1
|
Qian Z, Zhu F, Tan X, Zhang Q. Warming degrades nutritional quality of periphyton in stream ecosystems: evidence from a mesocosm experiment. ISME COMMUNICATIONS 2025; 5:ycaf051. [PMID: 40201424 PMCID: PMC11977459 DOI: 10.1093/ismeco/ycaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Periphyton, which is rich in polyunsaturated fatty acids (PUFA), serves as an indispensable high-quality basal resource for consumers in stream food webs. However, with global warming, how fatty acid composition of periphyton changes and consequent effects on their transfer to higher trophic level consumers remain unclear. By carrying out a manipulative mesocosm experiment with a 4°C increase, warming led to a significant decrease in the proportions of PUFA and Long-chain PUFA (LC-PUFA, >20 C) in periphyton from 13.32% to 9.90% and from 3.05% to 2.18%, respectively. The proportions of three PUFAs-α-linolenic acid (18:3ω3), arachidonic acid (ARA, 20:4ω6), and docosahexaenoic acid (22:6ω3)-also declined significantly (P < .05). Notably, the fatty acid profile of the consumer-Bellamya aeruginosa reflected the changes in basal resources, with a decrease in PUFA from 40.14% to 36.27%, and a significant decrease in LC-PUFA from 34.58% to 30.11%. Although algal community composition in biofilms did not significantly change with warming, significant transcriptomic alterations were observed, with most differentially expressed genes related to fatty acid synthesis in lipid metabolism and photosynthesis down-regulated. Our findings indicate that warming may hinder the production and transfer of high-quality carbon evaluated by LC-PUFA to consumers, consequently affect the complexity and stability of stream food webs.
Collapse
Affiliation(s)
- Zhenglu Qian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Junker JR, Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D, Ólafsson JS, Gíslason GM. Environmental warming increases the importance of high-turnover energy channels in stream food webs. Ecology 2024; 105:e4314. [PMID: 38710667 DOI: 10.1002/ecy.4314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly. Here, we quantified patterns and the relative distribution of organic matter fluxes through stream food webs spanning a broad natural temperature gradient (5-27°C). We then related these patterns to species and community trait distributions of mean body size and population biomass turnover (P:B) within and across streams. We predicted that (1) communities in warmer streams would exhibit smaller body size and higher P:B and (2) organic matter fluxes within warmer communities would increasingly skew toward smaller, higher P:B populations. Across the temperature gradient, warmer communities were characterized by smaller body size (~9% per °C) and higher P:B (~7% faster turnover per °C) populations on average. Additionally, organic matter fluxes within warmer streams were increasingly skewed toward higher P:B populations, demonstrating that warming can restructure organic matter fluxes in both an absolute and relative sense. With warming, the relative distribution of organic matter fluxes was decreasingly likely to arise through the random sorting of species, suggesting stronger selection for traits driving high turnover with increasing temperature. Our study suggests that a warming world will favor energy fluxes through "smaller and faster" populations, and that these changes may be more predictable than previously thought.
Collapse
Affiliation(s)
- James R Junker
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - James M Hood
- The Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Daniel Nelson
- National Aquatic Monitoring Center, Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
| | - Gísli M Gíslason
- University of Iceland, Institute of Life and Environmental Sciences, Reykjavík, Iceland
| |
Collapse
|
3
|
Leathers K, Herbst D, de Mendoza G, Doerschlag G, Ruhi A. Climate change is poised to alter mountain stream ecosystem processes via organismal phenological shifts. Proc Natl Acad Sci U S A 2024; 121:e2310513121. [PMID: 38498724 PMCID: PMC10998557 DOI: 10.1073/pnas.2310513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Climate change is affecting the phenology of organisms and ecosystem processes across a wide range of environments. However, the links between organismal and ecosystem process change in complex communities remain uncertain. In snow-dominated watersheds, snowmelt in the spring and early summer, followed by a long low-flow period, characterizes the natural flow regime of streams and rivers. Here, we examined how earlier snowmelt will alter the phenology of mountain stream organisms and ecosystem processes via an outdoor mesocosm experiment in stream channels in the Eastern Sierra Nevada, California. The low-flow treatment, simulating a 3- to 6-wk earlier return to summer baseflow conditions projected under climate change scenarios in the region, increased water temperature and reduced biofilm production to respiration ratios by 32%. Additionally, most of the invertebrate species explaining community change (56% and 67% of the benthic and emergent taxa, respectively), changed in phenology as a consequence of the low-flow treatment. Further, emergent flux pulses of the dominant insect group (Chironomidae) almost doubled in magnitude, benefitting a generalist riparian predator. Changes in both invertebrate community structure (composition) and functioning (production) were mostly fine-scale, and response diversity at the community level stabilized seasonally aggregated responses. Our study illustrates how climate change in vulnerable mountain streams at the rain-to-snow transition is poised to alter the dynamics of stream food webs via fine-scale changes in phenology-leading to novel predator-prey "matches" or "mismatches" even when community structure and ecosystem processes appear stable at the annual scale.
