1
|
Bai X, Zhang Z, Gu D. Driving mechanism of natural vegetation response to climate change in China from 2001 to 2022. ENVIRONMENTAL RESEARCH 2025; 276:121529. [PMID: 40185269 DOI: 10.1016/j.envres.2025.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Understanding driving mechanism of natural vegetation response to climate change is crucial for maintaining vegetation stability. In this study, driving mechanism of natural vegetation sensitivity to precipitation (SVP) and temperature (SVT) changes in China were analyzed based on Normalized Difference Vegetation Index (NDVI), Solar-induced Chlorophyll Fluorescence (SIF), Dead Fuel Index (DFI), and climate, hydrological, and CO2 data. Results showed that NDVI and SIF significantly increased but DFI significantly decreased from 2001 to 2022, with proportion of over 67 % of natural vegetation area. The SVP of NDVI (SVPN) and DFI (SVPD) of natural vegetation decreased while SVP of SIF (SVPS) increased during 2001-2022, with average of -6.8 × 10-5/mm, -9.9 × 10-3/mm, and 2.3 × 10-5/mm, respectively. The SVPN and SVPD decreased from arid to humid regions, SVPS was high in semi-arid and semi-humid regions. The SVP was correlated with precipitation, runoff, CO2 and surface soil moisture (SSM), and their correlation was higher in drier regions. The SVT of NDVI (SVTN) of natural vegetation increased while SVT of SIF (SVTS) and DFI (SVTD) decreased during 2001-2022, with average of 13.3 × 10-3/°C, 7 × 10-3/°C, and -1.2/°C, respectively. And there was no significant spatial variation of SVT in different climate regions. The SVT was correlated with aridity index (AI), potential evapotranspiration (PET), temperature and SSM. The explanation of climate, hydrological, and CO2 for SVP and SVT was over 64 %, especially for SVTD at 76.2 %. The influencing factors had great explanations for alpine vegetation, desert, needle-leaf forest, and shrubland, and small explanations for broadleaf forest, mixed forest, and wetland. Overall, natural vegetation of China greened and its dependence on climate change decreased, SVP and SVT were driven by hydrology and heat, respectively. These findings will provide scientific basis for vegetation to cope with future extreme events and maintain vegetation stability.
Collapse
Affiliation(s)
- Xuelian Bai
- Coastal Science and Marine Policy Center, First Institute of Oceanology, Ministry of Natural Resources, Qingdao, 266061, PR China; Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, Qingdao, 266033, PR China
| | - Zhiwei Zhang
- Coastal Science and Marine Policy Center, First Institute of Oceanology, Ministry of Natural Resources, Qingdao, 266061, PR China.
| | - Dongqi Gu
- Coastal Science and Marine Policy Center, First Institute of Oceanology, Ministry of Natural Resources, Qingdao, 266061, PR China
| |
Collapse
|
2
|
Knüver T, Bär A, Hamann E, Zuber M, Mayr S, Beikircher B, Ruehr NK. Stress dose explains drought recovery in Norway spruce. FRONTIERS IN PLANT SCIENCE 2025; 16:1542301. [PMID: 40115942 PMCID: PMC11922940 DOI: 10.3389/fpls.2025.1542301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025]
Abstract
Introduction Understanding the stress recovery of trees, particularly with respect to increasing droughts due to climate change, is crucial. An often-overlooked aspect is how short versus long drought events of high intensity (i.e., low and high stress dose) result in stress damage and affect post-stress recovery. Methods This study examines the stress and recovery dynamics of 3-year-old Picea abies following a short drought (n = 5) of 18 days or a long drought (n = 9) of 51 days during late summer. We particularly assessed how the recovery of canopy conductance and tree transpiration is linked to i) stress intensity in terms of minimum water potential, ii) stress duration inferred by days below a water potential related to 12% hydraulic conductance loss (dP12), iii) stress dose inferred by the cumulative tree water deficit on days below P12 (TWDP12) as well as the cumulative water potential (Ψcum), and iv) the percent loss of conductive xylem area (PLA). Results Both drought treatments resulted in stem and root embolism with a higher PLA of 49% ± 10% in the long drought treatment compared to 18% ± 6% in the short drought treatment consistent across the measured plant parts. Suffering from embolism and leaf shedding (long drought, 32%; short drought, 12%), canopy conductance in the long drought treatment recovered to 41% ± 3% of the control and in the short drought treatment to 66% ± 4% at 12 days after drought release. These recovery rates were well explained by the observed PLA (R2 = 0.66) and the dP12 (R2 = 0.62) but best explained by stress dose metrics, particularly the cumulative TWDP12 (R2 = 0.88). Discussion Our study highlights that stress duration and intensity should be integrated to assess post-stress recovery rates. Here, the tree water deficit derived from point dendrometers appears promising, as it provides a non-destructive and high temporal resolution of the stress dose.
