malignant SGTs. The PDOs recapitulated the morphological and transcriptional characteristics of the parental tumors. The overlap in the cell types and the heterogenous growth patterns were observed in the different subtypes of organoids. Comparing the bulk tissues, the cluster analysis of the PDOs remarkably revealed the epithelial characteristics, and visualized the intrinsic relationship among these subtypes. Finally, the exclusive biomarkers for the 6 most common types of SGTs were uncovered by comparative analysis, and PTP4A1 was demonstrated as a useful diagnostic biomarker for mucoepidermoid carcinoma. CONCLUSIONS We established the first organoid biobank with multiple subtypes of SGTs. PDOs of SGTs recapitulate the morphological and transcriptional characteristics of the original tumors, which uncovers subtype-specific biomarkers and reveals the molecular distance among the subtype of SGTs.
Collapse
Affiliation(s)
- Bo Wang
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Jiaxing Gan
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Zhengyan Liu
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Zhixuan Hui
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Jinhui Wei
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Xiaolian Gu
- grid.12650.300000 0001 1034 3451Department of Medical Bioscience, Building 6M, Umeå University, 90185 Umeå, SE Sweden
| | - Yabing Mu
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China ,grid.12650.300000 0001 1034 3451Department of Medical Bioscience, Building 6M, Umeå University, 90185 Umeå, SE Sweden
| | - Guangxiang Zang
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| |
Collapse
|
21
|
Funato Y, Hashizume O, Miki H. Phosphatase-independent role of phosphatase of regenerating liver in cancer progression. Cancer Sci 2022; 114:25-33. [PMID: 36285487 PMCID: PMC9807511 DOI: 10.1111/cas.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphatase of regenerating liver (PRL) is a family of protein tyrosine phosphatases (PTPs) that are anchored to the plasma membrane by prenylation. They are frequently overexpressed in various types of malignant cancers and their roles in cancer progression have received considerable attention. Mutational analyses of PRLs have shown that their intrinsic phosphatase activity is dispensable for tumor formation induced by PRL overexpression in a lung metastasis model using melanoma cells. Instead, PRLs directly bind to cyclin M (CNNM) Mg2+ exporters in the plasma membrane and potently inhibit their Mg2+ export activity, resulting in an increase in intracellular Mg2+ levels. Experiments using mammalian culture cells, mice, and C. elegans have collectively revealed that dysregulation of Mg2+ levels severely affects ATP and reactive oxygen species (ROS) levels as well as the function of Ca2+ -permeable channels. Moreover, PRL overexpression altered the optimal pH for cell proliferation from normal 7.5 to acidic 6.5, which is typically observed in malignant tumors. Here, we review the phosphatase-independent biological functions of PRLs, focusing on their interactions with CNNM Mg2+ exporters in cancer progression.
Collapse
Affiliation(s)
- Yosuke Funato
- Department of Cellular RegulationResearch Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Osamu Hashizume
- Department of Cellular RegulationResearch Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Hiroaki Miki
- Department of Cellular RegulationResearch Institute for Microbial Diseases, Osaka UniversityOsakaJapan,Center for Infectious Disease Education and Research (CiDER)Osaka UniversityOsakaJapan
| |
Collapse
|
22
|
The Tyrosine Phosphatase PRL Regulates Attachment of Toxoplasma gondii to Host Cells and Is Essential for Virulence. mSphere 2022; 7:e0005222. [PMID: 35603560 PMCID: PMC9241511 DOI: 10.1128/msphere.00052-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with
Toxoplasma gondii
can lead to severe and even life-threatening diseases in people with compromised or suppressed immune systems. Unfortunately, drugs to combat the parasite are limited, highly toxic, and ineffective against the chronic stage of the parasite.
