1
|
Gu X, Pan J, Li Y, Feng L. A programmed cell death-related gene signature to predict prognosis and therapeutic responses in liver hepatocellular carcinoma. Discov Oncol 2024; 15:71. [PMID: 38466483 DOI: 10.1007/s12672-024-00924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Programmed cell death (PCD) functions critically in cancers and PCD-related genes are associated with tumor microenvironment (TME), prognosis and therapeutic responses of cancer patients. This study stratified hepatocellular carcinoma (HCC) patients and develop a prognostic model for predicting prognosis and therapeutic responses. METHODS Consensus clustering analysis was performed to subtype HCC patients in The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) among the subtypes were filtered and subjected to the least absolute shrinkage and selection operator (LASSO) regression analysis and univariate Cox regression analysis to filter prognostic genes. A PCD-related prognostic gene signature in TCGA was constructed and validated in ICGC-LIRI-JP and GSE14520 datasets. TME was analyzed using CIBERSORT, MCP-counter, TIMER and EPIC algorithms. Drug sensitivity was predicted by oncoPredict package. Spearman analysis was used to detect correlation. RESULTS Four molecular subtypes were categorized based on PCD-related genes. Subtype C1 showed the poorest prognosis, the most infiltration of Fibroblasts, dentritic cell (DC) and cancer-associated fibroblasts (CAFs), and the highest TIDE score. C4 had a better prognosis survival outcome, and lowest immune cell infiltration. The survival outcomes of C2 and C3 were intermediate. Next, a total of 69 co-DEGs were screened among the four subtypes and subsequently we identified five prognostic genes (MCM2, SPP1, S100A9, MSC and EPO) for developing the prognostic model. High-risk patients not only had unfavorable prognosis, higher clinical stage and grade, and more inflammatory pathway enrichment, but also possessed higher possibility of immune escape and were more sensitive to Cisplatin and 5. Fluorouracil. The robustness of the prognostic model was validated in external datasets. CONCLUSION This study provides new insights into clinical subtyping and the PCD-related prognostic signature may serve as a useful tool to predict prognosis and guide treatments for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Gu
- College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanle Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liushun Feng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Hou K, Xu X, Ge X, Jiang J, Ouyang F. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma. Biofactors 2024; 50:250-265. [PMID: 37921427 DOI: 10.1002/biof.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Immune checkpoints (ICPs) can promote tumor growth and prevent immunity-induced cancer cell apoptosis. Fortunately, targeting ICPs, such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4), has achieved great success in the past few years and has gradually become an effective treatment for cancers, including hepatocellular carcinoma (HCC). However, many patients do not respond to ICP therapy due to acquired resistance and recurrence. Therefore, clarifying the specific mechanisms of ICP in the development of HCC is very important for enhancing the efficacy of anti-PD-1 and anti-CTLA-4 therapy. In particular, antigen presentation and interferon-γ (IFN-γ) signaling were reported to be involved in the development of resistance. In this review, we have explained the role and regulatory mechanisms of ICP therapy in HCC pathology. Moreover, we have also elaborated on combinations of ICP inhibitors and other treatments to enhance the antitumor effect. Collectively, recent advances in the pharmacological targeting of ICPs provide insights for the development of a novel alternative treatment for HCC.
Collapse
Affiliation(s)
- Kai Hou
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiaohui Xu
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xin Ge
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Jiacen Jiang
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, PR China
| |
Collapse
|
3
|
Gu XY, Huo JL, Yu ZY, Jiang JC, Xu YX, Zhao LJ. Immunotherapy in hepatocellular carcinoma: an overview of immune checkpoint inhibitors, drug resistance, and adverse effects. ONCOLOGIE 2024; 26:9-25. [DOI: 10.1515/oncologie-2023-0412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Hepatocellular carcinoma (HCC) is a concerning liver cancer with rising incidence and mortality rates worldwide. The effectiveness of traditional therapies in managing advanced HCC is limited, necessitating the development of new therapeutic strategies. Immune checkpoint inhibitors (ICIs) have emerged as a promising strategy for HCC management. By preventing tumor cells from evading immune surveillance through immunological checkpoints, ICIs can restore the immune system’s ability to target and eliminate tumors. While ICIs show promise in enhancing the immune response against malignancies, challenges such as drug resistance and adverse reactions hinder their efficacy. To address these challenges, developing individualized ICI treatment strategies is critical. Combining targeted therapy and immunotherapy holds the potential for comprehensive therapeutic effects. Additionally, biomarker-based individualized ICI treatment strategies offer promise in predicting treatment response and guiding personalized patient care. Future research should explore emerging ICI treatment methods to optimize HCC immunotherapy. This review provides an overview of ICIs as a new treatment for HCC, demonstrating some success in promoting the tumor immune response. However, drug resistance and adverse reactions remain important considerations that must be addressed. As tailored treatment plans evolve, the prospect of immunotherapy for HCC is expected to grow, offering new opportunities for improved patient outcomes.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Jin-Long Huo
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Zhi-Yong Yu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Ji-Chang Jiang
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Ya-Xuan Xu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Li-Jin Zhao
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| |
Collapse
|
4
|
Song Z, Song X, Li H, Cheng Z, Mo Z, Yang X. Identification and validation of a prognostic-related mutant gene DNAH5 for hepatocellular carcinoma. Front Immunol 2023; 14:1236995. [PMID: 38022557 PMCID: PMC10630911 DOI: 10.3389/fimmu.2023.1236995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide and has a poor prognosis. Thus, there is a need for an effective biomarker to improve and predict the prognosis of HCC. Methods RNA sequencing data, simple nucleotide variation data, and clinical data of HCC patients from The Cancer Genome Atlas (TCGA) to identify mutant genes, simple nucleotide variation data, and clinical data of HCC patients from the International Cancer Genome Consortium (ICGC) to validate the prognostic value of mutant genes were the data sources of the present study. To identify the overall survival (OS)-related mutant genes, a Kaplan-Meier (KM) analysis was conducted. We carried out univariate Cox and multivariate Cox regression analyses to identify the independent prognostic factors. We also conducted a correlation analysis of immune cells and mutant genes. To explore the molecular mechanisms of mutant genes, we conducted a gene set enrichment analysis (GSEA). A nomogram was constructed to help predict the prognosis of HCC. In addition, we explored the expression profile of mutant genes in HCC based on a TCGA dataset, an ICGC dataset, and our own HCC tissue samples. Results We identified and validated a mutant gene, dynein axonemal heavy chain 5 (DNAH5), which was negatively related to the OS of HCC patients. Univariate Cox and multivariate Cox regression analyses revealed that the mutant gene DNAH5 could act as an independent prognostic factor for HCC. Most pathways of the mutant gene DNAH5 were involved in cancer development and progression based on GSEA analysis. The mutant gene DNAH5 was negatively correlated with monocytes, naive CD4 T cells, activated dendritic cells, and activated mast cells. In addition, the mRNA and protein levels of DNAH5 had a significantly higher level of expression in the tissue samples of patients with HCC. A nomogram consisting of the pathological stage, DNAH5, and tumor mutation burden (TMB) performed well. Conclusion The mutant gene DNAH5 had a significantly higher level of expression in the tissue samples of patients with HCC, could act as an independent prognostic factor for HCC, and is a potential new immunotherapy target for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuewei Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X, Yvonne Wan YJ. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther 2023; 31:1829-1845. [PMID: 37143325 PMCID: PMC10277895 DOI: 10.1016/j.ymthe.2023.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
MicroRNA-22 (miR-22) can be induced by beneficial metabolites that have metabolic and immune effects, including retinoic acids, bile acids, vitamin D3, and short-chain fatty acids. The tumor suppressor effects of miR-22 have been suggested, but whether miR-22 treats orthotopic hepatocellular carcinoma (HCC) is not established. The role of miR-22 in regulating tumor immunity is also poorly understood. Our data showed that miR-22 delivered by adeno-associated virus serotype 8 effectively treated HCC. Compared with FDA-approved lenvatinib, miR-22 produced better survival outcomes without noticeable toxicity. miR-22 silenced hypoxia-inducible factor 1 (HIF1α) and enhanced retinoic acid signaling in both hepatocytes and T cells. Moreover, miR-22 treatment improved metabolism and reduced inflammation. In the liver, miR-22 reduced the abundance of IL17-producing T cells and inhibited IL17 signaling by reducing the occupancy of HIF1α in the Rorc and Il17a genes. Conversely, increasing IL17 signaling ameliorated the anti-HCC effect of miR-22. Additionally, miR-22 expanded cytotoxic T cells and reduced regulatory T cells (Treg). Moreover, depleting cytotoxic T cells also abolished the anti-HCC effects of miR-22. In patients, miR-22 high HCC had upregulated metabolic pathways and reduced IL17 pro-inflammatory signaling compared with miR-22 low HCC. Together, miR-22 gene therapy can be a novel option for HCC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|
6
|
Moroney J, Trivella J, George B, White SB. A Paradigm Shift in Primary Liver Cancer Therapy Utilizing Genomics, Molecular Biomarkers, and Artificial Intelligence. Cancers (Basel) 2023; 15:2791. [PMID: 37345129 PMCID: PMC10216313 DOI: 10.3390/cancers15102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. Conventional therapies offer limited survival benefit despite improvements in locoregional liver-directed therapies, which highlights the underlying complexity of liver cancers. This review explores the latest research in primary liver cancer therapies, focusing on developments in genomics, molecular biomarkers, and artificial intelligence. Attention is also given to ongoing research and future directions of immunotherapy and locoregional therapies of primary liver cancers.
Collapse
Affiliation(s)
- James Moroney
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Juan Trivella
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah B. White
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Nikoo M, Hassan ZF, Mardasi M, Rostamnezhad E, Roozbahani F, Rahimi S, Mohammadi J. Hepatocellular carcinoma (HCC) immunotherapy by anti-PD-1 monoclonal antibodies: A rapidly evolving strategy. Pathol Res Pract 2023; 247:154473. [PMID: 37207558 DOI: 10.1016/j.prp.2023.154473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world, with a high relapse rate. Delayed symptom onset observed in 70-80% of patients leads to diagnosis in advanced stages commonly associated with chronic liver disease. Programmed cell death protein 1 (PD-1) blockade therapy has recently emerged as a promising therapeutic option in the clinical management of several advanced malignancies, including HCC, due to the activation of exhausted tumor-infiltrating lymphocytes and improved outcomes of T-cell function. However, many people with HCC do not respond to PD-1 blockade therapy, and the diversity of immune-related adverse events (irAEs) restricts their clinical utility. Therefore, numerous effective combinatory strategies, including combinations with anti-PD-1 antibodies and other therapeutic methods ranging from chemotherapy to targeted therapies, are evolving to improve therapeutic outcomes and evoke synergistic anti-tumor impressions in patients with advanced HCC. Unfortunately, combined therapy may have more side effects than single-agent treatment. Nonetheless, identifying appropriate predictive biomarkers can aid in managing potential immune-related adverse events by distinguishing patients who respond best to PD-1 inhibitors as single agents or in combination strategies. In the present review, we summarize the therapeutic potential of PD-1 blockade therapy for advanced HCC patients. Besides, a glimpse of the pivotal predictive biomarkers influencing a patient's response to anti-PD-1 antibodies will be provided.
