1
|
Osorio-Rodriguez D, Pavia FJ, Utter DR, Quinan M, Landry K, Gomes M, Dalleska ND, Orphan VJ, Berelson WM, Adkins JF. Microbial Cycling of Sulfur and Other Redox-Sensitive Elements in Porewaters of San Clemente Basin, California, and Cocos Ridge, Costa Rica. GEOBIOLOGY 2025; 23:e70013. [PMID: 39973161 DOI: 10.1111/gbi.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox-sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid-phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.
Collapse
Affiliation(s)
- Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Frank J Pavia
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Daniel R Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Matthew Quinan
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Kameko Landry
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, USA
| | - Maya Gomes
- Department of Earth and Planetary Sciences, University of Johns Hopkins, Baltimore, Maryland, USA
| | - Nathan D Dalleska
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Jess F Adkins
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Leavitt WD, Waldbauer J, Venceslau SS, Sim MS, Zhang L, Boidi FJ, Plummer S, Diaz JM, Pereira IAC, Bradley AS. Energy flux couples sulfur isotope fractionation to proteomic and metabolite profiles in Desulfovibrio vulgaris. GEOBIOLOGY 2024; 22:e12600. [PMID: 38725144 DOI: 10.1111/gbi.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/31/2024] [Accepted: 04/18/2024] [Indexed: 07/12/2024]
Abstract
Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.
Collapse
Affiliation(s)
- William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Flavia Jaquelina Boidi
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sydney Plummer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Julia M Diaz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Löffler M, Schwab L, Dethlefsen F, Lagmöller L, Vogt C, Richnow HH. Anaerobic dihydrogen consumption of nutrient-limited aquifer sediment microbial communities examined by stable isotope analysis. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024; 60:103-121. [PMID: 38344763 DOI: 10.1080/10256016.2024.2306146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/21/2023] [Indexed: 03/20/2024]
Abstract
The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.
Collapse
Affiliation(s)
- Michaela Löffler
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Schwab
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Frank Dethlefsen
- Department of Applied Geosciences - Aquatic Geochemistry and Hydrogeology, Institute for Geosciences, Competence Centre for Geoenergy (KGE), University of Kiel, Kiel, Germany
| | - Louisa Lagmöller
- Department of Applied Geosciences - Aquatic Geochemistry and Hydrogeology, Institute for Geosciences, Competence Centre for Geoenergy (KGE), University of Kiel, Kiel, Germany
| | - Carsten Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Isodetect GmbH, Leipzig, Germany
| |
Collapse
|
4
|
Ren M, Zhuang Q, He X, Liu W, Guo C, Ye H, Reinfelder JR, Ma C, Li J, Dang Z. Speciation and Possible Origins of Organosulfur Compounds in Rice Paddy Soils Affected by Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7357-7366. [PMID: 38568220 DOI: 10.1021/acs.est.3c09622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Although sulfur cycling in acid mine drainage (AMD)-contaminated rice paddy soils is critical to understanding and mitigating the environmental consequences of AMD, potential sources and transformations of organosulfur compounds in such soils are poorly understood. We used sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy to quantify organosulfur compounds in paddy soils from five AMD-contaminated sites and one AMD-uncontaminated reference site near the Dabaoshan sulfide mining area in South China. We also determined the sulfur stable isotope compositions of water-soluble sulfate (δ34SWS), adsorbed sulfate (δ34SAS), fulvic acid sulfur (δ34SFAS), and humic acid sulfur (δ34SHAS) in these samples. Organosulfate was the dominant functional group in humic acid sulfur (HAS) in both AMD-contaminated (46%) and AMD-uncontaminated paddy soils (42%). Thiol/organic monosulfide contributed a significantly lower proportion of HAS in AMD-contaminated paddy soils (8%) compared to that in AMD-uncontaminated paddy soils (21%). Within contaminated soils, the concentration of thiol/organic monosulfide was positively correlated with cation exchange capacity (CEC), moisture content (MC), and total Fe (TFe). δ34SFAS ranged from -6.3 to 2.7‰, similar to δ34SWS (-6.9 to 8.9‰), indicating that fulvic acid sulfur (FAS) was mainly derived from biogenic S-bearing organic compounds produced by assimilatory sulfate reduction. δ34SHAS (-11.0 to -1.6‰) were more negative compared to δ34SWS, indicating that dissimilatory sulfate reduction and abiotic sulfurization of organic matter were the main processes in the formation of HAS.
Collapse
Affiliation(s)
- Meihui Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Qinglin Zhuang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoshuang He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Chengyan Ma
- Institute of High Energy Physics, Chinese Academy of Science, Beijing Synchrotron Radiation Facility, Beijing 100049, China
| | - Jianmin Li
- Institute of High Energy Physics, Chinese Academy of Science, Beijing Synchrotron Radiation Facility, Beijing 100049, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- China Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Martocello DE, Wankel SD. Physiological Influence of Fe and Cu Availability on Nitrogen Isotope Fractionation during Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:421-431. [PMID: 38147309 DOI: 10.1021/acs.est.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Microbially mediated cycling processes play central roles in regulating the speciation and availability of nitrogen, a vital nutrient with wide implications for agriculture, water quality, wastewater treatment, ecosystem health, and climate change. Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by bacteria (AOB) and archaea (AOA) that require the trace metal micronutrients copper (Cu) and iron (Fe) for growth and metabolic catalysis. While stable isotope analyses for constraining nitrogen cycling are commonly used, it is unclear whether metal availability may modulate expression of stable isotope fractionation during ammonia oxidation, by varying growth or through regulation of metabolic metalloenzymes. We present the first study examining the influence of Fe and Cu availability on the kinetic nitrogen isotope effect in ammonia oxidation (15εAO). We report a general independence of 15εAO from the growth rate in AOB, except at a low temperature (10 °C). With AOA Nitrosopumilus maritimus SCM1, however, 15εAO decreases nonlinearly at lower oxidation rates. We examine assumptions involved in the interpretation of 15εAO values and suggest these dynamics may arise from physiological constraints that push the system toward isotopic equilibrium. These results suggest important links between isotope fractionation and environmental constraints on physiology in these key N cycling microorganisms.
Collapse
Affiliation(s)
- Donald E Martocello
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Scott D Wankel
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
6
|
Bryant RN, Houghton JL, Jones C, Pasquier V, Halevy I, Fike DA. Deconvolving microbial and environmental controls on marine sedimentary pyrite sulfur isotope ratios. Science 2023; 382:912-915. [PMID: 37995248 DOI: 10.1126/science.adg6103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Reconstructions of past environmental conditions and biological activity are often based on bulk stable isotope proxies, which are inherently open to multiple interpretations. This is particularly true of the sulfur isotopic composition of sedimentary pyrite (δ34Spyr), which is used to reconstruct ocean-atmosphere oxidation state and track the evolution of several microbial metabolic pathways. We present a microanalytical approach to deconvolving the multiple signals that influence δ34Spyr, yielding both the unambiguous determination of microbial isotopic fractionation (εmic) and new information about depositional conditions. We applied this approach to recent glacial-interglacial sediments, which feature over 70‰ variations in bulk δ34Spyr across these environmental transitions. Despite profound environmental change, εmic remained essentially invariant throughout this interval and the observed range in δ34Spyr was instead driven by climate-induced variations in sedimentation.
Collapse
Affiliation(s)
- R N Bryant
- Department of Earth & Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - J L Houghton
- Department of Earth & Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - C Jones
- Department of Earth & Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - V Pasquier
- Department of Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - I Halevy
- Department of Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D A Fike
- Department of Earth & Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Sim MS, Woo DK, Kim B, Jeong H, Joo YJ, Hong YW, Choi JY. What Controls the Sulfur Isotope Fractionation during Dissimilatory Sulfate Reduction? ACS ENVIRONMENTAL AU 2023; 3:76-86. [PMID: 37102088 PMCID: PMC10125365 DOI: 10.1021/acsenvironau.2c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 04/28/2023]
Abstract
Sulfate often behaves conservatively in the oxygenated environments but serves as an electron acceptor for microbial respiration in a wide range of natural and engineered systems where oxygen is depleted. As a ubiquitous anaerobic dissimilatory pathway, therefore, microbial reduction of sulfate to sulfide has been of continuing interest in the field of microbiology, ecology, biochemistry, and geochemistry. Stable isotopes of sulfur are an effective tool for tracking this catabolic process as microorganisms discriminate strongly against heavy isotopes when cleaving the sulfur-oxygen bond. Along with its high preservation potential in environmental archives, a wide variation in the sulfur isotope effects can provide insights into the physiology of sulfate reducing microorganisms across temporal and spatial barriers. A vast array of parameters, including phylogeny, temperature, respiration rate, and availability of sulfate, electron donor, and other essential nutrients, has been explored as a possible determinant of the magnitude of isotope fractionation, and there is now a broad consensus that the relative availability of sulfate and electron donors primarily controls the magnitude of fractionation. As the ratio shifts toward sulfate, the sulfur isotope fractionation increases. The results of conceptual models, centered on the reversibility of each enzymatic step in the dissimilatory sulfate reduction pathway, are in qualitative agreement with the observations, although the underlying intracellular mechanisms that translate the external stimuli into the isotopic phenotype remain largely unexplored experimentally. This minireview offers a snapshot of our current understanding of the sulfur isotope effects during dissimilatory sulfate reduction as well as their potential quantitative applications. It emphasizes the importance of sulfate respiration as a model system for the isotopic investigation of other respiratory pathways that utilize oxyanions as terminal electron acceptors.