Collapse
|
23
|
Miyamoto Y, Torii T, Homma K, Oizumi H, Ohbuchi K, Mizoguchi K, Takashima S, Yamauchi J. The adaptor SH2B1 and the phosphatase PTP4A1 regulate the phosphorylation of cytohesin-2 in myelinating Schwann cells in mice. Sci Signal 2022; 15:eabi5276. [PMID: 35077201 DOI: 10.1126/scisignal.abi5276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mature myelin sheaths insulate axons to increase nerve conduction velocity and protect nerve fibers from stress and physical injury. In the peripheral nervous system, the myelin sheath is produced by Schwann cells. The guanine-nucleotide exchange factor cytohesin-2 activates the protein Arf6 to promote Schwann cell myelination. Here, we investigated the regulation of cytohesin-2 and found that the phosphorylation status of Tyr381 in cytohesin-2 is central to Schwann cell myelination. Knockin mice with a nonphosphorylatable Y381F mutation in cytohesin-2 exhibited reduced myelin thickness and decreased Arf6 activity in sciatic nerve tissue. In HEK293T cells, cytohesin-2 was dephosphorylated at Tyr381 by the protein tyrosine phosphatase PTP4A1, whereas phosphorylation at this site was maintained by interaction with the adaptor protein SH2B1. Schwann cell-specific knockdown of PTP4A1 in mice increased cytohesin-2 phosphorylation and myelin thickness. Conversely, Schwann cell-specific loss of SH2B1 resulted in reduced myelin thickness and decreased cytohesin-2 phosphorylation. Thus, a signaling unit centered on cytohesin-2-with SH2B1 as a positive regulator and PTP4A1 as a negative regulator-controls Schwann cell myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University Graduate School of Brain Science, Kyotanabe, Kyoto 610-0394, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
24
|
Hou X, Du J, Fang H. PTPRO is a therapeutic target and correlated with immune infiltrates in pancreatic cancer. J Cancer 2022; 12:7445-7453. [PMID: 35003364 PMCID: PMC8734421 DOI: 10.7150/jca.64661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
As a member of protein tyrosine phosphatases (PTPs), the protein tyrosine phosphatase receptor type O (PTPRO) has attracted increasing attention for its important roles in cell signaling. Currently, the roles of PTPRO in human cancers remain elusive. Herein, we performed bioinformatic analyses and revealed the potential oncogenic role of PTPRO in specific cancer types. Further in vitro experiments indicated that inhibition of PTPRO suppresses the proliferative abilities of tumor cells in pancreatic cancer, blood cancer, and breast cancer. Moreover, small molecular PTPRO inhibitor could induce cell apoptosis and affect the cell cycle in pancreatic cancer. In addition, PTPRO expression promoted the infiltration of CD8+ T, macrophages, dendritic cells, and neutrophils, in pancreatic cancers. Our findings suggested PTPRO may serve as a potential drug target for pancreatic cancer.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), Cheeloo College of Medicine, School of Pharmaeutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), Cheeloo College of Medicine, School of Pharmaeutical Science, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
25
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Abdollahi P, Vandsemb EN, Elsaadi S, Røst LM, Yang R, Hjort MA, Andreassen T, Misund K, Slørdahl TS, Rø TB, Sponaas AM, Moestue S, Bruheim P, Børset M. Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple myeloma. FASEB J 2021; 35:e21344. [PMID: 33566385 DOI: 10.1096/fj.202001920rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Cancer cells often depend on microenvironment signals from molecules such as cytokines for proliferation and metabolic adaptations. PRL-3, a cytokine-induced oncogenic phosphatase, is highly expressed in multiple myeloma cells and associated with poor outcome in this cancer. We studied whether PRL-3 influences metabolism. Cells transduced to express PRL-3 had higher aerobic glycolytic rate, oxidative phosphorylation, and ATP production than the control cells. PRL-3 promoted glucose uptake and lactate excretion, enhanced the levels of proteins regulating glycolysis and enzymes in the serine/glycine synthesis pathway, a side branch of glycolysis. Moreover, mRNAs for these proteins correlated with PRL-3 expression in primary patient myeloma cells. Glycine decarboxylase (GLDC) was the most significantly induced metabolism gene. Forced GLDC downregulation partly counteracted PRL-3-induced aerobic glycolysis, indicating GLDC involvement in a PRL-3-driven Warburg effect. AMPK, HIF-1α, and c-Myc, important metabolic regulators in cancer cells, were not mediators of PRL-3's metabolic effects. A phosphatase-dead PRL-3 mutant, C104S, promoted many of the metabolic changes induced by wild-type PRL-3, arguing that important metabolic effects of PRL-3 are independent of its phosphatase activity. Through this study, PRL-3 emerges as one of the key mediators of metabolic adaptations in multiple myeloma.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratory Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Esten N Vandsemb
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lisa M Røst
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rui Yang
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratory Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Magnus A Hjort
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Trygve Andreassen
- MR Core Facility, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Torstein B Rø
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siver Moestue
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pharmacy, Faculty of Health Sciences, Nord University, Bodø, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
27
|
The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition. J Mol Med (Berl) 2021; 99:1413-1426. [PMID: 34129057 PMCID: PMC8455404 DOI: 10.1007/s00109-021-02097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/04/2022]
Abstract
Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events. Key messages • Transgenic mice homozygous for PRL-3 overexpression die early. • PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity. • PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine. • PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion. • Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.
