1
|
Briedis M, Hahn S, Bauer S. Duration and variability of spring green-up mediate population consequences of climate change. Ecol Lett 2024; 27:e14380. [PMID: 38348625 DOI: 10.1111/ele.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Single phenological measures, like the average rate of phenological advancement, may be insufficient to explain how climate change is driving trends in animal populations. Here, we develop a multifactorial concept of spring phenology-including the onset of spring, spring duration, interannual variability, and their temporal changes-as a driver for population dynamics of migratory terrestrial species in seasonal environments. Using this conceptual model, we found that effects of advancing spring phenology on animal populations may be buffered or amplified depending on the duration and interannual variability of spring green-up, and those effects are modified by evolutionary and plastic adaptations of species. Furthermore, we compared our modelling results with empirical data on normalized difference vegetation index-based spring green-up phenology and population trends of 106 European landbird finding similar associations. We conclude how phenological changes are expected to affect migratory bird populations across Europe and identify regions that are particularly prone to suffer population declines.
Collapse
Affiliation(s)
- Martins Briedis
- Swiss Ornithological Institute, Sempach, Switzerland
- Lab of Ornithology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Steffen Hahn
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Silke Bauer
- Swiss Ornithological Institute, Sempach, Switzerland
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Environmental Systems Science, Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Broggi J, Hohtola E, Koivula K, Rytkönen S, Nilsson JÅ. Prehatching temperatures drive inter-annual cohort differences in great tit metabolism. Oecologia 2022; 198:619-627. [PMID: 35174406 PMCID: PMC8956552 DOI: 10.1007/s00442-022-05126-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/25/2022] [Indexed: 11/14/2022]
Abstract
Basal metabolic rate (BMR) constitutes the lowest metabolic rate in a resting animal and is, therefore, considered to reflect the energetic cost of maintenance in endotherms. BMR is a reversible plastic trait that changes with environmental and ecological circumstances, albeit being heritable and susceptible to selection. Inter-individual variation within populations of small birds is substantial, and while many of the drivers of such variation have been identified, many remain unexplained. We studied winter BMR variation of juveniles over a 15-year period in a wild population of great tits Parus major at the northern border of their distribution. BMR during winter consistently changed between years, even after controlling for environmental factors, suggestive of a non-reversible developmental plasticity shaping the adult metabolic phenotype. BMR in cohorts of wintering great tits varied among winters as a response to minimum ambient temperatures experienced early in life, during the prehatching period. This developmental plasticity might be adaptive if temperatures experienced by growing embryos would metabolically prime them to an environment that they will likely encounter in future life. However, in line with a more unpredictable future climate, the risk of phenotype-environment mismatch is likely to lead to certain cohorts being poorly adapted to prevailing winter conditions, resulting in wider annual fluctuations in population size.
Collapse
Affiliation(s)
- Juli Broggi
- Department of Biology, Section of Evolutionary Ecology, University of Lund, 223 62, Lund, Sweden.
- Estación Biológica de Doñana (CSIC), Av. Américo Vespucio 26, 41092, Sevilla, Spain.
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Esa Hohtola
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Kari Koivula
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Seppo Rytkönen
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Jan-Åke Nilsson
- Department of Biology, Section of Evolutionary Ecology, University of Lund, 223 62, Lund, Sweden
| |
Collapse
|
3
|
Lameris TK, Tomkovich PS, Johnson JA, Morrison RIG, Tulp I, Lisovski S, DeCicco L, Dementyev M, Gill RE, Ten Horn J, Piersma T, Pohlen Z, Schekkerman H, Soloviev M, Syroechkovsky EE, Zhemchuzhnikov MK, van Gils JA. Mismatch-induced growth reductions in a clade of Arctic-breeding shorebirds are rarely mitigated by increasing temperatures. GLOBAL CHANGE BIOLOGY 2022; 28:829-847. [PMID: 34862835 DOI: 10.1111/gcb.16025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In seasonal environments subject to climate change, organisms typically show phenological changes. As these changes are usually stronger in organisms at lower trophic levels than those at higher trophic levels, mismatches between consumers and their prey may occur during the consumers' reproduction period. While in some species a trophic mismatch induces reductions in offspring growth, this is not always the case. This variation may be caused by the relative strength of the mismatch, or by mitigating factors like increased temperature-reducing energetic costs. We investigated the response of chick growth rate to arthropod abundance and temperature for six populations of ecologically similar shorebirds breeding in the Arctic and sub-Arctic (four subspecies of Red Knot Calidris canutus, Great Knot C. tenuirostris and Surfbird C. virgata). In general, chicks experienced growth benefits (measured as a condition index) when hatching before the seasonal peak in arthropod abundance, and growth reductions when hatching after the peak. The moment in the season at which growth reductions occurred varied between populations, likely depending on whether food was limiting growth before or after the peak. Higher temperatures led to faster growth on average, but could only compensate for increasing trophic mismatch for the population experiencing the coldest conditions. We did not find changes in the timing of peaks in arthropod availability across the study years, possibly because our series of observations was relatively short; timing of hatching displayed no change over the years either. Our results suggest that a trend in trophic mismatches may not yet be evident; however, we show Arctic-breeding shorebirds to be vulnerable to this phenomenon and vulnerability to depend on seasonal prey dynamics.