Collapse
Affiliation(s)
- Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Elmira Rostamnezhad
- Department of Molecular Genetics, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahel Rahimi
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Sun R, Li J, Lin X, Yang Y, Liu B, Lan T, Xiao S, Deng A, Yin Z, Xu Y, Xiang Z, Wu B. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma. Front Immunol 2023; 14:1079495. [PMID: 37077908 PMCID: PMC10106696 DOI: 10.3389/fimmu.2023.1079495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundLiver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. As a chronic liver disease, many studies have shown that the immune response plays a key role in the progression of liver cancer. Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for HCC, accounting for 50%–80% of HCC cases worldwide, and little is known about the immune status of HBV associated hepatocellular carcinoma (HBV-HCC), therefore, we aimed to explore the changes in peripheral immunity in patients with HBV-HCC.MethodsIn this study, patients with HBV-HCC (n=26), patients with hepatitis B-related cirrhosis (HBV-LC) (n=31) and healthy volunteers (n=49) were included. The lymphocytes and their subpopulation phenotypes in peripheral blood were characterized. In addition, we explored the effect of viral replication on peripheral immunity in patients with HCC and analyzed the circulating immunophenotypic characteristics at different stages of HCC with flow cytometry.ResultsFirstly, our results showed that the percentages of total αβ T cells in the peripheral blood of HBV-HCC patients was significantly decreased compared to healthy subjects. Secondly, we found that naïve CD4+ T cells in HBV-HCC patients were significantly reduced, terminally differentiated CD8+ T cells, homing memory CD8+ T cells and Th2 cells were increased in peripheral circulation in HBV-HCC patients. Moreover, in the peripheral blood of HBV-HCC patients, expression of TIGIT on CD4+ T cells and PD-1 on the surface of Vδ 1 T cells was increased. In addition, we found that sustained viral replication resulted in up-regulation of TIM3 expression on CD4+ T cells, and TIM3+ γδ T cells increased in peripheral circulation in patients with advanced HBV-HCC.ConclusionOur study showed that circulating lymphocytes in HBV-HCC patients exhibited features of immune exhaustion, especially in HCC patients with persistent viral replication and in patients with intermediate and advanced HBV-HCC, including decreased frequency of T cells and elevated expression of inhibitory receptors including TIGIT and TIM3 on CD4+ T cells and γδ T cells. Meanwhile, our research suggests that the combination of CD3+ T cell and CD8+HLADR+CD38+ T cell may be a potential diagnostic indicator for HBV-HCC. These findings could help us to better understand the immune characteristics of HBV-HCC and explore the immune mechanisms and immunotherapy strategies for HBV-HCC.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Xianyi Lin
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yidong Yang
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Liu
- Department of Interventional Medicine, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Tianbi Lan
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Shuang Xiao
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Anyi Deng
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yan Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Zheng Xiang
- Department of Microbiology and Immunology, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| |
Collapse
|
9
|
Zhu J, Xu X, Jiang M, Yang F, Mei Y, Zhang X. Comprehensive characterization of ferroptosis in hepatocellular carcinoma revealing the association with prognosis and tumor immune microenvironment. Front Oncol 2023; 13:1145380. [PMID: 37051544 PMCID: PMC10083400 DOI: 10.3389/fonc.2023.1145380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundFerroptosis is a type of regulatory cell death (RCD) mode that depends on iron-mediated oxidative damage. It has the potential to improve the efficacy of tumor immunotherapy by modulating the tumor microenvironment (TME). Currently, immunotherapy has significantly improved the overall treatment strategy for advanced hepatocellular carcinoma (HCC), but the distinct immune microenvironment and high tolerance to the immune make massive differences in the immunotherapy effect of HCC patients. As a result, it is imperative to classify HCC patients who may benefit from immune checkpoint therapy. Simultaneously, the predictive value of ferroptosis in HCC and its potential role in TME immune cell infiltration also need to be further clarified.MethodsThree ferroptosis molecular models were built on the basis of mRNA expression profiles of ferroptosis-related genes (FRGs), with notable variations in immunocyte infiltration, biological function, and survival prediction. In order to further investigate the predictive impact of immunotherapy response in HCC patients, the ferroptosis score was constructed using the principal component analysis (PCA) algorithm to quantify the ferroptosis molecular models of individual tumors.ResultsIn HCC, there were three totally different ferroptosis molecular models. The ferroptosis score can be used to assess genetic variation, immunotherapy response, TME characteristics, and prognosis. Notably, tumors with low ferroptosis scores have extensive tumor mutations and immune exhaustion, which are associated with a poor prognosis and enhanced immunotherapy response.ConclusionsOur study indicates that ferroptosis plays an indispensable role in the regulation of the tumor immune microenvironment. For HCC, the ferroptosis score is an independent prognostic indicator. Assessing the molecular model of ferroptosis in individual tumors will assist us in better understanding the characteristics of TME, predicting the effect of immunotherapy in HCC patients, and thus guiding a more reasonable immunotherapy program.
Collapse
Affiliation(s)
- Jingjuan Zhu
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiao Xu
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Man Jiang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yingying Mei
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Xiaochun Zhang,
| |
Collapse
|
10
|
Minaei N, Ramezankhani R, Tamimi A, Piryaei A, Zarrabi A, Aref AR, Mostafavi E, Vosough M. Immunotherapeutic approaches in Hepatocellular carcinoma: Building blocks of hope in near future. Eur J Cell Biol 2023; 102:151284. [PMID: 36584598 DOI: 10.1016/j.ejcb.2022.151284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic cancer and is among the major causes of mortality due to cancer. Due to the lack of efficient conventional therapeutic options for this cancer, particularly in advanced cases, novel treatments including immunotherapy have been considered. However, despite the encouraging clinical outcomes after implementing these innovative approaches, such as oncolytic viruses (OVs), adoptive cell therapies (ACT), immune checkpoint blockades (ICBs), and cancer vaccines, several factors have restricted their therapeutic effect. The main concern is the existence of an immunosuppressive tumor microenvironment (TME). Combination of different ICBs or ICBs plus tyrosine kinase inhibitors have shown promising results in overcoming these limiting factors to some extent. Combination of programmed cell death ligand-1 (PD-L1) antibody Atezolizumab and vascular endothelial growth factor (VEGF) antibody Bevacizumab has become the standard of care in the first-line therapy for untestable HCC, approved by regulatory agencies. This paper highlighted a wide overview of the direct and indirect immunotherapeutic strategies proposed for the treatment of HCC patients and the common challenges that have hindered their further clinical applications.
Collapse
Affiliation(s)
- Neda Minaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Roya Ramezankhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Development and Regeneration, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital-Huddinge, Sweden.
| |
Collapse
|
11
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
12
|
Friemel J, Torres I, Brauneis E, Thörner T, Schäffer AA, Gertz EM, Grob T, Seidl K, Weber A, Ried T, Heselmeyer-Haddad K. Single-cell resolved ploidy and chromosomal aberrations in nonalcoholic steatohepatitis-(NASH) induced hepatocellular carcinoma and its precursor lesions. Sci Rep 2022; 12:22622. [PMID: 36587184 PMCID: PMC9805444 DOI: 10.1038/s41598-022-27173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH)-induced hepatocellular carcinoma (HCC) and its precursor, nonalcoholic fatty liver disease (NAFLD) are an unmet health issue due to widespread obesity. We assessed copy number changes of genes associated with hepatocarcinogenesis and oxidative pathways at a single-cell level. Eleven patients with NASH-HCC and 11 patients with NAFLD were included. Eight probes were analyzed using multiplex interphase fluorescence in situ hybridization (miFISH), single-cell imaging and phylogenetic tree modelling: Telomerase reverse transcriptase (TERT), C-Myc (MYC), hepatocyte growth factor receptor tyrosine kinase (MET), tumor protein 53 (TP53), cyclin D1 (CCND1), human epidermal growth factor receptor 2 (HER2), the fragile histidine triad gene (FHIT) and FRA16D oxidoreductase (WWOX). Each NASH-HCC tumor had up to 14 distinct clonal signal patterns indicating multiclonality, which correlated with high tumor grade. Changes frequently observed were TP53 losses, 45%; MYC gains, 36%; WWOX losses, 36%; and HER2 gains, 18%. Whole-genome duplications were frequent (82%) with aberrant tetraploid cells evolving from diploid ancestors. Non-tumorous NAFLD/NASH biopsies did not harbor clonal copy number changes. Fine mapping of NASH-HCC using single-cell multiplex FISH shows that branched tumor evolution involves genome duplication and that multiclonality increases with tumor grade. The loss of oxidoreductase WWOX and HER2 gains could be potentially associated with NASH-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Juliane Friemel
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA ,grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland ,grid.5734.50000 0001 0726 5157Department of Pathology, University of Bern, Bern, Switzerland
| | - Irianna Torres
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Elizabeth Brauneis
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Tim Thörner
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Alejandro A. Schäffer
- grid.417768.b0000 0004 0483 9129Cancer Data Science Laboratory, CCR, National Cancer Institute, NIH, Bethesda, MD USA ,grid.280285.50000 0004 0507 7840Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD USA
| | - E. Michael Gertz
- grid.417768.b0000 0004 0483 9129Cancer Data Science Laboratory, CCR, National Cancer Institute, NIH, Bethesda, MD USA ,grid.280285.50000 0004 0507 7840Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD USA
| | - Tobias Grob
- grid.5734.50000 0001 0726 5157Department of Pathology, University of Bern, Bern, Switzerland
| | - Kati Seidl
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Thomas Ried
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Kerstin Heselmeyer-Haddad
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| |
Collapse
|
13
|
Peng H, Zhu E, Wang J, Du X, Wang C, Yang M, Zhang Y. RAB6B is a potential prognostic marker and correlated with the remolding of tumor immune microenvironment in hepatocellular carcinoma. Front Pharmacol 2022; 13:989655. [PMID: 36120364 PMCID: PMC9478551 DOI: 10.3389/fphar.2022.989655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the second leading cause of death among all cancers. The Ras-associated binding (Rab) proteins constitute the largest family of the Ras superfamily of small GTPases, which mainly mediate membrane trafficking processes. RAB6B is a member of Rab GTPases, and it has been found to be dysregulated in various tumors. However, the clinical significance, correlations with immune cells, and stroma infiltration of RAB6B in HCC remain unclear.Methods: RAB6B mRNA and protein expression in HCC were examined using the TIMER, HCCDB, UALCAN, and HPA databases. The genetic alterations of RAB6B were analyzed by cBioPortal and COSMIC databases. The correlations between RAB6B and tumor-infiltrating immune cells and cancer-associated fibroblasts were explored by using TIMER, TISIDB, and GEPIA databases. Co-expression networks of RAB6B were investigated based on LinkedOmics. Drug sensitivity was analyzed through the GDSC and CTRP databases. RAB6B was knocked down with siRNA in HCC cell lines. EdU assay was performed to detect the cell proliferation ability, flow cytometry was used to compare the differences in the ability of apoptosis, and MTT was used to evaluate the drug sensitivity in vitro.Results: RAB6B mRNA and protein expression were upregulated in the HCC tissues. Kaplan–Meier and Cox regression analyses suggested that highly expressed RAB6B was an independent prognostic factor for poor survival in HCC patients. Moreover, we found that RAB6B expression was positively correlated with the infiltration of immune cells in HCC, including some immunosuppressive cells, chemokines, and receptors, meanwhile RAB6B expression was associated with CD8+T cells exhaustion, resulting in an immunosuppressive microenvironment. Additionally, functional enrichment analysis indicated that RAB6B may be involved in ECM remodeling in the TME, and RAB6B expression was positively associated with CAFs infiltration. Furthermore, RAB6B presented a positive association with sensitivity to GDSC and CTRP drugs. RAB6B knockdown inhibited the cell proliferation and promoted apoptosis and sensitivity to cisplatin of HCC cells in vitro.Conclusion: Our study revealed that RAB6B is a potential biomarker for poor prognosis in HCC patients and correlates with the formation of the immunosuppressive microenvironment in HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, China
| | - Erwei Zhu
- The Second People’s Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, China
| | - Jitao Wang
- Medical School, Southeast University, Nanjing, China
- Xingtai Institute of Cancer Control, Xingtai People’s Hospital, Xingtai, China
| | - Xuanlong Du
- Medical School, Southeast University, Nanjing, China
| | - Chonggao Wang
- Medical School, Southeast University, Nanjing, China
| | - Meng Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Meng Yang, ; Yewei Zhang,
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Meng Yang, ; Yewei Zhang,
| |
Collapse
|
14
|
Wan Y, Wang Z, Yang N, Liu F. Treatment of Multiple Primary Malignancies With PD-1 Inhibitor Camrelizumab: A Case Report and Brief Literature Review. Front Oncol 2022; 12:911961. [PMID: 35865468 PMCID: PMC9294358 DOI: 10.3389/fonc.2022.911961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background With significant advances in the diagnostic tools and treatment modalities of cancer, the incidence of multiple primary malignancies (MPMs) has increased in the last decades. The therapeutic option changed with the arising of immune checkpoint inhibitors (ICIs), which have improved the survival of a broad spectrum of tumors. However, little information is available when it comes to the efficacy, resistance, and underlying mechanisms of ICIs. Case Presentation A 67-year-old woman was diagnosed with pulmonary sarcomatoid carcinoma (PSC) with a history of hepatocellular carcinoma (HCC) and viral hepatitis B. Following the lack of response to systemic chemotherapy, she was treated with camrelizumab, an anti-programmed cell death protein 1 monoclonal antibody, in combination with chemotherapy, and a partial response was obtained both in PSC and HCC. After a course of 9-month treatment, the PSC lesion shrank still, while HCC was evaluated as a progressive disease with an increase in the diameter of liver neoplasm, elevated alpha-fetoprotein, and enlarged abdominal lymph nodes. Then, with the addition of radiotherapy for abdominal metastasis, the lung lesion was continuously shrinking. In the meantime, the liver neoplasm and abdominal lymph nodes showed no significant enlargement. Conclusion Camrelizumab combination therapy could consistently benefit the MPM patients with PSC and HCC, which may be a promising option for patients with MPMs.
