1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Schmidt A, von Woedtke T, Weltmann KD, Bekeschus S. YAP/TAZ, beta-catenin, and TGFb pathway activation in medical plasma-induced wound healing in diabetic mice. J Adv Res 2025; 72:387-400. [PMID: 38986808 DOI: 10.1016/j.jare.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Hippo is a signaling pathway that is evolutionarily conserved and plays critical roles in wound healing and tissue regeneration. Disruption of the transcriptional activity of both Hippo-associated factors, the yes-associated protein (YAP), and the transcriptional co-activator with PDZ binding motif (TAZ) has been associated with cardiovascular diseases, fibrosis, and cancer. This makes the Hippo pathway an appealing target for therapeutic interventions. OBJECTIVES Prior research has indicated that medical gas plasma promotes wound healing by delivering a combination of reactive species directly to the affected areas. However, the involvement of YAP/TAZ and other signaling pathways in diabetic wound healing remains unexplored. METHODS To this extent, ear wounds were generated and treated with gas plasma in streptozotocin (STZ)-induced diabetic mice. Transcriptome profiling at two wound healing stages (days 9 and 20 post-wounding) was performed in female and male mice. Additionally, we employed gene and protein expression analyses, utilizing immunohistological and -chemical staining of various targets as well as quantitative PCR and Western blot analysis. RESULTS Gas plasma treatment accelerated healing by increasing re-epithelialization and modifying extracellular matrix components. Transcriptomic profiling charting the major alterations in gene expression following plasma treatment was followed by a validation of several targets using transcriptional and translational quantification as well as localization analyses. CONCLUSION Our study evaluated the cellular regulation of essential targets of the Hippo and related pathways such as YAP/TAZ, β-catenin, tumor growth factor β, and oxidative stress signaling after plasma treatment. The activation of genes, pathways, and their regulators is an attractive therapeutic aim for a therapeutic intervention in dermal skin repair in diabetic diseases using medical gas plasmas.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
3
|
Zhou Y, Wang F, Feng S, Li M, Zhu M. USP39 promote post-translational modifiers to stimulate the progress of cancer. Discov Oncol 2025; 16:749. [PMID: 40358671 PMCID: PMC12075731 DOI: 10.1007/s12672-025-02573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are a class of crucial peptidyl hydrolases within the ubiquitin system, playing a significant role in reversing and strictly regulating ubiquitination, which is essential for various biological processes such as protein stability and cellular signal transduction. Ubiquitin-specific protease 39 (USP39) is an important member of the DUBs family. Recent studies have revealed that USP39 is involved in the regulation of multiple cellular activities including cell proliferation, migration, invasion, apoptosis, and DNA damage repair. USP39 also plays a significant role in the development and progression of various cancers. It is believed that USP39 is a unique enzyme that controls the ubiquitin process and is closely associated with the occurrence and progression of many cancers, including hepatocellular, lung, gastric, breast, and ovarian cancer. This review summarizes the structural and functional aspects of USP39 and its research advancements in tumors, investigates the key molecular mechanisms related to USP39, and provides references for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yuli Zhou
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Fang Wang
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Siren Feng
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Mengsen Li
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570216, China.
| | - Mingyue Zhu
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
4
|
Kofler M, Venugopal S, Gill G, Di Ciano-Oliveira C, Kapus A. M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import. iScience 2025; 28:112105. [PMID: 40224012 PMCID: PMC11986988 DOI: 10.1016/j.isci.2025.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple mechanisms were proposed to mediate the nuclear import of TAZ/YAP, transcriptional co-activators regulating organ growth and regeneration. Our earlier observations showed that TAZ/YAP harbor a C-terminal, unconventional nuclear localization signal (NLS). Here, we show that this sequence, necessary and sufficient for basal, ATP-independent nuclear import, contains an indispensable central methionine flanked by negatively charged residues. Based on these features, we define the M-motif and propose that it is a new class of NLS, also present and import-competent in other cellular (STAT1 and cyclin B1) and viral (ORF6 of SARS-CoV2, VSV-M) proteins. Accordingly, ORF6 SARS-Cov2 competitively inhibits TAZ/YAP uptake, while TAZ abrogates STAT1 import. Similar to viral M-motif proteins, TAZ binds RAE1 and inhibits classic nuclear protein import, including that of antiviral factors (IRF3 and NF-κB). However, RAE1 is dispensable for TAZ import itself. Thus, the TAZ/YAP NLS has a dual function: it mediates unconventional nuclear import and inhibits classic import, contributing to the suppression of antiviral responses.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Gary Gill
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | | | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Department Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
5
|
Frömmichen J, Bungert E, Ströble J, Gläser M, Gottwald C, Zeqiri K, Reinhard T, Lübke J, Schlunck G, Wiedenmann CJ. Effects of Verteporfin on Interstitial Fluid Flow-Induced Fibrotic Transdifferentiation of Human Tenon Fibroblasts. Invest Ophthalmol Vis Sci 2025; 66:17. [PMID: 40197780 PMCID: PMC11993124 DOI: 10.1167/iovs.66.4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Postoperative scarring remains the major challenge in achieving long-term success after glaucoma filtration surgery. In a previous study, we showed that slow continuous fluid flow is sufficient to induce fibrotic responses in human tenon fibroblasts (HTFs) in two-dimensional (2D) and three-dimensional (3D) in vitro models. In the present study, we investigated the role of the mechanosensitive Yes-associated protein (YAP) and transcriptional coactivator (TAZ) signaling pathway in flow-induced fibrosis. Methods HTFs were exposed to continuous fluid flow for 48 or 72 hours in the presence or absence of the YAP/TAZ-transcriptional enhanced associated domain inhibitor verteporfin (VP). In a 2D model, the F-actin cytoskeleton, fibronectin 1 (FN1), YAP, and TAZ were visualized by confocal immunofluorescence microscopy. In a 3D model, mRNA was extracted, and the expression of fibrosis-associated genes was detected by quantitative PCR. Results HTFs exposed to slow fluid flow showed increased staining intensities for YAP/TAZ. Inhibition of YAP/TAZ by VP slightly reduced flow-induced fibrotic changes in the 2D model. The flow-induced increase in the expression of the extracellular matrix (ECM) genes COL1A1, CTGF, and FN1 was significantly inhibited by VP in the 3D model. Conclusions Slow interstitial fluid flow activates the YAP/TAZ pathway. VP exerts antifibrotic potential by reducing morphologic changes and suppressing the expression of ECM genes induced by flow. Therefore, YAP/TAZ inhibition may exhibit therapeutic potential after glaucoma filtration surgery by inhibiting fibrotic changes induced by mechanical stimuli.
Collapse
Affiliation(s)
- Janne Frömmichen
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Emma Bungert
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeanne Ströble
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moritz Gläser
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Gottwald
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kosovare Zeqiri
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Lübke
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
6
|
Küchler M, Ehmke M, Jaquet K, Wohlmuth P, Feldhege JM, Reese T, Hartmann T, Drexler R, Huber T, Burmester T, Oldhafer KJ. Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients. HPB (Oxford) 2025; 27:470-479. [PMID: 39870556 DOI: 10.1016/j.hpb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration. METHODS The intracellular localization of TEAD1-4 was characterized in tumor-free liver (TFL) tissue samples from 44 ALPPS patients obtained during the two stages of ALPPS surgery. Expression levels were correlated with clinical and pathological data as well as liver regeneration metrics. RESULTS TEAD family members are simultaneously expressed in individual hepatocytes and show relations with liver regeneration, clinical outcome and outcome parameters when comparing TFL tissue obtained at different stages of ALPPS surgery. Furthermore, differences in TEAD expression and localization within hepatocytes appeared to be independent of global factors. CONCLUSION TEAD1-4 expression correlates with liver regeneration outcomes. Specifically, cytoplasmic and nuclear expression scores of TEAD1 serve as predictive markers for clinical outcomes following ALPPS.