Collapse
Affiliation(s)
- Thomas K Lameris
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Pavel S Tomkovich
- Zoological Museum, MV Lomonosov Moscow State University, Moscow, Russia
| | - James A Johnson
- Migratory Bird Management, US Fish and Wildlife Service, Anchorage, Alaska, USA
| | - R I Guy Morrison
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Ingrid Tulp
- Wageningen Marine Research, Wageningen University, IJmuiden, The Netherlands
| | - Simeon Lisovski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Lucas DeCicco
- Migratory Bird Management, US Fish and Wildlife Service, Anchorage, Alaska, USA
| | - Maksim Dementyev
- Department of Vertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | - Robert E Gill
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Job Ten Horn
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Inst. for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Zachary Pohlen
- Migratory Bird Management, US Fish and Wildlife Service, Anchorage, Alaska, USA
| | - Hans Schekkerman
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - Mikhail Soloviev
- Department of Vertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Jan A van Gils
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Inst. for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Zhemchuzhnikov MK, Versluijs TSL, Lameris TK, Reneerkens J, Both C, van Gils JA. Exploring the drivers of variation in trophic mismatches: A systematic review of long-term avian studies. Ecol Evol 2021; 11:3710-3725. [PMID: 33976770 PMCID: PMC8093693 DOI: 10.1002/ece3.7346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output.Here, we explore the potential causes for variation in the strength of trophic mismatches in published studies of birds. Specifically, we ask whether the changes in the degree of mismatch that have occurred over time can be explained by a bird's (a) breeding latitude, (b) migration distance, and/or (c) life-history traits.We found that none of these three factors explain changes in the degree of mismatch over time. Nevertheless, food phenology did advance faster at more northerly latitudes, while shifts in bird phenology did not show a trend with latitude.We argue that the lack of support in our results is attributable to the large variation in the metrics used to describe timing of food availability. We propose a pathway to improve the quantification of trophic mismatches, guided by a more rigorous understanding of links between consumers and their resources.
Collapse
Affiliation(s)
| | | | - Thomas K. Lameris
- NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
| | - Jeroen Reneerkens
- NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
- University of GroningenGroningenThe Netherlands
| | | | - Jan A. van Gils
- NIOZ Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
- University of GroningenGroningenThe Netherlands
| |
Collapse
|
5
|
Zhang S, Zhao L, Zhang X, Liang W. Predicting the vulnerability of birds to trophic threat posed by phenological mismatch based on nutritional and physiological status of nestlings. CONSERVATION PHYSIOLOGY 2019; 7:coz096. [PMID: 31827800 PMCID: PMC6894998 DOI: 10.1093/conphys/coz096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Climate change induced phenological mismatches between nestlings and their optimal food resources have been found to negatively influence the survival of many bird species. Discriminating which species is vulnerable to such threat is difficult only based on the diet observation, and therefore it is necessary to establish a more reliable method to predict the vulnerability of bird species. In the case of Asian short-toed lark (Calandrella cheleensis), we predicted such vulnerability by evaluating whether nestlings can absorb equal level of nutrients from different diets and maintain equal physiological status. We compared the diet, plasma nutrients, plasma insulin-like growth factor-1 (IGF-1), body mass and survival rate of nestlings hatched under different optimal food (grasshopper nymph) abundance conditions in two breeding seasons. Plasma glucides, amino acids, tricarboxylic acid (TCA) cycle metabolites, some fatty acids, IGF-1, body mass and survival rate of the nestlings hatched under medium or low nymph abundance conditions were significantly lower than those of nestlings hatched under high nymph abundance condition. The relative abundance of plasma amino acids, glucides, TCA cycle metabolites and fatty acids were significantly, and positively, correlated with IGF-1 levels, which, in turn, was positively correlated with nestling body mass. These results indicate that the diet with low optimal food proportion was nutritionally inferior to the diet with high optimal food proportion and inhibited the growth of nestlings. Species like Asian short-toed lark is vulnerable to the trophic threat induced by phenological mismatch because the alternative food is insufficient to satisfy the nutritional requirement of nestlings.