Collapse
Affiliation(s)
- Kyle Leathers
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - David Herbst
- Sierra Nevada Aquatic Research Laboratory, University of California, Santa Barbara, CA93106
| | - Guillermo de Mendoza
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk76-200, Poland
| | - Gabriella Doerschlag
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| |
Collapse
|
4
|
Jackson MC, Friberg N, Moliner Cachazo L, Clark DR, Mutinova PT, O'Gorman EJ, Kordas RL, Gallo B, Pichler DE, Bespalaya Y, Aksenova OV, Milner A, Brooks SJ, Dunn N, Lee KWK, Ólafsson JS, Gíslason GM, Millan L, Bell T, Dumbrell AJ, Woodward G. Regional impacts of warming on biodiversity and biomass in high latitude stream ecosystems across the Northern Hemisphere. Commun Biol 2024; 7:316. [PMID: 38480906 PMCID: PMC10937648 DOI: 10.1038/s42003-024-05936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Warming can have profound impacts on ecological communities. However, explorations of how differences in biogeography and productivity might reshape the effect of warming have been limited to theoretical or proxy-based approaches: for instance, studies of latitudinal temperature gradients are often conflated with other drivers (e.g., species richness). Here, we overcome these limitations by using local geothermal temperature gradients across multiple high-latitude stream ecosystems. Each suite of streams (6-11 warmed by 1-15°C above ambient) is set within one of five regions (37 streams total); because the heating comes from the bedrock and is not confounded by changes in chemistry, we can isolate the effect of temperature. We found a negative overall relationship between diatom and invertebrate species richness and temperature, but the strength of the relationship varied regionally, declining more strongly in regions with low terrestrial productivity. Total invertebrate biomass increased with temperature in all regions. The latter pattern combined with the former suggests that the increased biomass of tolerant species might compensate for the loss of sensitive species. Our results show that the impact of warming can be dependent on regional conditions, demonstrating that local variation should be included in future climate projections rather than simply assuming universal relationships.
Collapse
Affiliation(s)
- Michelle C Jackson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK.
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| | - Nikolai Friberg
- Norwegian Institute for Nature Research (NINA) Sognsveien 68, Oslo, 0855, Norway
- Freshwater Biological Section, University of Copenhagen, Copenhagen, Denmark
- Water@Leeds, University of Leeds, School of Geography, Leeds, UK
| | - Luis Moliner Cachazo
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- Department of Geography, King's College London, The Strand, London, WC2R 2LS, UK
| | - David R Clark
- School of Life Science, University of Essex, Colchester, CO4 3SQ, UK
- Institute for Analytics and Data Science, University of Essex, Colchester, CO4 3SQ, UK
| | - Petra Thea Mutinova
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo, 0579, Norway
| | - Eoin J O'Gorman
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- School of Life Science, University of Essex, Colchester, CO4 3SQ, UK
| | - Rebecca L Kordas
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Bruno Gallo
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Doris E Pichler
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Yulia Bespalaya
- N. Laverov Federal Centre for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Olga V Aksenova
- N. Laverov Federal Centre for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Alexander Milner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J Brooks
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Nicholas Dunn
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - K W K Lee
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, Tsuen, Hong Kong
| | - Jón S Ólafsson
- Institute of Marine and Freshwater Research, Hafnafjordur, 220, Hafnarfjörður, Iceland
| | - Gísli M Gíslason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, 102, Iceland
| | - Lucia Millan
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Alex J Dumbrell
- School of Life Science, University of Essex, Colchester, CO4 3SQ, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
5
|
Smith BA, Costa APB, Kristjánsson BK, Parsons KJ. Experimental evidence for adaptive divergence in response to a warmed habitat reveals roles for morphology, allometry and parasite resistance. Ecol Evol 2024; 14:e10907. [PMID: 38333102 PMCID: PMC10850817 DOI: 10.1002/ece3.10907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 02/10/2024] Open
Abstract
Ectotherms are expected to be particularly vulnerable to climate change-driven increases in temperature. Understanding how populations adapt to novel thermal environments will be key for informing mitigation plans. We took advantage of threespine stickleback (Gasterosteus aculeatus) populations inhabiting adjacent geothermal (warm) and ambient (cold) habitats to test for adaptive evolutionary divergence using a field reciprocal transplant experiment. We found evidence for adaptive morphological divergence, as growth (length change) in non-native habitats related to head, posterior and total body shape. Higher growth in fish transplanted to a non-native habitat was associated with morphological shape closer to native fish. The consequences of transplantation were asymmetric with cold sourced fish transplanted to the warm habitat suffering from lower survival rates and greater parasite prevalence than warm sourced fish transplanted to the cold habitat. We also found divergent shape allometries that related to growth. Our findings suggest that wild populations can adapt quickly to thermal conditions, but immediate transitions to warmer conditions may be particularly difficult.