Collapse
Affiliation(s)
- Min Sub Sim
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul08826, Korea
- . Tel: +82 2 880 6632
| | - Dong Kyun Woo
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul08826, Korea
| | - Bokyung Kim
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul08826, Korea
| | - Hyeonjeong Jeong
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul08826, Korea
| | - Young Ji Joo
- Department
of Earth and Environmental Sciences, Pukyong
National University, Busan48513, Korea
| | - Yeon Woo Hong
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul08826, Korea
| | - Jy Young Choi
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul08826, Korea
| |
Collapse
|
8
|
Wang H, Yang Q, Li D, Wu J, Yang S, Deng Y, Luo C, Jia W, Zhong Y, Peng P. Stable Isotopic and Metagenomic Analyses Reveal Microbial-Mediated Effects of Microplastics on Sulfur Cycling in Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1167-1176. [PMID: 36599128 DOI: 10.1021/acs.est.2c06546] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastics are readily accumulated in coastal sediments, where active sulfur (S) cycling takes place. However, the effects of microplastics on S cycling in coastal sediments and their underlying mechanisms remain poorly understood. In this study, the transformation patterns of different S species in mangrove sediments amended with different microplastics and their associated microbial communities were investigated using stable isotopic analysis and metagenomic sequencing. Biodegradable poly(lactic acid) (PLA) microplastics treatment increased sulfate (SO42-) reduction to yield more acid-volatile S and elementary S, which were subsequently transformed to chromium-reducible S (CRS). The S isotope fractionation between SO42- and CRS in PLA treatment increased by 9.1‰ from days 0 to 20, which was greater than 6.8‰ in the control. In contrast, recalcitrant petroleum-based poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC) microplastics had less impact on the sulfate reduction, resulting in 7.6 and 7.7‰ of S isotope fractionation between SO42- and CRS from days 0 to 20, respectively. The pronounced S isotope fractionation in PLA treatment was associated with increased relative abundance of Desulfovibrio-related sulfate-reducing bacteria, which contributed a large proportion of the microbial genes responsible for dissimilatory sulfate reduction. Overall, these findings provide insights into the potential impacts of microplastics exposure on the biogeochemical S cycle in coastal sediments.
Collapse
Affiliation(s)
- Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan523808, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou510045, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou510640, China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, Guangzhou510640, China
| |
Collapse
|
9
|
Yang M, Liu CQ, Li XD, Ding S, Cui G, Teng HH, Lv H, Wang Y, Zhang X, Guan T. Carbon‑sulfur coupling in a seasonally hypoxic, high-sulfate reservoir in SW China: Evidence from stable CS isotopes and sulfate-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154537. [PMID: 35292324 DOI: 10.1016/j.scitotenv.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic input of sulfate (SO42-) in reservoirs may enhance bacterial sulfate reduction (BSR) under seasonally hypoxic conditions in the water column. However, factors that control BSR and its coupling to organic carbon (OC) mineralization in seasonally hypoxic reservoirs remain unclear. The present study elucidates the coupling processes by analyzing the concentrations and isotopic composition of dissolved inorganic carbon (DIC) and sulfur (SO42-, sulfide) species, and the microbial community in water of the Aha reservoir, SW China, which has high SO42- concentration due to the inputs from acid mine drainage about twenty years ago. The water column at two sites in July and October revealed significant thermal stratification. In the hypoxic bottom water, the δ13C-DIC decreased while the δ34S-SO42- increased, implying organic carbon mineralization due to BSR. The magnitude of S isotope fractionation (Δ34S, obtained from δ34Ssulfate-δ34Ssulfide) during the process of BSR fell in the range of 3.4‰ to 27.0‰ in July and 21.6‰ to 31.8‰ in October, suggesting a change in the community of sulfate-reducing bacteria (SRB). The relatively low water column stability in October compared to that in July weakened the difference of water chemistry and ultimately affected the SRB diversity. The production of DIC (ΔDIC) scaled a strong positive relationship with the Δ34S in July (p < 0.01), indicating that high OC availability favored the survival of incomplete oxidizers of SRB. However, in October, Δ13C-DIC was correlated with the Δ34S in the bottom hypoxic water (p < 0.01), implying that newly degraded OC depleted in 13C could favor the dominance of complete oxidizers of SRB which caused greater S isotope fractionation. Moreover, the sulfide supplied by BSR might stimulate the reductive dissolution of Fe and Mn oxides (Fe(O)OH and MnO2). The present study helps to understand the coupling of C and S in seasonally hypoxic reservoirs characterized by high SO42- concentration.
Collapse
Affiliation(s)
- Mengdi Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth's Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth's Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Environmental Geochemistry, Guiyang 550081, China
| | - Gaoyang Cui
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Hui Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hong Lv
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yiyao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xuecheng Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Tianhao Guan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Mineralization and Structural Controls of the AB-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran. MINERALS 2022. [DOI: 10.3390/min12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Ab-Bid deposit, located in the Tabas-Posht e Badam metallogenic belt (TPMB) in Central Iran, is the largest Pb-Zn (±Cu) deposit in the Behadad-Kuhbanan mining district. Sulfide mineralization in the Ab-Bid deposit formed in Middle Triassic carbonate rocks and contains galena and sphalerite with minor pyrite, chalcopyrite, chalcocite, and barite. Silicification and dolomitization are the main wall-rock alteration styles. Structural and textural observations indicate that the mineralization occurs as fault fills with coarse-textured, brecciated, and replacement sulfides deposited in a bookshelf structure. The Ab-Bid ore minerals precipitated from high temperature (≈180–200 °C) basinal brines within the dolomitized and silicified carbonates. The sulfur isotope values of ore sulfides suggest a predominant thermochemical sulfate reduction (TSR) process, and the sulfur source was probably Triassic-Jurassic seawater sulfate. Given the current evidence, mineralization at Ab-Bid resulted from focusing of heated, over-pressurized brines of modified basinal origin into an active fault system. The association of the sulfide mineralization with intensely altered wall rock represents a typical example of such features in the Mississippi Valley-type (MVT) metallogenic domain of the TPMB. According to the structural data, the critical ore control is a bookshelf structure having mineralized dextral strike-slip faults in the northern part of the Ab-Bid reverse fault, which seems to be part of a sinistral brittle shear zone. Structural relationships also indicate that the strata-bound, fault-controlled Ab-Bid deposit was formed after the Middle Jurassic, and its formation may be related to compressive and deformation stages of the Mid-Cimmerian in the Middle Jurassic to Laramide orogenic cycle in the Late Cretaceous-Tertiary.
Collapse
|
11
|
Gomes ML, Klatt JM, Dick GJ, Grim SL, Rico KI, Medina M, Ziebis W, Kinsman-Costello L, Sheldon ND, Fike DA. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats. GEOBIOLOGY 2022; 20:60-78. [PMID: 34331395 DOI: 10.1111/gbi.12466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The sedimentary pyrite sulfur isotope (δ34 S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34 S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34 S geochemistry. Pyrite δ34 S values often capture δ34 S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34 S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34 S trends and δ34 S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment-water interface of this sinkhole hosts a low-oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34 S signatures in early Earth environments. Porewater sulfide δ34 S values vary by up to ~25‰ throughout the day due to light-driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34 S variability, instead of variations in average cell-specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34 S values of pyrite are similar to porewater sulfide δ34 S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34 S signatures of pyrite deposited in organic-rich, iron-poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.
Collapse
Affiliation(s)
- Maya L Gomes
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Judith M Klatt
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L Grim
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
- Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Mountain View, CA, USA
| | - Kathryn I Rico
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
| | - Matthew Medina
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - Wiebke Ziebis
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Nathan D Sheldon
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, MI, USA
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA
| |
Collapse
|
12
|
Avetisyan K, Mirzoyan N, Payne RB, Hayrapetyan V, Kamyshny A. Eutrophication leads to the formation of a sulfide-rich deep-water layer in Lake Sevan, Armenia. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:535-552. [PMID: 34519245 DOI: 10.1080/10256016.2021.1970548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Lake Sevan is a meso-eutrophic water body, which was severely impacted by anthropogenic level decrease, pollution and eutrophication during the last century. Starting in the 1970s, these processes resulted in the formation of an oxygen-depleted hypolimnion during summer-autumn stratification of the lake. In this work, we demonstrate for the first time that eutrophication of the lake leads not only to the full depletion of oxygen and nitrate in the hypolimnion but as well to the presence of sulfate-reducing microorganisms and toxic hydrogen sulfide. Concentrations of hydrogen sulfide in the hypolimnion of Major and Minor Sevan in October were as high as 9 and 39 μM, respectively. In October 2019, 66 % of lake's bottom was covered by sulfidic waters, while the fraction of sulfidic water volume reached 19 %. Values of δ34S for hypolimnetic sulfide are lower by only 7-12 ‰ compared to epilimnetic sulfate, while δ33S values of sulfide are similar to the δ33S values of sulfate. These isotopic fingerprints are not consistent with microbial sulfate reduction as the sole source of hydrogen sulfide in the hypolimnion. We attribute the formation of a sulfidic deep-water layer to a combination of microbial sulfate reduction in the water column and diffusion of hydrogen sulfide from the sediments.