Collapse
Affiliation(s)
- Yuchen Wan
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenye Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Fenye Liu,
| |
Collapse
|
15
|
Aoki T, Nishida N, Kudo M. Clinical Significance of the Duality of Wnt/β-Catenin Signaling in Human Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14020444. [PMID: 35053606 PMCID: PMC8773595 DOI: 10.3390/cancers14020444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Combination therapy with immune checkpoint inhibitors (ICIs) and vascular endothelial growth factor inhibitors has been approved as a first-line treatment for unresectable hepatocellular carcinoma (HCC), indicating a critical role of ICIs in the treatment of HCC. However, 20% of patients do not respond effectively to ICIs; mutations in the activation of the Wnt/β-catenin pathway are known to contribute to primary resistance to ICIs. From this point of view, non-invasive detection of Wnt/β-catenin activation should be informative for the management of advanced HCC. Wnt/β-catenin mutations in HCC have a dual aspect, which results in two distinct tumor phenotypes. HCC with minimal vascular invasion, metastasis, and good prognosis is named the “Jekyll phenotype”, while the poorly differentiated HCC subset with frequent vascular invasion and metastasis, cancer stem cell features, and high serum Alpha fetoprotein levels, is named the “Hyde phenotype”. To differentiate these two HCC phenotypes, a combination of the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging and fluoro-2-deoxy-D-glucose-PET/CT may be useful. The former is applicable for the detection of the Jekyll phenotype, as nodules present higher enhancement on the hepatobiliary phase, while the latter is likely to be informative for the detection of the Hyde phenotype by showing an increased glucose uptake.
Collapse
Affiliation(s)
| | - Naoshi Nishida
- Correspondence: ; Tel.: +81-72-366-0221 (ext. 3149); Fax: +81-72-367-2880
| | | |
Collapse
|
16
|
Singh V, Khurana A, Allawadhi P, Banothu AK, Bharani KK, Weiskirchen R. Emerging Role of PD-1/PD-L1 Inhibitors in Chronic Liver Diseases. Front Pharmacol 2021; 12:790963. [PMID: 35002724 PMCID: PMC8733625 DOI: 10.3389/fphar.2021.790963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/PD-ligand (L)1, the immune checkpoint inhibitors have emerged as a promising strategy for the treatment of various diseases including chronic liver diseases (CLDs) such as hepatitis, liver injury and hepatocellular carcinoma (HCC). The role of PD-1/PD-L1 has been widely inspected in the treatment of viral hepatitis and HCC. PD-1 is known to play a crucial role in inhibiting immunological responses and stimulates self-tolerance by regulating the T-cell activity. Further, it promotes apoptosis of antigen-specific T-cells while preventing apoptosis of Treg cells. PD-L1 is a trans-membrane protein which is recognized as a co-inhibitory factor of immunological responses. Both, PD-1 and PD-L1 function together to downregulate the proliferation of PD-1 positive cells, suppress the expression of cytokines and stimulate apoptosis. Owing to the importance of PD-1/PD-L1 signaling, this review aims to summarize the potential of PD-1/PD-L1 inhibitors in CLDs along with toxicities associated with them. We have enlisted some of the important roles of PD-1/PD-L1 in CLDs, the clinically approved products and the pipelines of drugs under clinical evaluation.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital,Aachen, Germany
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, New Delhi, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Hyderabad, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Hyderabad, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital,Aachen, Germany
| |
Collapse
|
17
|
Nishida N. Role of Oncogenic Pathways on the Cancer Immunosuppressive Microenvironment and Its Clinical Implications in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3666. [PMID: 34359568 PMCID: PMC8345137 DOI: 10.3390/cancers13153666] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor immune microenvironment, including hepatocellular carcinoma (HCC), is complex, consisting of crosstalk among tumor components such as the cancer cells, stromal cells and immune cells. It is conceivable that phenotypic changes in cancer cells by genetic and epigenetic alterations affect the cancer-stroma interaction and anti-cancer immunity through the expression of immune checkpoint molecules, growth factors, cytokines, chemokines and metabolites that may act on the immune system in tumors. Therefore, predicting the outcome of ICI therapy requires a thorough understanding of the oncogenic signaling pathways in cancer and how they affect tumor immune evasion. In this review, we have detailed how oncogenic signaling pathways can play a role in altering the condition of the cellular components of the tumor immune microenvironment such as tumor-associated macrophages, regulatory T cells and myeloid-derived suppressor cells. The RAS/MAPK, PI3K/Akt, Wnt/β-catenin and JAK/STAT pathways have all been implicated in anti-tumor immunity. We also found that factors that reflect the immune microenvironment of the tumor, including the status of oncogenic pathways such as the volume of tumor-infiltrating T cells, expression of the immune checkpoint protein PD-1 and its ligand PD-L1, and activation of the Wnt/β-catenin signaling pathway, predict a response to ICI therapy in HCC cases.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
18
|
Role of Oncogenic Pathways on the Cancer Immunosuppressive Microenvironment and Its Clinical Implications in Hepatocellular Carcinoma. Cancers (Basel) 2021. [PMID: 34359568 DOI: 10.3390/cancers13153666.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tumor immune microenvironment, including hepatocellular carcinoma (HCC), is complex, consisting of crosstalk among tumor components such as the cancer cells, stromal cells and immune cells. It is conceivable that phenotypic changes in cancer cells by genetic and epigenetic alterations affect the cancer-stroma interaction and anti-cancer immunity through the expression of immune checkpoint molecules, growth factors, cytokines, chemokines and metabolites that may act on the immune system in tumors. Therefore, predicting the outcome of ICI therapy requires a thorough understanding of the oncogenic signaling pathways in cancer and how they affect tumor immune evasion. In this review, we have detailed how oncogenic signaling pathways can play a role in altering the condition of the cellular components of the tumor immune microenvironment such as tumor-associated macrophages, regulatory T cells and myeloid-derived suppressor cells. The RAS/MAPK, PI3K/Akt, Wnt/β-catenin and JAK/STAT pathways have all been implicated in anti-tumor immunity. We also found that factors that reflect the immune microenvironment of the tumor, including the status of oncogenic pathways such as the volume of tumor-infiltrating T cells, expression of the immune checkpoint protein PD-1 and its ligand PD-L1, and activation of the Wnt/β-catenin signaling pathway, predict a response to ICI therapy in HCC cases.