Collapse
Affiliation(s)
- Timo Knüver
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Nadine K Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| |
Collapse
|
3
|
Ma L, Ma J, Yan P, Tian F, Peñuelas J, Rao MP, Fu Y, Hu Z. Planted Forests in China Have Higher Drought Risk Than Natural Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70055. [PMID: 39901310 DOI: 10.1111/gcb.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 02/05/2025]
Abstract
To improve the environment and mitigate climate change, China has implemented ambitious projects for natural forest protection and expanded planted forests. However, increased climate variability has led to more frequent and severe droughts, exacerbating the decline of these forests. The drought risk of planted forests is rarely assessed by considering both resistance and resilience, and comparative analyses between natural and planted forests are lacking. Here, we compared drought resistance and resilience in natural and planted forests across China using satellite observations from 2001 to 2020 to understand which forests were at higher risk of drought. The results showed that planted forests exhibited lower drought resistance and resilience compared to natural forests, particularly in subtropical broad-leaved evergreen forests and warm temperate deciduous broad-leaved forests. Moreover, drought resistance in planted forests significantly increased, while resilience decreased during 2011-2020 compared to 2001-2010, suggesting a shift in the strategies of planted forests to cope with drought stress. The higher drought risk in planted forests compared to natural forests was mainly attributed to lower forest canopy height and poorer soil nutrients, which limited resistance, and lower canopy height and severe drought characteristics (severity, duration, and frequency), which reduced resilience. These results underscore the higher potential risk of drought exposure in planted forests. To mitigate future drought impacts on planted forests under climate change, enhanced management strategies, including the preservation of natural forests and augmentation of structural diversity in planted forests, are imperative.
Collapse
Affiliation(s)
- Longlong Ma
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of EcoChongming (SIEC), Fudan University, Shanghai, China
| | - Pu Yan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Feng Tian
- Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Mukund Palat Rao
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- Lamont Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zhenhong Hu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Huang Y, Lei H, Duan L. Resistance of grassland productivity to drought and heatwave over a temperate semi-arid climate zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175495. [PMID: 39155014 DOI: 10.1016/j.scitotenv.2024.175495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Drought and heatwave are the primary climate extremes for vegetation productivity loss in the global temperate semi-arid grassland, challenging the ecosystem productivity stability in these areas. Previous studies have indicated a significant decline in the resistance of global grassland productivity to drought, but we still lack a systematic understanding of the mechanisms determining the spatiotemporal variations in grassland resistance to drought and heatwave. In this study, we focused on temperate semi-arid grasslands of China (TSGC) to assess the spatiotemporal variations of grassland productivity resistance to different climate extremes: compound dry-hot events, individual drought events, and individual heatwave events that occurred during 2000-2019. Based on the explainable machine learning model, we explored the resistance to the interaction of drought and heatwave and identify the dominant factors determining the spatiotemporal variations in resistance. The results revealed that grassland resistance to climate extremes had decreased in Xilingol Grassland and Mu Us Sandy Land, and had a not significant increase in Otindag Desert during 2000-2019. Human activities and the increase in CO2 concentration causes a decline in resistance in Mu Us Sandy Land, and the increase of VPD and shift of vegetation loss event timing caused a decline in resistance in Xilingol Grassland, while the weakening of climate extremes, especially the shortening of drought duration, increase the resistance in Otindag Desert. Mean annual temperature dominates the spatial differences in resistance among different grasslands. When drought and heatwave occur simultaneously, there is an additive effect on resistance and causes lower resistance to compound dry-hot events compared to individual drought and heatwave events. Our analysis provides crucial insights into understanding the impact of climate extremes on the temperate semi-arid grasslands of China.
Collapse
Affiliation(s)
- Yangbin Huang
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Huimin Lei
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| | - Limin Duan
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
5
|
Yao Y, Fu B, Liu Y, Zhang Y, Ding J, Li Y, Zhou S, Song J, Wang S, Li C, Zhao W. Compound hot-dry events greatly prolong the recovery time of dryland ecosystems. Natl Sci Rev 2024; 11:nwae274. [PMID: 39301074 PMCID: PMC11409867 DOI: 10.1093/nsr/nwae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 09/22/2024] Open
Abstract
Compound hot-dry events cause more severe impacts on terrestrial ecosystems than dry events, while the differences in recovery time (ΔRT) between hot-dry and dry events and their contributing factors remain unclear. Both remote sensing observations and eddy covariance measurements reveal that hot-dry events prolong the recovery time compared with dry events, with greater prolongation of recovery time in drylands than in humid regions. Random forest regression modeling demonstrates that the difference in vapor pressure deficit between hot-dry and dry events, with an importance score of 35%, is the major factor contributing to ΔRT. The severity of stomatal restriction exceeds that of non-stomatal limitation, which restricts the vegetation productivity that is necessary for the recovery process. These results emphasize the negative effect of vapor pressure deficit on vegetation recovery during hot-dry events and project an extension of drought recovery time considering elevated vapor pressure deficit in a warming world.