Collapse
Affiliation(s)
- Bethany A. Smith
- School of Biodiversity, One Health & Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Ana P. B. Costa
- School of Biodiversity, One Health & Veterinary MedicineUniversity of GlasgowGlasgowUK
- Rosenstiel School of Marine, Atmospheric and Earth ScienceUniversity of MiamiCoral GablesFloridaUSA
| | | | - Kevin J. Parsons
- School of Biodiversity, One Health & Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
O'Gorman EJ, Zhao L, Kordas RL, Dudgeon S, Woodward G. Warming indirectly simplifies food webs through effects on apex predators. Nat Ecol Evol 2023; 7:1983-1992. [PMID: 37798434 PMCID: PMC10697836 DOI: 10.1038/s41559-023-02216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
Warming alters ecosystems through direct physiological effects on organisms and indirect effects via biotic interactions, but their relative impacts in the wild are unknown due to the difficulty in warming natural environments. Here we bridge this gap by embedding manipulative field experiments within a natural stream temperature gradient to test whether warming and apex fish predators have interactive effects on freshwater ecosystems. Fish exerted cascading effects on algal production and microbial decomposition via both green and brown pathways in the food web, but only under warming. Neither temperature nor the presence of fish altered food web structure alone, but connectance and mean trophic level declined as consumer species were lost when both drivers acted together. A mechanistic model indicates that this temperature-induced trophic cascade is determined primarily by altered interactions, which cautions against extrapolating the impacts of warming from reductionist approaches that do not consider the wider food web.
Collapse
Affiliation(s)
- Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK.
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| | - Rebecca L Kordas
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| | - Steve Dudgeon
- Department of Biology, California State University, Northridge, CA, USA
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK.
| |
Collapse
|
8
|
Wang J, Grimm NB, Lawler SP, Dong X. Changing climate and reorganized species interactions modify community responses to climate variability. Proc Natl Acad Sci U S A 2023; 120:e2218501120. [PMID: 37722049 PMCID: PMC10523507 DOI: 10.1073/pnas.2218501120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
While an array of ecological mechanisms has been shown to stabilize natural community dynamics, how the effectiveness of these mechanisms-including both their direction (stabilizing vs. destabilizing) and strength-shifts under a changing climate remains unknown. Using a 35-y dataset (1985 to 2019) from a desert stream in central Arizona (USA), we found that as annual mean air temperature rose 1°C and annual mean precipitation reduced by 40% over the last two decades, macroinvertebrate communities experienced dramatic changes, from relatively stable states during the first 15 y of this study to wildly fluctuating states highly sensitive to climate variability in the last 10 y. Asynchronous species responses to climatic variability, the primary mechanism historically undergirding community stability, greatly weakened. The emerging climate regime-specifically, concurrent warming and prolonged multiyear drought-resulted in community-wide synchronous responses and reduced taxa richness. Diversity loss and new establishment of competitors reorganized species interactions. Unlike manipulative experiments that often suggest stabilizing roles of species interactions, we found that reorganized species interactions switched from stabilizing to destabilizing influences, further amplifying community fluctuations. Our study provides evidence of climate change-induced modifications of mechanisms underpinning long-term community stability, resulting in an overall destabilizing effect.
Collapse
Affiliation(s)
- Junna Wang
- Department of Environmental Science and Policy, University of California, Davis, CA95616
| | - Nancy B. Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Sharon P. Lawler
- Department of Entomology & Nematology, University of California, Davis, CA95616
| | - Xiaoli Dong
- Department of Environmental Science and Policy, University of California, Davis, CA95616
| |
Collapse
|
9
|
Sabater S, Freixa A, Jiménez L, López-Doval J, Pace G, Pascoal C, Perujo N, Craven D, González-Trujillo JD. Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta-analysis. Biol Rev Camb Philos Soc 2023; 98:450-461. [PMID: 36307907 DOI: 10.1111/brv.12914] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Both gradual and extreme weather changes trigger complex ecological responses in river ecosystems. It is still unclear to what extent trend or event effects alter biodiversity and functioning in river ecosystems, adding considerable uncertainty to predictions of their future dynamics. Using a comprehensive database of 71 published studies, we show that event - but not trend - effects associated with extreme changes in water flow and temperature substantially reduce species richness. Furthermore, event effects - particularly those affecting hydrological dynamics - on biodiversity and primary productivity were twice as high as impacts due to gradual changes. The synthesis of the available evidence reveals that event effects induce regime shifts in river ecosystems, particularly affecting organisms such as invertebrates. Among extreme weather events, dryness associated with flow interruption caused the largest effects on biota and ecosystem functions in rivers. Effects on ecosystem functions (primary production, organic matter decomposition and respiration) were asymmetric, with only primary production exhibiting a negative response to extreme weather events. Our meta-analysis highlights the disproportionate impact of event effects on river biodiversity and ecosystem functions, with implications for the long-term conservation and management of river ecosystems. However, few studies were available from tropical areas, and our conclusions therefore remain largely limited to temperate river systems. Further efforts need to be directed to assemble evidence of extreme events on river biodiversity and functioning.
