1
|
Wang S, Zhong M, Deng X, Liu C, Tan Y, Qian B, Zhong M. Based exploration of the diagnostic value of oxidative stress-related key genes in chronic obstructive pulmonary disease. Cell Biol Toxicol 2025; 41:69. [PMID: 40214820 PMCID: PMC11991958 DOI: 10.1007/s10565-025-10019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third most common contributor to global mortality. Oxidative stress has been recognized as a critical driver of multiple interacting mechanisms in COPD development. This research investigated the potential of oxidative stress-related genes (OSRGs) biomarkers and their potential molecular mechanisms for COPD clinical diagnosis and treatment through bioinformatics analyses. As a result, 5 hub genes, CA3, PPP1R15B, MAPT, MMP9, and ECT2, were yielded by LASSO, Boruta, and SVM-RFE, and the performance of the nomogram constructed based on hub genes was favorable. Correlation analyses between hub genes and oxidative stress biomarkers showed that MMP9 and MAPT genes had a high association with oxidative stress biomarkers. Immune cell infiltration identified follicular helper T cells, Γδ T cells, M0 macrophages, and CD8 T cells as significantly different in COPD. ROC of ECT2 and MMP9 showed a higher capability to discriminate COPD patients from normal samples. In addition, we collected clinical samples and analyzed the core gene expression, which revealed that the hub genes ECT2 and MMP9 had high discriminatory ability in the COPD samples. The epistasis of ECT2 and MMP9 was further verified by constructing animal models, pathological sections, qPCR, immunoblotting, immunohistochemistry, etc. The data indicated the crucial function of MMP9 in CSC-induced oxidative stress injury. Deprivation of MMP9 attenuated CSC-induced injury and promoted macrophage polarisation to M2 macrophages. MMP9 deprivation protected against CSC-induced injury, mainly related to the reduction of cell apoptosis, cell inflammation, and ROS injury in BEAS-2B. It promoted macrophage polarization from M1 to M2. In summary, we found ECT2 and MMP9 are related to oxidative stress in COPD, and MMP9 was related to cell apoptosis, cell inflammation, and ROS injury in BEAS-2B, and the macrophage polarization from M1 to M2.
Collapse
Affiliation(s)
- Shenglan Wang
- Pulmonary and Critical Care Medicine, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China.
| | - MingFeng Zhong
- The First People'S Hospital of Zhaotong City, Zhaotong, 657099, Yunnan, China
| | - Xiaoli Deng
- Pulmonary and Critical Care Medicine, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Chen Liu
- Pulmonary and Critical Care Medicine, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Yan Tan
- Pulmonary and Critical Care Medicine, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Baojiang Qian
- Pulmonary and Critical Care Medicine, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China
| | - MingMei Zhong
- Pulmonary and Critical Care Medicine, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Yuan L, Jiang X, Ren Y, Ma B, Ji Z, Wang S, Hao B, Li C, Li R, Liu F. Dihydromyricetin ameliorates lipopolysaccharide‒induced hepatic injury in chickens by activating the Nrf2/Keap1 pathway and regulating mitochondrial dynamics. Poult Sci 2025; 104:105034. [PMID: 40132312 PMCID: PMC11986534 DOI: 10.1016/j.psj.2025.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Dihydromyricetin (DHM) is a flavonoid found in vine tea that exhibits various pharmacological characteristics, including antibacterial, antiapoptotic, and antioxidant effects. Our previous study revealed that DHM can alleviate chicken hepatic injury, but the underlying mechanism has not been elucidated. To further investigate the protective mechanism of DHM, this study firstly predicted by network pharmacology that the potential regulatory pathways of DHM on hepatic injury. Subsequently, the experimental models were replicated in vivo and in vitro using Hy‒Line white broiler chickens and chicken primary hepatocytes treated with DHM and with/ without LPS. Network pharmacology results showed that the effect of DHM on hepatic injury might be related to oxidative stress and mitochondrial function. Further experiments showed that DHM significantly reduced LPS‒elicited serum ALT and AST activities, promoted antioxidant enzyme activities and scavenged ROS in chicken liver or primary hepatocytes. Molecular docking studies showed that DHM could directly bind to Nrf2 and Keap1. Furthermore, DHM treatment regulated the expression of Nrf2 and Keap1, thereby upregulating the downstream expression of antioxidant factors, including HO‒1 and NQO1, in vivo and in vitro. Moreover, DHM modulated the expression of mitochondrial dynamics related factors, including Mfn1/2, Opa1, Drp1, and Fis1, meanwhile, DHM ameliorated mitochondrial structural damage and increased the MMP. Overall, these results suggested that DHM activated the Nrf2/Keap1 pathway and regulated the balance between mitochondrial fusion and fission, ultimately alleviating chicken hepatic injury induced by LPS.
Collapse
Affiliation(s)
- Liang Yuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinru Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yani Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingke Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhenghua Ji
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shibo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Beili Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changwen Li
- Laboratory Animal Base, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Fangping Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| |
Collapse
|
3
|
Naderzadeh E, Kargar M, Mokhtari MJ, Farhadi A. Activating transcription factor 3 induces oxidative stress and genotoxicity, transcriptionally modulating metastasis-related gene expression in human papillomavirus-infected cervical cancer. Virol J 2025; 22:46. [PMID: 39994644 PMCID: PMC11849226 DOI: 10.1186/s12985-025-02675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Activating Transcription Factor 3 (ATF3) is known for its tumor-suppressive properties in cervical cancer, particularly through its role in stress response and interactions with human papillomavirus (HPV) oncogenes. This study investigates ATF3's regulatory impact on metastasis-related genes, oxidative stress, and DNA damage in HPV-positive cervical cancer cells. METHODS HeLa and Ca Ski cell lines were transfected with ATF3-expressing vectors. Western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to confirm ATF3 overexpression following transfection. ROS assays and Comet assays assessed the impact of ATF3 on oxidative stress and DNA damage, while RT-qPCR was used to evaluate changes in HPV E6/E7, SHARP1, and MMP1 gene expression. RESULTS ATF3 overexpression led to elevated ROS levels (p < 0.02), resulting in oxidative DNA damage. These results demonstrate ATF3's cytotoxic impact on cervical cancer cells through oxidative stress and DNA damage. Additionally, ATF3 overexpression significantly decreased MMP1 expression (p < 0.03), indicating a potential anti-metastatic effect, while SHARP1 and HPV E6/E7 expression levels were not significantly altered, indicating selective gene modulation by ATF3. CONCLUSION These findings reveal that ATF3 contributes to tumor suppression in cervical cancer by modulating oxidative stress and DNA damage, selectively targeting genes involved in metastasis. These findings supports ATF3's role in regulating key pathways in HPV-positive cervical cancer cells, providing a basis for further exploration of ATF3 as a target in therapeutic strategies aimed at improving outcomes in cervical cancer.
Collapse
Affiliation(s)
- Elham Naderzadeh
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Kargar
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran
| | | | - Ali Farhadi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 7143918596, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Shirvani P, Shirvani A, Holick MF. Mitochondrial Dysfunction and Its Potential Molecular Interplay in Hypermobile Ehlers-Danlos Syndrome: A Scoping Review Bridging Cellular Energetics and Genetic Pathways. Curr Issues Mol Biol 2025; 47:134. [PMID: 39996855 PMCID: PMC11854588 DOI: 10.3390/cimb47020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Hypermobile Ehlers-Danlos Syndrome (hEDS) is a hereditary connective tissue disorder characterized by joint hypermobility, skin hyperextensibility, and systemic manifestations such as chronic fatigue, gastrointestinal dysfunction, and neurological symptoms. Unlike other EDS subtypes with known genetic mutations, hEDS lacks definitive markers, suggesting a multifactorial etiology involving both mitochondrial dysfunction and non-mitochondrial pathways. This scoping review, conducted in accordance with the PRISMA-ScR guidelines, highlights mitochondrial dysfunction as a potential unifying mechanism in hEDS pathophysiology. Impaired oxidative phosphorylation (OXPHOS), elevated reactive oxygen species (ROS) levels, and calcium dysregulation disrupt cellular energetics and extracellular matrix (ECM) homeostasis, contributing to the hallmark features of hEDS. We reviewed candidate genes associated with ECM remodeling, signaling pathways, and immune regulation. Protein-protein interaction (PPI) network analyses revealed interconnected pathways linking mitochondrial dysfunction with these candidate genes. Comparative insights from Fabry disease and fragile X premutation carriers underscore shared mechanisms such as RNA toxicity, matrix metalloproteinases (MMP) activation, and ECM degradation. These findings may suggest that mitochondrial dysfunction amplifies systemic manifestations through its interplay with non-mitochondrial molecular pathways. By integrating these perspectives, this review provides a potential framework for understanding hEDS pathogenesis while highlighting latent avenues for future research into its molecular basis. Understanding the potential role of mitochondrial dysfunction in hEDS not only sheds light on its complex molecular etiology but also opens new paths for targeted interventions.