Collapse
|
28
|
ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cell Mol Life Sci 2021; 78:5427-5445. [PMID: 34089346 PMCID: PMC8257531 DOI: 10.1007/s00018-021-03832-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-β-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.
Collapse
|
29
|
Castro-Sánchez P, Hernández-Pérez S, Aguilar-Sopeña O, Ramírez-Muñoz R, Rodríguez-Perales S, Torres-Ruiz R, Roda-Navarro P. Fast Diffusion Sustains Plasma Membrane Accumulation of Phosphatase of Regenerating Liver-1. Front Cell Dev Biol 2021; 8:585842. [PMID: 33425892 PMCID: PMC7793866 DOI: 10.3389/fcell.2020.585842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that the accumulation of farnesylated phosphatase of regenerating liver-1 (PRL-1) at the plasma membrane is mediated by static electrostatic interactions of a polybasic region with acidic membrane lipids and assisted by oligomerization. Nonetheless, localization at early and recycling endosomes suggests that the recycling compartment might also contribute to its plasma membrane accumulation. Here, we investigated in live cells the dynamics of PRL-1 fused to the green fluorescent protein (GFP-PRL-1). Blocking the secretory pathway and photobleaching techniques suggested that plasma membrane accumulation of PRL-1 was not sustained by recycling endosomes but by a dynamic exchange of diffusible protein pools. Consistent with this idea, fluorescence correlation spectroscopy in cells overexpressing wild type or monomeric mutants of GFP-PRL-1 measured cytosolic and membrane-diffusing pools of protein that were not dependent on oligomerization. Endogenous expression of GFP-PRL-1 by CRISPR/Cas9 genome edition confirmed the existence of fast diffusing cytosolic and membrane pools of protein. We propose that plasma membrane PRL-1 replenishment is independent of the recycling compartment and the oligomerization state and mainly driven by fast diffusion of the cytosolic pool.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rocia Ramírez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
30
|
Qiu W, Cai X, Xu K, Song S, Xiao Z, Hou Y, Qi X, Liu F, Chen Y, Yang H, Chu L, Liu J. PRL1 Promotes Glioblastoma Invasion and Tumorigenesis via Activating USP36-Mediated Snail2 Deubiquitination. Front Oncol 2021; 11:795633. [PMID: 35111679 PMCID: PMC8801937 DOI: 10.3389/fonc.2021.795633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaomin Cai
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Feng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| | - Jian Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| |
Collapse
|
31
|
Leiphrakpam PD, Lazenby AJ, Smith LM, Brattain MG, Black JD, Wang J, Are C. Correlation of PRL3 expression with colorectal cancer progression. J Surg Oncol 2020; 123:42-51. [PMID: 33179291 DOI: 10.1002/jso.26253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/19/2020] [Accepted: 09/27/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To evaluate the relationship between phosphatase of regenerating liver 3 (PRL3) expression and clinical outcome in colorectal cancer (CRC). BACKGROUND PRL3, a protein tyrosine phosphatase functions as one of the key regulatory enzymes of various signal transduction pathways. PRL3 is highly expressed in a majority of cancers and is a novel potential therapeutic target. METHODS PRL3 expression was evaluated by immunohistochemistry in 167 patients with CRC, 37 patients with no disease, and 26 patients with metastatic CRC (mCRC). Phosphorylated Akt at serine 473 (p-Akt S473) expression was also evaluated by immunohistochemistry in mCRC patients. RESULTS High expression of PRL3 was correlated with CRC progression, and every one unit increase in PRL3 level contributed to an increase in the rate of death by 1%-1.7%. PRL3 expression was significantly higher in liver metastases compared with primary tumors and showed a significant positive correlation with the expression level of p-Akt S473. CONCLUSION PRL3 expression levels associated with CRC progression and metastasis, and positively correlated with activated Akt level in mCRC. Together, these findings indicated that PRL3 might be a potential marker for increased risk of CRC-specific tumor burden and identify PRL3 as an attractive therapeutic target for mCRC treatment.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael G Brattain
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jing Wang
- Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Chandrakanth Are
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
32
|