Collapse
Affiliation(s)
- Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Sha Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jiaxi Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Changjia Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Bai YH, Tang Z. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. Proc Natl Acad Sci U S A 2024; 121:e2410467121. [PMID: 39302969 PMCID: PMC11441485 DOI: 10.1073/pnas.2410467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
The increasing duration of drought induced by global climate change has reduced forest productivity. Biodiversity is believed to mitigate the effects of drought, thereby enhancing the stability of tree growth. However, the effects of species richness on tree growth stability under droughts with different durations remain uncertain. Here, we used tree ring data from 4,072 sites globally, combined with climate and plant richness data, to evaluate the effects of species richness on the resistance and resilience of trees to short-term and prolonged droughts. We found that species richness enhanced resistance but weakened resilience of trees to drought globally. Compared to short-term drought, species richness further increased tree growth during prolonged drought but reduced the growth afterward, resulting in stronger effects on resistance and resilience. In addition, as the degree of drought intensified and regional aridity levels increased, the effects of richness on resistance and resilience under short-term drought were enhanced, but these trends were reduced or even reversed under prolonged drought. These results reveal the global effects of species richness on resistance and resilience of tree growth to droughts with different durations and highlight that species richness plays a crucial role in resisting prolonged drought.
Collapse
Affiliation(s)
- Yun-Hao Bai
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing100871, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing100871, China
| |
Collapse
|
7
|
Moss WE, Crausbay SD, Rangwala I, Wason JW, Trauernicht C, Stevens-Rumann CS, Sala A, Rottler CM, Pederson GT, Miller BW, Magness DR, Littell JS, Frelich LE, Frazier AG, Davis KT, Coop JD, Cartwright JM, Booth RK. Drought as an emergent driver of ecological transformation in the twenty-first century. Bioscience 2024; 74:524-538. [PMID: 39872081 PMCID: PMC11770345 DOI: 10.1093/biosci/biae050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/02/2024] [Indexed: 01/29/2025] Open
Abstract
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought's impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly or through drought's interactions with factors such as land management, biotic interactions, and other disturbances. We emphasize how interactions among mechanisms can inhibit postdrought recovery and can shift trajectories toward alternate states. Providing a holistic picture of how drought initiates long-term change supports the development of risk assessments, predictive models, and management strategies, enhancing preparedness for a complex and growing challenge.
Collapse
Affiliation(s)
- Wynne E Moss
- Conservation Science Partners, Truckee, California, United States
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Truckee, California, United States
- USDA Forest Service, Fort Collins, Colorado, United States
| | - Imtiaz Rangwala
- North Central Climate Adaptation Science Center and with the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States
| | - Jay W Wason
- School of Forest Resources at the University of Maine, Orono, Maine, United States
| | - Clay Trauernicht
- Department of Natural Resources and Environmental Management at the University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States
| | - Camille S Stevens-Rumann
- Colorado Forest Restoration Institute in the Forest and Rangeland Stewardship Department at Colorado State University in Fort Collins, Colorado, United States
| | - Anna Sala
- Division of Biological Sciences at the University of Montana, Missoula, Montana, United States
| | - Caitlin M Rottler
- South Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma, United States
| | - Gregory T Pederson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Brian W Miller
- U.S. Geological Survey, North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Dawn R Magness
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - Jeremy S Littell
- U.S. Geological Survey, Alaska Climate Adaptation Science Center, Anchorage, Alaska, United States
| | - Lee E Frelich
- Department of Forest Resources at the University of Minnesota, Saint Paul, Minnesota, United States
| | - Abby G Frazier
- Graduate School of Geography at Clark University, Worcester, Massachusetts, United States
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences at the University of Montana, Missoula, Montana, United States
- Missoula Fire Sciences Laboratory, Rocky Mountain Research Station of the USDA Forest Service, Missoula, Montana, United States
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, Gunnison, Colorado, United States
| | - Jennifer M Cartwright
- U.S. Geological Survey, Southeast Climate Adaptation Science Center, Raleigh, North Carolina, United States
| | - Robert K Booth