Collapse
Affiliation(s)
- Mirco Küchler
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany.
| | - Mareike Ehmke
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Kai Jaquet
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Peter Wohlmuth
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Johannes M Feldhege
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Tim Reese
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Thilo Hartmann
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Richard Drexler
- Division of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa Huber
- Department of Gynecology and Obstetrics, University Hospital Zurich, Switzerland
| | - Thorsten Burmester
- Division of Molecular Animal Physiology, Department of Biology, University Hamburg, Germany
| | - Karl J Oldhafer
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
7
|
Atterton C, Pelenyi A, Jones J, Currey L, Al-Khalily M, Wright L, Doonan M, Knight D, Kurniawan ND, Walters S, Thor S, Piper M. The Hippo effector TEAD1 regulates postnatal murine cerebellar development. Brain Struct Funct 2025; 230:42. [PMID: 40064689 PMCID: PMC11893647 DOI: 10.1007/s00429-025-02903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
The Hippo signalling cascade is an evolutionarily conserved pathway critical for the development of numerous organ systems and is required for the development of many parts of the mammalian nervous system, including the cerebellum. The Hippo pathway converges, via the nuclear YAP/TAZ co-transcription factors, on transcription factors of the TEA Domain (TEAD) family (TEAD1-4) and promotes the expression of pro-proliferative genes. Despite the importance of TEAD function, our understanding of spatial and temporal expression of this family is limited, as is our understanding of which TEAD family members regulate Hippo-dependent organ development. Here, we focus on TEAD1 and how this factor contributes to postnatal murine cerebellar development. We find expression of TEAD1 within cerebellar progenitor cells and glial cells, including astrocytes and Bergmann glia, as well as by some interneurons within the granular layer. The importance of TEAD1 expression for cerebellar development was investigated using a conditional ablation approach, which revealed a range of developmental deficits in Tead1 mutants, including an underdeveloped cerebellum, morphological defects in Bergmann Glia and Purkinje Neurons, as well as granule neuron migration defects. Collectively, these findings suggest a major role for TEAD1 as an effector of the Hippo pathway during cerebellar development.
Collapse
Affiliation(s)
- Cooper Atterton
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexandra Pelenyi
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Justin Jones
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura Currey
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Majd Al-Khalily
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lucinda Wright
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mikki Doonan
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Knight
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nyoman D Kurniawan
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shaun Walters
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Xie H, Zhu Z, Tang J, Zhu W, Zhu M, Yi Wai AW, Li J, Wu Z, Tam PKH, Lui VCH, Tang W. Dysregulated Activation of Hippo-YAP1 Signaling Induces Oxidative Stress and Aberrant Development of Intrahepatic Biliary Cells in Biliary Atresia. J Transl Med 2025; 105:102199. [PMID: 39579985 DOI: 10.1016/j.labinv.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The canonical Hippo-YAP1 signaling pathway is crucial for liver development and regeneration, but its role in repair and regeneration of intrahepatic bile duct in biliary atresia (BA) remains largely unknown. YAP1 expression in the liver tissues of patients with BA and Rhesus rotavirus-induced experimental BA mouse models were examined using quantitative reverse transcriptase-PCR and double immunofluorescence. Mouse EpCAM-expressing cell-derived liver organoids were generated and treated with Hippo-YAP1 pathway activators (Xmu-mp-1 and TRULI) or an inhibitor (Peptide17). Morphologic, immunofluorescence, RNA-seq, and bioinformatic analyses were performed. Oxidative stress in human intrahepatic biliary epithelial cells transfected with a constitutively active YAP1 (YAPS127A) plasmid was assessed using quantitative reverse transcriptase-PCR and fluorescence-activated cell sorting analysis. PRDX1 expression in BA and experimental BA mouse model livers was examined by double immunofluorescence. The mRNA expression and nuclear localization of YAP1 in EpCAM-expressing bile duct cells were increased in the livers of BA and experimental BA mouse model. Aberrant development of intrahepatic organoids, differential expression of oxidative stress response genes Sod3 and Prdx1, enrichment of oxidative stress, and mitochondrial reactive oxidative stress-associated gene sets were observed in organoids treated with the Hippo-YAP1 activator, whereas organoid development was unaffected by the addition of the Hippo-YAP1 inhibitor. Transfection with constitutively active YAP1 led to the downregulation of PRDX1 and oxidative stress in human intrahepatic biliary epithelial cells. Additionally, reduced PRDX1 expression was also observed in the bile duct of human BA and experimental BA mouse livers. In conclusion, dysregulated activation of Hippo-YAP1 signaling induces oxidative stress and impairs the development of intrahepatic biliary organoids, which indicates therapeutic strategies targeting Hippo-YAP1 signaling may offer the potential to improve biliary repair and regeneration in patients with BA.
Collapse
Affiliation(s)
- Hua Xie
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongxian Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaqi Tang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Amy Wing Yi Wai
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Junzhi Li
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongluan Wu
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong Hang Tam
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Medical Sciences Division, Macau University of Science and Technology, Macau SAR, China
| | - Vincent Chi Hang Lui
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Zhang M, Wu B, Gu J. The Pivotal Role of LACTB in the Process of Cancer Development. Int J Mol Sci 2025; 26:1279. [PMID: 39941048 PMCID: PMC11818536 DOI: 10.3390/ijms26031279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The mitochondrial serine β-lactamase-like protein LACTB has emerged as a critical regulator in cancer biology, distinguished by its unique structural and functional attributes. Defined by its conserved penicillin-binding proteins and β-lactamases (PBP-βLs) domain and SXXK catalytic motif, LACTB demonstrates properties distinct from its prokaryotic homologs, including the ability to polymerize into filaments. These structural characteristics enable LACTB to modulate mitochondrial organization and enzymatic activity, influencing lipid metabolism and indirectly affecting cellular proliferation. Importantly, the expression and functional roles of LACTB exhibit cancer-type-specific variation, underscoring its dual function as both a tumor suppressor and an oncogene. Decreased LACTB expression is associated with poor clinical outcomes in cancers such as breast cancer, lung cancer, and colorectal cancer, while specific mutations and regulatory mechanisms have been linked to its oncogenic activity in osteosarcoma and pancreatic adenocarcinoma. Mechanistically, LACTB regulates key processes in cancer progression, including mitochondrial dynamics, epithelial-mesenchymal transition (EMT), and cell death pathways. This duality highlights LACTB as a promising therapeutic target and underscores its relevance in advancing precision oncology strategies. This review provides a comprehensive analysis of expression level, structure-function relationships, and the diverse roles of LACTB in oncogenesis, underscoring its promise as a focal point for precision cancer therapies.
Collapse
Affiliation(s)
- Minghui Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China; (M.Z.); (B.W.)
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bowen Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China; (M.Z.); (B.W.)
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jinke Gu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China; (M.Z.); (B.W.)
| |
Collapse
|
10
|
Gu J, Lv YF, Xia JY, Bai FH, Gong J, Pan GQ, Liu B, Huang L, Guo QN, Hao XL. TC2N maintains stem cell-like characteristics to accelerate lung carcinogenesis by blockade of dual specificity protein phosphatase 3. Cell Biosci 2025; 15:8. [PMID: 39849581 PMCID: PMC11758731 DOI: 10.1186/s13578-025-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Tandem C2 domains, nuclear (TC2N) is a protein that has been characterized to contain C2A domain, C2B domain, and a short C-terminus with a WHXL motif. In previous studies, we have uncovered the oncogenic role and mechanisms of TC2N in lung cancer: TC2N achieves this by inhibiting the p53 signaling pathway and activating the NF-kappaB signaling pathway. Beyond that, its precise function in tumorigenesis is not fully understood. METHODS TC2N-engineered mice model was used to assess the effect of TC2N knockout on normal lung and urethane-induced carcinogenesis. Tumor tissues of 395 lung cancer patients were subjected to tissue microarray and further assessed the associations of TC2N expression with tumor differentiation degree. The protein levels of TC2N and stem cell markers in cell lines and tissue specimens were monitored by WB and immunohistochemistry. In vitro cell assays were performed to assess the effect of TC2N ectopic expression on the stem cell-like characteristics of lung cancer cells. The downstream signaling pathway or target molecule of TC2N was mined using a combination of transcriptomics and proteomics, and the underlying mechanism was explored by WB and co-IP assays. RESULTS Herein, TC2N appeared to have a strong effect in promoting lung tumorigenesis caused by urethane, whereas it seemed to lose its function in the normal lung. Meanwhile, we found that the functional differences of TC2N between lung tumor and normal lung were linked to its potential role in cancer cell stemness. Function-wise, TC2N overexpression maintained stem-like properties of lung cancer cell. Mechanism-wise, TC2N upregulated the phosphorylation of EGFR, ERK, STAT3 and FAK1 to activate these signaling pathways by the inhibition of DUSP3 phosphatase via a dual mechanism. Firstly, TC2N competes with EGFR, ERK, STAT3 and FAK1 for binding to DUSP3. This competition prevents these signaling molecules from being dephosphorylated by DUSP3, resulting in their sustained activation. Secondly, TC2N bind to DUSP3 and restrict the enzyme's ability to dephosphorylate the signaling molecules. CONCLUSIONS Overall, this study revealed a previously unknown role and mechanism of TC2N in the regulation of tumorigenesis and stemness in lung cancer cells.