Collapse
Affiliation(s)
| | - Arash Shirvani
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Michael F. Holick
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
5
|
Yang M, Liu D, Tan Y, Chen J, Yang F, Mei C, Zeng Q, Lin Y, Li D. Polyoxometalate-based injectable coacervate inhibits HCC metastasis after incomplete radiofrequency ablation via scavenging ROS. J Nanobiotechnology 2025; 23:47. [PMID: 39871237 PMCID: PMC11773879 DOI: 10.1186/s12951-024-02989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Incomplete radiofrequency ablation (iRFA) stimulates residual hepatocellular carcinoma (HCC) metastasis, leading to a poor prognosis for patients. Therefore, it is imperative to develop an effective therapeutic strategy to prevent iRFA-induced HCC metastasis. RESULTS Our study revealed that iRFA induced an abnormal increase in ROS levels within residual HCC, which enhanced tumor cell invasiveness and promoted macrophage M2 polarization, ultimately facilitating HCC metastasis. Molybdenum-based polyoxometalate (POM) is an excellent ROS-scavenging nanocluster, but its size is too small to be easily cleared by the kidneys, limiting its effectiveness in scavenging iRFA-induced ROS. To overcome this limitation, we synthesized an injectable POM-loaded coacervate delivery system named POM@Coa, which can sustainably scavenge iRFA-induced ROS by slowly releasing POM. POM@Coa markedly reduced HCC invasiveness, reversed macrophage polarization from M2 to M1, and promoted the infiltration and activation of CD8+ T cells, ultimately inhibiting HCC metastasis. Importantly, POM@Coa showed superior therapeutic efficacy to free POM in the absence of systemic toxicity. CONCLUSIONS POM@Coa exhibits the potential to decrease HCC invasiveness and activate anti-tumor immunity, opening up new avenues for the safe and effective treatment and prevention of HCC metastasis when combined with RFA.
Collapse
Affiliation(s)
- Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Die Liu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yan Tan
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jieting Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Fan Yang
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China
| | - Qi Zeng
- Cancer Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Yong Lin
- Department of Psychiatry, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
6
|
Ntekoumes D, Song J, Liu H, Amelung C, Guan Y, Gerecht S. Acute Three-Dimensional Hypoxia Regulates Angiogenesis. Adv Healthc Mater 2025; 14:e2403860. [PMID: 39623803 PMCID: PMC11729260 DOI: 10.1002/adhm.202403860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Indexed: 01/15/2025]
Abstract
Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.
Collapse
Affiliation(s)
- Dimitris Ntekoumes
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Haohao Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Connor Amelung
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
7
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Amereh M, Shojaei S, Seyfoori A, Walsh T, Dogra P, Cristini V, Nadler B, Akbari M. Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion. COMMUNICATIONS ENGINEERING 2024; 3:176. [PMID: 39587319 PMCID: PMC11589919 DOI: 10.1038/s44172-024-00319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies.
Collapse
Affiliation(s)
- Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Shahla Shojaei
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Department of Anatomy and Cell Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, R3B 2E9, MB, Canada
| | - Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Tavia Walsh
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, 10065, NY, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Neal Cancer Center, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave., New York, 10065, NY, USA
| | - Ben Nadler
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, 2329 West Mall, Vancouver, V6T 1Z4, BC, Canada.
| |
Collapse
|
9
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Chatterjee A, Roy T, Jyothi D, Mishra VK, Singh UP, Swarnakar S. Melatonin Inhibits AGS Cell Proliferation by Binding to the ATP Binding Site of CDK2 Under Hyperglycemic Conditions. Cell Biochem Biophys 2024; 82:895-908. [PMID: 38453745 DOI: 10.1007/s12013-024-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Cancer cells utilize glucose as their primary energy source. The aggressive nature of cancer cells is therefore enhanced in hyperglycemic conditions. This study has been adopted to investigate the therapeutic potential of melatonin against such aggressive proliferation of AGS cells-a human gastric cancer cell line, under hyperglycemic conditions. AGS cells were incubated with high glucose-containing media, and the effects of melatonin have been evaluated, therein. Cell proliferation, ROS generation, flow-cytometric analysis for cell cycle and apoptosis, wound healing, immunoblotting, zymography, reverse zymography assays, in-silico analysis, and kinase activity assays were performed to evaluate the effects of melatonin. We observed that melatonin inhibited the hyperglycemia-induced cell proliferation in a dose-dependent manner. It further altered the expression and activity of MMP-9 and TIMP-1. Moreover, melatonin inhibited AGS cell proliferation by arresting AGS cells in the G0/G1 phase after binding in the ATP binding site of CDK-2, thereby inhibiting its kinase activity. In association, a significant decrease in the expression of cyclin D1, cyclin E, CDK-4, and CDK-2 were observed. In conclusion, these findings suggest that melatonin has anti-gastric cancer potential. Melatonin could therefore be included in future drug designs for gastric cancer-hyperglycemia co-morbidity treatment.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Tapasi Roy
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Deeti Jyothi
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Umesh Prasad Singh
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
11
|
Wu P, Wang X, Yin M, Zhu W, Chen Z, Zhang Y, Jiang Z, Shi L, Zhu Q. ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells. Int J Nanomedicine 2024; 19:4465-4493. [PMID: 38779103 PMCID: PMC11110815 DOI: 10.2147/ijn.s443117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 μg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.
Collapse
Affiliation(s)
- Peng Wu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoyong Wang
- The People’s Hospital of Rugao, Nantong, People’s Republic of China
| | - Min Yin
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenjie Zhu
- Kangda College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng Chen
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Qiang Zhu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
13
|
Latronico T, Petraglia T, Sileo C, Bilancia D, Rossano R, Liuzzi GM. Inhibition of MMP-2 and MMP-9 by Dietary Antioxidants in THP-1 Macrophages and Sera from Patients with Breast Cancer. Molecules 2024; 29:1718. [PMID: 38675538 PMCID: PMC11051835 DOI: 10.3390/molecules29081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Carmela Sileo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Domenico Bilancia
- Operating Unit, Medical Oncology, Hospital “Azienda Ospedaliera S. Carlo”, 85100 Potenza, Italy;
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| |
Collapse
|
14
|
Liu G, Li B, Qin S, Nice EC, Yang J, Yang L, Huang C. Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. Cell Oncol (Dordr) 2024; 47:429-445. [PMID: 37792154 DOI: 10.1007/s13402-023-00884-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM), a fundamental constituent of all tissues and organs, is crucial for shaping the tumor microenvironment. Dysregulation of ECM remodeling has been closely linked to tumor initiation and progression, where specific signaling pathways, including redox signaling, play essential roles. Reactive oxygen species (ROS) are risk factors for carcinogenesis whose excess can facilitate the oxidative damage of biomacromolecules, such as DNA and proteins. Emerging evidence suggests that redox effects can aid the modification, stimulation, and degradation of ECM, thus affecting ECM remodeling. These alterations in both the density and components of the ECM subsequently act as critical drivers for tumorigenesis. In this review, we provide an overview of the functions and primary traits of the ECM, and it delves into our current understanding of how redox reactions participate in ECM remodeling during cancer progression. We also discuss the opportunities and challenges presented by clinical strategies targeting redox-controlled ECM remodeling to overcome cancer. CONCLUSIONS The redox-mediated ECM remodeling contributes importantly to tumor survival, progression, metastasis, and poor prognosis. A comprehensive investigation of the concrete mechanism of redox-mediated tumor ECM remodeling and the combination usage of redox-targeted drugs with existing treatment means may reveal new therapeutic strategy for future antitumor therapies.