Collapse
Affiliation(s)
- Sergi Sabater
- Catalan Institute of Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
- GRECO, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Anna Freixa
- Catalan Institute of Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
- GRECO, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Laura Jiménez
- Catalan Institute of Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Spain
| | - Julio López-Doval
- Catalan Institute of Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Spain
| | - Giorgio Pace
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Núria Perujo
- Catalan Institute of Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Spain
| | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
| | | |
Collapse
|
10
|
Wang T, Zhang P, Zhang H, Wang H, Su X, Zhang M, Xu J. Warming and phosphorus enrichment alter the size structure and body stoichiometry of aquatic gastropods. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.979378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aquatic gastropods are important integral components of the macroinvertebrate community in freshwater ecosystems and play critical roles in freshwater ecosystems by contributing to biodiversity, nutrient cycling, and water quality. However, the variation of aquatic gastropods’ community structure under the combined effects of warming and nutrient enrichment remains largely unknown. To investigate this question, we performed an outdoor mesocosm experiment examining the interaction of warming (a 4.5 °C increase in mean temperature above ambient conditions) and nutrient enrichment (phosphorus addition) on the aquatic gastropods’ community and dominant population (Bellamya aeruginosa). We analyzed the changes in community dynamics (abundance and biomass), size structure, and stoichiometric traits (only B. aeruginosa). Results showed that phosphorus enrichment alone had a positive effect on the total abundance and biomass of gastropods, as well as the abundance and biomass of B. aeruginosa. Warming alone only produced a positive effect on total abundance. However, the combined effects of warming and phosphorus enrichment negatively affected the biomass and abundance of the whole gastropod community and the dominant gastropod population. The body mass of B. aeruginosa increased because of warming, whereas the body mass of the gastropod community negatively responded to warming. Phosphorus enrichment alone had no remarkable effects on body mass. The combined effects of warming and phosphorus enrichment negatively affected the whole community’s body mass but had no substantial effect on the body mass of B. aeruginosa. For body stoichiometric traits, warming or phosphorus enrichment alone produced positive effects on the nitrogen and phosphorus contents of B. aeruginosa. The combined effects caused adverse effects on the contents of the two elements. The effect of warming alone only decreased the ratio of nitrogen to phosphorus. Results suggested that the response levels in size structure between the gastropod community and the dominant population differed remarkably. Composition species shift was the main cause of the decrease in aquatic gastropods’ community size structure. The shift in species composition at the whole gastropod community level caused by warming and phosphorus enrichment may result in more complex and unpredicted consequences through cascade effects on the structure and function of freshwater ecosystems.
Collapse
|
11
|
Morton SG, Schmidt TS, Poff NL. Lack of evidence for indirect effects from stonefly predators on primary production under future climate warming scenarios. ECOSCIENCE 2022. [DOI: 10.1080/11956860.2022.2060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Scott G. Morton
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - N. LeRoy Poff
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Institute for Applied Ecology, University of Canberra, ACT, Canberra, Australia
| |
Collapse
|
12
|
Reinert JH, Albertson LK, Junker JR. Influence of biomimicry structures on ecosystem function in a Rocky Mountain incised stream. Ecosphere 2022. [DOI: 10.1002/ecs2.3897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | - James R. Junker
- Department of Ecology Montana State University Bozeman Montana USA
| |
Collapse
|
13
|
Nelson D, Busch MH, Kopp DA, Allen DC. Energy pathways modulate the resilience of stream invertebrate communities to drought. J Anim Ecol 2021; 90:2053-2064. [PMID: 33782972 DOI: 10.1111/1365-2656.13490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer- or detritus-based (i.e. 'green' or 'brown' food webs, respectively), or both (i.e. 'multi-channel' food web). Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels. We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness and diversity. Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience. Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fuelled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates.
Collapse
Affiliation(s)
- Daniel Nelson
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Michelle H Busch
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Darin A Kopp
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel C Allen
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
14
|
Wauchope HS, Amano T, Geldmann J, Johnston A, Simmons BI, Sutherland WJ, Jones JPG. Evaluating Impact Using Time-Series Data. Trends Ecol Evol 2020; 36:196-205. [PMID: 33309331 DOI: 10.1016/j.tree.2020.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022]
Abstract
Humanity's impact on the environment is increasing, as are strategies to conserve biodiversity, but a lack of understanding about how interventions affect ecological and conservation outcomes hampers decision-making. Time series are often used to assess impacts, but ecologists tend to compare average values from before to after an impact; overlooking the potential for the intervention to elicit a change in trend. Without methods that allow for a range of responses, erroneous conclusions can be drawn, especially for large, multi-time-series datasets, which are increasingly available. Drawing on literature in other disciplines and pioneering work in ecology, we present a standardised framework to robustly assesses how interventions, like natural disasters or conservation policies, affect ecological time series.