Collapse
Affiliation(s)
- Jing Gu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, PR China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Ji-Ying Xia
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Fu-Hai Bai
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Ji Gong
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China.
| | - Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China.
| |
Collapse
|
11
|
Vaitinadapoulé H, Ben Moussa O, Maurin C, Aouimeur I, Perrache C, Thomas J, Forestier P, Crouzet E, He Z, Gain P, Thuret G, Mascarelli F. Expression of Yes-associated protein in endothelial cells of human corneas before and after storage in organ culture. Sci Rep 2024; 14:31073. [PMID: 39730686 DOI: 10.1038/s41598-024-82269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
The cornea, the anterior meniscus-shaped transparent and refractive structure of the eyeball, is the first mechanical barrier of the eye. Its functionality heavily relies on the health of its endothelium, its most posterior layer. The treatment of corneal endothelial cells (CECs) deficiency is allogeneic corneal graft using stored donor corneas. One of the main goals of eye banks is to maintain endothelial cell density (ECD) and endothelial barrier function, critical parameters influencing transplantation outcomes. Unlike in vivo, the stored cornea is not subjected to physiological mechanical stimuli, such as the hydrokinetic pressure of the aqueous humor and intraocular pressure (IOP). YAP (Yes-Associated Protein), a pivotal transcriptional coactivator, is recognized for its ability to sense diverse biomechanical cues and transduce them into specific biological signals, varying for each cell type and mechanical forces. The biomechanical cues that might regulate YAP in human corneal endothelium remain unidentified. Therefore, we investigated the expression and subcellular localization of YAP in the endothelium of corneas stored in organ culture (OC). Our findings demonstrated that CEC morphology, ECD and cell-cell interactions are distinctly and differentially associated with modifications in the expression, subcellular localization and phosphorylation of YAP. Notably, this phosphorylation occurs in the basal region of the primary cilium, which may play central cellular roles in sensing mechanical stimuli. The sustained recruitment of YAP in cellular junctions, nucleus, and cilium under long-term OC conditions strongly indicates its specific role in maintaining CEC homeostasis. Understanding these biophysical influences could aid in identifying molecules that promote homeostasis and enhance the functionality of CECs.
Collapse
Affiliation(s)
- Hanielle Vaitinadapoulé
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Olfa Ben Moussa
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Corantin Maurin
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Inès Aouimeur
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Chantal Perrache
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Justin Thomas
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Pierre Forestier
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Emmanuel Crouzet
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Zhiguo He
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
| | - Philippe Gain
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
- Ophthalmology Department, University Hospital, Avenue Albert Raimond, 42055, Saint-Etienne Cedex 02, France
| | - Gilles Thuret
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France.
- Ophthalmology Department, University Hospital, Avenue Albert Raimond, 42055, Saint-Etienne Cedex 02, France.
| | - Frédéric Mascarelli
- Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France
- Centre de Recherche des Cordeliers, UMR S1138, Université de Paris Descartes, Paris, France
| |
Collapse
|
12
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yang G, Wang Y, Hu S, Chen J, Chen L, Miao H, Li N, Luo H, He Y, Qian Y, Miao C, Feng R. Inhibition of neddylation disturbs zygotic genome activation through histone modification change and leads to early development arrest in mouse embryos. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167292. [PMID: 38871031 DOI: 10.1016/j.bbadis.2024.167292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Post-translational modification and fine-tuned protein turnover are of great importance in mammalian early embryo development. Apart from the classic protein degradation promoting ubiquitination, new forms of ubiquitination-like modification are yet to be fully understood. Here, we demonstrate the function and potential mechanisms of one ubiquitination-like modification, neddylation, in mouse preimplantation embryo development. Treated with specific inhibitors, zygotes showed a dramatically decreased cleavage rate and almost all failed to enter the 4-cell stage. Transcriptional profiling showed genes were differentially expressed in pathways involving cell fate determination and cell differentiation, including several down-regulated zygotic genome activation (ZGA) marker genes. A decreased level of phosphorylated RNA polymerase II was detected, indicating impaired gene transcription inside the embryo cell nucleus. Proteomic data showed that differentially expressed proteins were enriched in histone modifications. We confirmed the lowered in methyltransferase (KMT2D) expression and a decrease in histone H3K4me3. At the same time, acetyltransferase (CBP/p300) reduced, while deacetylase (HDAC6) increased, resulting in an attenuation in histone H3K27ac. Additionally, we observed the up-regulation in YAP1 and RPL13 activities, indicating potential abnormalities in the downstream response of Hippo signaling pathway. In summary, we found that inhibition of neddylation induced epigenetic changes in early embryos and led to abnormalities in related downstream signaling pathways. This study sheds light upon new forms of ubiquitination regulating mammalian embryonic development and may contribute to further investigation of female infertility pathology.
Collapse
Affiliation(s)
- Guangping Yang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Yangzhou Maternal and Child Health Care Hospital Affiliated to Yangzhou University, China
| | - Yingnan Wang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Saifei Hu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianhua Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liangliang Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Na Li
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Hui Luo
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanni He
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Qian
- Clinical Center of Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China.
| | - Ruizhi Feng
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Clinical Center of Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China; Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu 215005, China.