Collapse
Affiliation(s)
- Khoren Avetisyan
- Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Natella Mirzoyan
- Acopian Center for the Environment, American University of Armenia, Yerevan, Republic of Armenia
| | - Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Vardan Hayrapetyan
- Acopian Center for the Environment, American University of Armenia, Yerevan, Republic of Armenia
- Center for Responsible Mining, American University of Armenia, Yerevan, Republic of Armenia
| | - Alexey Kamyshny
- Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
13
|
Ward LM, Bertran E, Johnston DT. Expanded Genomic Sampling Refines Current Understanding of the Distribution and Evolution of Sulfur Metabolisms in the Desulfobulbales. Front Microbiol 2021; 12:666052. [PMID: 34093483 PMCID: PMC8170396 DOI: 10.3389/fmicb.2021.666052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The reconstruction of modern and paleo-sulfur cycling relies on understanding the long-term relative contribution of its main actors; these include microbial sulfate reduction (MSR) and microbial sulfur disproportionation (MSD). However, a unifying theory is lacking for how MSR and MSD, with the same enzyme machinery and intimately linked evolutionary histories, perform two drastically different metabolisms. Here, we aim at shedding some light on the distribution, diversity, and evolutionary histories of MSR and MSD, with a focus on the Desulfobulbales as a test case. The Desulfobulbales is a diverse and widespread order of bacteria in the Desulfobacterota (formerly Deltaproteobacteria) phylum primarily composed of sulfate reducing bacteria. Recent culture- and sequence-based approaches have revealed an expanded diversity of organisms and metabolisms within this clade, including the presence of obligate and facultative sulfur disproportionators. Here, we present draft genomes of previously unsequenced species of Desulfobulbales, substantially expanding the available genomic diversity of this clade. We leverage this expanded genomic sampling to perform phylogenetic analyses, revealing an evolutionary history defined by vertical inheritance of sulfur metabolism genes with numerous convergent instances of transition from sulfate reduction to sulfur disproportionation.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Emma Bertran
- Princeton Environmental Institute, Princeton University, Princeton, NJ, United States
| | - David T. Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
14
|
Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems. Sci Rep 2021; 11:7850. [PMID: 33846510 PMCID: PMC8041819 DOI: 10.1038/s41598-021-87184-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, - 16 to - 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19-32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.
Collapse
|
15
|
Sim MS, Skennerton CT, Orphan VJ. Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus. PLoS One 2021; 16:e0245069. [PMID: 33444327 PMCID: PMC7808614 DOI: 10.1371/journal.pone.0245069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments.
Collapse
Affiliation(s)
- Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
16
|
Cui G, Li XD, Yang M, Ding S, Li QK, Wang Y, Yang Z, Ding H. Insight into the mechanisms of denitrification and sulfate reduction coexistence in cascade reservoirs of the Jialing River: Evidence from a multi-isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141682. [PMID: 33370886 DOI: 10.1016/j.scitotenv.2020.141682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
The coexistence of denitrification and bacterial sulfate reduction (BSR) processes is commonly observed in natural water systems. However, its formation mechanism remains unclear at a basin scale due to the difficulty of precise identification of these processes. To address this issue, we investigated the spatial-temporal variations in water chemistry and isotopic compositions (e.g., δ13CDIC, δ15NNO3, δ18ONO3, δ34SSO4, and δ18OSO4) in cascade reservoirs (artificial dam lakes) of the Jialing River, SW China in 2016. The results showed that the denitrification and BSR processes coexisted in the studied reservoirs, which was supported by the positive correlation between δ15NNO3 and δ18ONO3 and between δ34SSO4 and δ18OSO4, and by the decreasing concentrations of NO3- and SO42-. Moreover, covariation of Δ13CDIC, Δ15NNO3, and Δ34SSO4 indicated the dominance of heterotrophic denitrification (HD) in the reservoir waters along with the occurrence of bacterial sulfide oxidation (BSO). In addition to SO42- and NO3-, the coexistence of HD and BSR processes were also controlled by the dissolved organic carbon (DOC) in winter and dissolved oxygen (DO) contents in other seasons. Overall, the cumulative effect of cascade reservoirs caused δ15NNO3 and δ34SSO4 to display an upward trend from upstream to downstream in the Jialing River, while δ13CDIC showed an opposite downward trend, which implying that cascade reservoirs may be in favor of the coexistence of the HD and BSR processes. This study therefore concludes that the multi-isotope approach could be a useful technique to ascertain the coexistence mechanism of HD and BSR processes in reservoir water systems.
Collapse
Affiliation(s)
- Gaoyang Cui
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Mengdi Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qin-Kai Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yiyao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhou Yang
- Tongren University, Tongren 554300, China
| | - Hu Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Smith DA, Fike DA, Johnston DT, Bradley AS. Isotopic Fractionation Associated With Sulfate Import and Activation by Desulfovibrio vulgaris str. Hildenborough. Front Microbiol 2020; 11:529317. [PMID: 33072004 PMCID: PMC7531388 DOI: 10.3389/fmicb.2020.529317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
The use of stable isotopes to trace biogeochemical sulfur cycling relies on an understanding of how isotopic fractionation is imposed by metabolic networks. We investigated the effects of the first two enzymatic steps in the dissimilatory sulfate reduction (DSR) network - sulfate permease and sulfate adenylyl transferase (Sat) - on the sulfur and oxygen isotopic composition of residual sulfate. Mutant strains of Desulfovibrio vulgaris str. Hildenborough (DvH) with perturbed expression of these enzymes were grown in batch culture, with a subset grown in continuous culture, to examine the impact of these enzymatic steps on growth rate, cell specific sulfate reduction rate and isotopic fractionations in comparison to the wild type strain. Deletion of several permease genes resulted in only small (∼1‰) changes in sulfur isotope fractionation, a difference that approaches the uncertainties of the measurement. Mutants that perturb Sat expression show higher fractionations than the wild type strain. This increase probably relates to an increased material flux between sulfate and APS, allowing an increase in the expressed fractionation of rate-limiting APS reductase. This work illustrates that flux through the initial steps of the DSR pathway can affect the fractionation imposed by the overall pathway, even though these steps are themselves likely to impose only small fractionations.
Collapse
Affiliation(s)
- Derek A Smith
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
18
|
Nabhan S, Marin-Carbonne J, Mason PRD, Heubeck C. In situ S-isotope compositions of sulfate and sulfide from the 3.2 Ga Moodies Group, South Africa: A record of oxidative sulfur cycling. GEOBIOLOGY 2020; 18:426-444. [PMID: 32301171 DOI: 10.1111/gbi.12393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Sulfate minerals are rare in the Archean rock record and largely restricted to the occurrence of barite (BaSO4 ). The origin of this barite remains controversially debated. The mass-independent fractionation of sulfur isotopes in these and other Archean sedimentary rocks suggests that photolysis of volcanic aerosols in an oxygen-poor atmosphere played an important role in their formation. Here, we report on the multiple sulfur isotopic composition of sedimentary anhydrite in the ca. 3.22 Ga Moodies Group of the Barberton Greenstone Belt, southern Africa. Anhydrite occurs, together with barite and pyrite, in regionally traceable beds that formed in fluvial settings. Variable abundances of barite versus anhydrite reflect changes in sulfate enrichment by evaporitic concentration across orders of magnitude in an arid, nearshore terrestrial environment, periodically replenished by influxes of seawater. The multiple S-isotope compositions of anhydrite and pyrite are consistent with microbial sulfate reduction. S-isotope signatures in barite suggest an additional oxidative sulfate source probably derived from continental weathering of sulfide possibly enhanced by microbial sulfur oxidation. Although depositional environments of Moodies sulfate minerals differ strongly from marine barite deposits, their sulfur isotopic composition is similar and most likely reflects a primary isotopic signature. The data indicate that a constant input of small portions of oxidized sulfur from the continents into the ocean may have contributed to the observed long-term increase in Δ33 Ssulfate values through the Paleoarchean.