Collapse
Affiliation(s)
- Hannah S Wauchope
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.
| | - Tatsuya Amano
- School of Biological Sciences, University of Queensland, Brisbane, Australia; Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Australia
| | - Jonas Geldmann
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alison Johnston
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Benno I Simmons
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK
| | - Julia P G Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| |
Collapse
|
15
|
Stoffels RJ, Weatherman KE, Bond NR, Morrongiello JR, Thiem JD, Butler G, Koster W, Kopf RK, McCasker N, Ye Q, Zampatti B, Broadhurst B. Stage-dependent effects of river flow and temperature regimes on the growth dynamics of an apex predator. GLOBAL CHANGE BIOLOGY 2020; 26:6880-6894. [PMID: 32970901 DOI: 10.1111/gcb.15363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In the world's rivers, alteration of flow is a major driver of biodiversity decline. Global warming is now affecting the thermal and hydrological regimes of rivers, compounding the threat and complicating conservation planning. To inform management under a non-stationary climate, we must improve our understanding of how flow and thermal regimes interact to affect the population dynamics of riverine biota. We used long-term growth biochronologies, spanning 34 years and 400,000 km2 , to model the growth dynamics of a long-lived, apex predator (Murray cod) as a function of factors extrinsic (river discharge; air temperature; sub-catchment) and intrinsic (age; individual) to the population. Annual growth of Murray cod showed significant, curvilinear, life-stage-specific responses to an interaction between annual discharge and temperature. Growth of early juveniles (age 1+ and 2+ years) exhibited a unimodal relationship with annual discharge, peaking near median annual discharge. Growth of late juveniles (3+ to 5+) and adults (>5+) increased with annual discharge, with the rate of increase being particularly high in adults, whose growth peaked during years with flooding. Years with very low annual discharge, as experienced during drought and under high abstraction, suppress growth rates of all Murray cod life-stages. Unimodal relationships between growth and annual temperature were evident across all life stages. Contrary to expectations of the Temperature Size Rule, the annual air temperature at which maximum growth occurred increased with age. The stage-specific response of Murray cod to annual discharge indicates that no single magnitude of annual discharge is optimal for cod populations, adding further weight to the case for maintaining and/or restoring flow variability in riverine ecosystems. With respect to climate change impacts, on balance our results indicate that the primary mechanism by which climate change threatens Murray cod growth is through alteration of river flows, not through warming annual mean temperatures per se.
Collapse
Affiliation(s)
- Rick J Stoffels
- National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand
| | - Kyle E Weatherman
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Vic., Australia
| | - Nick R Bond
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Vic., Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Jason D Thiem
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia
| | - Gavin Butler
- Department of Primary Industries, Grafton Fisheries Centre, Grafton, NSW, Australia
| | - Wayne Koster
- Arthur Rylah Institute, Melbourne, Vic., Australia
| | - R Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Nicole McCasker
- Institute of Land, Water and Society, Charles Sturt University, Albury, NSW, Australia
| | - Qifeng Ye
- South Australian Research and Development Institute, West Beach, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Brenton Zampatti
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ben Broadhurst
- Centre for Applied Water Science, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
16
|
Junker JR, Cross WF, Benstead JP, Huryn AD, Hood JM, Nelson D, Gíslason GM, Ólafsson JS. Resource supply governs the apparent temperature dependence of animal production in stream ecosystems. Ecol Lett 2020; 23:1809-1819. [PMID: 33001542 PMCID: PMC7702057 DOI: 10.1111/ele.13608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/06/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022]
Abstract
Rising global temperatures are changing how energy and materials move through ecosystems, with potential consequences for the role of animals in these processes. We tested a central prediction of the metabolic scaling framework-the temperature independence of animal community production-using a series of geothermally heated streams and a comprehensive empirical analysis. We show that the apparent temperature sensitivity of animal production was consistent with theory for individuals (Epind = 0.64 vs. 0.65 eV), but strongly amplified relative to theoretical expectations for communities, both among (Epamong = 0.67 vs. 0 eV) and within (Epwithin = 1.52 vs. 0 eV) streams. After accounting for spatial and temporal variation in resources, we show that the apparent positive effect of temperature was driven by resource supply, providing strong empirical support for the temperature independence of invertebrate production and the necessary inclusion of resources in metabolic scaling efforts.