Collapse
Affiliation(s)
- Guowen Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jinlin Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Li Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China.
| |
Collapse
|
15
|
Liang PI, Wei YC, Chen HD, Ma YC, Ke HL, Chien CC, Chuang HW. TGFB1I1 promotes cell proliferation and migration in urothelial carcinoma. Kaohsiung J Med Sci 2024; 40:269-279. [PMID: 38180299 DOI: 10.1002/kjm2.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024] Open
Abstract
Urothelial carcinoma (UC) is common cancer worldwide with a high prevalence in Taiwan, especially in the upper urinary tract, including the renal pelvis and ureter, also classifying as upper urinary tract urothelial carcinoma. Here, we aim to find a representative prognostic marker that strongly correlates to this type of carcinoma. Transforming growth factor beta-1-induced transcript 1 (TGFB1I1) is a cofactor of cellular TGF-β1 and interacts with various nuclear receptors. The previous study showed that TGFB1I1 promotes focal adhesion formation, contributing to the epithelial-mesenchymal transition (EMT) with actin cytoskeleton and vimentin through TGFB1I1 regulation. We aim to reveal the role of TGFB1I1 in the tumorigenesis of UC. In silico and clinicopathological data of upper urinary tract urothelial carcinoma (UTUC) and urinary bladder urothelial carcinoma (UBUC) were accessed and analyzed for IHC staining regarding tumor characteristics, including survival outcome. Finally, an in vitro study was performed to demonstrate the biological changes of UC cells. In UTUC, overexpression of TGFB1I1 was significantly correlated with advanced tumor stage, papillary configuration, and frequent mitosis. Meanwhile, overexpression of TGFB1I1 was significantly correlated with advanced tumor stage and histological grade in UBUC. Moreover, the in vitro study shows that TGFB1I1 affects cell proliferation, viability, migration and wound healing. The EMT markers also decreased upon TGFB1I1 knockdown. In this study, we identified that TGFB1I1 regulates UC cell proliferation and viability and induces the EMT to facilitate cell migration in vitro, leading to its essential role in promoting tumor aggressiveness in both UTUC and UBUC.
Collapse
Affiliation(s)
- Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Huan-Da Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chun Ma
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Evangelista-Leite D, Carreira ACO, Nishiyama MY, Gilpin SE, Miglino MA. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models. Biomaterials 2023; 302:122338. [PMID: 37820517 DOI: 10.1016/j.biomaterials.2023.122338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively debilitating lung condition characterized by oxidative stress, cell phenotype shifts, and excessive extracellular matrix (ECM) deposition. Recent studies have shown promising results using decellularized ECM-derived hydrogels produced through pepsin digestion in various lung injury models and even a human clinical trial for myocardial infarction. This study aimed to characterize the composition of ECM-derived hydrogels, assess their potential to prevent fibrosis in bleomycin-induced IPF models, and unravel their underlying molecular mechanisms of action. Porcine lungs were decellularized and pepsin-digested for 48 h. The hydrogel production process, including visualization of protein molecular weight distribution and hydrogel gelation, was characterized. Peptidomics analysis of ECM-derived hydrogel contained peptides from 224 proteins. Probable bioactive and cell-penetrating peptides, including collagen IV, laminin beta 2, and actin alpha 1, were identified. ECM-derived hydrogel treatment was administered as an early intervention to prevent fibrosis advancement in rat models of bleomycin-induced pulmonary fibrosis. ECM-derived hydrogel concentrations of 1 mg/mL and 2 mg/mL showed subtle but noticeable effects on reducing lung inflammation, oxidative damage, and protein markers related to fibrosis (e.g., alpha-smooth muscle actin, collagen I). Moreover, distinct changes were observed in macroscopic appearance, alveolar structure, collagen deposition, and protein expression between lungs that received ECM-derived hydrogel and control fibrotic lungs. Proteomic analyses revealed significant protein and gene expression changes related to cellular processes, pathways, and components involved in tissue remodeling, inflammation, and cytoskeleton regulation. RNA sequencing highlighted differentially expressed genes associated with various cellular processes, such as tissue remodeling, hormone secretion, cell chemotaxis, and cytoskeleton engagement. This study suggests that ECM-derived hydrogel treatment influence pathways associated with tissue repair, inflammation regulation, cytoskeleton reorganization, and cellular response to injury, potentially offering therapeutic benefits in preventing or mitigating lung fibrosis.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; School of Medical Sciences, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil.
| | - Ana C O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, University of São Paulo, São Paulo, 05360-130, Brazil; Center for Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| | - Milton Y Nishiyama
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Sarah E Gilpin
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| | - Maria A Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| |
Collapse
|
17
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Castro DTH, Leite DF, da Silva Baldivia D, Dos Santos HF, Balogun SO, da Silva DB, Carollo CA, de Picoli Souza K, Dos Santos EL. Structural Characterization and Anticancer Activity of a New Anthraquinone from Senna velutina (Fabaceae). Pharmaceuticals (Basel) 2023; 16:951. [PMID: 37513863 PMCID: PMC10385181 DOI: 10.3390/ph16070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a novel compound was isolated, identified, and its chemical structure was determined from the extract of the roots of Senna velutina. In addition, we sought to evaluate the anticancer potential of this molecule against melanoma and leukemic cell lines and identify the pathways of cell death involved. To this end, a novel anthraquinone was isolated from the barks of the roots of S. velutina, analyzed by HPLC-DAD, and its molecular structure was determined by nuclear magnetic resonance (NMR). Subsequently, their cytotoxic activity was evaluated by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method against non-cancerous, melanoma, and leukemic cells. The migration of melanoma cells was evaluated by the scratch assay. The apoptosis process, caspase-3 activation, analysis of mitochondrial membrane potential, and measurement of ROS were evaluated by flow cytometry technique. In addition, the pharmacological cell death inhibitors NEC-1, RIP-1, BAPTA, Z-VAD, and Z-DEVD were used to confirm the related cell death mechanisms. With the results, it was possible to elucidate the novel compound characterized as 2'-OH-Torosaol I. In normal cells, the compound showed no cytotoxicity in PBMC but reduced the cell viability of all melanoma and leukemic cell lines evaluated. 2'-OH-Torosaol I inhibited chemotaxis of B16F10-Nex2, SK-Mel-19, SK-Mel-28 and SK-Mel-103. The cytotoxicity of the compound was induced by apoptosis via the intrinsic pathway with reduced mitochondrial membrane potential, increased levels of reactive oxygen species, and activation of caspase-3. In addition, the inhibitors demonstrated the involvement of necroptosis and Ca2+ in the death process and confirmed caspase-dependent apoptosis death as one of the main programmed cell death pathways induced by 2'-OH-Torosaol I. Taken together, the data characterize the novel anthraquinone 2'-OH-Torosaol I, demonstrating its anticancer activity and potential application in cancer therapy.