Collapse
Affiliation(s)
- Sami Nabhan
- Department for Geosciences, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Johanna Marin-Carbonne
- Laboratoire Magma et Volcans, Univ Lyon, UJM Saint Etienne, UBP, CNRS, IRD, St Etienne, France
- Institute of Earth Sciences, Universitè of Lausanne, Lausanne, Switzerland
| | - Paul R D Mason
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christoph Heubeck
- Department for Geosciences, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
19
|
Bertran E, Waldeck A, Wing BA, Halevy I, Leavitt WD, Bradley AS, Johnston DT. Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances. ISME JOURNAL 2020; 14:1508-1519. [PMID: 32152390 PMCID: PMC7242377 DOI: 10.1038/s41396-020-0618-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of anaerobic biogeochemical cycling occurs within marine sediments. To understand these processes, quantifying the distribution of active cells and gross metabolic activity is essential. We present an isotope model rooted in thermodynamics to draw quantitative links between cell-specific sulfate reduction rates and active sedimentary cell abundances. This model is calibrated using data from a series of continuous culture experiments with two strains of sulfate reducing bacteria (freshwater bacterium Desulfovibrio vulgaris strain Hildenborough, and marine bacterium Desulfovibrio alaskensis strain G-20) grown on lactate across a range of metabolic rates and ambient sulfate concentrations. We use a combination of experimental sulfate oxygen isotope data and nonlinear regression fitting tools to solve for unknown kinetic, step-specific oxygen isotope effects. This approach enables identification of key isotopic reactions within the metabolic pathway, and defines a new, calibrated framework for understanding oxygen isotope variability in sulfate. This approach is then combined with porewater sulfate/sulfide concentration data and diagenetic modeling to reproduce measured 18O/16O in porewater sulfate. From here, we infer cell-specific sulfate reduction rates and predict abundance of active cells of sulfate reducing bacteria, the result of which is consistent with direct biological measurements.
Collapse
Affiliation(s)
- E Bertran
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
| | - A Waldeck
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - B A Wing
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - I Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - W D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA.,Department of Chemistry, Dartmouth College, Hanover, NH, USA.,Department of Biological Science, Dartmouth College, Hanover, NH, USA
| | - A S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - D T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Basu A, Wanner C, Johnson TM, Lundstrom CC, Sanford RA, Sonnenthal EL, Boyanov MI, Kemner KM. Microbial U Isotope Fractionation Depends on the U(VI) Reduction Rate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2295-2303. [PMID: 31909614 DOI: 10.1021/acs.est.9b05935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
U isotope fractionation may serve as an accurate proxy for U(VI) reduction in both modern and ancient environments, if the systematic controls on the magnitude of fractionation (ε) are known. We model the effect of U(VI) reduction kinetics on U isotopic fractionation during U(VI) reduction by a novel Shewanella isolate, Shewanella sp. (NR), in batch incubations. The measured ε values range from 0.96 ± 0.16 to 0.36 ± 0.07‰ and are strongly dependent on the U(VI) reduction rate. The ε decreases with increasing reduction rate constants normalized by cell density and initial U(VI). Reactive transport simulations suggest that the rate dependence of ε is due to a two-step process, where diffusive transport of U(VI) from the bulk solution across a boundary layer is followed by enzymatic reduction. Our results imply that the spatial decoupling of bulk U(VI) solution and enzymatic reduction should be taken into account for interpreting U isotope data from the environment.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Earth Sciences, Royal Holloway , University of London , Egham TW20 0EX , U.K
| | - Christoph Wanner
- Institute of Geological Sciences , University of Bern , Baltzerstrasse 3 , Bern CH-3012 , Switzerland
| | - Thomas M Johnson
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Craig C Lundstrom
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Eric L Sonnenthal
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Maxim I Boyanov
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| | - Kenneth M Kemner
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
21
|
Colangelo-Lillis J, Pelikan C, Herbold CW, Altshuler I, Loy A, Whyte LG, Wing BA. Diversity decoupled from sulfur isotope fractionation in a sulfate-reducing microbial community. GEOBIOLOGY 2019; 17:660-675. [PMID: 31328364 DOI: 10.1111/gbi.12356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
The extent of fractionation of sulfur isotopes by sulfate-reducing microbes is dictated by genomic and environmental factors. A greater understanding of species-specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur-metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell-specific sulfate reduction rates < 0.3 × 10-15 moles cell-1 day-1 . Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰-45‰) net isotope fractionation (ε34 Ssulfide-sulfate ). Measured ε34 S values could be reproduced in a mechanistic fractionation model if 1%-2% of the microbial community (10%-60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate-reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.
Collapse
Affiliation(s)
- Jesse Colangelo-Lillis
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
- Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
- Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
| | - Claus Pelikan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Ianina Altshuler
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
- Department of Natural Resource Science, McGill University, Montreal, Quebec, Canada
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Lyle G Whyte
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
- Department of Natural Resource Science, McGill University, Montreal, Quebec, Canada
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
- Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
- McGill Space Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Johnson JE. From minerals to metabolisms: Evidence for life before oxygen from the geological record. Free Radic Biol Med 2019; 140:126-137. [PMID: 30743045 DOI: 10.1016/j.freeradbiomed.2019.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/18/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Jena E Johnson
- Dept. of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Jørgensen BB, Findlay AJ, Pellerin A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front Microbiol 2019. [DOI: 10.10.3389/fmicb.2019.00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Jørgensen BB, Findlay AJ, Pellerin A. The Biogeochemical Sulfur Cycle of Marine Sediments. Front Microbiol 2019; 10:849. [PMID: 31105660 PMCID: PMC6492693 DOI: 10.3389/fmicb.2019.00849] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
25
|
Leavitt WD, Venceslau SS, Waldbauer J, Smith DA, Pereira IAC, Bradley AS. Proteomic and Isotopic Response of Desulfovibrio vulgaris to DsrC Perturbation. Front Microbiol 2019; 10:658. [PMID: 31031715 PMCID: PMC6470260 DOI: 10.3389/fmicb.2019.00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Dissimilatory sulfate reduction is a microbial energy metabolism that can produce sulfur isotopic fractionations over a large range in magnitude. Calibrating sulfur isotopic fractionation in laboratory experiments allows for better interpretations of sulfur isotopes in modern sediments and ancient sedimentary rocks. The proteins involved in sulfate reduction are expressed in response to environmental conditions, and are collectively responsible for the net isotopic fractionation between sulfate and sulfide. We examined the role of DsrC, a key component of the sulfate reduction pathway, by comparing wildtype Desulfovibrio vulgaris DSM 644T to strain IPFG07, a mutant deficient in DsrC production. Both strains were cultivated in parallel chemostat reactors at identical turnover times and cell specific sulfate reduction rates. Under these conditions, sulfur isotopic fractionations between sulfate and sulfide of 17.3 ± 0.5‰ or 12.6 ± 0.5‰ were recorded for the wildtype or mutant, respectively. The enzymatic machinery that produced these different fractionations was revealed by quantitative proteomics. Results are consistent with a cellular-level response that throttled the supply of electrons and sulfur supply through the sulfate reduction pathway more in the mutant relative to the wildtype, independent of rate. We conclude that the smaller fractionation observed in the mutant strain is a consequence of sulfate reduction that proceeded at a rate that consumed a greater proportion of the strains overall capacity for sulfate reduction. These observations have consequences for models of sulfate reducer metabolism and how it yields different isotopic fractionations, notably, the role of DsrC in central energy metabolism.
Collapse
Affiliation(s)
- William D. Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Derek A. Smith
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Inês A. Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexander S. Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
26
|
Sulfur-dependent microbial lifestyles: deceptively flexible roles for biochemically versatile enzymes. Curr Opin Chem Biol 2019; 49:139-145. [PMID: 30739067 DOI: 10.1016/j.cbpa.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
A wide group of microbes are able to "make a living" on Earth by basing their energetic metabolism on inorganic sulfur compounds. Because of their range of stable redox states, sulfur and inorganic sulfur compounds can be utilized as either oxidants or reductants in a diverse array of energy-conserving reactions. In this review the major enzymes and basic chemistry of sulfur-based respiration and chemolithotrophy are outlined. The reversibility and versatility of these enzymes, however, means that they can often be used in multiple ways, and several cases are discussed in which enzymes which are considered to be hallmarks of a particular respiratory or lithotrophic process have been found to be used in other, often opposing, metabolic processes. These results emphasize the importance of taking into account the geochemistry, biochemistry and microbiology of an organism and/or environment when trying to interpret the function of a particular sulfur-dependent redox enzyme.