Collapse
Affiliation(s)
- Shuping Zhang
- College of Life and Environment Sciences, Minzu University of China, Zhongguancun south street 27, Beijing 100081, China
| | - Lidan Zhao
- College of Life and Environment Sciences, Minzu University of China, Zhongguancun south street 27, Beijing 100081, China
| | - Xinjie Zhang
- College of Life and Environment Sciences, Minzu University of China, Zhongguancun south street 27, Beijing 100081, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Longkun south road 99, Haikou 571158, China
| |
Collapse
|
6
|
Kwon E, Weiser EL, Lanctot RB, Brown SC, Gates HR, Gilchrist G, Kendall SJ, Lank DB, Liebezeit JR, McKinnon L, Nol E, Payer DC, Rausch J, Rinella DJ, Saalfeld ST, Senner NR, Smith PA, Ward D, Wisseman RW, Sandercock BK. Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eunbi Kwon
- Division of Biology Kansas State University Manhattan Kansas 66506 USA
| | - Emily L. Weiser
- Division of Biology Kansas State University Manhattan Kansas 66506 USA
| | - Richard B. Lanctot
- Migratory Bird Management U.S. Fish and Wildlife Service Anchorage Alaska 99503 USA
| | - Stephen C. Brown
- Manomet Center for Conservation Sciences Manomet Massachusetts 02345 USA
| | - Heather R. Gates
- Migratory Bird Management U.S. Fish and Wildlife Service Anchorage Alaska 99503 USA
- Manomet Center for Conservation Sciences Manomet Massachusetts 02345 USA
| | - Grant Gilchrist
- Environment and Climate Change Canada National Wildlife Research Centre Carleton University Ottawa Ontario K1A 0H3 Canada
| | - Steve J. Kendall
- Arctic National Wildlife Refuge U.S. Fish and Wildlife Service Fairbanks Alaska 99701 USA
| | - David B. Lank
- Department of Biological Sciences Simon Fraser University Burnaby British Columbia V3H 3S6 Canada
| | | | - Laura McKinnon
- Department of Biology Trent University Peterborough Ontario K9J 7B8 Canada
| | - Erica Nol
- Department of Biology Trent University Peterborough Ontario K9J 7B8 Canada
| | - David C. Payer
- Arctic National Wildlife Refuge U.S. Fish and Wildlife Service Fairbanks Alaska 99701 USA
| | - Jennie Rausch
- Canadian Wildlife Service Yellowknife Northwest Territories X1A 2P7 Canada
| | - Daniel J. Rinella
- Alaska Center for Conservation Science and Department of Biological Sciences University of Alaska Anchorage Anchorage Alaska 99508 USA
| | - Sarah T. Saalfeld
- Migratory Bird Management U.S. Fish and Wildlife Service Anchorage Alaska 99503 USA
| | - Nathan R. Senner
- Cornell Lab of Ornithology Cornell University Ithaca New York 14850 USA
| | - Paul A. Smith
- Environment and Climate Change Canada Wildlife Research Division Ottawa Ontario K1A 0H3 Canada
| | - David Ward
- US Geological Survey Anchorage Alaska 99508 USA
| | | | | |
Collapse
|
7
|
Wann GT, Aldridge CL, Seglund AE, Oyler‐McCance SJ, Kondratieff BC, Braun CE. Mismatches between breeding phenology and resource abundance of resident alpine ptarmigan negatively affect chick survival. Ecol Evol 2019; 9:7200-7212. [PMID: 31380043 PMCID: PMC6662402 DOI: 10.1002/ece3.5290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 11/08/2022] Open
Abstract
Phenological mismatches-defined here as the difference in reproductive timing of an individual relative to the availability of its food resources-occur in many avian species. Mistiming breeding activities in environments with constrained breeding windows may have severe fitness costs due to reduced opportunities for repeated breeding attempts. Therefore, species occurring in alpine environments may be particularly vulnerable.We studied fitness consequences of timing of breeding in an alpine-endemic species, the white-tailed ptarmigan (Lagopus leucura), to investigate its influence on chick survival. We estimated phenological mismatch by measuring plant and arthropods used by ptarmigan in relation to their timing of breeding.We monitored 120 nests and 67 broods over a three-year period (2013-2015) at three alpine study sites in the Rocky Mountains of Colorado. During this same period, we actively monitored food resource abundance in brood-use areas to develop year and site-specific resource phenology curves. We developed several mismatch indices from these curves that were then fit as covariates in mark-recapture chick survival models.A correlation analysis between seasonal changes in arthropod and food plant abundance indicated that a normalized difference vegetation index (NDVI) was likely the best predictor for food available to hens and chicks. A survival model that included an interaction between NDVI mismatch and chick age received strong support and indicated young chicks were more susceptible to mismatch than older chicks.We provide evidence that individual females of a resident alpine species can be negatively affected by phenological mismatch. Our study focused on individual females and did not examine if phenological mismatch was present at the population level. Future work in animal populations occurring in mountain systems focusing on a combination of both individual- and population-level metrics of mismatch will be beneficial.