Collapse
|
19
|
Morita M, Nishida N, Sakai K, Aoki T, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Nishio K, Kobayashi Y, Kakimi K, Kudo M. Immunological Microenvironment Predicts the Survival of the Patients with Hepatocellular Carcinoma Treated with Anti-PD-1 Antibody. Liver Cancer 2021; 10:380-393. [PMID: 34414125 PMCID: PMC8339510 DOI: 10.1159/000516899] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Although immune checkpoint inhibitors (ICIs) have been considered as promising agents for the treatment of advanced hepatocellular carcinoma (HCC), previous clinical trials revealed that the response to anti-programmed cell death protein 1 (anti-PD-1) monotherapy was as low as 20%. Identifying subgroups that respond well to ICIs is clinically important. Here, we studied the prognostic factors for anti-PD-1 antibody treatment based on the molecular and immunological features of HCC. METHODS Patients who were administered anti-PD1 antibody for advanced HCC at Kindai University Hospital were included. Clinicopathological backgrounds and antitumor responses were examined in 34 cases where tumor tissues before treatment were available. Transcriptome analysis was performed using 40 HCC samples obtained from surgical resection, and immune status was compared between 20 HCCs with activating mutations in β-catenin and those without the mutations using transcriptome-based immunogram. RESULTS Univariate analysis showed that the disease control rate was significantly better in patients with α-fetoprotein < 400 ng/mL, negative for β-catenin/glutamate synthetase (GS) staining, high combined positive score (CPS) of programmed death-ligand 1 (PD-L1), and increased infiltration of CD8+ cells in tumor tissues. Among them, negative staining of β-catenin/GS, CPS of PD-L1 ≥ 1, and high degree of CD8+ tumor-infiltrating lymphocytes (TILs) were significantly associated with longer survival in both progression-free survival (PFS) and overall survival (OS). The combination of these factors well stratified the survival of the patients on anti-PD-1 antibody in both PFS and OS (p < 0.0001 and p = 0.0048 for PFS and OS, respectively). In addition, the immunogram revealed that tumor-carrying mutations in β-catenin showed downregulation of immune-related genes, especially in those related to priming and activation by dendritic cells, interferon-γ response, inhibitory molecules, and regulatory T cells. DISCUSSION/CONCLUSION The combined score including Wnt/β-catenin activation, CPS of PD-L1, and degree of CD8+ TILs in HCC is informative for predicting the response to ICI in HCC cases. Constitutive activation of β-catenin can induce an immune cold phenotype with downregulation of immune-related genes, and immunohistochemistry-based evaluation is beneficial for identifying the subgroup that shows a good response to ICI.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan,*Naoshi Nishida,
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Wang T, Zhang Q, Wang N, Liu Z, Zhang B, Zhao Y. Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Curr Med Chem 2021; 28:3107-3146. [PMID: 33050856 DOI: 10.2174/0929867327666201013162144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with nearly one million new cases and deaths every year. Owing to the complex pathogenesis, hidden early symptoms, rapidly developing processes, and poor prognosis, the morbidity and mortality of HCC are increasing yearly. With the progress being made in modern medicine, the treatment of HCC is no longer limited to traditional methods. Targeted therapy and immunotherapy have emerged to treat advanced and metastatic HCC in recent years. Since Sorafenib is the first molecular targeting drug against angiogenesis, targeted drugs for HCC are continually emerging. Moreover, immunotherapy plays a vital role in clinical trials. In particular, the application of immune checkpoint inhibitors, which have received increasing attention in the field of cancer treatment, is a possible research path. Interestingly, these two therapies generally complement each other at some stages of HCC, bringing new hope for patients with advanced HCC. In this paper, we discuss the research progress of targeted therapy and immunotherapy for HCC in recent years, which will provide a reference for the further development of drugs for HCC.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ziqi Liu
- Department of Pharmacy, the PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
21
|
Wen F, Zheng H, Zhang P, Liao W, Zhou K, Li Q. Atezolizumab and bevacizumab combination compared with sorafenib as the first-line systemic treatment for patients with unresectable hepatocellular carcinoma: A cost-effectiveness analysis in China and the United states. Liver Int 2021; 41:1097-1104. [PMID: 33556230 DOI: 10.1111/liv.14795] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS In patients with unresectable hepatocellular carcinoma (HCC), the combination of atezolizumab and bevacizumab improved progression-free survival (PFS) and overall survival compared with sorafenib in the IMbrave150 trial. However, whether the price of the combination could be affordable is unknown. The current study assessed the cost-effectiveness of the combination of atezolizumab and bevacizumab as first-line systemic therapy for patients with unresectable HCC from the Chinese and American payers' perspective. METHODS A Markov model was built based on a global, multicentre, open-label, phase III randomized trial (IMbrave150, NCT03434379) that included three states of the patient's health: stable disease (SD), progressive disease (PD) and death. Data for all medical costs were acquired from the Red Book, published literature and West China Hospital. Quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs) were the primary outcomes. Sensitivity analyses were performed to evaluate the model uncertainty. RESULTS The treatment consisting of a combination of atezolizumab and bevacizumab yielded an additional 0.53 QALYs compared with sorafenib alone, leading to an ICER of $145,546.21 per QALY in China and $168,030.21 per QALY in the USA, both beyond the willing-to-pay threshold ($28,527.00/QALY in China and $150,000.00 /QALY in the USA). The utility of the PD state was the most influential factor in the Chinese model, and the American model was the most sensitive to the price of sorafenib. The results of the models were robust across sensitivity analyses. CONCLUSION The combination of atezolizumab and bevacizumab was not a cost-effective strategy for the first-line systemic treatment of unresectable HCC from the Chinese and American payers' perspective.
Collapse
Affiliation(s)
- Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,West China Biostatistics and Cost-Benefit Analysis Center, Sichuan University, Chengdu, China
| | - Hanrui Zheng
- West China Biostatistics and Cost-Benefit Analysis Center, Sichuan University, Chengdu, China.,Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,West China Biostatistics and Cost-Benefit Analysis Center, Sichuan University, Chengdu, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,West China Biostatistics and Cost-Benefit Analysis Center, Sichuan University, Chengdu, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,West China Biostatistics and Cost-Benefit Analysis Center, Sichuan University, Chengdu, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,West China Biostatistics and Cost-Benefit Analysis Center, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
The Current View of Nonalcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13030516. [PMID: 33572797 PMCID: PMC7866271 DOI: 10.3390/cancers13030516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The incidence of nonalcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC) is increasing. However, an effective screening or surveillance method is not established. Recently, the NAFLD/nonalcoholic steatohepatitis (NASH) guidelines of Japan were revised to incorporate new strategies and evidence for the management and surveillance of NAFLD/NASH. Advanced fibrosis and lifestyle-related and metabolic comorbidities, especially obesity and diabetes mellitus, are associated with HCC development. At the first screening, serum markers of hepatic fibrosis (hyaluronic acid, type IV collagen 7S, and mac-2 binding protein), or the fibrosis (FIB)-4 index or the nonalcoholic fatty liver disease fibrosis score (NFS), or a platelet count should be evaluated. When liver fibrosis is indicated, consultation with a gastroenterology specialist should be considered for the second screening. The risk of HCC should be stratified using the FIB-4 index or the NFS. Liver stiffness should be measured using vibration-controlled transient elastography in those at intermediate or high risk. Blood tests and imaging should be performed every 6–12 months in patients with advanced fibrosis for HCC surveillance. We review here what is known about NAFLD-HCC and provide perspectives for future research. Abstract Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and can develop into hepatocellular carcinoma (HCC). The incidence of NAFLD-related HCC, which is accompanied by life-threatening complications, is increasing. Advanced fibrosis and lifestyle-related and metabolic comorbidities, especially obesity and diabetes mellitus, are associated with HCC development. However, HCC is also observed in the non-cirrhotic liver. Often, diagnosis is delayed until the tumor is relatively large and the disease is advanced; an effective screening or surveillance method is urgently required. Recently, the NAFLD/nonalcoholic steatohepatitis (NASH) guidelines of Japan were revised to incorporate new strategies and evidence for the management and surveillance of NAFLD/NASH. Fibrosis must be tested for noninvasively, and the risk of carcinogenesis must be stratified. The treatment of lifestyle-related diseases is expected to reduce the incidence of NAFLD and prevent liver carcinogenesis.
Collapse
|
23
|
Nishida N, Kudo M. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of Liver Tumor. Front Oncol 2020; 10:594580. [PMID: 33409151 PMCID: PMC7779763 DOI: 10.3389/fonc.2020.594580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancement in artificial intelligence (AI) facilitate the development of AI-powered medical imaging including ultrasonography (US). However, overlooking or misdiagnosis of malignant lesions may result in serious consequences; the introduction of AI to the imaging modalities may be an ideal solution to prevent human error. For the development of AI for medical imaging, it is necessary to understand the characteristics of modalities on the context of task setting, required data sets, suitable AI algorism, and expected performance with clinical impact. Regarding the AI-aided US diagnosis, several attempts have been made to construct an image database and develop an AI-aided diagnosis system in the field of oncology. Regarding the diagnosis of liver tumors using US images, 4- or 5-class classifications, including the discrimination of hepatocellular carcinoma (HCC), metastatic tumors, hemangiomas, liver cysts, and focal nodular hyperplasia, have been reported using AI. Combination of radiomic approach with AI is also becoming a powerful tool for predicting the outcome in patients with HCC after treatment, indicating the potential of AI for applying personalized medical care. However, US images show high heterogeneity because of differences in conditions during the examination, and a variety of imaging parameters may affect the quality of images; such conditions may hamper the development of US-based AI. In this review, we summarized the development of AI in medical images with challenges to task setting, data curation, and focus on the application of AI for the managements of liver tumor, especially for US diagnosis.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
24
|
Nishida N. Metabolic disease as a risk of hepatocellular carcinoma. Clin Mol Hepatol 2020; 27:87-90. [PMID: 33317238 PMCID: PMC7820215 DOI: 10.3350/cmh.2020.0302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
25
|
Dai H, Tong C, Shi D, Chen M, Guo Y, Chen D, Han X, Wang H, Wang Y, Shen P. Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: a single-arm, open-label, phase II trial. Oncoimmunology 2020; 9:1846926. [PMID: 33312759 PMCID: PMC7714531 DOI: 10.1080/2162402x.2020.1846926] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expressed by cancer stem cells of various epithelial cell origins and hepatocellular carcinoma (HCC), CD133 is an attractive therapeutic target for HCC. The marker CD133 is highly expressed in endothelial progenitor cells (EPC). EPCs circulate in increased numbers in the peripheral blood of patients with highly vascularized HCC and contribute to angiogenesis and neovascularization. This phase II study investigated CD133-directed chimeric antigen receptor (CAR) T (CART-133) cells in adults with HCC. Patients with histologically confirmed and measurable advanced HCC and adequate hematologic, hepatic, and renal functions received CART-133 cell infusions. The primary endpoints were safety in phase I and progression-free survival (PFS) and overall survival (OS) in phase II. Other endpoints included biomarkers for CART-133 T cell therapy. Between June 1, 2015, and September 1, 2017, this study enrolled 21 patients who subsequently received CART-133 T cells across phases I and II. The median OS was 12 months (95% CI, 9.3–15.3 months) and the median PFS was 6.8 months (95% CI, 4.3–8.4 months). Of 21 evaluable patients, 1 had a partial response, 14 had stable disease for 2 to 16.3 months, and 6 progressed after T-cell infusion. The most common high-grade adverse event was hyperbilirubinemia. Outcome was correlated with the baseline levels of vascular endothelial growth factor (VEGF), soluble VEGF receptor 2 (sVEGFR2), stromal cell-derived factor (SDF)-1, and EPC counts. Changes in EPC counts, VEGF, SDF-1, sVEGFR2, and interferon (IFN)-γ after cell infusion were associated with survival. In patients with previously treated advanced HCC, CART-133 cell therapy demonstrates promising antitumor activity and a manageable safety profile. We identified early changes in circulating molecules as potential biomarkers of response to CART-133 cells. The predictive value of these proangiogenic and inflammatory factors as potential biomarkers of CART-133 cell therapy in HCC will be explored in prospective trials. This study is registered at ClinicalTrials.gov (NCT02541370)
Collapse
Affiliation(s)
- Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, China.,Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Chuan Tong
- Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Daiwei Shi
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, China
| | - Meixia Chen
- Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Yelei Guo
- Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Deyun Chen
- Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Xiao Han
- Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Wang
- Biotherapeutic Department, The First Medical Centre, Beijing, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Aoki T, Kudo M, Ueshima K, Morita M, Chishina H, Takita M, Hagiwara S, Ida H, Minami Y, Tsurusaki M, Nishida N. Exploratory Analysis of Lenvatinib Therapy in Patients with Unresectable Hepatocellular Carcinoma Who Have Failed Prior PD-1/PD-L1 Checkpoint Blockade. Cancers (Basel) 2020; 12:E3048. [PMID: 33092011 PMCID: PMC7590172 DOI: 10.3390/cancers12103048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
Although programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) blockade is effective in a subset of patients with hepatocellular carcinoma (HCC), its therapeutic response is still unsatisfactory. Alternatively, the potential impact of the lenvatinib in patients who showed tumor progression on PD-1/PD-L1 blockade is unknown. In this work, we evaluated the safety and efficacy of lenvatinib administration after PD-1/PD-L1 checkpoint blockade. The outcome and safety of lenvatinib administered after PD-1/PD-L1 blockade failure was analyzed retrospectively in 36 patients. Tumor growth was assessed every 4-8 weeks using modified Response Evaluation Criteria in Solid Tumors. The mean relative dose intensity of lenvatinib was 87.6% and 77.8% in patients receiving a starting dose of 8 (interquartile range (IQR), 77.5-100.0) mg and 12 (IQR, 64.4-100.0) mg, respectively. Since lenvatinib therapy initiation, the median progression-free survival was 10 months (95% confidence interval (CI): 8.3-11.8) and the median overall survival was 15.8 months (95% CI: 8.5-23.2). The objective response rate was 55.6%, and the disease control rate was 86.1%. No particular safety concerns were observed. Lenvatinib demonstrated considerable antitumor effects with acceptable safety in patients with progressive and unresectable HCC when administered right after PD-1/PD-L1 blockade failure.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| | - Masakatsu Tsurusaki
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan;
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (T.A.); (K.U.); (M.M.); (H.C.); (M.T.); (S.H.); (H.I.); (Y.M.); (N.N.)