Collapse
Affiliation(s)
- David Tsuyoshi Hiramatsu Castro
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Helder Freitas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Sikiru Olaitan Balogun
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Universidade Federal do Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Universidade Federal do Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| |
Collapse
|
19
|
The Role of Aldose Reductase in Beta-Amyloid-Induced Microglia Activation. Int J Mol Sci 2022; 23:ijms232315088. [PMID: 36499422 PMCID: PMC9739496 DOI: 10.3390/ijms232315088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The occurrence of Alzheimer's disease has been associated with the accumulation of beta-amyloid (β-amyloid) plaques. These plaques activate microglia to secrete inflammatory molecules, which damage neurons in the brain. Thus, understanding the underlying mechanism of microglia activation can provide a therapeutic strategy for alleviating microglia-induced neuroinflammation. The aldose reductase (AR) enzyme catalyzes the reduction of glucose to sorbitol in the polyol pathway. In addition to mediating diabetic complications in hyperglycemic environments, AR also helps regulate inflammation in microglia. However, little is known about the role of AR in β-amyloid-induced inflammation in microglia and subsequent neuronal death. In this study, we confirmed that AR inhibition attenuates increased β-amyloid-induced reactive oxygen species and tumor necrosis factor α secretion by suppressing ERK signaling in BV2 cells. In addition, we are the first to report that AR inhibition reduced the phagocytotic capability and cell migration of BV2 cells in response to β-amyloid. To further investigate the protective role of the AR inhibitor sorbinil in neurons, we co-cultured β-amyloid-induced microglia with stem cell-induced neurons. sorbinil ameliorated neuronal damage in both cells in the co-culture system. In summary, our findings reveal AR regulation of microglia activation as a novel therapeutic target for Alzheimer's disease.
Collapse
|
20
|
Jin S, Wu C, Chen M, Sun D, Zhang H. The pathological and therapeutic roles of mesenchymal stem cells in preeclampsia. Front Med (Lausanne) 2022; 9:923334. [PMID: 35966876 PMCID: PMC9370554 DOI: 10.3389/fmed.2022.923334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have made progress in the treatment of ischemic and inflammatory diseases. Preeclampsia (PE) is characterized by placenta ischemic and inflammatory injury. Our paper summarized the new role of MSCs in PE pathology and its potency in PE therapy and analyzed its current limitations. Intravenously administered MSCs dominantly distributed in perinatal tissues. There may be additional advantages to using MSCs-based therapies for reproductive disorders. It will provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Sanshan Jin
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Canrong Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- Department of Rehabilitation Physiotherapy, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Dongyan Sun
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Hua Zhang
- Hubei University of Chinese Medicine, Wuhan, China
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Hua Zhang,
| |
Collapse
|
21
|
Resveratrol Decreases the Invasion Potential of Gastric Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103047. [PMID: 35630523 PMCID: PMC9145179 DOI: 10.3390/molecules27103047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
The cancer-preventive agent Resveratrol (RSV) [3,5,4′-trihydroxytrans-stilbene] is a widely recognized antioxidant molecule with antitumoral potential against several types of cancers, including prostate, hepatic, breast, skin, colorectal, and pancreatic. Herein, we studied the effect of RSV on the cell viability and invasion potential of gastric cancer cells. AGS and MKN45 cells were treated with different doses of RSV (0–200 μM) for 24 h. Cell viability was determined using the Sulphorhodamine B dye (SRB) assay. For invasion assays, gastric cells were pre-treated with RSV (5–25 μM) for 24 h and then seeded in a Transwell chamber with coating Matrigel. The results obtained showed that RSV inhibited invasion potential in both cell lines. Moreover, to elucidate the mechanism implicated in this process, we analyzed the effects of RSV on SOD, heparanase, and NF-κB transcriptional activity. The results indicated that RSV increased SOD activity in a dose-dependent manner. Conversely, RSV significantly reduced the DNA-binding activity of NF-κB and the enzymatic activity of heparanase in similar conditions, which was determined using ELISA-like assays. In summary, these results show that RSV increases SOD activity but decreases NF-kB transcriptional activity and heparanase enzymatic activity, which correlates with the attenuation of invasion potential in gastric cancer cells. To our knowledge, no previous study has described the effect of RSV on heparanase activity. This article proposes that heparanase could be a key effector in the invasive events occurring during gastric cancer metastasis.
Collapse
|
22
|
Miret NV, Zárate LV, Díaz FE, Agustina Leguizamón M, Pontillo CA, Chiappini FA, Ceballos L, Geffner J, Randi AS. Extracellular acidosis stimulates breast cancer cell motility through aryl hydrocarbon receptor and c-Src kinase activation. J Cell Biochem 2022; 123:1197-1206. [PMID: 35538691 DOI: 10.1002/jcb.30275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
A reduction in extracellular pH (pHe) is a characteristic of most malignant tumors. The aryl hydrocarbon receptor (AhR) is a transcription factor localized in a cytosolic complex with c-Src, which allows it to trigger non-genomic effects through c-Src. Considering that the slightly acidic tumor microenvironment promotes breast cancer progression in a similar way to the AhR/c-Src axis, our aim was to evaluate whether this pathway could be activated by low pHe. We examined the effect of pHe 6.5 on AhR/c-Src axis using two breast cancer cell lines (MDA-MB-231 and LM3) and mammary epithelial cells (NMuMG) and found that acidosis increased c-Src phosphorylation only in tumor cells. Moreover, the presence of AhR inhibitors prevented c-Src activation. Low pHe reduced intracellular pH (pHi), while amiloride treatment, which is known to reduce pHi, induced c-Src phosphorylation through AhR. Analyses were conducted on cell migration and metalloproteases (MMP)-2 and -9 activities, with results showing an acidosis-induced increase in MDA-MB-231 and LM3 cell migration and MMP-9 activity, but no changes in NMuMG cells. Moreover, all these effects were blocked by AhR and c-Src inhibitors. In conclusion, acidosis stimulates the AhR/c-Src axis only in breast cancer cells, increasing cell migration and MMP-9 activity. Although the AhR activation mechanism still remains elusive, a reduction in pHi may be thought to be involved. These findings suggest a critical role for the AhR/c-Src axis in breast tumor progression stimulated by an acidic microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Fernando Erra Díaz
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - M Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Jorge Geffner
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| |
Collapse
|
23
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
24
|
Mayer-Santos E, Maravic T, Comba A, Freitas PM, Marinho GB, Mazzitelli C, Mancuso E, Scotti N, Florenzano F, Breschi L, Mazzoni A. The Influence of Different Bleaching Protocols on Dentinal Enzymatic Activity: An In Vitro Study. Molecules 2022; 27:1684. [PMID: 35268785 PMCID: PMC8911605 DOI: 10.3390/molecules27051684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate matrix metalloproteinase (MMP) activity in human dentin using in-situ and gelatin zymography, after at-home and in-office bleaching, related to their clinical exposure times. Dentin specimens (n = 5) were treated with 35% hydrogen peroxide (50 min per session/4 sessions), 10% carbamide peroxide (180 min/21 sessions), or no treatment. All were subjected to in-situ zymography. Dentin slices were, subsequently, obtained, covered with fluorescein-conjugated gelatin, and examined with confocal laser-scanning microscopy. The fluorescence intensity was quantified and statistically analyzed using one-way ANOVA and Bonferroni tests (α = 0.05). Furthermore, gelatin zymography was performed on protein extracts obtained from dentin powder (N = 8 teeth), treated with hydrogen peroxide or carbamide peroxide, with different exposure times (10/50 min for hydrogen peroxide; 252/1260 min for carbamide peroxide). The results of the in-situ zymography showed no statistical differences between the bleached specimens and the control group, with a medium level of gelatinolytic activity expressed in the dentin tubules. The results of gelatin zymography showed an increased expression of pro-MMP-9 in carbamide peroxide groups. The expression of pro-MMP-2 decreased in all the experimental groups. The bleaching treatments performed on the enamel of sound teeth do not influence dentinal enzymatic activity. However, when unprotected dentin tissue is bleached, matrix metalloproteinases are more expressed, particularly when carbamide peroxide is used, proportional to the exposure time.