| |
Collapse
|
14
|
Jeong W, Kwon H, Park SK, Lee IS, Jho EH. Retinoic acid-induced protein 14 links mechanical forces to Hippo signaling. EMBO Rep 2024; 25:4033-4061. [PMID: 39160347 PMCID: PMC11387738 DOI: 10.1038/s44319-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Cells sense and respond to various mechanical forces from the extracellular matrix primarily by modulating the actin cytoskeleton. Mechanical forces can be translated into biochemical signals in a process called mechanotransduction. Yes-associated protein (YAP) is an effector of Hippo signaling and a mediator of mechanotransduction, but how mechanical forces regulate Hippo signaling is still an open question. We propose that retinoic acid-induced protein 14 (RAI14) responds to mechanical forces and regulates Hippo signaling. RAI14 positively regulates the activity of YAP. RAI14 interacts with NF2, a key component of the Hippo pathway, and the interaction occurs on filamentous actin. When mechanical forces are kept low in cells, NF2 dissociates from RAI14 and filamentous actin, resulting in increased interactions with LATS1 and activation of the Hippo pathway. Clinical data show that tissue stiffness and expression of RAI14 and YAP are upregulated in tumor tissues and that RAI14 is strongly associated with adverse outcome in patients with gastric cancer. Our data suggest that RAI14 links mechanotransduction with Hippo signaling and mediates Hippo-related biological functions such as cancer progression.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyeryun Kwon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - In-Seob Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
15
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, Jaaks P, Baltschukat S, Barbosa IAM, Bauer D, Brachmann SM, Delaunay C, Estadieu C, Faris JE, Furet P, Harlfinger S, Hueber A, Jiménez Núñez E, Kodack DP, Mandon E, Martin T, Mesrouze Y, Romanet V, Scheufler C, Sellner H, Stamm C, Sterker D, Tordella L, Hofmann F, Soldermann N, Schmelzle T. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. NATURE CANCER 2024; 5:1102-1120. [PMID: 38565920 PMCID: PMC11286534 DOI: 10.1038/s43018-024-00754-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel Bauer
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Pascal Furet
- Novartis BioMedical Research, Basel, Switzerland
| | - Stefanie Harlfinger
- Novartis BioMedical Research, Basel, Switzerland
- AstraZeneca, Oncology R&D, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Group, R&D Medical Care, Toulouse, France
| | | | | |
Collapse
|
17
|
Fan M, Xu X, Hu Y. Characterization of tumor endothelial cells (TEC) in gastric cancer and development of a TEC-based risk signature using single-cell RNA-seq and bulk RNA-seq data. Aging (Albany NY) 2024; 16:10252-10270. [PMID: 38870270 PMCID: PMC11236301 DOI: 10.18632/aging.205928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Tumor endothelial cells (TECs) are essential participants in tumorigenesis. This study is focused on elucidating the TEC traits in gastric cancer (GC) and constructing a prognostic risk model to predict the clinical outcome of GC patients. METHODS Single-cell RNA sequencing (scRNA-seq) data were obtained from the GEO database. Using specific markers, the Seurat R package aided in processing scRNA-seq data and identifying TEC clusters. Based on TEC cluster-associated genes identified by Pearson correlation analysis, TEC-related prognostic genes were screened by lasso-Cox regression analysis, thereby constructing a risk signature. A nomogram was created by combining the risk signature with clinicopathological features. RESULTS Based on the scRNA-seq data, 5 TEC clusters were discovered in GC, with 3 of them showing prognostic associations in GC. A total of 163 genes were pinpointed among 3302 DEGs as significantly linked to TEC clusters, leading to the formulation of a risk signature comprising 8 genes. Furthermore, there was a notable correlation between the risk signature and the immune cell infiltration. Multivariate analysis findings indicated that the risk signature served as an independent prognostic factor for GC. Moreover, its efficacy in forecasting immune response was validated. CONCLUSION TEC-based risk model is highly effective in predicting the survival outcomes of GC patients and can forecast the immune response. Targeting TECs may significantly inhibit tumor progression and enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Meng Fan
- Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China
| | - Xiaofei Xu
- Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China
| | - Yu Hu
- Department of Gastrointestinal Surgery, Zhu Cheng People’s Hospital, Weifang, China
| |
Collapse
|
18
|
Song J, Kim HK, Cho H, Yoon SJ, Lim J, Lee K, Hwang ES. TAZ deficiency exacerbates psoriatic pathogenesis by increasing the histamine-releasing factor. Cell Biosci 2024; 14:60. [PMID: 38734624 PMCID: PMC11088771 DOI: 10.1186/s13578-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcriptional coactivator with PDZ-biding motif (TAZ) is widely expressed in most tissues and interacts with several transcription factors to regulate cell proliferation, differentiation, and death, thereby influencing organ development and size control. However, very little is known about the function of TAZ in the immune system and its association with inflammatory skin diseases, so we investigated the role of TAZ in the pathogenesis of psoriasis. RESULTS Interestingly, TAZ was expressed in mast cells associated, particularly in lysosomes, and co-localized with histamine-releasing factor (HRF). TAZ deficiency promoted mast cell maturation and increased HRF expression and secretion by mast cells. The upregulation of HRF in TAZ deficiency was not due to increased transcription but to protein stabilization, and TAZ restoration into TAZ-deficient cells reduced HRF protein. Interestingly, imiquimod (IMQ)-induced psoriasis, in which HRF serves as a major pro-inflammatory factor, was more severe in TAZ KO mice than in WT control. HRF expression and secretion were increased by IMQ treatment and were more pronounced in TAZ KO mice treated with IMQ. CONCLUSIONS Thus, as HRF expression was stabilized in TAZ KO mice, psoriatic pathogenesis progressed more rapidly, indicating that TAZ plays an important role in preventing psoriasis by regulating HRF protein stability.
Collapse
Affiliation(s)
- Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jihae Lim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
19
|
Pichol-Thievend C, Anezo O, Pettiwala AM, Bourmeau G, Montagne R, Lyne AM, Guichet PO, Deshors P, Ballestín A, Blanchard B, Reveilles J, Ravi VM, Joseph K, Heiland DH, Julien B, Leboucher S, Besse L, Legoix P, Dingli F, Liva S, Loew D, Giani E, Ribecco V, Furumaya C, Marcos-Kovandzic L, Masliantsev K, Daubon T, Wang L, Diaz AA, Schnell O, Beck J, Servant N, Karayan-Tapon L, Cavalli FMG, Seano G. VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance. Nat Commun 2024; 15:3602. [PMID: 38684700 PMCID: PMC11058782 DOI: 10.1038/s41467-024-47985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.
Collapse
Affiliation(s)
- Cathy Pichol-Thievend
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Oceane Anezo
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Aafrin M Pettiwala
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
- Institut Curie, PSL University, 75005, Paris, France
| | - Guillaume Bourmeau
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Remi Montagne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Anne-Marie Lyne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Pauline Deshors
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Alberto Ballestín
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Benjamin Blanchard
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Juliette Reveilles
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Boris Julien
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | | | - Laetitia Besse
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UMS2016, INSERM US43, Multimodal Imaging Center, 91400, Orsay, France
| | - Patricia Legoix
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Florent Dingli
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Stephane Liva
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Damarys Loew
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Elisa Giani
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Valentino Ribecco
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Charita Furumaya
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Laura Marcos-Kovandzic
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Thomas Daubon
- Université Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Hematologic Malignancies Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Florence M G Cavalli
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France.
| |
Collapse
|
20
|
Li Y, Zheng Z, Xiao L, Chen Y, Liu X, Long D, Chai L, Li Y, Tan C. Dinaciclib exerts a tumor-suppressing effect via β-catenin/YAP axis in pancreatic ductal adenocarcinoma. Anticancer Drugs 2024; 35:140-154. [PMID: 37694833 DOI: 10.1097/cad.0000000000001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Dinaciclib, a cyclin-dependent kinase-5 (CDK5) inhibitor, has significant anti-tumor properties. However, the precise mechanism of dinaciclib requires further investigation. Herein, we investigated the anti-tumor functions and molecular basis of dinaciclib in pancreatic ductal adenocarcinoma (PDAC). PDAC and matched para-carcinoma specimens were collected from the patients who underwent radical resection. Immunohistochemistry was performed to assess CDK5 expression. Cell proliferation ability, migration, and invasion were measured using Cell Counting Kit-8, wound healing, and transwell assay, respectively. The cell cycle and apoptosis were assessed using flow cytometry. Gene expression was examined using RNA-seq and quantitative real-time PCR. Protein expression of proteins was measured by western blot analysis and immunofluorescence microscopy. Tumor-bearing mice were intraperitoneally injected with dinaciclib. CDK5 is highly expressed in PDAC. The expression level of CDK5 was significantly related to tumor size, T stage, and the American Joint Committee on Cancer stage. High CDK5 expression can predict poor survival in PDAC patients. In addition, the expression level of CDK5 might be an independent prognostic factor for PDAC patients. Dinaciclib inhibits the growth and motility of PDAC cells and induces apoptosis and cell cycle arrest in the G2/M phase. Mechanistically, dinaciclib down-regulated yes-associated protein (YAP) mRNA and protein expression by reducing β-catenin expression. Moreover, dinaciclib significantly inhibited PDAC cell growth in vivo . Our findings reveal a novel anti-tumor mechanism of dinaciclib in which it decreases YAP expression by down-regulating β-catenin at the transcriptional level rather than by activating Hippo pathway-mediated phosphorylation-dependent degradation.