| |
Collapse
|
27
|
Matsui HM, Hazama S, Nakajima M, Xu M, Matsukuma S, Tokumitsu Y, Shindo Y, Tomochika S, Yoshida S, Iida M, Suzuki N, Takeda S, Yoshino S, Ueno T, Oka M, Nagano H. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepatocellular carcinoma: a phase I/II prospective randomized controlled clinical trial. Cancer Immunol Immunother 2020; 70:945-957. [PMID: 33074442 DOI: 10.1007/s00262-020-02737-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A proteomic analysis of hepatocellular carcinoma (HCC) has revealed that Heat Shock Protein 70 (HSP70) is among the cancer antigen proteins of HCC. Moreover, we confirmed that HSP70 was highly expressed in HCC by immunohistochemical staining. Based on these results, we developed an HSP70 mRNA-transfected dendritic cell (DC) therapy for treating unresectable or recurrent HCC, and the phase I trial was completed successfully. Thus, we aimed to investigate the safety and efficacy of this therapy as a postoperative adjuvant treatment after curative resection for HCC to prevent recurrence by conducting a phase I/II randomized controlled clinical trial. METHODS Patients (n = 45) with resectable HCC of stages II-IVa were registered and randomly assigned into two groups (DC group: 31 patients, control group: 14 patients) before surgery. The primary endpoint was disease-free survival (DFS), and the secondary endpoints were safety and overall survival. The DC therapy was initially administered at approximately 1 week after surgery, and twice every 3-4 weeks thereafter. RESULTS No adverse events specific to the immunotherapy were observed in the DC group. There was no difference in DFS between the DC and control groups (p = 0.666). However, in the subgroup with HSP70-expressing HCC, DFS of the DC group tended to be better (p = 0.090) and OS of the DC group was significantly longer (p = 0.003) than those of the control group. CONCLUSION The HSP70 mRNA-transfected DC therapy was performed safely as an adjuvant therapy. The prognosis of HSP70-expressing HCC cases could be expected to improve with this therapy.
Collapse
Affiliation(s)
- Hiroto Matsui Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigefumi Yoshino
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Yamaguchi University Hospital Cancer Center, Ube, Yamaguchi, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masaaki Oka
- Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
28
|
Federico P, Petrillo A, Giordano P, Bosso D, Fabbrocini A, Ottaviano M, Rosanova M, Silvestri A, Tufo A, Cozzolino A, Daniele B. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Status and Novel Perspectives. Cancers (Basel) 2020; 12:E3025. [PMID: 33080958 PMCID: PMC7603151 DOI: 10.3390/cancers12103025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising treatment for many kinds of cancers, including hepatocellular carcinoma (HCC). The rationale for using ICIs in HCC is based on the immunogenic background of hepatitis and cirrhosis and on the observation of high programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes in this cancer. Promising data from phase I/II studies in advanced HCC, showing durable objective response rates (~20% in first- and second-line settings) and good safety profile, have led to phase III studies with ICIs as single agents or in combination therapy, both in first and second line setting. While the activity of immunotherapy agents as single agents seems to be limited to an "ill-defined" small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab revealed a benefit in the outcomes when compared to sorafenib in the first line. In addition, the activity and efficacy of the combinations between anti-PD-1/anti-PD-L1 antibody and other ICIs, tyrosine kinase inhibitors, or surgical and locoregional therapies, has also been investigated in clinical trials. In this review, we provide an overview of the role of ICIs in the management of HCC with a critical evaluation of the current status and future directions.
Collapse
Affiliation(s)
- Piera Federico
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Study of Campania “L. Vanvitelli”, 80131 Napoli, Italy
| | - Pasqualina Giordano
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| | - Davide Bosso
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| | - Antonietta Fabbrocini
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| | - Margaret Ottaviano
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mario Rosanova
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| | - Antonia Silvestri
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| | - Andrea Tufo
- Surgical Unit, Ospedale del Mare, 80147 Napoli, Italy;
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Napoli, Italy; (A.P.); (P.G.); (D.B.); (A.F.); (M.O.); (M.R.); (A.S.); (B.D.)
| |
Collapse
|
29
|
Nishida N, Sakai K, Morita M, Aoki T, Takita M, Hagiwara S, Komeda Y, Takenaka M, Minami Y, Ida H, Ueshima K, Nishio K, Kudo M. Association between Genetic and Immunological Background of Hepatocellular Carcinoma and Expression of Programmed Cell Death-1. Liver Cancer 2020. [PMID: 32999869 DOI: 10.1159/000506352.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background and Aim Immune checkpoint inhibitors are promising agents for the treatment of hepatocellular carcinomas (HCC) refractory to conventional therapies. To enhance the efficacy of this treatment, immunological and molecular characteristics of HCC with programmed cell death ligand 1 (PD-L1) should be explored. Methods Clinical backgrounds, PD-L1 expression, and the amount of CD8+ tumor-infiltrating mononuclear cells (TIMCs) were analyzed in 154 HCCs. The expression of 3 stem cell markers and co-inhibitory receptors on tumor cells and TIMCs, respectively, were examined by immunohistochemical analysis. Somatic mutations in the 409 cancer-associated genes and TERT promoter were determined; HCCs were classified based on the presence of gene alterations affecting the 8 oncogenic pathways. The results were validated using the dataset from the Cancer Genome Atlas. Results The expression of PD-L1 in the HCCs was positively correlated with progressive tumor features, the presence of cytokeratin 19 (CK19), Sal-like protein 4 (SALL4), and the mutations of genes involving the phosphatidyl inositol 3-kinase (PI3K)-Akt pathway. Although CD8+ cells were densely infiltrated in PD-L1-positive tumors, these TIMCs frequently expressed multiple co-inhibitory receptors. However, a subset of PD-L1-positive tumors characterized by activating mutations of the PI3K-Akt pathway showed a low degree of TIMCs. Conversely, PD-L1-negative HCCs were associated with mutations in the β-catenin pathway and a small number of TIMCs, although the expression of co-inhibitory receptors was rare. Conclusions PD-L1-positive HCCs frequently showed an inflamed phenotype with stem cell features; a subset of PD-L1-positive HCCs with mutations in the PI3K-Akt pathway showed a non-inflamed phenotype. In HCCs with dense infiltration of TIMCs, CD8+ cells expressed multiple co-inhibitory receptors, suggesting T cell exhaustion. On the other hand, PD-L1-negative HCCs showed mutations leading to β-catenin activation and exhibited a non-inflamed background. These characteristics should be taken into consideration for developing novel combination therapies using immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuko Sakai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoriaki Komeda
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
30
|
Nishida N. Clinical implications of the dual blockade of the PD-1/PD-L1 and vascular endothelial growth factor axes in the treatment of hepatocellular carcinoma. Hepatobiliary Surg Nutr 2020; 9:640-643. [PMID: 33163513 DOI: 10.21037/hbsn.2019.10.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
31
|
Nishida N. Long-term prognosis and management of hepatocellular carcinoma after curative treatment. Clin Mol Hepatol 2020; 26:480-483. [PMID: 32951413 PMCID: PMC7641545 DOI: 10.3350/cmh.2020.0208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
32
|
Eso Y, Seno H. Current status of treatment with immune checkpoint inhibitors for gastrointestinal, hepatobiliary, and pancreatic cancers. Therap Adv Gastroenterol 2020; 13:1756284820948773. [PMID: 32913444 PMCID: PMC7443993 DOI: 10.1177/1756284820948773] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/16/2020] [Indexed: 02/04/2023] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) targeting cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed cell death protein ligand 1 (PD-L1) has revolutionized the treatment strategy in various types of cancers. In addition, recent studies have revealed that tumor microsatellite instability (MSI) status and tumor mutation burden (TMB) contribute significantly to the therapeutic response to anti-PD-1 monoclonal antibody (mAb), which led to an accelerated approval to pembrolizumab for the treatment of MSI-high or mismatch-repair-deficient solid tumors after conventional chemotherapies in 2017 and for the treatment of TMB-high solid tumors in 2020 by the United States Food and Drug Administration (FDA). In the field of gastrointestinal cancers, many clinical trials evaluating the safety and efficacy of various regimens such as ICI monotherapy, the combination of anti-CTLA-4 mAb and anti-PD-1/PD-L1 mAb, and combination of ICI and conventional chemotherapy or tyrosine kinase inhibitor have been reported or are in progress. This review summarizes MSI status and TMB in gastrointestinal, hepatobiliary, and pancreatic cancers, and provides the results of most relevant clinical trials evaluating ICIs. We also discuss the development of biomarkers required for improving the selection of patients with a high probability of benefiting from treatment with ICIs, and potential therapeutic strategies that could help to enhance anticancer responses of ICIs.