Collapse
|
27
|
Drake H, Whitehouse MJ, Heim C, Reiners PW, Tillberg M, Hogmalm KJ, Dopson M, Broman C, Åström ME. Unprecedented 34 S-enrichment of pyrite formed following microbial sulfate reduction in fractured crystalline rocks. GEOBIOLOGY 2018; 16:556-574. [PMID: 29947123 DOI: 10.1111/gbi.12297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
In the deep biosphere, microbial sulfate reduction (MSR) is exploited for energy. Here, we show that, in fractured continental crystalline bedrock in three areas in Sweden, this process produced sulfide that reacted with iron to form pyrite extremely enriched in 34 S relative to 32 S. As documented by secondary ion mass spectrometry (SIMS) microanalyses, the δ34 Spyrite values are up to +132‰V-CDT and with a total range of 186‰. The lightest δ34 Spyrite values (-54‰) suggest very large fractionation during MSR from an initial sulfate with δ34 S values (δ34 Ssulfate,0 ) of +14 to +28‰. Fractionation of this magnitude requires a slow MSR rate, a feature we attribute to nutrient and electron donor shortage as well as initial sulfate abundance. The superheavy δ34 Spyrite values were produced by Rayleigh fractionation effects in a diminishing sulfate pool. Large volumes of pyrite with superheavy values (+120 ± 15‰) within single fracture intercepts in the boreholes, associated heavy average values up to +75‰ and heavy minimum δ34 Spyrite values, suggest isolation of significant amounts of isotopically light sulfide in other parts of the fracture system. Large fracture-specific δ34 Spyrite variability and overall average δ34 Spyrite values (+11 to +16‰) lower than the anticipated δ34 Ssulfate,0 support this hypothesis. The superheavy pyrite found locally in the borehole intercepts thus represents a late stage in a much larger fracture system undergoing Rayleigh fractionation. Microscale Rb-Sr dating and U/Th-He dating of cogenetic minerals reveal that most pyrite formed in the early Paleozoic era, but crystal overgrowths may be significantly younger. The δ13 C values in cogenetic calcite suggest that the superheavy δ34 Spyrite values are related to organotrophic MSR, in contrast to findings from marine sediments where superheavy pyrite has been proposed to be linked to anaerobic oxidation of methane. The findings provide new insights into MSR-related S-isotope systematics, particularly regarding formation of large fractions of 34 S-rich pyrite.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Christine Heim
- Department of Geobiology, Geoscience Centre Göttingen of the Georg-August University, Göttingen, Germany
| | - Peter W Reiners
- Department of Geosciences, University of Arizona, Tucson, Arizona
| | - Mikael Tillberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - K Johan Hogmalm
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mark Dopson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
28
|
Pellerin A, Wenk CB, Halevy I, Wing BA. Sulfur Isotope Fractionation by Sulfate-Reducing Microbes Can Reflect Past Physiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4013-4022. [PMID: 29505248 DOI: 10.1021/acs.est.7b05119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfur (S) isotope fractionation by sulfate-reducing microorganisms is a direct manifestation of their respiratory metabolism. This fractionation is apparent in the substrate (sulfate) and waste (sulfide) produced. The sulfate-reducing metabolism responds to variability in the local environment, with the response determined by the underlying genotype, resulting in the expression of an "isotope phenotype". Sulfur isotope phenotypes have been used as a diagnostic tool for the metabolic activity of sulfate-reducing microorganisms in the environment. Our experiments with Desulfovibrio vulgaris Hildenborough (DvH) grown in batch culture suggest that the S isotope phenotype of sulfate respiring microbes may lag environmental changes on time scales that are longer than generational. When inocula from different phases of growth are assayed under the same environmental conditions, we observed that DvH exhibited different net apparent fractionations of up to -9‰. The magnitude of fractionation was weakly correlated with physiological parameters but was strongly correlated to the age of the initial inoculum. The S isotope fractionation observed between sulfate and sulfide showed a positive correlation with respiration rate, contradicting the well-described negative dependence of fractionation on respiration rate. Quantitative modeling of S isotope fractionation shows that either a large increase (≈50×) in the abundance of sulfate adenylyl transferase (Sat) or a smaller increase in sulfate transport proteins (≈2×) is sufficient to account for the change in fractionation associated with past physiology. Temporal transcriptomic studies with DvH imply that expression of sulfate permeases doubles over the transition from early exponential to early stationary phase, lending support to the transport hypothesis proposed here. As it is apparently maintained for multiple generations (≈1-6) of subsequent growth in the assay environment, we suggest that this fractionation effect acts as a sort of isotopic "memory" of a previous physiological and environmental state. Whatever its root cause, this physiological hysteresis effect can explain variations in fractionations observed in many environments. It may also enable new insights into life at energetic limits, especially if its historical footprint extends deeper than generational.
Collapse
Affiliation(s)
- André Pellerin
- Center for Geomicrobiology, Department of Bioscience , Aarhus University , Ny Munkegade 114 , Aarhus C 8000 , Denmark
| | - Christine B Wenk
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Boswell A Wing
- Geological Sciences , University of Colorado Boulder , UCB 399, Boulder , Colorado 80309-0399 , United States
| |
Collapse
|
29
|
Marin-Carbonne J, Remusat L, Sforna MC, Thomazo C, Cartigny P, Philippot P. Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction. GEOBIOLOGY 2018; 16:121-138. [PMID: 29380506 DOI: 10.1111/gbi.12275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Microbial sulfate reduction (MSR) is thought to have operated very early on Earth and is often invoked to explain the occurrence of sedimentary sulfides in the rock record. Sedimentary sulfides can also form from sulfides produced abiotically during late diagenesis or metamorphism. As both biotic and abiotic processes contribute to the bulk of sedimentary sulfides, tracing back the original microbial signature from the earliest Earth record is challenging. We present in situ sulfur isotope data from nanopyrites occurring in carbonaceous remains lining the domical shape of stromatolite knobs of the 2.7-Gyr-old Tumbiana Formation (Western Australia). The analyzed nanopyrites show a large range of δ34 S values of about 84‰ (from -33.7‰ to +50.4‰). The recognition that a large δ34 S range of 80‰ is found in individual carbonaceous-rich layers support the interpretation that the nanopyrites were formed in microbial mats through MSR by a Rayleigh distillation process during early diagenesis. An active microbial cycling of sulfur during formation of the stromatolite may have facilitated the mixing of different sulfur pools (atmospheric and hydrothermal) and explain the weak mass independent signature (MIF-S) recorded in the Tumbiana Formation. These results confirm that MSR participated actively to the biogeochemical cycling of sulfur during the Neoarchean and support previous models suggesting anaerobic oxidation of methane using sulfate in the Tumbiana environment.
Collapse
Affiliation(s)
- J Marin-Carbonne
- Institut de Physique du Globe - Sorbonne Paris Cité, CNRS, Université Paris Diderot, Paris Cedex 05, France
- Univ Lyon- UJM St Etienne, Laboratoire Magmas et Volcans, UCA, CNRS, IRD, UMR 6524, Saint Etienne, France
| | - L Remusat
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UPMC, UMR CNRS 7590, UMR IRD 206, Sorbonne Universités - Muséum National d'Histoire Naturelle, Paris, France
| | - M C Sforna
- Institut de Physique du Globe - Sorbonne Paris Cité, CNRS, Université Paris Diderot, Paris Cedex 05, France
- Department of Geology, Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - C Thomazo
- UMR CNRS/uB6282 Biogéosciences, UFR Sciences Vie Terre Environnement Université de Bourgogne Franche Comté, Dijon, France
| | - P Cartigny
- Institut de Physique du Globe - Sorbonne Paris Cité, CNRS, Université Paris Diderot, Paris Cedex 05, France
| | - P Philippot
- Institut de Physique du Globe - Sorbonne Paris Cité, CNRS, Université Paris Diderot, Paris Cedex 05, France
- Géosciences Montpellier, CNRS-UMR 5243, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
30
|
Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. THE ISME JOURNAL 2018; 12:495-507. [PMID: 29087380 PMCID: PMC5776465 DOI: 10.1038/ismej.2017.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/26/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023]
Abstract
Dissimilatory sulfate reduction (DSR) has been a key process influencing the global carbon cycle, atmospheric composition and climate for much of Earth's history, yet the energy metabolism of sulfate-reducing microbes remains poorly understood. Many organisms, particularly sulfate reducers, live in low-energy environments and metabolize at very low rates, requiring specific physiological adaptations. We identify one such potential adaptation-the electron carriers selected for survival under energy-limited conditions. Employing a quantitative biochemical-isotopic model, we find that the large S isotope fractionations (>55‰) observed in a wide range of natural environments and culture experiments at low respiration rates are only possible when the standard-state Gibbs free energy (ΔG'°) of all steps during DSR is more positive than -10 kJ mol-1. This implies that at low respiration rates, only electron carriers with modestly negative reduction potentials are involved, such as menaquinone, rubredoxin, rubrerythrin or some flavodoxins. Furthermore, the constraints from S isotope fractionation imply that ferredoxins with a strongly negative reduction potential cannot be the direct electron donor to S intermediates at low respiration rates. Although most sulfate reducers have the genetic potential to express a variety of electron carriers, our results suggest that a key physiological adaptation of sulfate reducers to low-energy environments is to use electron carriers with modestly negative reduction potentials.