Collapse
Affiliation(s)
- James R Junker
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - James M Hood
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Translational Data Analytics Institute, The Aquatic Ecology Laboratory, Columbus, OH, 43212, USA
| | - Daniel Nelson
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Gísli M Gíslason
- University of Iceland, Institute of Life and Environmental Sciences, Reykjavík, Iceland
| | - Jón S Ólafsson
- Institute of Marine and Freshwater Fisheries, Reykjavík, Iceland
| |
Collapse
|
17
|
Nelson D, Benstead JP, Huryn AD, Cross WF, Hood JM, Johnson PW, Junker JR, Gíslason GM, Ólafsson JS. Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web. Ecology 2020; 101:e02952. [PMID: 31840236 DOI: 10.1002/ecy.2952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 11/11/2022]
Abstract
Climate warming is predicted to alter routing and flows of energy through food webs because of the critical and varied effects of temperature on physiological rates, community structure, and trophic dynamics. Few studies, however, have experimentally assessed the net effect of warming on energy flux and food web dynamics in natural intact communities. Here, we test how warming affects energy flux and the trophic basis of production in a natural invertebrate food web by experimentally heating a stream reach in southwest Iceland by ~4°C for 2 yr and comparing its response to an unheated reference stream. Previous results from this experiment showed that warming led to shifts in the structure of the invertebrate assemblage, with estimated increases in total metabolic demand but no change in annual secondary production. We hypothesized that elevated metabolic demand and invariant secondary production would combine to increase total consumption of organic matter in the food web, if diet composition did not change appreciably with warming. Dietary composition of primary consumers indeed varied little between streams and among years, with gut contents primarily consisting of diatoms (72.9%) and amorphous detritus (19.5%). Diatoms dominated the trophic basis of production of primary consumers in both study streams, contributing 79-86% to secondary production. Although warming increased the flux of filamentous algae within the food web, total resource consumption did not increase as predicted. The neutral net effect of warming on total energy flow through the food web was a result of taxon-level variation in responses to warming, a neutral effect on total invertebrate production, and strong trophic redundancy within the invertebrate assemblage. Thus, food webs characterized by a high degree of trophic redundancy may be more resistant to the effects of climate warming than those with more diverse and specialized consumers.
Collapse
Affiliation(s)
- Daniel Nelson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| | - James M Hood
- Department of Evolution, Ecology, and Organismal Biology, The Aquatic Ecology Laboratory, The Ohio State University, Columbus, Ohio, 43212, USA
| | - Philip W Johnson
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - James R Junker
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| | - Gísli M Gíslason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| |
Collapse
|
18
|
Salo T, Mattila J, Eklöf J. Long‐term warming affects ecosystem functioning through species turnover and intraspecific trait variation. OIKOS 2019. [DOI: 10.1111/oik.06698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tiina Salo
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. SE‐10691 Stockholm Sweden
- Environmental and Marine Biology, Åbo Akademi Univ. FI‐20520 Turku Finland
| | - Johanna Mattila
- Dept of Aquatic Resources, Inst. of Coastal Research, The Swedish Univ. of Agricultural Sciences Öregrund Sweden
- Åland Univ. of Applied Sciences, Mariehamn Åland Finland
| | - Johan Eklöf
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. SE‐10691 Stockholm Sweden
| |
Collapse
|
19
|
Xiang H, Zhang Y, Atkinson D, Sekar R. Combined effects of water temperature, grazing snails and terrestrial herbivores on leaf decomposition in urban streams. PeerJ 2019; 7:e7580. [PMID: 31608164 PMCID: PMC6788434 DOI: 10.7717/peerj.7580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 11/20/2022] Open
Abstract
The decomposition of organic matter in freshwaters, such as leaf litter, can affect global nutrient (e.g., carbon) cycling. This process can be influenced by fast urbanization through increased water temperature, reduced aquatic diversity and changed leaf litter quality traits. In this study, we performed a mesocosm experiment to explore the individual and combined effects of warming (8°C higher and ambient), the presence versus absence of grazing snails (Parafossarulus striatulus), and intraspecific difference of leaf litter quality (intact versus > 40% area of Liriodendron chinense leaves grazed by terrestrial insects) on litter decomposition in urban streams. Litter decomposition rates ranged from 0.019 d−1 to 0.058 d−1 with an average decomposition rate of 0.032 ± 0.002 d−1. All the three factors had significant effects on litter decomposition rate. Warming and the presence of snails accelerated litter decomposition rates by 60% and 35% respectively. Litter decomposition rates of leaves damaged by terrestrial insects were 5% slower than that of intact leaves, because litter quality of terrestrial insect-damaged leaves was lower (i.e., higher specific leaf weight) than intact leaves. For treatments with snails, warming stimulated microbial and snail mediated litter decomposition rates by 35% and 167%, respectively. All combinations of treatments showed additive effects on litter decomposition except for the interaction between warming and snails which showed positive synergistic effects. In addition, neither temperature nor litter quality affected snail growth rate. These results imply that higher water temperature and the presence of abundant snails in urban streams greatly enhanced litter decomposition. Moreover, the effect of pest outbreaks, which resulted in lower litter quality, can cascade to aquatic ecosystems by retarding microbe-mediated litter decomposition. When these factors co-occurred, warming could synergistically interact with snails to speed up the depletion of organic matter, while the effect of leaf quality on litter decomposition may be diminished at high water temperature. These effects could further influence stream food webs and nutrient cycling.
Collapse
Affiliation(s)
- Hongyong Xiang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yixin Zhang
- Research Center of Environmental Protection and Ecological Restoration Technology, Gold Mantis School of Architecture, Soochow University, Suzhou, Jiangsu, China
| | - David Atkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Wu CH, Holloway JD, Hill JK, Thomas CD, Chen IC, Ho CK. Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nat Commun 2019; 10:4612. [PMID: 31601806 PMCID: PMC6787050 DOI: 10.1038/s41467-019-12655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming. Body size shifts under climate change may arise from species range shifts, intraspecific size shifts, or both. Here the authors show that body size reduction in moth assemblages on Mt. Kinabalu, Borneo, over 42 years are driven more by species range shifts than by within-species shrinkage.