- Earth and Environmental Science Department at Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
8
|
Hockaday AC, Leon AS, Patterson K, Pennings SC. Freshwater wetlands for flood control: How manipulating the hydroperiod affects plant and invertebrate communities. PLoS One 2024; 19:e0306578. [PMID: 38959281 PMCID: PMC11221699 DOI: 10.1371/journal.pone.0306578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Thoughtfully managed hydroperiods in natural and artificial wetlands could potentially provide a combination of desirable flood control services and high ecological functions. To explore how managed freshwater wetlands typical of the Houston, Texas area would respond to different hydrological regimes that might occur if wetlands were drained in anticipation of a heavy rain that did not materialize, we conducted a mesocosm experiment with six flooding depths and seven drought durations, followed by seven months of recovery. We found that the speed in which mesocosms dried out was a function of initial water depth, with mesocosms initially set with greater water depths (30 cm) taking ~ 38 days to dry out versus zero days for wetlands that were completely drained. Individual plant species (14 species planted; 8 species common at the end of the recovery period) were affected by drought length, flooding depth, or their interaction, although details of these responses varied among the species. The composition of the plant community at the end of the drought period was strongly affected by drought length, and the effect of the drought length treatment persisted through seven months of post-drought recovery, with the 80- and 160-day drought treatments diverging most strongly from shorter drought treatments. Above- and below-ground biomass of plants was not affected by the treatments, but above-ground dead biomass (litter) decreased with increasing drought length. Densities of mosquito larvae, snails and tadpoles were temporally variable, and were affected more during the treatment period and early in recovery than after a disturbance event late in recovery. Our results indicate that managed wetlands in southeast Texas would be quite resilient to dry periods of up to 40 days in duration, especially if water was not completely drained at the beginning of the drought. In addition, many species would persist in managed wetlands even with droughts of up to 160 days. This indicates considerable potential for managing the hydroperiods of artificial detention ponds by retaining water longer to increase ecological function, with little to no loss of flood control services, and for managing the hydroperiods of natural wetlands by draining them in advance of anticipated rains to increase flood control services, with little to no loss of ecological function.
Collapse
Affiliation(s)
- Alyssa C. Hockaday
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Arturo S. Leon
- Department of Civil and Environmental Engineering, Florida International University, Miami, Florida, United States of America
| | - Kyle Patterson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Steven C. Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
9
|
Liao Z, Liu L, Rennenberg H, Du B. Water deprivation modifies the metabolic profile of lavender (Lavandula angustifolia Mill.) leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14365. [PMID: 38802725 DOI: 10.1111/ppl.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lavender plantation is globally expanded due to the increasing demand of its essential oil and its popularity as an ornamental species. However, lavender plantations, and consequently essential oil industries, are threatened by more frequent and severe drought episodes in a globally changing climate. Still little is known about the changes in the general metabolome, which provides the precursors of essential oil production, by extended drought events. Prolonged drought fundamentally results in yield losses and changing essential oil composition. In the present study, the general metabolome of a main cultivated lavender species (Lavandula angustifolia Mill.) in response to water deprivation (WD) and re-watering was analyzed to identify the metabolomics responses. We found prolonged WD resulted in significant accumulations of glucose, 1,6-anhydro-β-D-glucose, sucrose, melezitose and raffinose, but declines of allulose, β-D-allose, altrose, fructose and D-cellobiose accompanied by decreased organic acids abundances. Amino acids and aromatic compounds of p-coumaric acid, hydrocaffeic acid and caffeic acid significantly accumulated at prolonged WD, whereas aromatics of cis-ferulic acid, taxifolin and two fatty acids (i.e., palmitic acid and stearic acid) significantly decreased. Prolonged WD also resulted in decreased abundances of polyols, particularly myo-inositol, galactinol and arabitol. The altered metabolite profiles by prolonged WD were mostly not recovered after re-watering, except for branched-chain amino acids, proline, serine and threonine. Our study illustrates the complex changes of leaf primary and secondary metabolic processes of L. angustifolia by drought events and highlights the potential impact of these precursors of essential oil production on the lavender industry.