Collapse
Affiliation(s)
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology,
Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Nishida N, Sakai K, Morita M, Aoki T, Takita M, Hagiwara S, Komeda Y, Takenaka M, Minami Y, Ida H, Ueshima K, Nishio K, Kudo M. Association between Genetic and Immunological Background of Hepatocellular Carcinoma and Expression of Programmed Cell Death-1. Liver Cancer 2020; 9:426-439. [PMID: 32999869 PMCID: PMC7506256 DOI: 10.1159/000506352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIM Immune checkpoint inhibitors are promising agents for the treatment of hepatocellular carcinomas (HCC) refractory to conventional therapies. To enhance the efficacy of this treatment, immunological and molecular characteristics of HCC with programmed cell death ligand 1 (PD-L1) should be explored. METHODS Clinical backgrounds, PD-L1 expression, and the amount of CD8+ tumor-infiltrating mononuclear cells (TIMCs) were analyzed in 154 HCCs. The expression of 3 stem cell markers and co-inhibitory receptors on tumor cells and TIMCs, respectively, were examined by immunohistochemical analysis. Somatic mutations in the 409 cancer-associated genes and TERT promoter were determined; HCCs were classified based on the presence of gene alterations affecting the 8 oncogenic pathways. The results were validated using the dataset from the Cancer Genome Atlas. RESULTS The expression of PD-L1 in the HCCs was positively correlated with progressive tumor features, the presence of cytokeratin 19 (CK19), Sal-like protein 4 (SALL4), and the mutations of genes involving the phosphatidyl inositol 3-kinase (PI3K)-Akt pathway. Although CD8+ cells were densely infiltrated in PD-L1-positive tumors, these TIMCs frequently expressed multiple co-inhibitory receptors. However, a subset of PD-L1-positive tumors characterized by activating mutations of the PI3K-Akt pathway showed a low degree of TIMCs. Conversely, PD-L1-negative HCCs were associated with mutations in the β-catenin pathway and a small number of TIMCs, although the expression of co-inhibitory receptors was rare. CONCLUSIONS PD-L1-positive HCCs frequently showed an inflamed phenotype with stem cell features; a subset of PD-L1-positive HCCs with mutations in the PI3K-Akt pathway showed a non-inflamed phenotype. In HCCs with dense infiltration of TIMCs, CD8+ cells expressed multiple co-inhibitory receptors, suggesting T cell exhaustion. On the other hand, PD-L1-negative HCCs showed mutations leading to β-catenin activation and exhibited a non-inflamed background. These characteristics should be taken into consideration for developing novel combination therapies using immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Naoshi Nishida
- *Naoshi Nishida, MD, PhD, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511 (Japan),
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Odagiri N, Hai H, Thuy LTT, Dong MP, Suoh M, Kotani K, Hagihara A, Uchida-Kobayashi S, Tamori A, Enomoto M, Kawada N. Early Change in the Plasma Levels of Circulating Soluble Immune Checkpoint Proteins in Patients with Unresectable Hepatocellular Carcinoma Treated by Lenvatinib or Transcatheter Arterial Chemoembolization. Cancers (Basel) 2020; 12:2045. [PMID: 32722224 PMCID: PMC7464181 DOI: 10.3390/cancers12082045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors, combined with anti-angiogenic agents or locoregional treatments (e.g., transarterial chemoembolization (TACE)), are expected to become standard-of-care for unresectable hepatocellular carcinoma (HCC). We measured the plasma levels of 16 soluble checkpoint proteins using multiplexed fluorescent bead-based immunoassays in patients with HCC who underwent lenvatinib (n = 24) or TACE (n = 22) treatment. In lenvatinib-treated patients, plasma levels of sCD27 (soluble cluster of differentiation 27) decreased (p = 0.040) and levels of sCD40 (p = 0.014) and sTIM-3 (p < 0.001) were increased at Week 1, while levels of sCD27 (p < 0.001) were increased significantly at Weeks 2 through 4. At Week 1 of TACE, in addition to sCD27 (p = 0.028), sCD40 (p < 0.001), and sTIM-3 (soluble T-cell immunoglobulin and mucin domain-3) (p < 0.001), levels of sHVEM (soluble herpesvirus entry mediator) (p = 0.003), sTLR-2 (soluble Toll-like receptor 2) (p = 0.009), sCD80 (p = 0.036), sCTLA-4 (soluble cytotoxic T-lymphocyte antigen 4) (p = 0.005), sGITR (soluble glucocorticoid-induced tumor necrosis factor receptor) (p = 0.030), sGITRL (soluble glucocorticoid-induced TNFR-related ligand) (p = 0.090), and sPD-L1 (soluble programmed death-ligand 1) (p = 0.070) also increased. The fold-changes in soluble checkpoint receptors and their ligands, including sCTLA-4 with sCD80/sCD86 and sPD-1 (soluble programmed cell death domain-1) with sPD-L1 were positively correlated in both the lenvatinib and TACE treatment groups. Our results suggest that there are some limited differences in immunomodulatory effects between anti-angiogenic agents and TACE. Further studies from multicenters may help to identify an effective combination therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (N.O.); (H.H.); (L.T.T.T.); (M.P.D.); (M.S.); (K.K.); (A.H.); (S.U.-K.); (A.T.); (N.K.)
| | | |
Collapse
|
35
|
Choi K, Jang HY, Ahn JM, Hwang SH, Chung JW, Choi YS, Kim JW, Jang ES, Choi GH, Jeong SH. The association of the serum levels of myostatin, follistatin, and interleukin-6 with sarcopenia, and their impacts on survival in patients with hepatocellular carcinoma. Clin Mol Hepatol 2020; 26:492-505. [PMID: 32646201 PMCID: PMC7641544 DOI: 10.3350/cmh.2020.0005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background/Aims The role of serum myokine levels in sarcopenia and the outcome of hepatocellular carcinoma (HCC) patients are not clear. This study investigated the serum levels of myostatin, follistatin, and interleukin-6 (IL-6) in HCC patients and their association with sarcopenia and survival. Methods Using prospectively collected pretreatment samples from 238 HCC patients in a hospital from 2012 to 2015, the serum levels of 3 myokines were determined and compared to 50 samples from age and sex-matched healthy controls. Sarcopenia was evaluated using the psoas muscle index (PMI) measured at the third lumbar level in the computed tomography, and clinical data were collected until 2017. Results The median levels of the 3 myokines for the male and female HCC patients were as follow: myostatin (3,979.3 and 2,976.3 pg/mL), follistatin (2,118.5 and 2,174.6 pg/mL), and IL-6 (2.5 and 2.7 pg/mL), respectively. Those in the HCC patients were all significantly higher than in the healthy controls. In the HCC patient, the median PMI was 4.43 (males) and 2.17 cm2/m2 (females) with a sarcopenic prevalence of 56.4%. The serum levels of myostatin, IL-6 and follistatin in the HCC patients showed a positive, negative, and no correlation with PMI, respectively. The serum follistatin level was an independent factor for poor survival in HCC patients. Conclusions The serum levels of myostatin, follistatin, and IL-6 and their correlation with sarcopenia and survival were presented in HCC patients for the first time. The role of the serum follistatin level as a poor prognostic biomarker warrants further study.
Collapse
Affiliation(s)
- Kanghyug Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hee Yoon Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Joong Mo Ahn
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sung Ho Hwang
- Department of Nursing, Daewon Univeristy College, Jecheon, Korea
| | - Jung Wha Chung
- Department of Internal Medicine, Wonkwang University Sanbon Hospital, Sanbon, Korea
| | - Yun Suk Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin-Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Sun Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gwang Hyeon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
36
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB, Ke AW. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 2020; 19:110. [PMID: 32593303 PMCID: PMC7320583 DOI: 10.1186/s12943-020-01222-5] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Natural killer (NK) cells play a critical role in the innate antitumor immune response. Recently, NK cell dysfunction has been verified in various malignant tumors, including hepatocellular carcinoma (HCC). However, the molecular biological mechanisms of NK cell dysfunction in human HCC are still obscure. METHODS The expression of circular ubiquitin-like with PHD and ring finger domain 1 RNA (circUHRF1) in HCC tissues, exosomes, and cell lines was detected by qRT-PCR. Exosomes were isolated from the culture medium of HCC cells and plasma of HCC patients using an ultracentrifugation method and the ExoQuick Exosome Precipitation Solution kit and then characterized by transmission electronic microscopy, NanoSight and western blotting. The role of circUHRF1 in NK cell dysfunction was assessed by ELISA. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the molecular mechanisms of circUHRF1 in NK cells. In a retrospective study, the clinical characteristics and prognostic significance of circUHRF1 were determined in HCC tissues. RESULTS Here, we report that the expression of circUHRF1 is higher in human HCC tissues than in matched adjacent nontumor tissues. Increased levels of circUHRF1 indicate poor clinical prognosis and NK cell dysfunction in patients with HCC. In HCC patient plasma, circUHRF1 is predominantly secreted by HCC cells in an exosomal manner, and circUHRF1 inhibits NK cell-derived IFN-γ and TNF-α secretion. A high level of plasma exosomal circUHRF1 is associated with a decreased NK cell proportion and decreased NK cell tumor infiltration. Moreover, circUHRF1 inhibits NK cell function by upregulating the expression of TIM-3 via degradation of miR-449c-5p. Finally, we show that circUHRF1 may drive resistance to anti-PD1 immunotherapy in HCC patients. CONCLUSIONS Exosomal circUHRF1 is predominantly secreted by HCC cells and contributes to immunosuppression by inducing NK cell dysfunction in HCC. CircUHRF1 may drive resistance to anti-PD1 immunotherapy, providing a potential therapeutic strategy for patients with HCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- CCAAT-Enhancer-Binding Proteins/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- Exosomes/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Killer Cells, Natural/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Invasiveness
- Prognosis
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- RNA, Circular/genetics
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Jia-Cheng Lu
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xiao-Jun Guo
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China, 200032.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
37
|
Abstract
Supplemental Digital Content is available in the text. We previously found that heat-shock protein 70 (HSP70) is expressed on hepatocellular carcinoma cells and developed an HSP70 mRNA-transfected dendritic cell therapy for treating unresectable or recurrent hepatocellular carcinoma. The phase I trial was completed successfully. The purpose of this study is to identify a promiscuous epitope peptide derived from HSP70 for the purpose of developing a novel cancer peptide vaccine. Using a computational algorithm to analyze the specificity of previously reported major histocompatibility complex class I–binding peptides, we selected candidates that bound to >2 of the 3 HLA types. Twenty-nine HSP70-derived peptides (9-mers) that bound to HLA-class I was selected. The peptides were prioritized based on the results of peptide binding experiments. Using dendritic cells stimulated with the candidate peptide described previously as stimulators and CD8+ T cells as effectors, an ELISPOT assay was performed. Cytotoxicity of CD8 lymphocytes stimulated with the candidate peptides toward HSP70-expressing cancer cells was analyzed using an xCELLigence System. Peptides were administered to HLA-A 24 transgenic mice as vaccines, and peptide-specific T-cell induction was measured in vivo. We identified a multi-HLA-class I–binding epitope peptide that bound to HLA-A*02:01, *02:06, and *24:02 in vitro using an interferon-γ ELISPOT immune response induction assay. Cytotoxicity was confirmed in vitro, and safety and immune response induction were confirmed in vivo using HLA-A 24 transgenic mice. Our study demonstrated that the promiscuous HSP70-derived peptide is applicable to cancer immunotherapy in patients with HLA-A*24:02-positive, *02:01-positive, and *02:06-positive HSP70-expressing cancers.