PRL-2 phosphatase is required for vascular morphogenesis and angiogenic signaling. Commun Biol 2020; 3:603. [PMID: 33097786 PMCID: PMC7584612 DOI: 10.1038/s42003-020-01343-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Protein tyrosine phosphatases are essential modulators of angiogenesis and have been identified as novel therapeutic targets in cancer and anti-angiogenesis. The roles of atypical Phosphatase of Regenerative Liver (PRL) phosphatases in this context remain poorly understood. Here, we investigate the biological function of PRL phosphatases in developmental angiogenesis in the postnatal mouse retina and in cell culture. We show that endothelial cells in the retina express PRL-2 encoded by the Ptp4a2 gene, and that inducible endothelial and global Ptp4a2 mutant mice exhibit defective retinal vascular outgrowth, arteriovenous differentiation, and sprouting angiogenesis. Mechanistically, PTP4A2 deletion limits angiogenesis by inhibiting endothelial cell migration and the VEGF-A, DLL-4/NOTCH-1 signaling pathway. This study reveals the importance of PRL-2 as a modulator of vascular development.
Collapse
|
33
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
34
|
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:20538-20548. [PMID: 32788364 DOI: 10.1073/pnas.2002964117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.
Collapse
|
35
|
Cai F, Huang Y, Wang M, Sun M, Zhao Y, Hattori M. A FRET-based screening method to detect potential inhibitors of the binding of CNNM3 to PRL2. Sci Rep 2020; 10:12879. [PMID: 32733084 PMCID: PMC7393355 DOI: 10.1038/s41598-020-69818-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
The cyclin M (CNNM) family of Mg2+ transporters is reported to promote tumour progression by binding to phosphatase of regenerating liver (PRL) proteins. Here, we established an assay for detection of the binding between the cystathionine-beta-synthase (CBS) domain of human CNNM3 (a region responsible for PRL binding) and human PRL2 using fluorescence resonance energy transfer (FRET) techniques. By fusing YPet to the C-terminus of the CNNM3 CBS domain and CyPet to the N-terminus of PRL2, we performed a FRET-based binding assay with purified proteins in multiwell plates and successfully detected the changes in fluorescence intensity derived from FRET with a reasonable Kd. We then confirmed that the addition of non-YPet-tagged CNNM3 and non-CyPet-tagged PRL proteins inhibited the changes in FRET intensity, whereas non-YPet-tagged CNNM3 with a mutation at the PRL2-binding site did not exhibit such inhibition. Furthermore, newly synthesized peptides derived from the CNNM loop region, with the PRL-binding sequences of the CNNM3 CBS domain, inhibited the interactions between CNNM3 and PRL2. Overall, these results showed that this method can be used for screening to identify inhibitors of CNNM-PRL interactions, potentially for novel anticancer therapy.
Collapse
Affiliation(s)
- Faji Cai
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Yichen Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Mengqi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Minxuan Sun
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China.
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
36
|
Moyano Crespo GD, Cecenarro LA, Perez P, Guido C, Sosa LDV, Berhard C, Aballay LR, Gutiérrez S, Petiti JP, Torres A, Mukdsi J. Association of PTP4A3 expression and tumour size in functioning pituitary adenoma: a descriptive study. J Clin Pathol 2020; 74:190-193. [PMID: 32616539 DOI: 10.1136/jclinpath-2020-206728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND PTP4A3 is a subclass of a protein tyrosine phosphatase super family and is expressed in a range of epithelial neoplasms. We evaluated PTP4A3 expression and its association with clinicopathological parameters in different types of functioning pituitary adenomas. METHODS A total of 34 functioning pituitary adenomas samples were evaluated in this observational study. PTP4A3 expression was examined by immunohistochemical staining, and, possible correlations between PTP4A3 and some clinicopathological variables were investigated. RESULTS PTP4A3 was expressed in 19 out of 34 tumours (55%), at the cytoplasmic level of tumorous cells. Moreover, there was significant association (p=0.042) between PTP4A3 expression and tumorous size. CONCLUSIONS PTP4A3 was expressed in more than half of the tumours analysed, with there being a significant association with the tumorous size of functioning adenomas. This allows to speculate that PTP4A3 may regulate tumour growth, although further investigations are necessary to determine if this phosphatase can serve as a biomarker or used as a therapeutic target in pituitary macroadenomas.