Collapse
Affiliation(s)
- Eric Mayer-Santos
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Allegra Comba
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Patricia Moreira Freitas
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Giovanna Bueno Marinho
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Nicola Scotti
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Federica Florenzano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| |
Collapse
|
25
|
Ortega-Lozano AJ, Gómez-Caudillo L, Briones-Herrera A, Aparicio-Trejo OE, Pedraza-Chaverri J. Characterization of Mitochondrial Proteome and Function in Luminal A and Basal-like Breast Cancer Subtypes Reveals Alteration in Mitochondrial Dynamics and Bioenergetics Relevant to Their Diagnosis. Biomolecules 2022; 12:379. [PMID: 35327574 PMCID: PMC8945677 DOI: 10.3390/biom12030379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most prevalent cancer and the one with the highest mortality among women worldwide. Although the molecular classification of BC has been a helpful tool for diagnosing and predicting the treatment of BC, developments are still being made to improve the diagnosis and find new therapeutic targets. Mitochondrial dysfunction is a crucial feature of cancer, which can be associated with cancer aggressiveness. Although the importance of mitochondrial dynamics in cancer is well recognized, its involvement in the mitochondrial function and bioenergetics context in BC molecular subtypes has been scantly explored. In this study, we combined mitochondrial function and bioenergetics experiments in MCF7 and MDA-MB-231 cell lines with statistical and bioinformatics analyses of the mitochondrial proteome of luminal A and basal-like tumors. We demonstrate that basal-like tumors exhibit a vicious cycle between mitochondrial fusion and fission; impaired but not completely inactive mitochondrial function; and the Warburg effect, associated with decreased oxidative phosphorylation (OXPHOS) complexes I and III. Together with the results obtained in the cell lines and the mitochondrial proteome analysis, two mitochondrial signatures were proposed: one signature reflecting alterations in mitochondrial functions and a second signature exclusively of OXPHOS, which allow us to distinguish between luminal A and basal-like tumors.
Collapse
Affiliation(s)
- Ariadna Jazmín Ortega-Lozano
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.J.O.-L.); (L.G.-C.); (A.B.-H.)
| | - Leopoldo Gómez-Caudillo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.J.O.-L.); (L.G.-C.); (A.B.-H.)
| | - Alfredo Briones-Herrera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.J.O.-L.); (L.G.-C.); (A.B.-H.)
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.J.O.-L.); (L.G.-C.); (A.B.-H.)
| |
Collapse
|
26
|
Gera J, Budakoti P, Suhag M, Mandal L, Mandal S. Physiological ROS controls Upd3-dependent modeling of ECM to support cardiac function in Drosophila. SCIENCE ADVANCES 2022; 8:eabj4991. [PMID: 35179958 PMCID: PMC8856619 DOI: 10.1126/sciadv.abj4991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their highly reactive nature, reactive oxygen species (ROS) at the physiological level serve as signaling molecules regulating diverse biological processes. While ROS usually act autonomously, they also function as local paracrine signals by diffusing out of the cells producing them. Using in vivo molecular genetic analyses in Drosophila, we provide evidence for ROS-dependent paracrine signaling that does not entail ROS release. We show that elevated levels of physiological ROS within the pericardial cells activate a signaling cascade transduced by Ask1, c-Jun N-terminal kinase, and p38 to regulate the expression of the cytokine Unpaired 3 (Upd3). Upd3 released by the pericardial cells controls fat body-specific expression of the extracellular matrix (ECM) protein Pericardin, essential for cardiac function and healthy life span. Therefore, our work reveals an unexpected inter-organ communication circuitry wherein high physiological levels of ROS regulate cytokine-dependent modulation of cardiac ECM with implications in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jayati Gera
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Prerna Budakoti
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Meghna Suhag
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Corresponding author.
| |
Collapse
|
27
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
28
|
Zhang Q, Ni Y, Wang S, Agbana YL, Han Q, Liu W, Bai H, Yi Z, Yi X, Zhu Y, Sai B, Yang L, Shi Q, Kuang Y, Yang Z, Zhu Y. G6PD upregulates Cyclin E1 and MMP9 to promote clear cell renal cell carcinoma progression. Int J Med Sci 2022; 19:47-64. [PMID: 34975298 PMCID: PMC8692124 DOI: 10.7150/ijms.58902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a cell metabolic disease with high metastasis rate and poor prognosis. Our previous studies demonstrate that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in ccRCC and predicts poor outcomes of ccRCC patients. The aims of this study were to confirm the oncogenic role of G6PD in ccRCC and unravels novel mechanisms involving Cyclin E1 and MMP9 in G6PD-mediated ccRCC progression. Methods: Real-time RT-PCR, Western blot and immunohistochemistry were used to determine the expression patterns of G6PD, Cyclin E1 and MMP9 in ccRCC. TCGA dataset mining was used to identify Cyclin E1 and MMP9 correlations with G6PD expression, relationships between clinicopathological characteristics of ccRCC and the genes of interest, as well as the prognosis of ccRCC patients. The role of G6PD in ccRCC progression and the regulatory effect of G6PD on Cyclin E1 and MMP9 expression were investigated by using a series of cytological function assays in vitro. To verify this mechanism in vivo, xenografted mice models were established. Results: G6PD, Cyclin E1 and MMP9 were overexpressed and positively correlated in ccRCC, and they were associated with poor prognosis of ccRCC patients. Moreover, G6PD changed cell cycle dynamics, facilitated cells proliferation, promoted migration in vitro, and enhanced ccRCC development in vivo, more likely through enhancing Cyclin E1 and MMP9 expression. Conclusion: These findings present G6PD, Cyclin E1 and MMP9, which contribute to ccRCC progression, as novel biomarkers and potential therapeutic targets for ccRCC treatment.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Shujie Wang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Yannick Luther Agbana
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Wenjing Liu
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Honggang Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
- Department of Clinical Laboratory, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Zihan Yi
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming 650118, P.R. China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Yuzhi Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Qiong Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming 650118, P.R. China
| | - Yingmin Kuang
- Departments of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| |
Collapse
|
29
|
Li Y, Yang L, Wang Y, Deng Z, Xu S, Xie H, Zhang Y, Li J. Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation. Pharmacol Res 2021; 174:105971. [PMID: 34763093 DOI: 10.1016/j.phrs.2021.105971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Rosacea is a common chronic inflammatory disease that affects the middle of the face. Due to the unclear pathogenesis, the effective treatment options for rosacea remain limited. In this study, weighted gene co-expression network analyses (WGCNA) identified three rosacea-related hub modules, which were involved in immune-, metabolic- and development- related signaling pathways. Next, the key genes from green and brown modules were submitted to CMap database for drug prediction and metformin was identified as a candidate drug for rosacea. Moreover, network pharmacology analysis identified pharmacological targets of metformin and demonstrated that metformin could help in treating rosacea partly by modulating inflammatory and angiogenesis signaling pathways. Finally, we verified the therapeutic role and mechanism of metformin on rosacea in vivo and vitro. We found that metformin treatment significantly improved rosacea-like skin lesions including immune cells infiltration, cytokines/chemokines expression and angiogenesis. Moreover, metformin suppressed LL37- and TNF-α-induced the ROS production and MAPK-NF-κB signal activation in keratinocytes cells. In conclusion, our findings identified and verified metformin as a novel therapeutic candidate for rosacea, and it alleviates the pathological symptoms, possibly by suppressing inflammatory responses, angiogenesis in rosacea.