Collapse
Affiliation(s)
- Christine B Wenk
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Gomes ML, Fike DA, Bergmann KD, Jones C, Knoll AH. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures. GEOBIOLOGY 2018; 16:17-34. [PMID: 29047210 DOI: 10.1111/gbi.12265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In modern microbial mats, hydrogen sulfide shows pronounced sulfur isotope (δ34 S) variability over small spatial scales (~50‰ over <4 mm), providing information about microbial sulfur cycling within different ecological niches in the mat. In the geological record, the location of pyrite formation, overprinting from mat accretion, and post-depositional alteration also affect both fine-scale δ34 S patterns and bulk δ34 Spyrite values. We report μm-scale δ34 S patterns in Proterozoic samples with well-preserved microbial mat textures. We show a well-defined relationship between δ34 S values and sulfide mineral grain size and type. Small pyrite grains (<25 μm) span a large range, tending toward high δ34 S values (-54.5‰ to 11.7‰, mean: -14.4‰). Larger pyrite grains (>25 μm) have low but equally variable δ34 S values (-61.0‰ to -10.5‰, mean: -44.4‰). In one sample, larger sphalerite grains (>35 μm) have intermediate and essentially invariant δ34 S values (-22.6‰ to -15.6‰, mean: -19.4‰). We suggest that different sulfide mineral populations reflect separate stages of formation. In the first stage, small pyrite grains form near the mat surface along a redox boundary where high rates of sulfate reduction, partial closed-system sulfate consumption in microenvironments, and/or sulfide oxidation lead to high δ34 S values. In another stage, large sphalerite grains with low δ34 S values grow along the edges of pore spaces formed from desiccation of the mat. Large pyrite grains form deeper in the mat at slower sulfate reduction rates, leading to low δ34 Ssulfide values. We do not see evidence for significant 34 S-enrichment in bulk pore water sulfide at depth in the mat due to closed-system Rayleigh fractionation effects. On a local scale, Rayleigh fractionation influences the range of δ34 S values measured for individual pyrite grains. Fine-scale analyses of δ34 Spyrite patterns can thus be used to extract environmental information from ancient microbial mats and aid in the interpretation of bulk δ34 Spyrite records.
Collapse
Affiliation(s)
- M L Gomes
- Washington University, Saint Louis, MO, USA
- Harvard University, Cambridge, MA, USA
| | - D A Fike
- Washington University, Saint Louis, MO, USA
| | - K D Bergmann
- Massachusettes Institute of Technology, Cambridge, MA, USA
| | - C Jones
- Washington University, Saint Louis, MO, USA
| | - A H Knoll
- Harvard University, Cambridge, MA, USA
| |
Collapse
|
32
|
Fakhraee M, Crowe SA, Katsev S. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. SCIENCE ADVANCES 2018; 4:e1701835. [PMID: 29376118 PMCID: PMC5783677 DOI: 10.1126/sciadv.1701835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/19/2017] [Indexed: 05/22/2023]
Abstract
Abrupt disappearance of mass-independent fractionation of sulfur isotopes (MIF-S) from the geologic record and an apparent ingrowth in seawater sulfate around 2.45 billion years ago (Ga) signal the first large-scale oxygenation of the atmosphere [the Great Oxygenation Event (GOE)]. Pre-GOE O2 production is evident from multiple other terrestrial and marine proxies, but oceanic O2 concentrations remain poorly constrained. Furthermore, current interpretations of S isotope records do not explain a concurrent expansion in the range of both MIF-S-diagnostic for low atmospheric O2-and δ34S beginning at 2.7 Ga. To address these unknowns, we developed a reaction-transport model to analyze the preservation patterns of sulfur isotopes in Archean sedimentary pyrites, one of the most robust and widely distributed proxies for early Earth biogeochemistry. Our modeling, paradoxically, reveals that micromolar levels of O2 in seawater enhance the preservation of large MIF-S signals, whereas concomitant ingrowth of sulfate expands the ranges in pyrite δ34S. The 2.7- to 2.45-Ga expansion in both Δ33S and δ34S ranges thus argues for a widespread and protracted oxygenation of seawater, at least in shallow marine environments. At the micromolar levels predicted, the surface oceans would support a strong flux of O2 to the atmosphere, where O2 sinks balanced these fluxes until the GOE. This microoxic seawater would have provided habitat for early aerobic microorganisms and supported a diversity of new O2-driven biogeochemical cycles in the Neoarchean.
Collapse
Affiliation(s)
- Mojtaba Fakhraee
- Large Lakes Observatory, University of Minnesota Duluth, 2205 East 5th Street, Duluth, MN 55812, USA
| | - Sean A. Crowe
- Department of Microbiology and Immunology and Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sergei Katsev
- Large Lakes Observatory, University of Minnesota Duluth, 2205 East 5th Street, Duluth, MN 55812, USA
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
33
|
Bykova N, Gill BC, Grazhdankin D, Rogov V, Xiao S. A geochemical study of the Ediacaran discoidal fossil Aspidella preserved in limestones: Implications for its taphonomy and paleoecology. GEOBIOLOGY 2017; 15:572-587. [PMID: 28397387 DOI: 10.1111/gbi.12240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The Ediacara biota features the rise of macroscopic complex life immediately before the Cambrian explosion. One of the most abundant and widely distributed elements of the Ediacara biota is the discoidal fossil Aspidella, which is interpreted as a subsurface holdfast possibly anchoring a frondose epibenthic organism. It is a morphologically simple fossil preserved mainly in siliciclastic rocks, which are unsuitable for comprehensive stable isotope geochemical analyses to decipher its taphonomy and paleoecology. In this regard, three-dimensionally preserved Aspidella fossils from upper Ediacaran limestones of the Khatyspyt Formation in the Olenek Uplift of northern Siberia offer a rare opportunity to leverage geochemistry for insights into their taphonomy and paleoecology. To take advantage of this opportunity, we analyzed δ13 Ccarb , δ18 Ocarb , δ13 Corg , δ34 Spyr , and iron speciation of the Khatyspyt Aspidella fossils and surrounding sediment matrix in order to investigate whether they hosted microbial symbionts, how they were fossilized, and the redox conditions of their ecological environments. Aspidella holdfasts and surrounding sediment matrix show indistinguishable δ13 Corg values, suggesting they did not host and derive significant amount of nutrients from microbial symbionts such as methanogens, methylotrophs, or sulfide-oxidizing bacteria. δ13 Ccarb , δ18 Ocarb , and δ34 Spyr data, along with petrographic observations, suggest that microbial sulfate reduction facilitated the preservation of Aspidella by promoting early authigenic calcite cementation in the holdfasts before matrix cementation and sediment compaction. Iron speciation data are equivocal, largely because of the low total iron concentrations. However, consideration of published sulfur isotope and biomarker data suggests that Aspidella likely lived in non-euxinic waters. It is possible that Aspidella was an opportunistic organism, colonizing the seafloor in large numbers when paleoenvironments were favorable. This study demonstrates that geochemical data of Ediacaran fossils preserved in limestones can offer important insights into the taphonomy and paleoecology of these enigmatic organisms living on the eve of the Cambrian explosion.
Collapse
Affiliation(s)
- N Bykova
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
| | - B C Gill
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - D Grazhdankin
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - V Rogov
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
| | - S Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
34
|
Wang W, Guan C, Zhou C, Peng Y, Pratt LM, Chen X, Chen L, Chen Z, Yuan X, Xiao S. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution. GEOBIOLOGY 2017; 15:552-571. [PMID: 28063179 DOI: 10.1111/gbi.12226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The Ediacaran Doushantuo Formation in South China is a prime target for geobiological investigation because it offers opportunities to integrate chemostratigraphic and paleobiological data. Previous studies were mostly focused on successions in shallow-water shelf facies, but data from deep-water successions are needed to fully understand basinal redox structures. Here, we report δ13 Ccarb , δ13 Corg , δ34 Spyr , δ34 SCAS , and δ15 Nsed data from a drill core of the fossiliferous Lantian Formation, which is a deep-water equivalent of the Doushantuo Formation. Our data confirm a large (>10‰) spatial gradient in δ13 Ccarb in the lower Doushantuo/Lantian formations, but this gradient is probably due to the greater sensitivity of carbonate-poor deep-water sediments to isotopic mixing with 13 C-depleted carbonate cements. A pronounced negative δ13 Ccarb excursion (EN3) in the upper Doushantuo/Lantian formations, however, is spatially consistent and may be an equivalent of the Shuram excursion. δ34 Spyr is more negative in deeper-water facies than in shallow-water facies, particularly in the lower Doushantuo/Lantian formations, and this spatial pattern is interpreted as evidence for ocean redox stratification: Pyrite precipitated in euxinic deep waters has lower δ34 Spyr than that formed within shallow-water sediments. The Lantian Formation was probably deposited in oscillating oxic and euxinic conditions. Euxinic black shales have higher TOC and TN contents, but lower δ34 Spyr and δ15 Nsed values. In euxinic environments, pyrite was predominantly formed in the water column and organic nitrogen was predominantly derived from nitrogen fixation or NH4+ assimilation because of quantitative denitrification, resulting in lower δ34 Spyr and δ15 Nsed values. Benthic macroalgae and putative animals occur exclusively in euxinic black shales. If preserved in situ, these organisms must have lived in brief oxic episodes punctuating largely euxinic intervals, only to be decimated and preserved when the local environment switched back to euxinia again. Thus, taphonomy and ecology were the primary factors controlling the stratigraphic distribution of macrofossils in the Lantian Formation.