Collapse
Affiliation(s)
- Yichen Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Zhenjiang Zheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Li Xiao
- Department of Traditional Chinese Medicine, Chengdu Third People's Hospital
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Diseaserelated Molecular Network, West China Hospital, Sichuan University
| | - Li Chai
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University
| |
Collapse
|
21
|
Yang JT, Wu D, Li J, Zhao C, Zhu L, Xu C, Xu N. An Injectable Composite Hydrogel of Verteporfin-Bonded Carboxymethyl Chitosan and Oxidized Sodium Alginate Facilitates Scarless Full-Thickness Skin Regeneration. Macromol Biosci 2024; 24:e2300165. [PMID: 37681479 DOI: 10.1002/mabi.202300165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/22/2023] [Indexed: 09/09/2023]
Abstract
Full-thickness skin defect has always been a major challenge in clinics due to fibrous hyperplasia in the repair process. Hydrogel composite dressings loaded with anti-fibrotic drugs have been considered as a promising strategy for scarless skin regeneration. In this work, a hydrogel composite (VP-CMCS-OSA) of carboxymethyl chitosan (CMCS) and oxidized sodium alginate (OSA), with loading anti-fibrotic drug verteporfin (VP), is developed based on two-step chemical reactions. Verteporfin is bonded with carboxymethyl chitosan through EDC/NHS treatment to form VP-CMCS, and then VP-CMCS is crosslinked with oxidized sodium alginate by Schiff base reaction to form VP-CMCS-OSA hydrogel. The characterization by SEM, FTIR, and UV-Vis shows the microstructure and chemical bonding of VP-CMCS-OSA. VP-CMCS-OSA hydrogel demonstrates the properties of high tissue adhesion, strong self-healing, and tensile ability. In the full-thickness skin defect model, the VP-CMCS-OSA composite hydrogels hasten wound healing due to the synergistic effects of hydrogels and verteporfin administration. The histological examination reveals the regular collagen arrangement and more skin appendages after VP-CMCS-OSA composite hydrogel treatment, indicating the full-thickness skin regeneration without potential scar formation. The outcomes suggest that the verteporfin-loaded composite hydrogel could be a potential method for scarless skin regeneration.
Collapse
Affiliation(s)
- Jiang-Tao Yang
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Dingwei Wu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianping Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chenchen Zhao
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lian Zhu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengchen Xu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Na Xu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
22
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
23
|
Xu Q, Zhuo K, Zhang X, Zhen Y, Liu L, Zhang L, Gu Y, Jia H, Chen Q, Liu M, Dong J, Zhou MS. The role of angiotensin II activation of yes-associated protein/PDZ-binding motif signaling in hypertensive cardiac and vascular remodeling. Eur J Pharmacol 2024; 962:176252. [PMID: 38061470 DOI: 10.1016/j.ejphar.2023.176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
Vascular remodeling is the pathogenic basis of hypertension and end organ injury, and the proliferation of vascular smooth muscle cells (VSMCs) is central to vascular remodeling. Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway and crucial for controlling cell proliferation, apoptosis and differentiation. The present study investigated the role of YAP/TAZ in cardiac and vascular remodeling of angiotensin II-induced hypertension. Ang II induced YAP/TAZ activation in the heart and aorta, which was prevented by YAP/TAZ inhibitor verteporfin. Treatment with verteporfin significantly reduced Ang II-induced cardiac and vascular hypertrophy with a mild reduction in systolic blood pressure (SBP), verteporfin attenuated Ang II-induced cardiac and aortic fibrosis with the inhibition of transform growth factor (TGF)β/Smad2/3 fibrotic signaling and extracellular matrix collagen I deposition. Ang II induced Rho A, extracellular signal-regulated kinase 1/2 (ERK1/2) and YAP/TAZ activation in VSMCs, either Rho kinase inhibitor fasudil or ERK inhibitor PD98059 suppressed Ang II-induced YAP/TAZ activation, cell proliferation and fibrosis of VSMCs. Verteporfin also inhibited Ang II-induced VSMC proliferation and fibrotic TGFβ1/Smad2/3 pathway. These results demonstrate that Ang II activates YAP/TAZ via Rho kinase/ERK1/2 pathway in VSMCs, which may contribute to cardiac and vascular remodeling in hypertension. Our results suggest that YAP/TAZ plays a critical role in the pathogenesis of hypertension and end organ damage, and targeting the YAP/TAZ pathway may be a new strategy for the prevention and treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Kunping Zhuo
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiaotian Zhang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yanru Zhen
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Limin Liu
- Department of Vasculocardiology, The Second Hospital of Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yufan Gu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Hui Jia
- Department of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Qing Chen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Meixi Liu
- Department of Clinical Medicine, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jiawei Dong
- Department of Clinical Medicine, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China; Department of Physiology, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
24
|
Zhou Q, Zhang J, Zhang J, Liang S, Cai D, Xiao H, Zhu Y, Xiang W, Rodrigues-Lima F, Chi J, Guidez F, Wang L. Vemurafenib induces senescence in acute myeloid leukemia and myelodysplastic syndrome by activating the HIPPO signaling pathway: implications for potential targeted therapy. Biol Direct 2024; 19:6. [PMID: 38178263 PMCID: PMC10768477 DOI: 10.1186/s13062-023-00451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The outcome of Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remain dismal despite the development of treatment. Targeted therapy is gaining more and more attention in improving prognosis. METHODS Expression of BRAF was analyzed by RT-qPCR in AML and MDS patients. Cells viability treated by drugs was measured by CCK-8 assay. Network pharmacology and RNA-sequence were used to analyze the mechanism of drugs and verified in vitro and xenograft tumor model. RESULTS Here we showed that BRAF was overexpressed in AML and MDS patients, and correlated with poor prognosis. The BRAF inhibitor-Vemurafenib (VEM) could significantly induce senescence, proliferation inhibition and apoptosis in AML cells, which can be enhanced by Bortezomib (BOR). This inhibitory effect was also verified in CD34 + cells derived from AML patients. Mechanistically, we showed that VEM combined with BOR could turn on HIPPO signaling pathway, thereby inducing cellular senescence in AML cells and xenograft mouse. CONCLUSIONS Taken together, our findings demonstrate a significant upregulation of BRAF expression in AML and MDS patients, which is associated with unfavorable clinical outcomes. We also discovered that the BRAF inhibitor Vemurafenib induces cellular senescence through activation of the HIPPO signaling pathway. Analysis of BRAF expression holds promise as a prognostic indicator and potential therapeutic target for individuals with AML and MDS.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Jiamin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Jingsong Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Duo Cai
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Han Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China
| | - Fernando Rodrigues-Lima
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS UMR 8251, Paris, France
| | - Jianxiang Chi
- Center for the Study of Hematological Malignancies, Karaiskakio Foundation, Nicosia, Cyprus
| | - Fabien Guidez
- UMR1231 Inserm/uB/AgroSup, Université de Bourgogne, 7 boulevard Jeanne d'Arc 21079 DIJON Cedex, DIJON, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
25
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
26
|
Ma X, Mandausch FJ, Wu Y, Sahoo VK, Ma W, Leoni G, Hostiuc M, Wintgens JP, Qiu J, Kannaiyan N, Rossner MJ, Wehr MC. Comprehensive split TEV based protein-protein interaction screening reveals TAOK2 as a key modulator of Hippo signalling to limit growth. Cell Signal 2024; 113:110917. [PMID: 37813295 DOI: 10.1016/j.cellsig.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.