Collapse
Affiliation(s)
- Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Dermatology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
30
|
Le HTT, Murugesan A, Ramesh T, Yli-Harja O, Konda Mani S, Kandhavelu M. Molecular interaction of HIC, an agonist of P2Y1 receptor, and its role in prostate cancer apoptosis. Int J Biol Macromol 2021; 189:142-150. [PMID: 34425116 DOI: 10.1016/j.ijbiomac.2021.08.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer is a heterogeneous, slow growing asymptomatic cancer that predominantly affects man. A purinergic G-protein coupled receptor, P2Y1R, is targeted for its therapeutic value since it plays a crucial role in many key molecular events of cancer progression and invasion. Our previous study demonstrated that indoline derivative, 1 ((1-(2-Hydroxy-5-nitrophenyl) (4-hydroxyphenyl) methyl)indoline-4‑carbonitrile; HIC), stimulates prostate cancer cell (PCa) growth inhibition via P2Y1R. However, the mode of interaction of P2Y1R with HIC involved in this process remains unclear. Here, we have reported the molecular interactions of HIC with P2Y1R. Molecular dynamics simulation was performed that revealed the stable specific binding of the protein-ligand complex. In vitro analysis has shown increased apoptosis of PCa-cells, PC3, and DU145, upon specific interaction of P2Y1R-HIC. This was further validated using siRNA analysis that showed a higher percentage of apoptotic cells in PCa-cells transfected with P2Y-siRNA-MRS2365 than P2Y-siRNA-HIC treatment. Decreased mitochondrial membrane potential (MMP) activity and reduced glutathione (GSH) level show their role in P2Y1R-HIC mediated apoptosis. These in silico and in vitro results confirmed that HIC could induce mitochondrial apoptotic signaling through the P2Y1R activation. Thus, HIC being a potential ligand upon interaction with P2Y1R might have therapeutic value for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Saravanan Konda Mani
- Scigen Research and Innovation Pvt Ltd, Periyar Technology Business Incubator, Thanjavur 613403, Tamil Nadu, India
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
31
|
Tien Vo TT, Vo QC, Tuan VP, Wee Y, Cheng HC, Lee IT. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol 2021; 46:102124. [PMID: 34507160 PMCID: PMC8427320 DOI: 10.1016/j.redox.2021.102124] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
Carbon monoxide (CO) is now well recognized a pivotal endogenous signaling molecule in mammalian lives. The proof-of-concept employing chemical carriers of exogenous CO as prodrugs for CO release, also known as CO-releasing molecules (CO-RMs), has been appreciated. The major advantage of CO-RMs is that they are able to deliver CO to the target sites in a controlled manner. There is an increasing body of experimental studies suggesting the therapeutic potentials of CO and CO-RMs in different cancer models. This review firstly presents a short but crucial view concerning the characteristics of CO and CO-RMs. Then, the anticancer activities of CO-RMs that target many cancer hallmarks, mainly proliferation, apoptosis, angiogenesis, and invasion and metastasis, are discussed. However, their anticancer activities are varying and cell-type specific. The aerobic metabolism of molecular oxygen inevitably generates various oxygen-containing reactive metabolites termed reactive oxygen species (ROS) which play important roles in both physiology and pathophysiology. Although ROS act as a double-edged sword in cancer, both sides of which may potentially have been exploited for therapeutic benefits. The main focus of the present review is thus to identify the possible signaling network by which CO-RMs can exert their anticancer actions, where ROS play the central role. Another important issue concerning the potential effect of CO-RMs on the aerobic glycolysis (the Warburg effect) which is a feature of cancer metabolic reprogramming is given before the conclusion with future prospects on the challenges of developing CO-RMs into clinically pharmaceutical candidates in cancer therapy. CO-RMs as pro-drugs for controlled CO delivery are potentially beneficial in cancer treatment. Anticancer activities of CO-RMs are varying and cell-type specific. Anti-proliferative, pro-apoptotic, and anti-angiogenic effects are major niches. ROS may play a central role in the molecular pathways underlying anticancer activities of CO-RMs. CO-RMs can act against Warburg effect, a feature of cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Chen YC, Chen JH, Tsai CF, Wu CT, Wu MH, Chang PC, Yeh WL. Nicardipine Inhibits Breast Cancer Migration via Nrf2/HO-1 Axis and Matrix Metalloproteinase-9 Regulation. Front Pharmacol 2021; 12:710978. [PMID: 34483918 PMCID: PMC8414136 DOI: 10.3389/fphar.2021.710978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Metastasis represents an advanced stage of cancers, and matrix metalloproteinases are critical regulators. Calcium signal is crucial for appropriate cell behaviors. The efficacy and effects of calcium channel blockers in treating cancers are individually differ from each other. Here, we attempt to investigate the effects of nicardipine, a FDA-approved calcium channel blocker, in advanced breast cancers. Methods: We analyzed the influence of nicardipine on the colony-forming ability of triple negative breast cancer cell lines. Using cell culture inserts, cell migration was also examined. The expression of regulatory proteins was evaluated by real-time PCR, Western blot, and ELISA. Results: We have confirmed that nicardipine inhibits the breast cancer cells migration and colony formation. In addition, we also revealed that nicardipine increases the Nrf2 and HO-1 expression. The inhibition of HO-1 abrogates nicardipine-reduced matrix metalloproteinase-9 expression. Moreover, the end products of HO-1, namely, CO, Fe2+, and biliverdin (will converted to bilirubin), also decreases the expression of matrix metalloproteinase-9. Conclusion: These findings suggest that nicardipine-mediated matrix metalloproteinase-9 reduction is regulated by Nrf2/HO-1 axis and its catalytic end products. Therefore, nicardipine may be a potential candidate for repurposing against advanced breast cancers.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Miao-Hsiang Wu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Zhong BR, Zhou GF, Song L, Wen QX, Deng XJ, Ma YL, Hu LT, Chen GJ. TUFM is involved in Alzheimer's disease-like pathologies that are associated with ROS. FASEB J 2021; 35:e21445. [PMID: 33774866 DOI: 10.1096/fj.202002461r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-β precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of β-amyloid protein (Aβ) and β-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by translation inhibitor cycloheximide (CHX) or α-[2-[4-(3,4-Dichlorophenyl)-2-thiazolyl]hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5' untranslated region (5'UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.
Collapse
Affiliation(s)
- Bi-Rou Zhong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li-Tian Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
34
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Jain U, Saxena K, Chauhan N. Helicobacter pylori induced reactive oxygen Species: A new and developing platform for detection. Helicobacter 2021; 26:e12796. [PMID: 33666321 DOI: 10.1111/hel.12796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is the third leading cause of cancer-related deaths worldwide. Approximately 70% of cases are caused by a microaerophilic gram-negative bacteria, Helicobacter pylori (H. pylori), which potentially infect almost 50% of world's population. H. pylori is mainly responsible for persistent oxidative stress in stomach and induction of chronic immune responses which ultimately result into DNA damage that eventually can lead to gastric cancer. Oxidative stress is the result of excessive release of ROS/RNS by activated neutrophils whereas bacteria itself also produce ROS in host cells. Therefore, ROS detection is an important factor for development of new strategies related to identification of H. pylori infection. METHODS The review summarizes the various available techniques for ROS detection with their advantages, disadvantages, and limitations. All of the information included in this review have been retrieved from published studies on ROS generation and its detection methods. RESULTS Precisely, 71 articles have been incorporated and evaluated for this review. The studied articles were divided into two major categories including articles on H. pylori-related pathogenesis and various ROS detection methods for example probe-based methods, immunoassays, gene expression profiling, and other techniques. The major part of probe activity is based on fluorescence, chemiluminescence, or bioluminescence and detected by complementary techniques such as LC-MS, HPLC, EPR, and redox blotting. CONCLUSION The review describes the methods for ROS detection but due to some limitations in conventional methods, there is a need of cost-effective, early and fast detection methods like biosensors to diagnose the infection at its initial stage.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh, Noida, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh, Noida, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
36
|
Kwon Y. Possible Beneficial Effects of N-Acetylcysteine for Treatment of Triple-Negative Breast Cancer. Antioxidants (Basel) 2021; 10:169. [PMID: 33498875 PMCID: PMC7911701 DOI: 10.3390/antiox10020169] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
N-acetylcysteine (NAC) is a widely used antioxidant with therapeutic potential. However, the cancer-promoting effect of NAC observed in some preclinical studies has raised concerns regarding its clinical use. Reactive oxygen species (ROS) can mediate signaling that results in both cancer-promoting and cancer-suppressing effects. The beneficial effect of NAC may depend on whether the type of cancer relies on ROS signaling for its survival and metastasis. Triple-negative breast cancer (TNBC) has aggressive phenotypes and is currently treated with standard chemotherapy as the main systemic treatment option. Particularly, basal-like TNBC cells characterized by inactivated BRCA1 and mutated TP53 produce high ROS levels and rely on ROS signaling for their survival and malignant progression. In addition, the high ROS levels in TNBC cells can mediate the interplay between cancer cells and the tissue microenvironment (TME) to trigger the recruitment and conversion of stromal cells and induce hypoxic responses, thus leading to the creation of cancer-supportive TMEs and increased cancer aggressiveness. However, NAC treatment effectively reduces the ROS production and ROS-mediated signaling that contribute to cell survival, metastasis, and drug resistance in TNBC cells. Therefore, the inclusion of NAC in standard chemotherapy could probably provide additional benefits for TNBC patients.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
37
|
Martin SJ. The FEBS Journal in 2021: a sharp reminder that science really matters. FEBS J 2021; 288:4-9. [PMID: 33393713 DOI: 10.1111/febs.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
The FEBS Journal, a leading multidisciplinary journal in the life sciences, continues to grow in visibility and impact. Here, the Editor-in-Chief Seamus Martin discusses developments at the journal over the past year and the impact of the COVID-19 crisis on research activities.