Collapse
Affiliation(s)
- W Wang
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - C Guan
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - C Zhou
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - Y Peng
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
| | - L M Pratt
- Department of Geological Sciences, Indiana University, Bloomington, IN, USA
| | - X Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - L Chen
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Z Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - X Yuan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - S Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
35
|
Zaarur S, Wang DT, Ono S, Bosak T. Influence of Phosphorus and Cell Geometry on the Fractionation of Sulfur Isotopes by Several Species of Desulfovibrio during Microbial Sulfate Reduction. Front Microbiol 2017; 8:890. [PMID: 28611734 PMCID: PMC5447228 DOI: 10.3389/fmicb.2017.00890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 12/02/2022] Open
Abstract
We investigated the influence of organic substrates and phosphate concentration on the rates of dissimilatory microbial sulfate reduction and the 34S/32S isotopic fractionation produced by several Desulfovibrio species. Our experiments corroborate the previously reported species-specific correlation between sulfur isotope fractionation and cell-specific sulfate reduction rates. We also identify cell size as a key factor that contributes to the species-effect of this correlation. Phosphate limitation results in larger cells and contributes to a small decrease in sulfur isotope fractionation concomitant with an apparent increase in cell-specific sulfate reduction rates. Sulfur isotope fractionation in phosphate-limited cultures asymptotically approaches a lower limit of approximately 5‰ as cell-specific sulfate reduction rates increase to >100 fmol cell−1 day−1. These experimental results test models that link the reversibilities of enzymatic steps in dissimilatory sulfate reduction to sulfur isotope fractionation and show that these models can provide consistent predictions across large variations in physiological states experienced by sulfate reducing bacteria.
Collapse
Affiliation(s)
- Shikma Zaarur
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, United States
| | - David T Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, United States
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, United States
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, United States
| |
Collapse
|
36
|
Meyer NR, Zerkle AL, Fike DA. Sulphur cycling in a Neoarchaean microbial mat. GEOBIOLOGY 2017; 15:353-365. [PMID: 28128527 PMCID: PMC5412852 DOI: 10.1111/gbi.12227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass-independent fractionation (S-MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ34 S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early-diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high-resolution multiple S-isotope studies (δ34 S and Δ33 S) using secondary ion mass spectrometry (SIMS) to document the S-isotope signatures of exceptionally well-preserved, pyritised microbialites in shales from the ~2.65-Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing <26‰ μm-scale variations in δ34 S and Δ33 S = -0.21 ± 0.65‰ (±1σ). These large variations in δ34 S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ34 S = 8.36 ± 1.16‰ and Δ33 S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later-stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record.
Collapse
Affiliation(s)
- N. R. Meyer
- School of Earth and Environmental SciencesUniversity of St AndrewsSt AndrewsUK
- Present address: Department of Earth System ScienceStanford UniversityStanfordCA94305USA
| | - A. L. Zerkle
- School of Earth and Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| | - D. A. Fike
- Department of Earth and Planetary SciencesWashington UniversitySt. LouisMOUSA
| |
Collapse
|
37
|
Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc Natl Acad Sci U S A 2017; 114:E2571-E2579. [PMID: 28289223 DOI: 10.1073/pnas.1618798114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emerging evidence suggests that atmospheric oxygen may have varied before rising irreversibly ∼2.4 billion years ago, during the Great Oxidation Event (GOE). Significantly, however, pre-GOE atmospheric aberrations toward more reducing conditions-featuring a methane-derived organic-haze-have recently been suggested, yet their occurrence, causes, and significance remain underexplored. To examine the role of haze formation in Earth's history, we targeted an episode of inferred haze development. Our redox-controlled (Fe-speciation) carbon- and sulfur-isotope record reveals sustained systematic stratigraphic covariance, precluding nonatmospheric explanations. Photochemical models corroborate this inference, showing Δ36S/Δ33S ratios are sensitive to the presence of haze. Exploiting existing age constraints, we estimate that organic haze developed rapidly, stabilizing within ∼0.3 ± 0.1 million years (Myr), and persisted for upward of ∼1.4 ± 0.4 Myr. Given these temporal constraints, and the elevated atmospheric CO2 concentrations in the Archean, the sustained methane fluxes necessary for haze formation can only be reconciled with a biological source. Correlative δ13COrg and total organic carbon measurements support the interpretation that atmospheric haze was a transient response of the biosphere to increased nutrient availability, with methane fluxes controlled by the relative availability of organic carbon and sulfate. Elevated atmospheric methane concentrations during haze episodes would have expedited planetary hydrogen loss, with a single episode of haze development providing up to 2.6-18 × 1018 moles of O2 equivalents to the Earth system. Our findings suggest the Neoarchean likely represented a unique state of the Earth system where haze development played a pivotal role in planetary oxidation, hastening the contingent biological innovations that followed.
Collapse
|
38
|
Guo H, Zhou Y, Jia Y, Tang X, Li X, Shen M, Lu H, Han S, Wei C, Norra S, Zhang F. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12650-12659. [PMID: 27797497 DOI: 10.1021/acs.est.6b03460] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The role of sulfur cycling in arsenic behavior under reducing conditions is not well-understood in previous investigations. This study provides observations of sulfur and oxygen isotope fractionation in sulfate and evaluation of sulfur cycling-related biogeochemical processes controlling dissolved arsenic groundwater concentrations using multiple isotope approaches. As a typical basin hosting high arsenic groundwater, the western Hetao basin was selected as the study area. Results showed that, along the groundwater flow paths, groundwater δ34SSO4, δ18OSO4, and δ13CDOC increased with increases in arsenic, dissolved iron, hydrogen sulfide and ammonium concentrations, while δ13CDIC decreased with decreasing Eh and sulfate/chloride. Bacterial sulfate reduction (BSR) was responsible for many of these observed changes. The δ34SSO4 indicated that dissolved sulfate was mainly sourced from oxidative weathering of sulfides in upgradient alluvial fans. The high oxygen-sulfur isotope fractionation ratio (0.60) may result from both slow sulfate reduction rates and bacterial disproportionation of sulfur intermediates (BDSI). Data indicate that both the sulfide produced by BSR and the overall BDSI reduce arsenic-bearing iron(III) oxyhydroxides, leading to the release of arsenic into groundwater. These results suggest that sulfur-related biogeochemical processes are important in mobilizing arsenic in aquifer systems.
Collapse
Affiliation(s)
- Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Yinzhu Zhou
- State Key Laboratory of Biogeology and Environmental Geology, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Yongfeng Jia
- State Key Laboratory of Biogeology and Environmental Geology, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Xiaohui Tang
- Institute of Applied Geosciences, Karlsruhe Institute of Technology , Karlsruhe 76131, Germany
| | - Xiaofeng Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Mengmeng Shen
- State Key Laboratory of Biogeology and Environmental Geology, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Hai Lu
- The National Institute of Metrology , Beijing 100013, P.R. China
| | - Shuangbao Han
- Center for Hydrogeology and Environmental Geology, China Geological Survey , Baoding 071051, Hebei China
| | - Chao Wei
- The National Institute of Metrology , Beijing 100013, P.R. China
| | - Stefan Norra
- Institute of Applied Geosciences, Karlsruhe Institute of Technology , Karlsruhe 76131, Germany
| | - Fucun Zhang
- Center for Hydrogeology and Environmental Geology, China Geological Survey , Baoding 071051, Hebei China
| |
Collapse
|
39
|
Leavitt WD, Venceslau SS, Pereira IAC, Johnston DT, Bradley AS. Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression. FEMS Microbiol Lett 2016; 363:fnw226. [PMID: 27702753 DOI: 10.1093/femsle/fnw226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Dissimilatory sulfate reduction is the central microbial metabolism in global sulfur cycling. Understanding the importance of sulfate reduction to Earth's biogeochemical S cycle requires aggregating single-cell processes with geochemical signals. For sulfate reduction, these signals include the ratio of stable sulfur isotopes preserved in minerals, as well as the hydrogen isotope ratios and structures of microbial membrane lipids preserved in organic matter. In this study, we cultivated the model sulfate reducer, Desulfovibrio vulgaris DSM 644T, to investigate how these parameters were perturbed by changes in expression of the protein DsrC. DsrC is critical to the final metabolic step in sulfate reduction to sulfide. S and H isotopic fractionation imposed by the wild type was compared to three mutants. Discrimination against 34S in sulfate, as calculated from the residual reactant, did not discernibly differ among all strains. However, a closed-system sulfur isotope distillation model, based on accumulated sulfide, produced inconsistent results in one mutant strain IPFG09. Lipids produced by IPFG09 were also slightly enriched in 2H. These results suggest that DsrC alone does not have a major impact on sulfate-S, though may influence sulfide-S and lipid-H isotopic compositions. While intriguing, a mechanistic explanation requires further study under continuous culture conditions.