Collapse
Affiliation(s)
- Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Fiona J Mandausch
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Vivek K Sahoo
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Wenbo Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Giovanna Leoni
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Madalina Hostiuc
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jan P Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jiajun Qiu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | - Moritz J Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany; Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
27
|
Cheng X, Case LB. Phase separation in chemical and mechanical signal transduction. Curr Opin Cell Biol 2023; 85:102243. [PMID: 37788587 PMCID: PMC11533726 DOI: 10.1016/j.ceb.2023.102243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023]
Abstract
Signal transduction enables cells to sense and respond to chemical and mechanical information in the extracellular environment. Recently, phase separation has emerged as a physical mechanism that can influence the spatial organization of signaling molecules and regulate downstream signaling. Although many molecular components of signaling pathways, including receptors, kinases, and transcription factors, have been observed to undergo phase separation, understanding the functional consequences of their phase separation in signal transduction remains an ongoing area of research. In this review, we will discuss recent studies investigating how cells potentially use phase separation to regulate different signaling pathways by initiating signaling, amplifying signaling, or inhibiting signaling. We will also discuss recent observations that suggest a role for phase separation in mechanosensing in the Hippo pathway and at focal adhesions.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
29
|
Park MA, Lee YH, Gu MJ. High TEAD4 Expression is Associated With Aggressive Clear Cell Renal Cell Carcinoma, Regardless of YAP1 Expression. Appl Immunohistochem Mol Morphol 2023; 31:649-656. [PMID: 37779294 DOI: 10.1097/pai.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Yes-associated protein 1 (YAP1) and transcriptional coactivator TEA domain transcription factor 4 (TEAD4) are the main effectors of the Hippo signaling pathway. Deregulation of the Hippo signaling pathway significantly impacts tumorigenesis and tumor progression. We evaluated the mRNA expression level of YAP1 and TEAD4 using the Gene Expression Profiling Interactive Analysis database and investigated the roles of YAP1 and TEAD4 in 349 surgically resected clear cell renal cell carcinoma (CCRCC) samples through immunohistochemical analysis. High YAP1 and TEAD4 expression were observed in 57 (16.3%) and 131 (37.5%) cases, respectively. High YAP1 expression was associated with a low nuclear grade only. High TEAD4 expression was significantly associated with large tumor size, high nuclear grade, lymphovascular invasion, advanced pT classification, advanced clinical stage, sarcomatous differentiation, and metastasis. CCRCC with YAP1-low/TEAD4-high expression was significantly associated with aggressive clinicopathological variables and poor outcomes. For CCRCC, higher tumor stage, sarcomatous differentiation, and metastasis were the independent prognostic factors for overall survival (OS) and disease-free survival (DFS). High TEAD4 expression was significantly associated with short OS and DFS but was not an independent prognostic factor. High TEAD4 and YAP1-low/TEAD4-high expression significantly correlated with adverse clinicopathological factors and worse OS and DFS in patients with CCRCC. YAP1 expression was not significantly associated with clinicopathological factors or patient survival. Therefore, TEAD4 plays a critical role in CCRCC tumor progression independent of YAP1 and may be a potential biomarker and therapeutic target for CCRCC.
Collapse
Affiliation(s)
- Min A Park
- Department of Pathology, Yeungnam University College of Medicine, Nam-gu, Daegu, Republic of Korea
| | | | | |
Collapse
|
30
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
31
|
Lim CM, González Díaz A, Fuxreiter M, Pun FW, Zhavoronkov A, Vendruscolo M. Multiomic prediction of therapeutic targets for human diseases associated with protein phase separation. Proc Natl Acad Sci U S A 2023; 120:e2300215120. [PMID: 37774095 PMCID: PMC10556643 DOI: 10.1073/pnas.2300215120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/02/2023] [Indexed: 10/01/2023] Open
Abstract
The phenomenon of protein phase separation (PPS) underlies a wide range of cellular functions. Correspondingly, the dysregulation of the PPS process has been associated with numerous human diseases. To enable therapeutic interventions based on the regulation of this association, possible targets should be identified. For this purpose, we present an approach that combines the multiomic PandaOmics platform with the FuzDrop method to identify PPS-prone disease-associated proteins. Using this approach, we prioritize candidates with high PandaOmics and FuzDrop scores using a profiling method that accounts for a wide range of parameters relevant for disease mechanism and pharmacological intervention. We validate the differential phase separation behaviors of three predicted Alzheimer's disease targets (MARCKS, CAMKK2, and p62) in two cell models of this disease. Overall, the approach that we present generates a list of possible therapeutic targets for human diseases associated with the dysregulation of the PPS process.
Collapse
Affiliation(s)
- Christine M. Lim
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alicia González Díaz
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova35131, Italy
| | - Frank W. Pun
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, China
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
32
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
33
|
Chung YL, Laiman V, Tsao PN, Chen CM, Heriyanto DS, Chung KF, Chuang KJ, Chuang HC. Diesel exhaust particles inhibit lung branching morphogenesis via the YAP/TAZ pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160682. [PMID: 36481141 DOI: 10.1016/j.scitotenv.2022.160682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Prenatal exposure to air pollution may associated with inhibition of lung development in the child, however the possible mechanism is unclear. We investigated the effects of traffic-related diesel exhaust particle (DEP) exposure on fetal lung branching morphogenesis and elucidate the possible mechanism. Ex vivo fetal lungs collected from ICR mice at an age of 11.5 embryonic (E) days were exposed to DEPs at 0 (control), 10, and 50 μg/mL and branching morphogenesis was measured for 3 days. Normal IMR-90 human fetal lung fibroblast cells were exposed to DEPs at 0 (control), 10, and 50 μg/mL for 24 h. We observed that DEP exposure significantly inhibited lung branching morphogenesis with reduced lung branching ratios and surface areas on day 3. RNA sequencing (RNA-Seq) showed that DEP increased the inflammatory response and impaired lung development-related gene expressions. DEPs significantly decreased Yes-associated protein (YAP), phosphorylated (p)-YAP, transcriptional coactivator with a PDZ-binding motif (TAZ), and p-TAZ in IMR-90 cells at 10 and 50 μg/mL. Treatment of fetal lungs with the YAP inhibitor, PFI-2, also demonstrated restricted lung branching development similar to that of DEP exposure, with a significantly decreased lung branching ratio on day 3. DEP exposure significantly decreased the lung branching modulators fibroblast growth factor receptor 2 (FGFR2), sex-determining region Y-box 2 (SOX2), and SOX9 in IMR-90 cells at 10 and 50 μg/mL. Fetal lung immunofluorescence staining showed that DEP decreased SOX2 expression in fibronectin+ fibroblasts. DEP exposure decreased the cellular senescence regulator, p-sirtuin 1 (SIRT1)/SIRT1 in IMR-90 cells, with RNA-Seq showing impaired telomere maintenance. DEP exposure impaired fetal lung growth during the pseudoglandular stage through dysregulating the Hippo signaling pathway, causing fibroblast lung branching restriction and early senescence. Prenatal exposure to traffic-related air pollution has adverse effects on fetal lung development.
Collapse
Affiliation(s)
- Yu-Ling Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; The Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
35
|
Huang W, Wu X, Zhao Y, Liu Y, Zhang B, Qiao M, Zhu Z, Zhao Z. Janus-Inspired Core-Shell Structure Hydrogel Programmatically Releases Melatonin for Reconstruction of Postoperative Bone Tumor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2639-2655. [PMID: 36603840 PMCID: PMC9869893 DOI: 10.1021/acsami.2c18545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
At present, surgery is one of the main treatments for bone tumor. However, the risk of recurrence and the large area of bone defects after surgery pose a great challenge. Therefore, a Janus-inspired core-shell structure bone scaffold was designed to achieve the self-programmed release of melatonin at different concentrations, clearing the residual tumor cells at early stage after resection and promoting bone repair later. The layered differential load designs inspired by Janus laid the foundation for the differential release of melatonin, where sufficient melatonin inhibited tumor growth as low dose promoted osteogenesis. Then, the automatically programmed delivery of melatonin is achieved by the gradient degradation of the core-shell structure. In the material characterization, scanning electron microscopy revealed the core-shell structure. The drug release experiment and in vivo degradation experiment reflected the programmed differential release of melatonin. In the biological experiment part, in vivo and in vitro experiments not only confirmed the significant inhibitory effect of the core-shell hydrogel scaffold on tumor but also confirmed its positive effect on osteogenesis. Our Janus-inspired core-shell hydrogel scaffold provides a safe and efficient means to inhibit tumor recurrence and bone repair after bone tumor, and it also develops a new and efficient tool for differential and programmed release of other drugs.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Yifan Zhao
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Yanhua Liu
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Bo Zhang
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Mingxin Qiao
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Zhou Zhu
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Zhihe Zhao
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| |
Collapse
|
36
|
Yan Z, Guo D, Tao R, Yu X, Zhang J, He Y, Zhang J, Li J, Zhang S, Guo W. Fluid shear stress induces cell migration via RhoA-YAP1-autophagy pathway in liver cancer stem cells. Cell Adh Migr 2022; 16:94-106. [PMID: 35880618 PMCID: PMC9331214 DOI: 10.1080/19336918.2022.2103925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC), but the role of the RhoA-YAP1-autophagy pathway in HCC remains unclear. Due to the core role of liver cancer stem cells (LCSCs) in HCC metastasis and recurrence, we explored the RhoA-YAP1-autophagy pathway in LCSCs under FSS. Our results indicate that LCSCs have stronger proliferation and cell spheroidization abilities. FSS (1 dyn/cm2) upregulated the migration of LCSCs and autophagy protein markers, inducing LC3B aggregation and autophagosome formation in LCSCs. Mechanistically, FSS promoted YAP1 dephosphorylation and transport to the nucleus, which is mediated by RhoA, inducing autophagy. Finally, inhibition of autophagy suppressed cell migration in LCSCs under FSS. In conclusion, FSS promoted the migration of LCSCs via the RhoA-YAP1-autophagy pathway.