Collapse
Affiliation(s)
- Gabriela Deisi Moyano Crespo
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Laura Anahí Cecenarro
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Pablo Perez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Carolina Guido
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Liliana Del Valle Sosa
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Celina Berhard
- Servicio de Patologia, Universidad Católica de Córdoba Clinica Universitaria Reina Fabiola, Cordoba, Argentina
| | - Laura Rosana Aballay
- Centro de Investigación en Nutrición Humana (CenINH), Universidad Nacional de Córdoba Facultad de Ciencias Médicas, Cordoba, Argentina
| | - Silvina Gutiérrez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Juan Pablo Petiti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Alicia Torres
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Jorge Mukdsi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopia Electronica-Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
37
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Aguilar-Sopeña O, Hernández-Pérez S, Alegre-Gómez S, Castro-Sánchez P, Iglesias-Ceacero A, Lazo JS, Roda-Navarro P. Effect of Pharmacological Inhibition of the Catalytic Activity of Phosphatases of Regenerating Liver in Early T Cell Receptor Signaling Dynamics and IL-2 Production. Int J Mol Sci 2020; 21:E2530. [PMID: 32260565 PMCID: PMC7177812 DOI: 10.3390/ijms21072530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS. Pharmacological inhibition was used to compare the role of the catalytic activity of PRLs in antigen-induced early signaling and late IL-2 production. Although the phosphatase activity of PRLs was not critical for early signaling triggered by antigen, it seemed to regulate signaling dynamics and was necessary for proper IL-2 production. We propose that enzymatic activity of PRLs has a higher significance for cytokine production than for early signaling at the IS. However, further research will be necessary to deeply understand the regulatory role of PRLs during lymphocyte activation and effector function.
Collapse
Affiliation(s)
- Oscar Aguilar-Sopeña
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sara Hernández-Pérez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sergio Alegre-Gómez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Patricia Castro-Sánchez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Alba Iglesias-Ceacero
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - John S. Lazo
- Departments of Pharmacology and Chemistry, University of Virginia, Charlottesville, VA 22908, USA;
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| |
Collapse
|
39
|
Weidle UH, Schmid D, Birzele F, Brinkmann U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genomics Proteomics 2020; 17:1-21. [PMID: 31882547 PMCID: PMC6937123 DOI: 10.21873/cgp.20163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is responsible for the second-leading cancer-related death toll worldwide. Although sorafenib and levantinib as frontline therapy and regorafenib, cabazantinib and ramicurimab have now been approved for second-line therapy, the therapeutic benefit is in the range of only a few months with respect to prolongation of survival. Aggressiveness of HCC is mediated by metastasis. Intrahepatic metastases and distant metastasis to the lungs, lymph nodes, bones, omentum, adrenal gland and brain have been observed. Therefore, the identification of metastasis-related new targets and treatment modalities is of paramount importance. In this review, we focus on metastasis-related microRNAs (miRs) as therapeutic targets for HCC. We describe miRs which mediate or repress HCC metastasis in mouse xenograft models. We discuss 18 metastasis-promoting miRs and 35 metastasis-inhibiting miRs according to the criteria as outlined. Six of the metastasis-promoting miRs (miR-29a, -219-5p, -331-3p, 425-5p, -487a and -1247-3p) are associated with unfavourable clinical prognosis. Another set of six down-regulated miRs (miR-101, -129-3p, -137, -149, -503, and -630) correlate with a worse clinical prognosis. We discuss the corresponding metastasis-related targets as well as their potential as therapeutic modalities for treatment of HCC-related metastasis. A subset of up-regulated miRs -29a, -219-5p and -425-5p and down-regulated miRs -129-3p and -630 were evaluated in orthotopic metastasis-related models which are suitable to mimic HCC-related metastasis. Those miRNAs may represent prioritized targets emerging from our survey.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Daniela Schmid
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
40
|
Du X, Zhang Y, Li X, Li Q, Wu C, Chen G, Guo X, Weng Y, Wang Z. PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Cell Biosci 2019; 9:96. [PMID: 31798830 PMCID: PMC6884919 DOI: 10.1186/s13578-019-0358-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
High levels of ROS cause oxidative stress, which plays a critical role in cell death. As a ROS effector protein, PRL2 senses ROS and controls phagocyte bactericidal activity during infection. Here we report PRL2 regulates oxidative stress induced cell death. PRL2 senses oxidative stress via highly reactive cysteine residues at 46 and 101. The oxidation of PRL2 causes protein degradation and supports pro-survival PDK1/AKT signal which in turn to protect cells against oxidative stress. As a result, PRL2 levels have a high correlation with oxidative stress induced cell death. In vivo experiments showed PRL2 deficient cells survive better in inflammatory oxidative environment and resist to ionizing radiation. Our finding suggests PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Therefore, PRL2 could be targeted to modulate cell viability in inflammation or irradiation associated therapy.