Collapse
Affiliation(s)
- Chung-Huey Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jane K Hill
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Chris D Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan.
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan. .,Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
21
|
Salo T, Kropf T, Burdon FJ, Seppälä O. Diurnal variation around an optimum and near-critically high temperature does not alter the performance of an ectothermic aquatic grazer. Ecol Evol 2019; 9:11695-11706. [PMID: 31695879 PMCID: PMC6822032 DOI: 10.1002/ece3.5666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/18/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
The growing threat of global climate change has led to a profusion of studies examining the effects of warming on biota. Despite the potential importance of natural variability such as diurnal temperature fluctuations, most experimental studies on warming are conducted under stable temperatures. Here, we investigated whether the responses of an aquatic invertebrate grazer (Lymnaea stagnalis) to an increased average temperature differ when the thermal regime is either constant or fluctuates diurnally. Using thermal response curves for several life-history and immune defense traits, we first identified the optimum and near-critically high temperatures that Lymnaea potentially experience during summer heat waves. We then exposed individuals that originated from three different populations to these two temperatures under constant or fluctuating thermal conditions. After 7 days, we assessed growth, reproduction, and two immune parameters (phenoloxidase-like activity and antibacterial activity of hemolymph) from each individual. Exposure to the near-critically high temperature led to increased growth rates and decreased antibacterial activity of hemolymph compared to the optimum temperature, whilst temperature fluctuations had no effect on these traits. The results indicate that the temperature level per se, rather than the variability in temperature was the main driver altering trait responses in our study species. Forecasting responses in temperature-related responses remains challenging, due to system-specific properties that can include intraspecific variation. However, our study indicates that experiments examining the effects of warming using constant temperatures can give similar predictions as studies with fluctuating thermal dynamics, and may thus be useful indicators of responses in nature.
Collapse
Affiliation(s)
- Tiina Salo
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Tabea Kropf
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Francis J. Burdon
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Otto Seppälä
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Research Department for LimnologyUniversity of InnsbruckMondseeAustria
| |
Collapse
|
22
|
Cloyed CS, Dell AI, Hayes T, Kordas RL, O'Gorman EJ. Long-term exposure to higher temperature increases the thermal sensitivity of grazer metabolism and movement. J Anim Ecol 2019; 88:833-844. [PMID: 30873610 DOI: 10.1111/1365-2656.12976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/31/2019] [Indexed: 02/03/2023]
Abstract
Ecological studies of global warming impacts have many constraints. Organisms are often exposed to higher temperatures for short periods of time, probably underestimating their ability to acclimate or adapt relative to slower but real rates of warming. Many studies also focus on a limited number of traits and miss the multifaceted effects that warming may have on organisms, from physiology to behaviour. Organisms exhibit different movement traits, some of which are primarily driven by metabolic processes and others by decision-making, which should influence the extent to which temperature affects them. We collected snails from streams that have been differentially heated by geothermal activity for decades to determine how long-term exposure to different temperatures affected their metabolism and movement. Additionally, we collected snails from a cold stream (5°C) and measured their metabolism and movement at higher temperatures (short-term exposure). We used respirometry to measure metabolic rates and automated in situ image-based tracking to quantify several movement traits from 5 to 21°C. Long-term exposure to higher temperatures resulted in a greater thermal sensitivity of metabolic rate compared to snails exposed for short durations, highlighting the need for caution when conducting acute temperature exposures in global warming research. Average speed, which is largely driven by metabolism, also increased more with temperature for long-term exposure compared to short-term exposure. Movement traits we interpret as more decision-based, such as time spent moving and trajectory shape, were less affected by temperature. Step length increased and step angle decreased at higher temperatures for both long- and short-term exposure, resulting in overall straighter trajectories. The power-law exponent of the step length distributions and fractal dimension of trajectories were independent of temperature, however, suggesting that snails retained the same movement strategy. The observed changes in snail movement at higher temperatures should lead to higher encounter rates and more efficient searching, providing a behavioural mechanism for stronger plant-herbivore interactions in warmer environments. Our research is among the first to show that temperature has contrasting effects on different movement traits, which may be determined by the metabolic contribution to those behaviours.