Collapse
Affiliation(s)
- Zhengqiao Liao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Li D, An L, Zhong S, Shen L, Wu S. Declining coupling between vegetation and drought over the past three decades. GLOBAL CHANGE BIOLOGY 2024; 30:e17141. [PMID: 38273520 DOI: 10.1111/gcb.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Droughts have been implicated as the main driver behind recent vegetation die-off and are projected to drive greater mortality under future climate change. Understanding the coupling relationship between vegetation and drought has been of great global interest. Currently, the coupling relationship between vegetation and drought is mainly evaluated by correlation coefficients or regression slopes. However, the optimal drought timescale of vegetation response to drought, as a key indicator reflecting vegetation sensitivity to drought, has largely been ignored. Here, we apply the optimal drought timescale identification method to examine the change in coupling between vegetation and drought over the past three decades (1982-2015) with long-term satellite-derived Normalized Difference Vegetation Index and Standardized Precipitation-Evapotranspiration Index data. We find substantial increasing response of vegetation to drought timescales globally, and the correlation coefficient between vegetation and drought under optimal drought timescale overall declines between 1982 and 2015. This decrease in vegetation-drought coupling is mainly observed in regions with water deficit, although its initial correlation is relatively high. However, vegetation in water-surplus regions, with low coupling in earlier stages, is prone to show an increasing trend. The observed changes may be driven by the increasing trend of atmospheric CO2 . Our findings highlight more pressing drought risk in water-surplus regions than in water-deficit regions, which advances our understanding of the long-term vegetation-drought relationship and provides essential insights for mapping future vegetation sensitivity to drought under changing climate conditions.
Collapse
Affiliation(s)
- Delong Li
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Li An
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhong
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lei Shen
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad, Pakistan
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources of the People's Republic of China, Beijing, China
| | - Shuyao Wu
- Center for Yellow River Ecosystem Products, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Li X, Song Z, Hu Y, Qiao J, Chen Y, Wang S, Yue P, Chen M, Ke Y, Xu C, Yu Q, Zuo X. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167449. [PMID: 37832659 DOI: 10.1016/j.scitotenv.2023.167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Extreme drought events are expected to increase in frequency and severity, posing significant threats to ecosystems worldwide. While considerable research has been concentrated on the effects of climate extremes on the stability of grasslands, the process by which grassland productivity may recover after extreme drought events are still not well understood. Here, we conducted a four-year (2019-2022) recovery investigation after four-year's (2015-2018) extreme drought treatments of different intensities (control, press and pulse) to explore the vegetation recovery of desert-grassland ecosystems Inner Mongolia, China. Press drought involved a 66 % reduction in natural precipitation from May to August, while pulse drought reduced it by 100 % during June and July. We found that both press and pulse droughts led to a sharp decrease in aboveground net primary productivity (ANPP) after four years, primarily due to reduced growth, density, and productivity of annual and perennial plants. However, ANPP under pulse drought could recover fully after four years of stopping of drought treatment, and it could not under press drought. Additionally, community structure (i.e., species richness, plant density, and height) fully recovered within 1 year after the end of the two extreme drought treatments. Both plant density and height contributed to the ANPP recovery after press and pulse droughts. Structural equation modeling (SEM) results further revealed that the reduction in ANPP during the extreme drought was primarily due to a decrease in plant density caused by reduced soil water content. The recovery of ANPP in pulse drought was directly caused by increased soil water content in the post-extreme drought. These results suggest that drought intensity and precipitation determine ANPP recovery in a degraded desert steppe. Our findings are crucial for deepening understanding of the processes and mechanisms of ecosystem recovery after extreme drought, as well as for the successful management and protection of grassland ecosystems.
Collapse
Affiliation(s)
- Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ya Hu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuheng Chen
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuguang Ke
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chong Xu
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing 10008, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
12
|
Wang X, Xu T, Xu C, Liu H, Chen Z, Li Z, Li X, Wu X. Enhanced growth resistance but no decline in growth resilience under long-term extreme droughts. GLOBAL CHANGE BIOLOGY 2024; 30:e17038. [PMID: 37987223 DOI: 10.1111/gcb.17038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The frequency, intensity, and duration of extreme droughts, with devastating impacts on tree growth and survival, have increased with climate change over the past decades. Assessing growth resistance and resilience to drought is a crucial prerequisite for understanding the responses of forest functioning to drought events. However, the responses of growth resistance and resilience to extreme droughts with different durations across different climatic zones remain unclear. Here, we investigated the spatiotemporal patterns in growth resistance and resilience in response to extreme droughts with different durations during 1901-2015, relying on tree-ring chronologies from 2389 forest stands over the mid- and high-latitudinal Northern Hemisphere, species-specific plant functional traits, and diverse climatic factors. The findings revealed that growth resistance and resilience under 1-year droughts were higher in humid regions than in arid regions. Significant higher growth resistance was observed under 2-year droughts than under 1-year droughts in both arid and humid regions, while growth resilience did not show a significant difference. Temporally, tree growth became less resistant and resilient to 1-year droughts in 1980-2015 than in 1901-1979 in both arid and humid regions. As drought duration lengthened, the predominant impacts of climatic factors on growth resistance and resilience weakened and instead foliar economic traits, plant hydraulic traits, and soil properties became much more important in both climatic regions; in addition, such trends were also observed temporally. Finally, we found that most of the Earth system models (ESMs) used in this study overestimated growth resistance and underestimated growth resilience under both 1-year and 2-year droughts. A comprehensive ecophysiological understanding of tree growth responses to longer and intensified drought events is urgently needed, and a specific emphasis should be placed on improving the performance of ESMs.