Collapse
Affiliation(s)
- Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Ruolin Tao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,Henan Liver Transplantation Center, Zhengzhou, Henan Province, 450052, China,Henan Research Center for Organ Transplantation, Zhengzhou, 450052, China,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China,CONTACT Wenzhi Guo Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
38
|
Li G, Xu Q, Cheng D, Sun W, Liu Y, Ma D, Wang Y, Zhou S, Ni C. Caveolin-1 and Its Functional Peptide CSP7 Affect Silica-Induced Pulmonary Fibrosis by Regulating Fibroblast Glutaminolysis. Toxicol Sci 2022; 190:41-53. [PMID: 36053221 DOI: 10.1093/toxsci/kfac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure to silica is a cause of pulmonary fibrosis disease termed silicosis, which leads to respiratory failure and ultimately death. However, what drives fibrosis is not fully elucidated and therapeutic options remain limited. Our previous RNA-sequencing analysis showed that the expression of caveolin-1 (CAV1) was downregulated in silica-inhaled mouse lung tissues. Here, we not only verified that CAV1 was decreased in silica-induced fibrotic mouse lung tissues in both messenger RNA and protein levels, but also found that CSP7, a functional peptide of CAV1, could attenuate pulmonary fibrosis in vivo. Further in vitro experiments revealed that CAV1 reduced the expression of Yes-associated protein 1(YAP1) and affected its nuclear translocation in fibroblasts. In addition, Glutaminase 1 (GLS1), a key regulator of glutaminolysis, was identified to be a downstream effector of YAP1. CAV1 could suppress the activity of YAP1 to decrease the transcription of GLS1, thereby inhibiting fibroblast activation. Taken together, our results demonstrated that CAV1 and its functional peptide CSP7 may be potential molecules or drugs for the prevention and intervention of silicosis.
Collapse
Affiliation(s)
- Guanru Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Demin Cheng
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Dongyu Ma
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
39
|
Liu X, Oh S, Kirschner MW. The uniformity and stability of cellular mass density in mammalian cell culture. Front Cell Dev Biol 2022; 10:1017499. [PMID: 36313562 PMCID: PMC9597509 DOI: 10.3389/fcell.2022.1017499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cell dry mass is principally determined by the sum of biosynthesis and degradation. Measurable change in dry mass occurs on a time scale of hours. By contrast, cell volume can change in minutes by altering the osmotic conditions. How changes in dry mass and volume are coupled is a fundamental question in cell size control. If cell volume were proportional to cell dry mass during growth, the cell would always maintain the same cellular mass density, defined as cell dry mass dividing by cell volume. The accuracy and stability against perturbation of this proportionality has never been stringently tested. Normalized Raman Imaging (NoRI), can measure both protein and lipid dry mass density directly. Using this new technique, we have been able to investigate the stability of mass density in response to pharmaceutical and physiological perturbations in three cultured mammalian cell lines. We find a remarkably narrow mass density distribution within cells, that is, significantly tighter than the variability of mass or volume distribution. The measured mass density is independent of the cell cycle. We find that mass density can be modulated directly by extracellular osmolytes or by disruptions of the cytoskeleton. Yet, mass density is surprisingly resistant to pharmacological perturbations of protein synthesis or protein degradation, suggesting there must be some form of feedback control to maintain the homeostasis of mass density when mass is altered. By contrast, physiological perturbations such as starvation or senescence induce significant shifts in mass density. We have begun to shed light on how and why cell mass density remains fixed against some perturbations and yet is sensitive during transitions in physiological state.
Collapse
Affiliation(s)
| | | | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Pladevall-Morera D, Zylicz JJ. Chromatin as a sensor of metabolic changes during early development. Front Cell Dev Biol 2022; 10:1014498. [PMID: 36299478 PMCID: PMC9588933 DOI: 10.3389/fcell.2022.1014498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular metabolism is a complex network of biochemical reactions fueling development with energy and biomass; however, it can also shape the cellular epigenome. Indeed, some intermediates of metabolic reactions exert a non-canonical function by acting as co-factors, substrates or inhibitors of chromatin modifying enzymes. Therefore, fluctuating availability of such molecules has the potential to regulate the epigenetic landscape. Thanks to this functional coupling, chromatin can act as a sensor of metabolic changes and thus impact cell fate. Growing evidence suggest that both metabolic and epigenetic reprogramming are crucial for ensuring a successful embryo development from the zygote until gastrulation. In this review, we provide an overview of the complex relationship between metabolism and epigenetics in regulating the early stages of mammalian embryo development. We report on recent breakthroughs in uncovering the non-canonical functions of metabolism especially when re-localized to the nucleus. In addition, we identify the challenges and outline future perspectives to advance the novel field of epi-metabolomics especially in the context of early development.
Collapse
Affiliation(s)
| | - Jan J. Zylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
42
|
TAZ Regulates the Cisplatin Resistance of Epithelial Ovarian Cancer Cells via the ANGPTL4/SOX2 Axis. Anal Cell Pathol 2022; 2022:5632164. [PMID: 36247876 PMCID: PMC9553699 DOI: 10.1155/2022/5632164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/20/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy. This study explored the mechanism of TAZ in regulating drug sensitivity of cisplatin (DDP-)-resistant EOC cells through the ANGPTL4/SOX2 axis. Methods The A2780/DDP cells were prepared by stepwise progressive concentration method. The drug resistance and TAZ expression in EOC cells were determined. Drug sensitivity was measured after TAZ overexpression in A2780 cells and TAZ downregulation in A2780/DDP cells, respectively. The effects of TAZ knockdown on apoptosis rate, stemness, and cancer stem cell (CSC) marker (CD44, OCT4, and ALDH1A) levels in A2780/DDP and DDP-treated A2780/DDP cells were assessed. The binding of TAZ and ANGPTL4 was verified using ChIP-qPCR, and ANGPTL4 and SOX2 levels were determined. The effects of different combined treatments of TAZ, ANGPTL4, and SOX2 on drug sensitivity of A2780/DDP cells and DDP-treated A2780/DDP cells were evaluated. Results TAZ was upregulated in drug-resistant EOC cells. TAZ knockdown significantly increased the drug sensitivity of A2780/DDP cells, while TAZ overexpression markedly decreased the drug sensitivity of A2780 cells. TAZ silencing promoted apoptosis of drug-resistant EOC cells and inhibited cell stemness. TAZ targeted ANGPTL4 and TAZ silencing enhanced drug sensitivity of A2780/DDP cells by inhibiting ANGPTL4. ANGPTL4 overexpression elevated SOX2 expression, and SOX2 downregulation reduced the drug resistance and promoted the apoptosis of A2780/DDP cells. Conclusion TAZ regulates DDP sensitivity of drug-resistant EOC cells via the ANGPTL4/SOX2 axis.