Collapse
Affiliation(s)
- Gregory T. Wann
- Department of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsColorado
| | - Cameron L. Aldridge
- Department of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsColorado
| | | | | | - Boris C. Kondratieff
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsColorado
| | | |
Collapse
|
8
|
Saalfeld ST, McEwen DC, Kesler DC, Butler MG, Cunningham JA, Doll AC, English WB, Gerik DE, Grond K, Herzog P, Hill BL, Lagassé BJ, Lanctot RB. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol Evol 2019; 9:6693-6707. [PMID: 31236253 PMCID: PMC6580279 DOI: 10.1002/ece3.5248] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 01/18/2023] Open
Abstract
The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well-documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers. During a 7-year study near Utqiaġvik (formerly Barrow), Alaska, we estimated phenological mismatch in relation to food availability and chick growth in a community of Arctic-breeding shorebirds experiencing advancement of environmental conditions (i.e., snowmelt). Our results indicate that Arctic-breeding shorebirds have experienced increased phenological mismatch with earlier snowmelt conditions. However, the degree of phenological mismatch was not a good predictor of food availability, as weather conditions after snowmelt made invertebrate availability highly unpredictable. As a result, the food available to shorebird chicks that were 2-10 days old was highly variable among years (ranging from 6.2 to 28.8 mg trap-1 day-1 among years in eight species), and was often inadequate for average growth (only 20%-54% of Dunlin and Pectoral Sandpiper broods on average had adequate food across a 4-year period). Although weather conditions vary among years, shorebirds that nested earlier in relation to snowmelt generally had more food available during brood rearing, and thus, greater chick growth rates. Despite the strong selective pressure to nest early, advancement of nesting is likely limited by the amount of plasticity in the start and progression of migration. Therefore, long-term climatic changes resulting in earlier snowmelt have the potential to greatly affect shorebird populations, especially if shorebirds are unable to advance nest initiation sufficiently to keep pace with seasonal advancement of their invertebrate prey.