Collapse
Affiliation(s)
- Xiaona Wang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Taoran Xu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Chenxi Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhenju Chen
- Tree-Ring Laboratory, Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China
| |
Collapse
|
13
|
Chen W, Jiang L, Jia R, Tang B, Jiang H, Wang Y, Lu X, Su J, Bai Y. Plant litter loss exacerbates drought influences on grasslands. THE NEW PHYTOLOGIST 2024; 241:142-153. [PMID: 37932883 DOI: 10.1111/nph.19374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.
Collapse
Affiliation(s)
- Wanjie Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruoyu Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Bo Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongzhi Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoming Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jishuai Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
14
|
Wu C, Zhong L, Yeh PJF, Gong Z, Lv W, Chen B, Zhou J, Li J, Wang S. An evaluation framework for quantifying vegetation loss and recovery in response to meteorological drought based on SPEI and NDVI. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167632. [PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time < 3 months) than that in low-elevation areas (lag time > 8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
Collapse
Affiliation(s)
- Chuanhao Wu
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Lulu Zhong
- School of Environment, Jinan University, Guangzhou 511436, China.
| | - Pat J-F Yeh
- Department of Civil Engineering, School of Engineering, Monash University, Malaysia Campus, Malaysia
| | - Zhengjie Gong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenhan Lv
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Bei Chen
- Guangdong South China Hydropower High tech Development Co., Ltd, Guangzhou 510610, China
| | - Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayun Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Saisai Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Jaeger FC, Handa IT, Paquette A, Parker WC, Messier C. Young temperate tree species show different fine root acclimation capacity to growing season water availability. PLANT AND SOIL 2023; 496:485-504. [PMID: 38510944 PMCID: PMC10948563 DOI: 10.1007/s11104-023-06377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06377-w.
Collapse
Affiliation(s)
- Florentin C. Jaeger
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - I. Tanya Handa
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - Alain Paquette
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - William C. Parker
- Forest Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON Canada
| | - Christian Messier
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
- Institut des Sciences de La Forêt tempérée, Université du Québec en Outaouais, Ripon, Canada
| |
Collapse
|
16
|
Yao Y, Liu Y, Zhou S, Song J, Fu B. Soil moisture determines the recovery time of ecosystems from drought. GLOBAL CHANGE BIOLOGY 2023; 29:3562-3574. [PMID: 36708329 DOI: 10.1111/gcb.16620] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/21/2023] [Indexed: 06/06/2023]
Abstract
Recovery time, the time it takes for ecosystems to return to normal states after experiencing droughts, is critical for assessing the response of ecosystems to droughts; however, the spatial dominant factors determining recovery time are poorly understood. We identify the global patterns of terrestrial ecosystem recovery time based on remote sensed vegetation indices, analyse the affecting factors of recovery time using random forest regression model, and determine the spatial distribution of the dominant factors of recovery time based on partial correlation. The results show that the global average recovery time is approximately 3.3 months, and that the longest recovery time occurs in mid-latitude drylands. Analysis of affecting factors of recovery time suggests that the most important environmental factor affecting recovery time is soil moisture during the recovery period, followed by temperature and vapour pressure deficit (VPD). Recovery time shortens with increasing soil moisture and prolongs with increasing VPD; however, the response of recovery time to temperature is nonmonotonic, with colder or hotter temperatures leading to longer recovery time. Soil moisture dominates the drought recovery time over 58.4% of the assessed land area, mostly in the mid-latitudes. The concern is that soil moisture is projected to decline in more than 65% regions in the future, which will lengthen the drought recovery time and exacerbate drought impacts on terrestrial ecosystems, especially in southwestern United States, the Mediterranean region and southern Africa. Our research provides methodological insights for quantifying recovery time and spatially identifies dominant factors of recovery time, improving our understanding of ecosystem response to drought.