Collapse
Affiliation(s)
- Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, Trinity College, Dublin 2, Ireland
| |
Collapse
|
38
|
Seok J, Jun S, Lee JO, Kim GJ. Mitochondrial Dynamics in Placenta-Derived Mesenchymal Stem Cells Regulate the Invasion Activity of Trophoblast. Int J Mol Sci 2020; 21:ijms21228599. [PMID: 33202697 PMCID: PMC7696686 DOI: 10.3390/ijms21228599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dynamics are involved in many cellular events, including the proliferation, differentiation, and invasion/migration of normal as well as cancerous cells. Human placenta-derived mesenchymal stem cells (PD-MSCs) were known to regulate the invasion activity of trophoblasts. However, the effects of PD-MSCs on mitochondrial function in trophoblasts are still insufficiently understood. Therefore, the objectives of this study are to analyze the factors related to mitochondrial function and investigate the correlation between trophoblast invasion and mitophagy via PD-MSC cocultivation. We assess invasion ability and mitochondrial function in invasive trophoblasts according to PD-MSC cocultivation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and extracellular flux (XF) assay. Under PD-MSCs co-cultivation, invasion activity of a trophoblast is increased via activation of the Rho signaling pathway as well as Matrix metalloproteinases (MMPs). Additionally, the expression of mitochondrial function (e.g., reactive oxygen species (ROS), calcium, and adenosine triphosphate (ATP) synthesis) in trophoblasts are increased via PD-MSCs co-cultivation. Finally, PD-MSCs regulate mitochondrial autophagy factors in invasive trophoblasts via regulating the balance between PTEN-induced putative kinase 1 (PINK1) and parkin RBR E3 ubiquitin protein ligase (PARKIN) expression. Taken together, these results demonstrate that PD-MSCs enhance the invasion ability of trophoblasts via altering mitochondrial dynamics. These results support the fundamental mechanism of trophoblast invasion via mitochondrial function and provide a new stem cell therapy for infertility.
Collapse
Affiliation(s)
- Jin Seok
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.S.); (S.J.)
| | - Sujin Jun
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.S.); (S.J.)
| | - Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.S.); (S.J.)
- Correspondence: ; Tel.: +82-31-881-7245
| |
Collapse
|
39
|
Wei S, Isagawa T, Eguchi M, Sato D, Tsukano H, Miyata K, Oike Y, Takeda N, Ikeda S, Kawano H, Maemura K. Febuxostat, a Xanthine Oxidase Inhibitor, Decreased Macrophage Matrix Metalloproteinase Expression in Hypoxia. Biomedicines 2020; 8:biomedicines8110470. [PMID: 33153000 PMCID: PMC7693746 DOI: 10.3390/biomedicines8110470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Macrophages in the atheroma region produce matrix metalloproteinases (MMPs) and decrease plaque stability. Tissue oxygen tension decreases in the arterial wall of the atherosclerotic region. Hypoxia inducible factor (HIF)-1α plays a critical role in the transcriptional activation of hypoxia inducible genes. However, the precise roles of HIF-1α independent pathways in hypoxic responses are largely unknown. Xanthine oxidase (XO) is an enzyme that utilizes molecular oxygen and produces reactive oxygen species (ROS). Here, we show that ROS derived from XO increases MMP-3, -10, and -13 expression in murine macrophages. We found that the transcript levels of macrophage MMP-3, -10, and -13 were increased in hypoxic conditions. Hypoxia induced MMP expression in HIF-1α deficient macrophages. N-acetylcysteine (NAC) or febuxostat, an XO inhibitor, suppressed MMP expression in murine macrophages. Febuxostat decreased the incidence of plaque rupture in apolipoprotein-E-deficient mice. Our results indicate that febuxostat stabilized atherosclerotic plaque via suppressing the activities of macrophage MMP-9 and -13. Febuxostat administration is a potential therapeutic option in the management of atherosclerotic patients.
Collapse
Affiliation(s)
- Shuoyu Wei
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
| | - Takayuki Isagawa
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
- Center for Data Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Correspondence: (T.I.); (K.M.)
| | - Masamichi Eguchi
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
| | - Daisuke Sato
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
| | - Hiroto Tsukano
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan; (H.T.); (K.M.); (Y.O.)
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan; (H.T.); (K.M.); (Y.O.)
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan; (H.T.); (K.M.); (Y.O.)
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan;
| | - Satoshi Ikeda
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8501, Japan; (S.W.); (M.E.); (D.S.); (S.I.); (H.K.)
- Correspondence: (T.I.); (K.M.)
| |
Collapse
|
40
|
Heat shock protein B8 promotes proliferation and migration in lung adenocarcinoma A549 cells by maintaining mitochondrial function. Mol Cell Biochem 2020; 476:187-197. [PMID: 32926297 DOI: 10.1007/s11010-020-03896-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022]
Abstract
Heat shock protein B8 (HSPB8) impacts on tumor proliferation and migration of malignancy. However, the role of HSPB8 in lung adenocarcinoma (LUAC) remains unclear. The aim of this study, therefore, was to clarify whether HSPB8 could bring benefits to proliferation and migration of LUAC and its underlying mechanisms. The expression of HSPB8 was first evaluated by immunohistochemistry in 35 LUAC samples. Then, A549 lung adenocarcinoma cells were transfected with pcDNA-HSPB8 or si-HSPB8 to induce HSPB8 overexpression and silence. Cellular activity was evaluated with a Cell Counting Kit-8 (CCK-8) assay. Cell proliferation and migration were observed by EdU assay and scratch assay. Mitochondria-specific reactive oxygen species (mtROS) and membrane potential were measured using MitoSOX Red probe and JC-1 staining. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) level were measured using commercial kits, respectively. HSPB8 protein, mitochondrial fusion protein MFN2 and mitochondrial fission protein p-Drp1/Drp1 were measured using western blot. Compared with the normal tissues, the expression of HSPB8 protein was higher in LUAC tissues and upregulation of HSPB8 protein was related to tumor size and tumor location. Furthermore, HSPB8 overexpression aggravated cell proliferation and migration of A549 cells. Mechanistically, HSPB8 suppressed mitochondrial impairment, leading to promoting the progress of A549 lung adenocarcinoma cells. These data demonstrate that HSPB8 plays an important role in progression of LUAC and may be a new target to treat LUAC.