Collapse
Affiliation(s)
- Sarah T. Saalfeld
- Migratory Bird Management DivisionU.S. Fish and Wildlife ServiceAnchorageAlaska
| | | | - Dylan C. Kesler
- The Institute for Bird PopulationsPoint Reyes StationCalifornia
| | - Malcolm G. Butler
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth Dakota
| | - Jenny A. Cunningham
- Department of Fisheries and Wildlife SciencesUniversity of MissouriColumbiaMissouri
| | | | - Willow B. English
- National Wildlife Research CentreCarleton UniversityOttawaOntarioCanada
| | - Danielle E. Gerik
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksAlaska
| | - Kirsten Grond
- Department of Molecular & Cell BiologyUniversity of ConnecticutStorrsConnecticut
| | - Patrick Herzog
- Institut für Biologie, Zoologie - Molekulare ÖkologieMartin-Luther-Universität Halle-WittenbergHalleGermany
| | - Brooke L. Hill
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaska
| | - Benjamin J. Lagassé
- Department of Integrative BiologyUniversity of Colorado DenverDenverColorado
| | - Richard B. Lanctot
- Migratory Bird Management DivisionU.S. Fish and Wildlife ServiceAnchorageAlaska
| |
Collapse
|
9
|
Rytkönen S, Vesterinen EJ, Westerduin C, Leviäkangas T, Vatka E, Mutanen M, Välimäki P, Hukkanen M, Suokas M, Orell M. From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol Evol 2019; 9:631-639. [PMID: 30680143 PMCID: PMC6342092 DOI: 10.1002/ece3.4787] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Diets play a key role in understanding trophic interactions. Knowing the actual structure of food webs contributes greatly to our understanding of biodiversity and ecosystem functioning. The research of prey preferences of different predators requires knowledge not only of the prey consumed, but also of what is available. In this study, we applied DNA metabarcoding to analyze the diet of 4 bird species (willow tits Poecile montanus, Siberian tits Poecile cinctus, great tits Parus major and blue tits Cyanistes caeruleus) by using the feces of nestlings. The availability of their assumed prey (Lepidoptera) was determined from feces of larvae (frass) collected from the main foraging habitat, birch (Betula spp.) canopy. We identified 53 prey species from the nestling feces, of which 11 (21%) were also detected from the frass samples (eight lepidopterans). Approximately 80% of identified prey species in the nestling feces represented lepidopterans, which is in line with the earlier studies on the parids' diet. A subsequent laboratory experiment showed a threshold for fecal sample size and the barcoding success, suggesting that the smallest frass samples do not contain enough larval DNA to be detected by high-throughput sequencing. To summarize, we apply metabarcoding for the first time in a combined approach to identify available prey (through frass) and consumed prey (via nestling feces), expanding the scope and precision for future dietary studies on insectivorous birds.
Collapse
Affiliation(s)
- Seppo Rytkönen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Eero J. Vesterinen
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Spatial Foodweb Ecology GroupUniversity of HelsinkiHelsinkiFinland
| | - Coen Westerduin
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | | | - Emma Vatka
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Ecological Genetics Research UnitUniversity of HelsinkiHelsinkiFinland
| | - Marko Mutanen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Panu Välimäki
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Markku Hukkanen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Marko Suokas
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Markku Orell
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| |
Collapse
|
10
|
Kristensen NP, Johansson J, Jonzén N, Smith HG. Evolution of resident bird breeding phenology in a landscape with heterogeneous resource phenology and carryover effects. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9951-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
|
12
|
Pakanen VM, Orell M, Vatka E, Rytkönen S, Broggi J. Different Ultimate Factors Define Timing of Breeding in Two Related Species. PLoS One 2016; 11:e0162643. [PMID: 27611971 PMCID: PMC5017718 DOI: 10.1371/journal.pone.0162643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Correct reproductive timing is crucial for fitness. Breeding phenology even in similar species can differ due to different selective pressures on the timing of reproduction. These selection pressures define species' responses to warming springs. The temporal match-mismatch hypothesis suggests that timing of breeding in animals is selected to match with food availability (synchrony). Alternatively, time-dependent breeding success (the date hypothesis) can result from other seasonally deteriorating ecological conditions such as intra- or interspecific competition or predation. We studied the effects of two ultimate factors on the timing of breeding, synchrony and other time-dependent factors (time-dependence), in sympatric populations of two related forest-dwelling passerine species, the great tit (Parus major) and the willow tit (Poecile montanus) by modelling recruitment with long-term capture-recapture data. We hypothesized that these two factors have different relevance for fitness in these species. We found that local recruitment in both species showed quadratic relationships with both time-dependence and synchrony. However, the importance of these factors was markedly different between the studied species. Caterpillar food played a predominant role in predicting the timing of breeding of the great tit. In contrast, for the willow tit time-dependence modelled as timing in relation to conspecifics was more important for local recruitment than synchrony. High caterpillar biomass experienced during the pre- and post-fledging periods increased local recruitment of both species. These contrasting results confirm that these species experience different selective pressures upon the timing of breeding, and hence responses to climate change may differ. Detailed information about life-history strategies is required to understand the effects of climate change, even in closely related taxa. The temporal match-mismatch hypothesis should be extended to consider subsequent critical periods when food needs to be abundantly available.
Collapse
Affiliation(s)
- Veli-Matti Pakanen
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Markku Orell
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Emma Vatka
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Seppo Rytkönen
- Department of Ecology, University of Oulu, P. O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | - Juli Broggi
- Research Unit of Biodiversity, (UMIB, UO-CISC, PA). Ed. de Investigación 5ª C/ Gonzalo Gutiérrez Quirós s/n. 33600 Mieres, Spain
| |
Collapse
|