Collapse
Affiliation(s)
- Xinyue Du
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Yang Zhang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Xiao Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Qi Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Chenyun Wu
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Guangjie Chen
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - XiaoKui Guo
- 3Institute for Global Health, Shanghai Jiao Tong University School of Medicine-Chinese Center for Tropical Diseases Research, Shanghai, 200025 People's Republic of China
| | - Yongqiang Weng
- 2Department of General Surgery, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 People's Republic of China
| | - Zhaojun Wang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| |
Collapse
|
41
|
Lazo JS, Blanco IK, Tasker NR, Rastelli EJ, Burnett JC, Garrott SR, Hart DJ, McCloud RL, Hsu KL, Wipf P, Sharlow ER. Next-Generation Cell-Active Inhibitors of the Undrugged Oncogenic PTP4A3 Phosphatase. J Pharmacol Exp Ther 2019; 371:652-662. [PMID: 31601683 PMCID: PMC6856870 DOI: 10.1124/jpet.119.262188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Oncogenic protein tyrosine phosphatases (PTPs) are overexpressed in numerous human cancers but they have been challenging pharmacological targets. The emblematic oncogenic PTP4A tyrosine phosphatase family regulates many fundamental malignant processes. 7-Imino-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (JMS-053) is a novel, potent, and selective PTP4A inhibitor but its mechanism of action has not been fully elucidated, nor has the chemotype been fully investigated. Because tyrosine phosphatases are notoriously susceptible to oxidation, we interrogated JMS-053 and three newly synthesized analogs with specific attention on the role of oxidation. JMS-053 and its three analogs were potent in vitro PTP4A3 inhibitors, but 7-imino-5-methyl-2-phenylthieno[3,2-c]pyridine-4,6(5H,7H)-dione (NRT-870-59) appeared unique among the thienopyridinediones with respect to its inhibitory specificity for PTP4A3 versus both a PTP4A3 A111S mutant and an oncogenic dual specificity tyrosine phosphatase, CDC25B. Like JMS-053, NRT-870-59 was a reversible PTP4A3 inhibitor. All of the thienopyridinediones retained cytotoxicity against human ovarian and breast cancer cells grown as pathologically relevant three-dimensional spheroids. Inhibition of cancer cell colony formation by NRT-870-59, like JMS-053, required PTP4A3 expression. JMS-053 failed to generate significant detectable reactive oxygen species in vitro or in cancer cells. Mass spectrometry results indicated no disulfide bond formation or oxidation of the catalytic Cys104 after in vitro incubation of PTP4A3 with JMS-053 or NRT-870-59. Gene expression profiling of cancer cells exposed to JMS-053 phenocopied many of the changes seen with the loss of PTP4A3 and did not indicate oxidative stress. These data demonstrate that PTP4A phosphatases can be selectively targeted with small molecules that lack prominent reactive oxygen species generation and encourage further studies of this chemotype. SIGNIFICANCE STATEMENT: Protein tyrosine phosphatases are emerging as important contributors to human cancers. We report on a new class of reversible protein phosphatase small molecule inhibitors that are cytotoxic to human ovarian and breast cancer cells, do not generate significant reactive oxygen species in vitro and in cells, and could be valuable lead molecules for future studies of PTP4A phosphatases.