Collapse
|
38
|
Yang Y, Wang C, Sun H, Jiang Z, Zhang Y, Pan Z. Apatinib prevents natural killer cell dysfunction to enhance the efficacy of anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Gene Ther 2020; 28:89-97. [PMID: 32533100 DOI: 10.1038/s41417-020-0186-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/09/2022]
Abstract
Apatinib, a selective vascular endothelial growth factor receptor 2-tyrosine kinase inhibitor, has demonstrated activity against a wide range of solid tumors, including advanced hepatocellular carcinoma (HCC). Preclinical and preliminary clinical results have confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) blockade. However, the immunologic mechanism of this combination therapy remains unclear. Here, using a syngeneic HCC mouse model, we demonstrated that treatment with apatinib resulted in attenuation of tumor growth and increased tumor vessel normalization. Moreover, our results indicated that natural killer cells, but not CD4+ or CD8+ T cells mediated the therapeutic efficacy of apatinib in HCC mouse models. As expected, the combined administration of apatinib and anti-PD-1 antibody into tumor-bearing mice generated potent immune responses resulting in a remarkable reduction of tumor growth. Furthermore, increased interferon-γ and decreased tumor necrosis factor-α and interleukin-6 levels were observed, suggesting the potential benefits of combination therapy with PD-1 blockade and apatinib in HCC.
Collapse
Affiliation(s)
- Yinli Yang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Cong Wang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Haiyan Sun
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhansheng Jiang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhanyu Pan
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
39
|
Nishida N, Kudo M. Immune Phenotype and Immune Checkpoint Inhibitors for the Treatment of Human Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:E1274. [PMID: 32443599 PMCID: PMC7281618 DOI: 10.3390/cancers12051274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies are promising approaches for treating hepatocellular carcinomas (HCCs) refractory to conventional therapies. However, a recent clinical trial of immune checkpoint inhibitors (ICIs) revealed that anti-tumor responses to ICIs are not satisfactory in HCC cases. Therefore, it is critical to identify molecular markers to predict outcome and develop novel combination therapies that enhance the efficacy of ICIs. Recently, several attempts have been made to classify HCC based on genome, epigenome, and transcriptome analyses. These molecular classifications are characterized by unique clinical and histological features of HCC, as well immune phenotype. For example, HCCs exhibiting gene expression patterns with proliferation signals and stem cell markers are associated with the enrichment of immune infiltrates in tumors, suggesting immune-proficient characteristics for this type of HCC. However, the presence of activating mutations in β-catenin represents a lack of immune infiltrates and refractoriness to ICIs. Although the precise mechanism that links the immunological phenotype with molecular features remains controversial, it is conceivable that alterations of oncogenic cellular signaling in cancer may lead to the expression of immune-regulatory molecules and result in the acquisition of specific immunological microenvironments for each case of HCC. Therefore, these molecular and immune characteristics should be considered for the management of HCC using immunotherapy.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine; 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan;
| | | |
Collapse
|
40
|
A Disintegrin and Metalloproteinase 9 (ADAM9) in Advanced Hepatocellular Carcinoma and Their Role as a Biomarker During Hepatocellular Carcinoma Immunotherapy. Cancers (Basel) 2020; 12:cancers12030745. [PMID: 32245188 PMCID: PMC7140088 DOI: 10.3390/cancers12030745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The chemotherapeutics sorafenib and regorafenib inhibit shedding of MHC class I-related chain A (MICA) from hepatocellular carcinoma (HCC) cells by suppressing a disintegrin and metalloprotease 9 (ADAM9). MICA is a ligand for natural killer (NK) group 2 member D (NKG2D) and is expressed on tumor cells to elicit attack by NK cells. This study measured ADAM9 mRNA levels in blood samples of advanced HCC patients (n = 10). In newly diagnosed patients (n = 5), the plasma ADAM9 mRNA level was significantly higher than that in healthy controls (3.001 versus 1.00, p < 0.05). Among four patients treated with nivolumab therapy, two patients with clinical response to nivolumab showed significant decreases in fold changes of serum ADAM9 mRNA level from 573.98 to 262.58 and from 323.88 to 85.52 (p < 0.05); however, two patients with no response to nivolumab did not. Using the Cancer Genome Atlas database, we found that higher expression of ADAM9 in tumor tissues was associated with poorer survival of HCC patients (log-rank p = 0.00039), while ADAM10 and ADAM17 exhibited no such association. In addition, ADAM9 expression showed a positive correlation with the expression of inhibitory checkpoint molecules. This study, though small in sample size, clearly suggested that ADAM9 mRNA might serve as biomarker predicting clinical response and that the ADAM9-MICA-NKG2D system can be a good therapeutic target for HCC immunotherapy. Future studies are warranted to validate these findings.
Collapse
|
41
|
Tampaki M, Ionas E, Hadziyannis E, Deutsch M, Malagari K, Koskinas J. Association of TIM-3 with BCLC Stage, Serum PD-L1 Detection, and Response to Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:212. [PMID: 31952209 PMCID: PMC7016746 DOI: 10.3390/cancers12010212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Considering the increasing importance of immune checkpoints in tumor immunity we investigated the clinical relevance of serum T-cell immunoglobulin and mucin domain-3 (TIM-3) in patients with hepatocellular carcinoma (HCC). Serum TIM-3 levels were measured and their association with HCC stage and the detection of serum programmed death ligand-1 (PD-L1) were assessed. In patients submitted to transarterial chemoembolization (TACE), pre- and 1-week post-treatment TIM-3 levels were also evaluated. We studied 53 HCC patients with BCLC stages: 0 (5.7%), A (34%), B (32.1%), C (22.6%), and D (5.7%). The patients with advanced HCC (BCLC C) had significantly higher TIM-3 levels than patients with BCLC A (p = 0.009) and BCLC B (p = 0.019). TIM-3 levels were not associated with HCC etiology (p = 0.183). PD-L1 detection (9/53 patients) correlated with TIM-3 levels (univariate analysis, p = 0.047). In 33 patients who underwent TACE, post-treatment TIM-3 levels (231 pg/mL, 132-452) were significantly higher than pre-TACE levels (176 pg/mL, 110-379), (p = 0.036). Complete responders had higher post-TACE TIM-3 levels (534 pg/mL, 370-677) than partial responders (222 pg/mL, 131-368), (p = 0.028). Collectively, TIM-3 may have a role in anti-tumor immunity following TACE, setting a basis for combining immunotherapy and chemoembolization.
Collapse
Affiliation(s)
- Maria Tampaki
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, 115 27 Athens, Greece; (M.T.); (E.H.); (M.D.)
| | - Evangelos Ionas
- Department of Gastroenterology, G. Gennimatas General Hospital, 115 27 Athens, Greece;
| | - Emilia Hadziyannis
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, 115 27 Athens, Greece; (M.T.); (E.H.); (M.D.)
| | - Melanie Deutsch
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, 115 27 Athens, Greece; (M.T.); (E.H.); (M.D.)
| | - Katerina Malagari
- Department of Radiology, Athens University, Attikon Hospital, Chaidari, 124 62 Athens, Greece;
| | - John Koskinas
- Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, 115 27 Athens, Greece; (M.T.); (E.H.); (M.D.)
| |
Collapse
|
42
|
Yao M, Sai W, Zheng W, Wang L, Dong Z, Yao D. Secretory Clusterin as a Novel Molecular-targeted Therapy for Inhibiting Hepatocellular Carcinoma Growth. Curr Med Chem 2020; 27:3290-3301. [PMID: 31232234 DOI: 10.2174/0929867326666190624161158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although secretory clusterin (sCLU) plays a crucial role in Hepatocellular Carcinoma (HCC) cells proliferation, Multiple Drug Resistance (MDR), metastasis and so on, its targeted effects and exact mechanism are still unknown. This review summarizes some new progress in sCLU as a molecular-targeted therapy in the treatment of HCC. METHODS A systematic review of the published English-language literature about sCLU and HCC has been performed using the PubMed and bibliographic databases. Some valuable studies on sCLU in HCC progression were searched for relevant articles with the keywords: HCC, diagnosis, MDR, as molecular-targeted in treatment, and so on. RESULTS The incidence of the positive rate of sCLU was significantly higher in HCC tissues as compared to the surrounding tissues at mRNA or protein level, gradually increasing with tumor-nodemetastasis staging (P<0.05). Also, the abnormal level of sCLU was related to poor differentiation degree, and considered as a useful marker for HCC diagnosis or independent prognosis for patients. Hepatic sCLU could be silenced at mRNA level by specific sCLU-shRNA or by OGX-011 to inhibit cancer cell proliferation with an increase in apoptosis, cell cycle arrest, reversal MDR, alteration of cell migration or invasion behaviors, and a decrease in GSK-3β or AKT phosphorylation in vitro, as well as significant suppression of the xenograft growth by down-regulating β-catenin, p-GSK3β, and cyclinD1 expression in vivo. CONCLUSION Abnormal hepatic sCLU expression should not only be a new diagnostic biomarker but also a novel promising target for inhibiting HCC growth.
Collapse
Affiliation(s)
- Min Yao
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenli Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhizhen Dong
- Department of Diagnostics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dengfu Yao
- Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
43
|
Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol 2020; 55:15-26. [PMID: 31494725 PMCID: PMC6942585 DOI: 10.1007/s00535-019-01620-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Recent innovations in the next-generation sequencing technologies have unveiled that the accumulation of genetic alterations results in the transformation of normal cells into cancer cells. Accurate and timely repair of DNA is, therefore, essential for maintaining genetic stability. Among various DNA repair pathways, the mismatch repair (MMR) pathway plays a pivotal role. MMR deficiency leads to a molecular feature of microsatellite instability (MSI) and predisposes to cancer. Recent studies revealed that MSI-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, regardless of their primary site, have a promising response to immune checkpoint inhibitors (ICIs), leading to the approval of the anti-programmed cell death protein 1 monoclonal antibody pembrolizumab for the treatment of advanced or recurrent MSI-H/dMMR solid tumors that continue to progress after conventional chemotherapies. This new indication marks a paradigm shift in the therapeutic strategy of cancers; however, when considering the optimum indication for ICIs and their safe and effective usage, it is important for clinicians to understand the genetic and immunologic features of each tumor. In this review, we describe the molecular basis of the MMR pathway, diagnostics of MSI status, and the clinical importance of MSI status and the tumor mutation burden in developing therapeutic strategies against gastrointestinal and hepatobiliary malignancies.