Collapse
|
41
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
42
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
43
|
Coelomic Fluid of Eisenia fetida Ameliorates Cetuximab to Reduce K-Ras and Vimentin Expression through Promoting RUNX3 in an AOM/DSS-Induced Colitis Associated Colon Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9418520. [PMID: 32765634 PMCID: PMC7387963 DOI: 10.1155/2020/9418520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a major risk factor that increases the occurrence of colorectal cancer. In colorectal cancer due to colitis, intestinal inflammation plays an important role which causes DNA damage. The aim of this study is to investigate the anticancer effect of coelomic fluid of Eisenia fetida (CFEF) and cetuximab combinations. Colitis associated colon cancer was induced in BALB/c mice by DSS/AOM. The mice were randomly divided into six groups: group 1 received vehicle (control), groups 2–6 received DSS/AOM, groups 3–5 received cetuximab + CFEF (30, 60, or 120 mg/kgBW), and group 6 received CFEF only. After the 12th week of treatments, the colon tissues were removed for histological examination and immune-fluorescence. Intestinal Epithelial Cells (CECs) were analyzed by flow cytometer. Administration of CFEF significantly decreased the severity of DSS/AOM-induced CAC in a dose-dependent manner. The combinations of CFEF-cetuximab were revealed by histological change. The CFEF significantly reduced the severity scores (P < 0.05). The combinations of CFEF-cetuximab significantly inhibited K-Ras and vimentin expressions, whereas the percentage of RUNX3 significantly increased in CECs. The increasing of RUNX3 could prevent EMT, so that it can decrease K-Ras and vimentin to suppressed cell invasion and migration by CFEF. Our results suggest that CFEF has the therapeutic potential to CAC.
Collapse
|
44
|
Paneerselvam C, Ganapasam S. β-Escin alleviates cobalt chloride-induced hypoxia-mediated apoptotic resistance and invasion via ROS-dependent HIF-1α/TGF-β/MMPs in A549 cells. Toxicol Res (Camb) 2020; 9:191-201. [PMID: 32670550 PMCID: PMC7329168 DOI: 10.1093/toxres/tfaa019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 11/12/2022] Open
Abstract
Hypoxia is contributed in various pathophysiological conditions including obesity, cardiovascular diseases, and cancer. In cancer, hypoxia is a salient phenomenon and has been correlated with tumor progression, metastasis, and provoke resistance to therapies in cancer patients, which exert with stabilization of main effector, hypoxia inducible factor-1 alpha (HIF-1α). Therefore, therapeutic targeting of hypoxic responses in cancer is the potential approach to improve the better treatment efficacy. In the present study, we evaluated the effect of β-Escin (β-Es) on hypoxia-induced resistance to apoptosis and metastasis in human non-small-cell lung cancer cells. The MTT assay revealed that β-Es treatment decreased the A549 cells viability under cobalt chloride-induced hypoxia. Apoptotic proteins were analyzed by western blot that showed cancer cells treated with β-Es induced cell death in hypoxia condition as proteins compared with normoxia. Moreover, we observed that cobalt chloride induced hypoxia through the generation of intracellular reactive oxygen species and stabilized the transcriptional factor HIF-1α, which leads to cancer metastasis. This notion was supported by the migration, invasion, and adhesion assays. Furthermore, hypoxia increased the expression of transforming growth factor-β, and the activation of matrix metalloproteinases were suppressed by the treatment of β-Es as well as pretreatment with N-acetylcysteine (NAC). Therefore, we demonstrate that a concurrent activation of HIF-1α, transforming growth factor-β, and matrix metalloproteinases participate in hypoxia-induced metastasis and that β-Es prevent A549 cells metastasis by inhibition of reactive oxygen species.
Collapse
Affiliation(s)
- Chermakani Paneerselvam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| | - Sudhandiran Ganapasam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| |
Collapse
|
45
|
Schunk HC, Hernandez DS, Austin MJ, Dhada KS, Rosales AM, Suggs LJ. Assessing the range of enzymatic and oxidative tunability for biosensor design. J Mater Chem B 2020; 8:3460-3487. [PMID: 32159202 PMCID: PMC7219111 DOI: 10.1039/c9tb02666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of multi-functional materials and biosensors that can achieve an in situ response designed by the user is a current need in the biomaterials field, especially in complex biological environments, such as inflammation, where multiple enzymatic and oxidative signals are present. In the past decade, there has been extensive research and development of materials chemistries for detecting and monitoring enzymatic activity, as well as for releasing therapeutic and diagnostic agents in regions undergoing oxidative stress. However, there has been limited development of materials in the context of enzymatic and oxidative triggers together, despite their closely tied and overlapping mechanisms. With research focusing on enzymatically and oxidatively triggered materials separately, these systems may be inadequate in monitoring the complexity of inflammatory environments, thus limiting in vivo translatability and diagnostic accuracy. The intention of this review is to highlight a variety of enzymatically and oxidatively triggered materials chemistries to draw attention to the range of synthetic tunability available for the construction of novel biosensors with a spectrum of programmed responses. We focus our discussion on several types of macromolecular sensors, generally classified by the causative material response driving ultimate signal detection. This includes sensing based on degradative processes, conformational changes, supramolecular assembly/disassembly, and nanomaterial interactions, among others. We see each of these classes providing valuable tools toward coalescing current gaps in the biosensing field regarding specificity, selectivity, sensitivity, and flexibility in application. Additionally, by considering the materials chemistry of enzymatically and oxidatively triggered biomaterials in tandem, we hope to encourage synthesis of new biosensors that capitalize on their synergistic roles and overlapping mechanisms in inflammatory environments for applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Hattie C Schunk
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
47
|
Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Despite major progress in interventional and medical treatments, myocardial infarction (MI) and subsequent development of heart failure (HF) are still associated with high mortality. Both during ischemia reperfusion (IR) in the acute setting of MI, as well as in the chronic remodeling process following MI, oxidative stress substantially contributes to cardiac damage. Reactive oxygen species (ROS) generated within mitochondria are particular drivers of mechanisms contributing to IR injury, including induction of mitochondrial permeability transition or oxidative damage of intramitochondrial structures and molecules. But even beyond the acute setting, mechanisms like inflammatory signaling, extracellular remodeling, or pro-apoptotic signaling that contribute to post-infarction remodeling are regulated by mitochondrial ROS. In the current review, we discuss both sources and consequences of mitochondrial ROS during IR and in the chronic setting following MI, thereby emphasizing the potential therapeutic value of attenuating mitochondrial ROS to improve outcome and prognosis for patients suffering MI.
Collapse
|
48
|
Zhang X, Xu L, Yang T. miR-31 Modulates Liver Cancer HepG2 Cell Apoptosis and Invasion via ROCK1/F-Actin Pathways. Onco Targets Ther 2020; 13:877-888. [PMID: 32099392 PMCID: PMC6996230 DOI: 10.2147/ott.s227467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Liver cancer is one of the most common malignant tumor in the world. miR-31 is downregulated in liver cancer and associated with tumor growth and metastasis. However, the underlying mechanism remains unclear. METHODS Cellular apoptosis was detected via MTT, TUNEL assay, LDH release and Annexin V/PI flow-cytometry analysis. Cellular migration and invasion were measured by the Transwell chamber assay. Mitochondrial functions were evaluated via mitochondrial membrane potential JC-1 staining and mPTP opening assessment. The mitophagy activity was examined via Western blots. RESULTS In the present study, our results confirm that miR-31 promotes apoptosis and inhibits proliferation and metastasis in liver cancer HepG2 cells. In vitro, miR-31 promotes HepG2 cell apoptosis through the mitochondrial pathway as indicated by mitochondrial potential reduction, increased mPTP opening time, cty-c release and imbalance of pro- and anti-apoptotic proteins. Furthermore, miR-31 reduces the energy generation by inhibiting mitochondrial respiratory function. At last, it is demonstrated that miR-31 triggers the mitochondrial damage via ROCK1/F-actin pathway. Inhibiting the ROCK1/F-actin pathway abolishes the effects of miR-31 mimic on mitochondrial injury, apoptosis, proliferation arrest and migration inhibition. CONCLUSION Our results reveal that miR-31 can inhibit HepG2 cell survival and metastasis by activating the ROCK1/F-actin pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning110042, People’s Republic of China
| | - Lan Xu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning110042, People’s Republic of China
| | - Ting Yang
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning110042, People’s Republic of China
| |
Collapse
|
49
|
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019; 9:735. [PMID: 31766246 PMCID: PMC6920770 DOI: 10.3390/biom9110735] [Citation(s) in RCA: 710] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Punjab, Chandigarh 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Ayşegül Varol
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir TR26470, Turkey;
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey;
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India;
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
50
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|