Collapse
Affiliation(s)
- John S Lazo
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabella K Blanco
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nikhil R Tasker
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ettore J Rastelli
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James C Burnett
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon R Garrott
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Duncan J Hart
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca L McCloud
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ku-Lung Hsu
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth R Sharlow
- Departments of Pharmacology (J.S.L., I.K.B., S.R.G., D.J.H., E.R.S.) and Chemistry (J.S.L., R.L.M., K.-L.H.), University of Virginia, Charlottesville, Virginia; and Department of Chemistry (N.R.T., E.J.R., J.C.B., P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Trapani V, Wolf FI. Dysregulation of Mg2+ homeostasis contributes to acquisition of cancer hallmarks. Cell Calcium 2019; 83:102078. [DOI: 10.1016/j.ceca.2019.102078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
43
|
LHPP suppresses bladder cancer cell proliferation and growth via inactivating AKT/p65 signaling pathway. Biosci Rep 2019; 39:BSR20182270. [PMID: 31262971 PMCID: PMC6667728 DOI: 10.1042/bsr20182270] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the commonest malignancies in the urinary system. Recent evidences have shown that Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) serves as a tumor suppressor in hepatocellular carcinoma and cervical cancer. However, little is known about its function in BC. Here, we aimed to investigate the role of LHPP in BC. We found that LHPP was down-regulated in BC tissues and cells. Knockdown of LHPP promoted the proliferation and growth of BC cells T24 and 5637. Inverse results were observed in SW780 and BIU87 cells with ectopic LHPP expression. LHPP also repressed the glycolysis of BC cells. At the molecular level, LHPP silencing led to enhanced phosphorylation of both AKT and p65, as well as up-regulation of their downstream targets Bcl-2 and Cyclin D1. Inhibition of AKT by MK2206 blunted the increased phosphorylation of p65 caused by LHPP knockdown, suggesting that LHPP silencing activated p65 through AKT. Importantly, p65 inhibitor (caffeic acid phenethyl ester) exhibited larger suppressive effect on the proliferation of LHPP knockdown BC cells as compared with Ctrl cell. Our study demonstrates that LHPP suppresses BC cell growth via inactivating AKT/p65 signaling pathway.
Collapse
|
44
|
Zhang Z, Kozlov G, Chen YS, Gehring K. Mechanism of thienopyridone and iminothienopyridinedione inhibition of protein phosphatases. MEDCHEMCOMM 2019; 10:791-799. [PMID: 31191869 DOI: 10.1039/c9md00175a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Thienopyridone (TP) has been proposed as a selective inhibitor of phosphatases of regenerating liver (PRL or PTP4A). PRLs are dual specificity phosphatases that promote cancer progression and are attractive anticancer targets. TP and iminothienopyridinedione (ITP), a more potent derivative, were shown to be effective inhibitors but the mechanism of inhibition was not established. Here, we perform NMR experiments and in vitro phosphatase assays to show that TP and ITP inhibit protein phosphatases non-specifically through oxidation of the phosphatase catalytic cysteine. We demonstrate that TP and ITP are redox active compounds, inhibiting PRL-3 and multiple other PTPs through oxidation. They also catalyze the oxidation of thioredoxin-1 as well as small molecules, like TCEP, DTT, and glutathione. The reported selectivity of TP and ITP is likely due to the higher susceptibility of PRLs to oxidation. Thus, while TP and ITP effectively inhibit PRLs, their use for studying the cellular function of PRLs is problematic due to the likelihood of off-target effects.
Collapse
Affiliation(s)
- Zhidian Zhang
- Department of Biochemistry and Centre for Structural Biology , McGill University , Montreal , Quebec , Canada .
| | - Guennadi Kozlov
- Department of Biochemistry and Centre for Structural Biology , McGill University , Montreal , Quebec , Canada .
| | - Yu Seby Chen
- Department of Biochemistry and Centre for Structural Biology , McGill University , Montreal , Quebec , Canada .
| | - Kalle Gehring
- Department of Biochemistry and Centre for Structural Biology , McGill University , Montreal , Quebec , Canada .
| |
Collapse
|
45
|
Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019; 116:2925-2934. [PMID: 30718434 DOI: 10.1073/pnas.1815361116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.
Collapse
|