Collapse
|
43
|
Zhang J, Xun M, Li C, Chen Y. The O-GlcNAcylation and its promotion to hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188806. [PMID: 36152903 DOI: 10.1016/j.bbcan.2022.188806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
O-GlcNAcylation is a posttranslational modification that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins. Such a glycosylation would alter the activities, stabilities, and interactions of target proteins that are functional in a wide range of biological processes and diseases. Accumulating evidence indicates that O-GlcNAcylation is tightly associated with hepatocellular carcinoma (HCC) in its onset, growth, invasion and metastasis, drug resistance, and stemness. Here we summarize the discoveries of the role of O-GlcNAcylation in HCC and its function mechanism, aiming to deepen our understanding of HCC pathology, generate more biomarkers for its diagnosis and prognosis, and offer novel molecular targets for its treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Chaojie Li
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China.
| |
Collapse
|
44
|
Dekker Y, Le Dévédec SE, Danen EHJ, Liu Q. Crosstalk between Hypoxia and Extracellular Matrix in the Tumor Microenvironment in Breast Cancer. Genes (Basel) 2022; 13:genes13091585. [PMID: 36140753 PMCID: PMC9498429 DOI: 10.3390/genes13091585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Even though breast cancer is the most diagnosed cancer among women, treatments are not always successful in preventing its progression. Recent studies suggest that hypoxia and the extracellular matrix (ECM) are important in altering cell metabolism and tumor metastasis. Therefore, the aim of this review is to study the crosstalk between hypoxia and the ECM and to assess their impact on breast cancer progression. The findings indicate that hypoxic signaling engages multiple mechanisms that directly contribute to ECM remodeling, ultimately increasing breast cancer aggressiveness. Second, hypoxia and the ECM cooperate to alter different aspects of cell metabolism. They mutually enhance aerobic glycolysis through upregulation of glucose transport, glycolytic enzymes, and by regulating intracellular pH. Both alter lipid and amino acid metabolism by stimulating lipid and amino acid uptake and synthesis, thereby providing the tumor with additional energy for growth and metastasis. Third, YAP/TAZ signaling is not merely regulated by the tumor microenvironment and cell metabolism, but it also regulates it primarily through its target c-Myc. Taken together, this review provides a better understanding of the crosstalk between hypoxia and the ECM in breast cancer. Additionally, it points to a role for the YAP/TAZ mechanotransduction pathway as an important link between hypoxia and the ECM in the tumor microenvironment, driving breast cancer progression.
Collapse
Affiliation(s)
- Yasmin Dekker
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence: (E.H.J.D.); (Q.L.)
| | - Qiuyu Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100102, China
- Correspondence: (E.H.J.D.); (Q.L.)
| |
Collapse
|
45
|
Xu L, Chen Z, Geng T, Ru B, Wan Q, Zhang J, Li S, Cai W. Irisin promotes the proliferation and tenogenic differentiation of rat tendon-derived stem/progenitor cells via activating YAP/TAZ. In Vitro Cell Dev Biol Anim 2022; 58:658-668. [PMID: 36125694 PMCID: PMC9550707 DOI: 10.1007/s11626-022-00699-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Tendinopathy is a common tendon disorder characterized by pain, swelling, and dysfunction. Current evidence has demonstrated that the depletion of stem cell pool and non-tenogenic differentiation of tendon-derived stem/progenitor cells (TSPCs) might account for the pathogenesis of tendinopathy. FNDC5/Irisin, as a novel exercise-induced myokine, is proved to be involved in the exercise-induced protective effects on musculoskeletal disorders. However, whether irisin can affect TSPCs fate is still unknown. To ascertain the roles of irisin on the proliferation and tenogenic differentiation of TSPCs, rat TSPCs were isolated and incubated with irisin. Cell viability, phenotypic changes, and related signaling pathways were evaluated by CCK-8 assay, colony formation assay, real-time PCR, Western blot, immunofluorescence, and proteasome activity assay. We found that irisin treatment increased the proliferative and colony-forming abilities, and promoted the tenogenic differentiation of TSPCs by upregulating the expression of YAP/TAZ. In conclusion, our work showed for the first time that irisin promotes the proliferation and tenogenic differentiation of rat TSPCs in vitro by activating YAP/TAZ, and the process was associated with a ubiquitin-proteasome proteolytic pathway. In conclusion, irisin and agents targeting YAP/TAZ may be promising therapeutic options for tendinopathy.
Collapse
Affiliation(s)
- Langhai Xu
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Geng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Bin Ru
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Quan Wan
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianbin Zhang
- Department of Oncology, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Wenjun Cai
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
46
|
Han KJ, Mikalayeva V, Gerber SA, Kettenbach AN, Skeberdis VA, Prekeris R. Rab40c regulates focal adhesions and PP6 activity by controlling ANKRD28 ubiquitylation. Life Sci Alliance 2022; 5:5/9/e202101346. [PMID: 35512830 PMCID: PMC9070665 DOI: 10.26508/lsa.202101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Rab40c is a SOCS box-containing protein which binds Cullin5 to form a ubiquitin E3 ligase complex (Rab40c/CRL5) to regulate protein ubiquitylation. However, the exact functions of Rab40c remain to be determined, and what proteins are the targets of Rab40c-Cullin5-mediated ubiquitylation in mammalian cells are unknown. Here we showed that in migrating MDA-MB-231 cells Rab40c regulates focal adhesion's number, size, and distribution. Mechanistically, we found that Rab40c binds the protein phosphatase 6 (PP6) complex and ubiquitylates one of its subunits, ankyrin repeat domain 28 (ANKRD28), thus leading to its lysosomal degradation. Furthermore, we identified that phosphorylation of FAK and MOB1 is decreased in Rab40c knock-out cells, which may contribute to focal adhesion site regulation by Rab40c. Thus, we propose a model where Rab40c/CRL5 regulates ANKRD28 ubiquitylation and degradation, leading to a decrease in PP6 activity, which ultimately affects FAK and Hippo pathway signaling to alter focal adhesion dynamics.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
47
|
LncRNA MNX1-AS1: A novel oncogenic propellant in cancers. Biomed Pharmacother 2022; 149:112801. [PMID: 35290890 DOI: 10.1016/j.biopha.2022.112801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
To date, recent studies have shown that long non-coding RNAs (lncRNAs) are key players in gene regulation processes involved in cancer pathogenesis. In general, Motor neuron and pancreas homeobox 1-antisense RNA1 (MNX1-AS1) is highly expressed in all cancers as reported so far and exerts oncogenic effects through different mechanisms. In this review, we comprehensively summarize the detailed mechanisms of potential functions of MNX1-AS1 in different cancer types as well as the latest knowledge highlighting the potential of MNX1-AS1 as a therapeutic target for cancer. Aberrant expression of MNX1-AS1 closely correlates with clinicopathological parameters. such as lymphatic metastasis, tumor size, tumor stage, OS and DFS. Thus, MNX1-AS1 can be used as a diagnostic and prognostic biomarker or even a therapeutic prognostic target. This article reviews its function, molecular mechanism and clinical prognosis in various malignancies.
Collapse
|
48
|
Matsuda A, Mofrad MRK. On the nuclear pore complex and its emerging role in cellular mechanotransduction. APL Bioeng 2022; 6:011504. [PMID: 35308827 PMCID: PMC8916845 DOI: 10.1063/5.0080480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large protein assembly that perforates the nuclear envelope and provides a sole gateway for traffic between the cytoplasm and the nucleus. The NPC controls the nucleocytoplasmic transport by selectively allowing cargoes such as proteins and mRNA to pass through its central channel, thereby playing a vital role in protecting the nuclear component and regulating gene expression and protein synthesis. The selective transport through the NPC originates from its exquisite molecular structure featuring a large scaffold and the intrinsically disordered central channel domain, but the exact mechanism underlying the selective transport remains elusive and is the subject of various, often conflicting, hypotheses. Moreover, recent studies have suggested a new role for the NPC as a mechanosensor, where the NPC changes its channel diameter depending on the nuclear envelope tension, altering the molecular transportability through this nanopore. In this mini-review, we summarize the current understandings of the selective nature of the NPC and discuss its emerging role in cellular mechanotransduction.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
49
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
50
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|