Collapse
Affiliation(s)
- Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Sha Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jiaxi Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Wu J, Yao H, Chen X, Chen X. Dynamics of dissolved organic carbon during drought and flood events: A phase-by-stages perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162158. [PMID: 36773914 DOI: 10.1016/j.scitotenv.2023.162158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic carbon (DOC) is a key water quality parameter that plays a crucial role in controlling aquatic ecosystems and carbon cycling. Understanding DOC dynamics during hydrological extremes (i.e., droughts and floods) helps in managing water quality, but such variability is rarely studied. Furthermore, how differences in DOC concentrations among phase-by-stages of drought/flood affect simulation performances based on hydrological features remains unclear. Here, phase-by-stages of hydrological drought (flood) were divided into intensification (rising) and recovery (falling) periods based on drought peak intensity (flood peak intensity). The long-term (1976-2019) daily discharge and weekly (biweekly) DOC concentrations from four headwater streams with different watershed sizes (from 9.97 to 119.09 ha) in south-central Ontario, Canada, were used to achieve the above aims. The results showed that (i) the average DOC concentration during intensification (rising) stage of drought (flood) was smaller (larger) than during recovery (falling). (ii) Simulations performed better when accounting for phase-by-stages of drought/flood, with reductions in mean absolute percentage error of 32.85 % and 53.59 % for drought and flood events, respectively. These results will help understand the dynamics of DOC during hydrological extremes and improve simulation performance of numerical models for water quality parameters under changing environmental conditions.
Collapse
Affiliation(s)
- Jiefeng Wu
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Huaxia Yao
- Inland Water Unit, Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment, Conservation and Parks, Dorset, Ontario, Canada
| | - Xiaohong Chen
- Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou, China
| | - Xingwei Chen
- College of Geographic Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|
18
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
19
|
Xu H, Zhang Z, Oren R, Wu X. Hyposensitive canopy conductance renders ecosystems vulnerable to meteorological droughts. GLOBAL CHANGE BIOLOGY 2023; 29:1890-1904. [PMID: 36655411 DOI: 10.1111/gcb.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 05/28/2023]
Abstract
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.
Collapse
Affiliation(s)
- Hang Xu
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhiqiang Zhang
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ram Oren
- Nicholas School of the Environment and Pratt School of Engineering, Duke University, North Carolina, Durham, USA
- Department of Forest Science, University of Helsinki, Helsinki, Finland
| | - Xiaoyun Wu
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
20
|
Zhou H, Hou L, Lv X, Yang G, Wang Y, Wang X. Compensatory growth as a response to post-drought in grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:1004553. [PMID: 36531403 PMCID: PMC9752846 DOI: 10.3389/fpls.2022.1004553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grasslands are structurally and functionally controlled by water availability. Ongoing global change is threatening the sustainability of grassland ecosystems through chronic alterations in climate patterns and resource availability, as well as by the increasing frequency and intensity of anthropogenic perturbations. Compared with many studies on how grassland ecosystems respond during drought, there are far fewer studies focused on grassland dynamics after drought. Compensatory growth, as the ability of plants to offset the adverse effects of environmental or anthropogenic perturbations, is a common phenomenon in grassland. However, compensatory growth induced by drought and its underlying mechanism across grasslands remains not clear. In this review, we provide examples of analogous compensatory growth from different grassland types across drought characteristics (intensity, timing, and duration) and explain the effect of resource availability on compensatory growth and their underlying mechanisms. Based on our review of the literature, a hypothetic framework for integrating plant, root, and microbial responses is also proposed to increase our understanding of compensatory growth after drought. This research will advance our understanding of the mechanisms of grassland ecosystem functioning in response to climate change.
Collapse
Affiliation(s)
- Huailin Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Lulu Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Lv
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Guang Yang
- College of Teacher Education, Capital Normal University, Beijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Wilson AM, Burtis JC, Goebel M, Yavitt JB. Litter quality and decomposition responses to drought in a northeastern US deciduous forest. Oecologia 2022; 200:247-257. [PMID: 36129577 DOI: 10.1007/s00442-022-05263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
Even though drought impacts on tree physiology have been identified, whether drought affects leaf litter chemistry that, in turn, influences litter decay rates is still poorly understood. We compared litter quality and decomposition for two cohorts of leaves from five co-occurring seasonally deciduous tree species: Acer saccharum, Tilia americana, Quercus rubra, Quercus alba, and Ostrya virginiana. One cohort experienced a growing-season drought, and the other cohort came from the same trees in the ensuing, post-drought growing season. Leaf litter production was greater for drought litter than post-drought litter for all five species. Specific leaf area and nitrogen concentrations were 20% greater for the drought cohort than the post-drought cohort. Concentrations of non-structural carbohydrates were about 14% greater for the drought cohort, except for greater values for post-drought A. saccharum litter. Pectin in the middle lamella of leaf litter was 31% lower for the drought cohort compared to post-drought cohort. We found few differences in litter decay rates between drought and post-drought cohorts, although Q. rubra litter had more decomposition for the post-drought cohort than the drought cohort, whereas A. saccharum litter had more decomposition for the drought cohort than the post-drought cohort. Leaf litter decay rates for the drought cohort were related to litter nitrogen and lignin concentrations, whereas decay rates for the post-drought cohort were related to litter carbohydrate concentrations. Our findings suggest that the role of drought events on seasonally deciduous forest ecosystems must recognize species-specific, idiosyncratic responses in leaf litter quality and decomposition.