Collapse
Affiliation(s)
- Carl S Cloyed
- National Great Rivers Research and Education Center, East Alton, Illinois.,Department of Biology, Washington University of St. Louis, St. Louis, Missouri.,Dauphin Island Sea Lab, Dauphin Island, Alabama
| | - Anthony I Dell
- National Great Rivers Research and Education Center, East Alton, Illinois.,Department of Biology, Washington University of St. Louis, St. Louis, Missouri
| | - Tracie Hayes
- National Great Rivers Research and Education Center, East Alton, Illinois
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, Berkshire, UK
| | - Eoin J O'Gorman
- Department of Life Sciences, Imperial College London, Berkshire, UK.,School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
23
|
Patrick CJ, McGarvey DJ, Larson JH, Cross WF, Allen DC, Benke AC, Brey T, Huryn AD, Jones J, Murphy CA, Ruffing C, Saffarinia P, Whiles MR, Wallace JB, Woodward G. Precipitation and temperature drive continental-scale patterns in stream invertebrate production. SCIENCE ADVANCES 2019; 5:eaav2348. [PMID: 31001582 PMCID: PMC6469944 DOI: 10.1126/sciadv.aav2348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/27/2019] [Indexed: 05/14/2023]
Abstract
Secondary production, the growth of new heterotrophic biomass, is a key process in aquatic and terrestrial ecosystems that has been carefully measured in many flowing water ecosystems. We combine structural equation modeling with the first worldwide dataset on annual secondary production of stream invertebrate communities to reveal core pathways linking air temperature and precipitation to secondary production. In the United States, where the most extensive set of secondary production estimates and covariate data were available, we show that precipitation-mediated, low-stream flow events have a strong negative effect on secondary production. At larger scales (United States, Europe, Central America, and Pacific), we demonstrate the significance of a positive two-step pathway from air to water temperature to increasing secondary production. Our results provide insights into the potential effects of climate change on secondary production and demonstrate a modeling framework that can be applied across ecosystems.
Collapse
Affiliation(s)
- C. J. Patrick
- Department of Life Sciences, Texas A&M University, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
- *Corresponding author.
| | - D. J. McGarvey
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - J. H. Larson
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, 2630 Fanta Reed Rd., La Crosse, WI 54603, USA
| | - W. F. Cross
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| | - D. C. Allen
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - A. C. Benke
- University of Alabama, Tuscaloosa, AL 35487, USA
| | - T. Brey
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven & Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - A. D. Huryn
- University of Alabama, Tuscaloosa, AL 35487, USA
| | - J. Jones
- University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | - C. Ruffing
- University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - P. Saffarinia
- University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - M. R. Whiles
- Department of Zoology, Cooperative Wildlife Research Laboratory and Center for Ecology, Southern Illinois University, Carbondale, IL 62901, USA
| | - J. B. Wallace
- Department of Entomology and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - G. Woodward
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Rd., Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
24
|
Hood JM, Benstead JP, Cross WF, Huryn AD, Johnson PW, Gíslason GM, Junker JR, Nelson D, Ólafsson JS, Tran C. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. GLOBAL CHANGE BIOLOGY 2018; 24:1069-1084. [PMID: 28922515 DOI: 10.1111/gcb.13912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Climate warming is affecting the structure and function of river ecosystems, including their role in transforming and transporting carbon (C), nitrogen (N), and phosphorus (P). Predicting how river ecosystems respond to warming has been hindered by a dearth of information about how otherwise well-studied physiological responses to temperature scale from organismal to ecosystem levels. We conducted an ecosystem-level temperature manipulation to quantify how coupling of stream ecosystem metabolism and nutrient uptake responded to a realistic warming scenario. A ~3.3°C increase in mean water temperature altered coupling of C, N, and P fluxes in ways inconsistent with single-species laboratory experiments. Net primary production tripled during the year of experimental warming, while whole-stream N and P uptake rates did not change, resulting in 289% and 281% increases in autotrophic dissolved inorganic N and P use efficiency (UE), respectively. Increased ecosystem production was a product of unexpectedly large increases in mass-specific net primary production and autotroph biomass, supported by (i) combined increases in resource availability (via N mineralization and N2 fixation) and (ii) elevated resource use efficiency, the latter associated with changes in community structure. These large changes in C and nutrient cycling could not have been predicted from the physiological effects of temperature alone. Our experiment provides clear ecosystem-level evidence that warming can shift the balance between C and nutrient cycling in rivers, demonstrating that warming will alter the important role of in-stream processes in C, N, and P transformations. Moreover, our results reveal a key role for nutrient supply and use efficiency in mediating responses of primary producers to climate warming.
Collapse
Affiliation(s)
- James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Philip W Johnson
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Gísli M Gíslason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - James R Junker
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Daniel Nelson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Chau Tran
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
25
|
Scrine J, Jochum M, Ólafsson JS, O'Gorman EJ. Interactive effects of temperature and habitat complexity on freshwater communities. Ecol Evol 2017; 7:9333-9346. [PMID: 29187972 PMCID: PMC5696415 DOI: 10.1002/ece3.3412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 11/11/2022] Open
Abstract
Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the impacts of future global change.
Collapse
Affiliation(s)
- Jennifer Scrine
- Imperial College LondonSilwood Park CampusBuckhurst Road, AscotBerkshireSL5 7PYUK
| | - Malte Jochum
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GoettingenGöttingenGermany
| | | | - Eoin J. O'Gorman
- Imperial College LondonSilwood Park CampusBuckhurst Road, AscotBerkshireSL5 7PYUK
| |
Collapse
|