Collapse
Affiliation(s)
- William D Leavitt
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA .,Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA .,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
40
|
Cui H, Kaufman AJ, Xiao S, Peek S, Cao H, Min X, Cai Y, Siegel Z, Liu XM, Peng Y, Schiffbauer JD, Martin AJ. Environmental context for the terminal Ediacaran biomineralization of animals. GEOBIOLOGY 2016; 14:344-363. [PMID: 27038407 DOI: 10.1111/gbi.12178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
In terminal Ediacaran strata of South China, the onset of calcareous biomineralization is preserved in the paleontological transition from Conotubus to Cloudina in repetitious limestone facies of the Dengying Formation. Both fossils have similar size, funnel-in-funnel construction, and epibenthic lifestyle, but Cloudina is biomineralized, whereas Conotubus is not. To provide environmental context for this evolutionary milestone, we conducted a high-resolution elemental and stable isotope study of the richly fossiliferous Gaojiashan Member. Coincident with the first appearance of Cloudina is a significant positive carbonate carbon isotope excursion (up to +6‰) and an increase in the abundance and (34) S composition of pyrite. In contrast, δ(34) S values of carbonate-associated sulfate remain steady throughout the succession, resulting in anomalously large (>70‰) sulfur isotope fractionations in the lower half of the member. The fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation involved in the lower interval, whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We speculate that the coupled paleontological and biogeochemical anomalies may have coincided with an increase in terrestrial weathering fluxes of sulfate, alkalinity, and nutrients to the depositional basin, which stimulated primary productivity, the spread of an oxygen minimum zone, and the development of euxinic conditions in subtidal and basinal environments. Enhanced production and burial of organic matter is thus directly connected to the carbon isotope anomaly, and likely promoted pyritization as the main taphonomic pathway for Conotubus and other soft-bodied Ediacara biotas. Our studies suggest that the Ediacaran confluence of ecological pressures from predation and environmental pressures from an increase in seawater alkalinity set the stage for an unprecedented geobiological response: the evolutionary novelty of animal biomineralization.
Collapse
Affiliation(s)
- H Cui
- Department of Geology, University of Maryland, College Park, MD, USA
- Department of Geoscience and NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - A J Kaufman
- Department of Geology, University of Maryland, College Park, MD, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - S Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - S Peek
- Department of Geology, University of Maryland, College Park, MD, USA
| | - H Cao
- Department of Geology, University of Maryland, College Park, MD, USA
| | - X Min
- Department of Geology, Northwest University, Xi'an, China
| | - Y Cai
- Department of Geology, Northwest University, Xi'an, China
| | - Z Siegel
- Bethesda-Chevy Chase High School, Bethesda, MD, USA
| | - X-M Liu
- Department of Geological Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Y Peng
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
| | - J D Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, MO, USA
| | - A J Martin
- División de Geociencias Aplicadas, IPICYT, San Luis Potosí, Mexico
| |
Collapse
|
41
|
Leavitt WD, Flynn TM, Suess MK, Bradley AS. Transhydrogenase and Growth Substrate Influence Lipid Hydrogen Isotope Ratios in Desulfovibrio alaskensis G20. Front Microbiol 2016; 7:918. [PMID: 27445998 PMCID: PMC4916218 DOI: 10.3389/fmicb.2016.00918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022] Open
Abstract
Microbial fatty acids preserve metabolic and environmental information in their hydrogen isotope ratios ((2)H/(1)H). This ratio is influenced by parameters that include the (2)H/(1)H of water in the microbial growth environment, and biosynthetic fractionations between water and lipid. In some microbes, this biosynthetic fractionation has been shown to vary systematically with central energy metabolism, and controls on fatty acid (2)H/(1)H may be linked to the intracellular production of NADPH. We examined the apparent fractionation between media water and the fatty acids produced by Desulfovibrio alaskensis G20. Growth was in batch culture with malate as an electron donor for sulfate respiration, and with pyruvate and fumarate as substrates for fermentation and for sulfate respiration. A larger fractionation was observed as a consequence of respiratory or fermentative growth on pyruvate than growth on fumarate or malate. This difference correlates with opposite apparent flows of electrons through the electron bifurcating/confurcating transhydrogenase NfnAB. When grown on malate or fumarate, mutant strains of D. alaskensis G20 containing transposon disruptions in a copy of nfnAB show different fractionations than the wild type strain. This phenotype is muted during fermentative growth on pyruvate, and it is absent when pyruvate is a substrate for sulfate reduction. All strains and conditions produced similar fatty acid profiles, and the (2)H/(1)H of individual lipids changed in concert with the mass-weighted average. Unsaturated fatty acids were generally depleted in (2)H relative to their saturated homologs, and anteiso-branched fatty acids were generally depleted in (2)H relative to straight-chain fatty acids. Fractionation correlated with growth rate, a pattern that has also been observed in the fractionation of sulfur isotopes during dissimilatory sulfate reduction by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- William D. Leavitt
- Department of Earth and Planetary Sciences, Washington University in St. LouisSaint Louis, MO, USA
| | | | - Melanie K. Suess
- Department of Earth and Planetary Sciences, Washington University in St. LouisSaint Louis, MO, USA
| | - Alexander S. Bradley
- Department of Earth and Planetary Sciences, Washington University in St. LouisSaint Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. LouisSaint Louis, MO, USA
| |
Collapse
|
42
|
Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. SCIENCE ADVANCES 2016; 2:e1600134. [PMID: 27386544 PMCID: PMC4928975 DOI: 10.1126/sciadv.1600134] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/20/2016] [Indexed: 05/18/2023]
Abstract
Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.
Collapse
Affiliation(s)
- Genming Luo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-608, Cambridge, MA 02139, USA
- State Key Laboratory of Biogeology and Environmental Geology, and School of Earth Science, China University of Geosciences, Wuhan 430074, People’s Republic of China
- Corresponding author. (G.L.); (R.E.S.)
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-608, Cambridge, MA 02139, USA
| | - Nicolas J. Beukes
- DST-NRF (Department of Science and Technology–National Research Foundation) Centre of Excellence for Integrated Mineral and Energy Resource Analysis, Department of Geology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - David T. Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-608, Cambridge, MA 02139, USA
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, and School of Earth Science, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Roger E. Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-608, Cambridge, MA 02139, USA
- Corresponding author. (G.L.); (R.E.S.)
| |
Collapse
|
43
|
Kamezaki K, Hattori S, Ogawa T, Toyoda S, Kato H, Katayama Y, Yoshida N. Sulfur Isotopic Fractionation of Carbonyl Sulfide during Degradation by Soil Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3537-3544. [PMID: 26967120 DOI: 10.1021/acs.est.5b05325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We performed laboratory incubation experiments on the degradation of gaseous phase carbonyl sulfide (OCS) by soil bacteria to determine its sulfur isotopic fractionation constants ((34)ε). Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, and Cupriavidus isolated from natural soil environments. The (34)ε values determined were -3.67 ± 0.33‰, -3.99 ± 0.19‰, -3.57 ± 0.22‰, and -3.56 ± 0.23‰ for Mycobacterium spp. strains THI401, THI402, THI404, and THI405; -3.74 ± 0.29‰ for Williamsia sp. strain THI410; and -2.09 ± 0.07‰ and -2.38 ± 0.35‰ for Cupriavidus spp. strains THI414 and THI415. Although OCS degradation rates divided by cell numbers (cell-specific activity) were different among strains of the same genus, the (34)ε values for same genus showed no significant differences. Even though the numbers of bacterial species examined were limited, our results suggest that (34)ε values for OCS bacterial degradation depend not on cell-specific activities, but on genus-level biological differences, suggesting that (34)ε values are dependent on enzymatic and/or membrane properties. Taking our (34)ε values as representative for bacterial OCS degradation, the expected atmospheric changes in δ(34)S values of OCS range from 0.5‰ to 0.9‰, based on previously reported decreases in OCS concentrations at Mt. Fuji, Japan. Consequently, tropospheric observation of δ(34)S values for OCS coupled with (34)ε values for OCS bacterial degradation can potentially be used to investigate soil as an OCS sink.
Collapse
Affiliation(s)
| | | | - Takahiro Ogawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology , 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University , 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology , 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Naohiro Yoshida
- Earth-Life Science Institute, Tokyo Institute of Technology , 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
44
|
Leavitt WD, Bradley AS, Santos AA, Pereira IAC, Johnston DT. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase. Front Microbiol 2015; 6:1392. [PMID: 26733949 PMCID: PMC4690157 DOI: 10.3389/fmicb.2015.01392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/23/2015] [Indexed: 12/01/2022] Open
Abstract
The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S = 17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S = 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments.
Collapse
Affiliation(s)
- William D Leavitt
- Department of Earth and Planetary Sciences, Harvard UniversityCambridge, MA, USA; Department of Earth and Planetary Sciences, Washington University in St. LouisSt. Louis, MO, USA
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - André A Santos
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal
| | - Inês A C Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal
| | - David T Johnston
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| |
Collapse
|