Collapse
Affiliation(s)
- Yuji Eso
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Takahiro Shimizu
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Haruhiko Takeda
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Atsushi Takai
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Hiroyuki Marusawa
- grid.417000.20000 0004 1764 7409Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 5438555 Japan
| |
Collapse
|
44
|
Zhao Z, Xiao X, Saw PE, Wu W, Huang H, Chen J, Nie Y. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. SCIENCE CHINA-LIFE SCIENCES 2019; 63:180-205. [PMID: 31883066 DOI: 10.1007/s11427-019-9665-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cell is a novel approach, which utilizes anti-tumor immunity for cancer treatment. As compared to the traditional cell-mediated immunity, CAR-T possesses the improved specificity of tumor antigens and independent cytotoxicity from major histocompatibility complex molecules through a monoclonal antibody in addition to the T-cell receptor. CAR-T cell has proven its effectiveness, primarily in hematological malignancies, specifically where the CD 19 CAR-T cells were used to treat B-cell acute lymphoblastic leukemia and B-cell lymphomas. Nevertheless, there is little progress in the treatment of solid tumors despite the fact that many CAR agents have been created to target tumor antigens such as CEA, EGFR/EGFRvIII, GD2, HER2, MSLN, MUC1, and other antigens. The main obstruction against the progress of research in solid tumors is the tumor microenvironment, in which several elements, such as poor locating ability, immunosuppressive cells, cytokines, chemokines, immunosuppressive checkpoints, inhibitory metabolic factors, tumor antigen loss, and antigen heterogeneity, could affect the potency of CAR-T cells. To overcome these hurdles, researchers have reconstructed the CAR-T cells in various ways. The purpose of this review is to summarize the current research in this field, analyze the mechanisms of the major barriers mentioned above, outline the main solutions, and discuss the outlook of this novel immunotherapeutic modality.
Collapse
Affiliation(s)
- Zijun Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyun Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongyan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
45
|
Langhans B, Nischalke HD, Krämer B, Dold L, Lutz P, Mohr R, Vogt A, Toma M, Eis-Hübinger AM, Nattermann J, Strassburg CP, Gonzalez-Carmona MA, Spengler U. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother 2019; 68:2055-2066. [PMID: 31724091 DOI: 10.1007/s00262-019-02427-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibition suggests promising progress for the treatment of advanced hepatocellular carcinoma (HCC). However, the underlying cellular mechanisms remain unclear because liver cancer cells apparently do not upregulate inhibitory checkpoint molecules. Here, we analysed whether regulatory T cells (Tregs) can alternatively trigger checkpoint inhibition pathways in HCC. Using flow cytometry we analysed expression of checkpoint molecules (PD-1, PD-L1, CTLA-4, GITR, Tim-3) on peripheral CD4+CD25+Foxp3+ Tregs and their secretion of inhibitory mediators (IL-10, IL-35, TGF-beta, galectin-9) in 116 individuals (50 patients with HCC, 41 non-tumour bearing liver disease controls, 25 healthy controls). Functional activity of Tregs on T effector cells (IFN-gamma production, cytotoxicity) was characterized in vitro using a lectin-dependent cellular cytotoxicity (LDCC) assay against checkpoint inhibitor-negative P815 target cells. Unlike liver patients without malignancy and healthy controls, the frequency of checkpoint inhibitor-positive Tregs inversely correlated to age of patients with HCC (PD-L1, p = 0.0080; CTLA-4, p = 0.0029) and corresponded to enhanced numbers of Tregs producing IL-10 and IL-35 (p < 0.05 each). Tregs inhibited IFN-gamma secretion and cytotoxicity of CD8+ T cells when added to LDCC against P815 cells. Treg-induced inhibition of IFN-gamma secretion could be partially blocked by neutralizing PD-1 and PD-L1 antibodies specifically in HCC patients. In HCC peripheral Tregs upregulate checkpoint inhibitors and contribute to systemic immune dysfunction and antitumoural activity by several inhibitory pathways, presumably facilitating tumour development at young age. Blocking PD-L1/PD-1 interactions in vitro selectively interfered with inhibitory Treg -T effector cell interactions in the patients with HCC and resulted in improved antitumoural activity also against checkpoint inhibitor-negative tumour cells.
Collapse
Affiliation(s)
- Bettina Langhans
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany.
| | - Hans Dieter Nischalke
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany
| | - Benjamin Krämer
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany
| | - Leona Dold
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Philipp Lutz
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Raphael Mohr
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany
| | - Annabelle Vogt
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany
| | - Marieta Toma
- Department of Experimental Pathology, University Hospital of Bonn (UKB), Bonn, Germany
| | | | - Jacob Nattermann
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany
| | - Christian P Strassburg
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany
| | | | - Ulrich Spengler
- Department I of Internal Medicine, University Hospital of Bonn (UKB), Venusberg-Campus-1, 53127, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| |
Collapse
|
46
|
Macek Jilkova Z, Aspord C, Decaens T. Predictive Factors for Response to PD-1/PD-L1 Checkpoint Inhibition in the Field of Hepatocellular Carcinoma: Current Status and Challenges. Cancers (Basel) 2019; 11:cancers11101554. [PMID: 31615069 PMCID: PMC6826488 DOI: 10.3390/cancers11101554] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies targeting immune checkpoints are fast-developing therapeutic approaches adopted for several tumor types that trigger unprecedented rates of durable clinical responses. Immune checkpoint programmed cell death protein 1 (PD-1), expressed primarily by T cells, and programmed cell death ligand 1 (PD-L1), expressed mainly by tumor cells, macrophages, and dendritic cells, are molecules that impede immune function, thereby allowing tumor cells to proliferate, grow and spread. PD-1/PD-L1 checkpoint inhibitors have emerged as a promising treatment strategy of hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from this therapy. To find a niche for immune checkpoint inhibition in HCC patients, future strategies might require predictive factor-based patient selection, to identify patients who are likely to respond to the said therapy and combination strategies in order to enhance anti-tumor efficacy and clinical success. This review provides an overview of the most recent data pertaining to predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of HCC.
Collapse
Affiliation(s)
- Zuzana Macek Jilkova
- Université Grenoble Alpes, 38000 Grenoble, France.
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France.
- Service d'hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France.
| | - Caroline Aspord
- Université Grenoble Alpes, 38000 Grenoble, France.
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France.
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D-Laboratory, 38701 Grenoble, France.
| | - Thomas Decaens
- Université Grenoble Alpes, 38000 Grenoble, France.
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, 38700 La Tronche, France.
- Service d'hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France.
| |
Collapse
|
47
|
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49:1097-1108. [PMID: 31009153 DOI: 10.1111/hepr.13353] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/23/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fourth leading cause of cancer related mortality in the world, with hepatocellular carcinoma (HCC) representing the most common primary subtype. Two-thirds of HCC patients have advanced disease when diagnosed, and for these patients, treatment strategies remain limited. In addition, there is a high incidence of tumor recurrence after surgical resection with the current treatment regimens. The development of novel and more effective agents is required. Cyclin-dependent kinases (CDKs) constitute a family of 21 different protein kinases involved in regulating cell proliferation, apoptosis, and drug resistance, and are evaluated in preclinical and clinical trials as chemotherapeutics. To summarize and discuss the therapeutic potential of targeting CDKs in HCC, recent published articles identified from PubMed were comprehensively reviewed. The key words included hepatocellular carcinoma, cyclin-dependent kinases, and CDK inhibitors. This review focuses on the emerging evidence from studies describing the genetic and functional aspects of CDKs in HCC. We also present an overview of CDK inhibitors that have shown efficacy in laboratory studies of HCC. Although many of the studies assessing CDK-targeting therapies in HCC are at the preclinical stage, there is significant evidence that CDK inhibitors used alone or in combination with established chemotherapy drugs could have significant applications in HCC.
Collapse
Affiliation(s)
- Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
48
|
Tovoli F, Casadei-Gardini A, Benevento F, Piscaglia F. Immunotherapy for hepatocellular carcinoma: A review of potential new drugs based on ongoing clinical studies as of 2019. Dig Liver Dis 2019; 51:1067-1073. [PMID: 31208929 DOI: 10.1016/j.dld.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
In the latest years, antineoplastic immunotherapy revolutionised the therapeutic landscape in oncology. First shown to be effective in melanoma and non-small cell lung carcinoma, immune checkpoint inhibitors are now being tested for the treatment of hepatocellular carcinoma (HCC). Preliminary results have been particularly promising. As a consequence, an increasing number of clinical trials are underway. The role of the immune system in carcinogenesis (with particular reference to tumour escape immune mechanisms), as well as the current immunotherapy trials for HCC in its different clinical scenarios, are the subject of this review. In particular, we aim to provide fresh updates about these novel therapeutic agents which promise to shape the future therapeutic scenario of HCC.
Collapse
Affiliation(s)
- Francesco Tovoli
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Casadei-Gardini
- Unit of Oncology, Department of Oncology, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benevento
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Ma W, Shen H, Li Q, Song H, Guo Y, Li F, Zhou X, Guo X, Shi J, Cui Q, Xing J, Deng J, Yu Y, Liu W, Zhao H. MARVELD1 attenuates arsenic trioxide-induced apoptosis in liver cancer cells by inhibiting reactive oxygen species production. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:200. [PMID: 31205918 DOI: 10.21037/atm.2019.04.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Arsenic trioxide (As2O3) is widely used for the treatment of acute promyelocytic leukemia (APL), and more recently, has also been applied to solid tumors. However, there are a fraction of patients with solid tumors, such as liver cancer, who respond to As2O3 treatment poorly. The underlying mechanisms for this remain unclear. Methods We determined the suitable concentration of drugs by IC50. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to analyze the apoptosis. Morphological changes of the cells were observed by laser scanning confocal microscopy. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. Quantitative polymerase chain reaction (qPCR) and Western blot tests were conducted to detect the mRNA and protein levels in different groups. Finally, a xenograft tumor assay and histopathological analysis were performed to evaluate the MARVELD1 function in cell proliferation and apoptosis. Results Here, we show that MARVELD1 enhances the therapeutic effects of epirubicin, while inducing the strong resistance of liver cancer cells to As2O3 treatment. We further demonstrate that the As2O3-induced apoptosis was inhibited by MARVELD1 overexpression (24 h Vector vs. MARVELD1 =30.58% vs. 17.41%, P<0.01; 48 h Vector vs. MARVELD1 =46.50% vs. 21.02%, P<0.01), possibly through inhibiting ROS production by enhancing TRXR1 expression. In vivo, we found a significantly increased size (Vector vs. MARVELD1 =203.90±21.92 vs. 675.70±37.84 mm3, P<0.001) and weight (Vector vs. MARVELD1 =0.19±0.02 vs. 0.58±0.05 g, P<0.001) of tumors with high expression of MARVELD1 after As2O3 treatment. Consistently, a higher expression of MARVELD1 predicted a poor prognosis for liver cancer patients. Conclusions Our data identified a unique role of MARVELD1 in As2O3-induced apoptosis and As2O3 cancer therapy resistance.
Collapse
Affiliation(s)
- Wenping Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Haiyang Shen
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Qian Li
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hao Song
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanyan Guo
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Fangrong Li
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinwu Guo
- Sansure Biotech Inc., Changsha 410205, China
| | - Jingdong Shi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi Cui
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhao Xing
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhai Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenjie Liu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongshan Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
50
|
Ueno Y. New treatment-induced adverse effects we need to learn as modern hepatologists. Hepatol Int 2019; 13:391-394. [PMID: 31016539 DOI: 10.1007/s12072-019-09947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/05/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine Yamagata University, 2-2-2 Iidanishi, Yamagata, 9909585, Japan.
| |
Collapse
|