Collapse
Affiliation(s)
- Alexis M Wilson
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA
| | - James C Burtis
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA
| | - Marc Goebel
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA
| | - Joseph B Yavitt
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA.
| |
Collapse
|
22
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
23
|
Xu Y, Zhang X, Hao Z, Hao F, Li C. Systematic assessment of the development and recovery characteristics of hydrological drought in a semi-arid area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155472. [PMID: 35472359 DOI: 10.1016/j.scitotenv.2022.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Studies have documented the significant effect of various factors on hydrological drought events. However, few studies have quantified drought's development and recovery process under environmental changes. This study focused on identifying hydrological drought's development and recovery characteristics and their potential causes in a typical semi-arid area. The Standardized Streamflow Index (SSI) was used as a metric for hydrological droughts, while the run theory was applied to identify the development and recovery processes of droughts. Changes in observed (human disturbed scenario) and simulated (natural scenario) droughts by employing the SWAT (Soil and Water Assessment Tool) model were also investigated from 1970 to 2016. The "simulated-observed" approach was used to assess the impacts of human regulations on hydrological drought development and recovery characteristics. Results showed that hydrological droughts occurred mainly during 1980-1990 and 2000-2016. In the natural condition, drought duration and intensity were higher, while lower severity in the drought recovery stage than development stage was observed. The drainage characteristics of the basin played the most critical role in the development and recovery characteristics of drought, which were also influenced by climatic conditions. Human activities had exacerbated recent natural hydrological drought. When considering the contribution of human activities, the reservoir operation was the dominant anthropic factor affected the development and recovery process of drought in the study area. Under the effects of reservoir regulation, long-duration hydrological droughts became rare. Moreover, the recovery ability of drought had been weakened. The effects of the reservoir were progressively crucial gradually. Although the water got from the river by the reservoir had been reduced, the negative impact on aggravating drought remains stronger than the reservoir was initially constructed. The results of our study will help improve the optimal management of reservoirs in semi-arid areas and enhance drought early warning and forecasting system.
Collapse
Affiliation(s)
- Yang Xu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zengchao Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chong Li
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
25
|
Zhang Z, Ju W, Zhou Y, Li X. Revisiting the cumulative effects of drought on global gross primary productivity based on new long-term series data (1982-2018). GLOBAL CHANGE BIOLOGY 2022; 28:3620-3635. [PMID: 35343026 DOI: 10.1111/gcb.16178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Drought has broad and deep impacts on vegetation. Studies on the effects of drought on vegetation have been conducted over years. Recently, the cumulative effect of drought is recognized as another key factor affecting plant growth. However, global-scale studies on this phenomenon are still lacking. Thus, based on new satellite based gross primary productivity (GPP) and multi-temporal scale Standardized Precipitation Evapotranspiration Index data sets, we explored the cumulative effect duration (CED) of drought on global vegetation GPP and analyzed its variability across elevations and climatic zones. The main findings were as follows: (1) The cumulative effect of drought on GPP was widespread, with an average CED of 4.89 months. (2) CED of drought on GPP varied among vegetation types. Specifically, grasslands showed the longest duration, with an average value of 5.28 months, followed by shrublands (5.09 months), wetlands (5.03 months), croplands (4.85 months), savannas (4.58 months), and forestlands (4.57 months). (3) CED of drought on GPP changes with climate conditions. It decreased with the decrease of precipitation in the driest month (Pdry ) and mean annual precipitation in tropical and arid climate zones, respectively. In both temperate and cold climate zones, CED of drought on GPP was shorter in areas with dry winter than that in areas with dry summer. It increased with the decrease of mean annual air temperature in tropical climate zones and decreased with the increase of summer temperature in temperate and cold climatic zones. (4) With increasing elevation, CED of drought on GPP showed a pattern of increasing (0-3000 m), then decreasing (3000-5000 m), and increasing again (>5000 m). Our findings highlight the heterogeneity of CED of drought on GPP, owing to differences in vegetation types, long-term hydrothermal conditions, elevation, etc. The results could deepen our understanding of the effects of drought on global vegetation.
Collapse
Affiliation(s)
- Zhenyu Zhang
- International Institute of Earth System Science, Nanjing University, Nanjing, China
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Weimin Ju
- International Institute of Earth System Science, Nanjing University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Yanlian Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Xiaoyu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|