1
|
Jin J, Wang Z, Liu Y, Chen J, Jiang M, Lu L, Xu J, Gao F, Wang J, Zhang J, Xu GT, Jin C, Tian H, Zhao J, Ou Q. miR-143-3p boosts extracellular vesicles to improve the dermal fibrosis of localized scleroderma. J Autoimmun 2025; 153:103422. [PMID: 40273600 DOI: 10.1016/j.jaut.2025.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 03/15/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Localized scleroderma (LoSc) is an autoimmune disease that features extensive fibrosis of the skin. Due to its severity and limited understanding, no effective treatments have been developed to date. Bone marrow mesenchymal stem cells (BMSCs) derived extracellular vesicles (EVs) have been demonstrated promising therapeutic effects on the LoSc mouse model in our previous study. However, identifying the targets and underlying mechanisms of EVs remains a significant challenge for therapeutic applications. miR-143-3p, a critical and abundant factor in BMSC-EVs identified through miRNA sequencing, mediates antifibrotic effects in a LoSc mouse model and is significantly lacking in the dermis of LoSc patients. This microRNA inhibits myofibroblast formation and collagen synthesis, contributing to the therapeutic effects of BMSC-EVs in the LoSc mouse model. Moreover, miR-143-3p-reinforced BMSC-EVs demonstrated enhanced therapeutic efficacy compared to normal BMSC-EVs, reducing dermal thickening, collagen deposition, fibroblast differentiation into myofibroblasts, and promoting skin tissue remodeling. IGF1R, highly expressed in the skin of LoSc, was identified as a potential target of miR-143-3p and was inhibited by miR-143-3p-reinforced EVs, thereby modulating the IGF1/IGF1R-AKT/MAPK pathway. In conclusion, miR-143-3p-enriched EVs could be a more efficient candidate for treating dermal fibrosis in LoSc.
Collapse
Affiliation(s)
- Jiahui Jin
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yifan Liu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miao Jiang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingying Xu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Haibin Tian
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jingjun Zhao
- Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingjian Ou
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Tambaro F, Gigante A, Gallicchio C, Pellicano C, Ramaccini C, Belli R, Gasperini-Zacco ML, Rosato E, Muscaritoli M. Differential modulations of miRNAs in patients with systemic sclerosis-associated skeletal muscle loss. Eur J Intern Med 2025; 135:98-107. [PMID: 40175271 DOI: 10.1016/j.ejim.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease characterized by sustained vascular inflammation and progressive skin and internal organs fibrosis. Up to 22 % of SSc patients may manifest skeletal muscle impairment, which predicts worse clinical outcomes, including increased mortality, however, pathogenesis is still largely unclear and could be associated with modulation of circulating microRNAs (miRNAs). Aims of the present study were to evaluate differentially modulated miRNAs in SSc patients and to evaluate their association with changes in body composition(s) and with the clinical course and type of the disease. METHODS Circulating levels of miRNAs were detected by RT-qPCR. ELISA assay was performed to measure the TGF-β1 protein. Muscularity (FFMI kg/m2) and phase angle (PhA, °) were estimated by Bioelectrical Impedance Analysis. RESULTS We enrolled 47 SSc patients and 21 controls (C). We observed downregulation of miR-15b (p = 0.024), -21 (p < 0.001), -29a (p < 0.001), -29b (p = 0.007) and -133a (p < 0.001), whereas miR-206 (p < 0.001) and -486 (p < 0.001) were upregulated in SSc vs C. In SSc, miR-29b negatively correlates with TGF-β1 (r = -0.303, p = 0.046). MiR-206 was downregulated vs high FFMI (p = 0.040) in SSc with low FFMI, and miR-15b positively correlates with PhA (r = 0.356, p = 0.014). MiR-15b and -486 were modulated in early vs late nailfold capillaroscopy stage (p = 0.028 and p = 0.045, respectively). MiR-133a was higher in SSc with Scl70 v ACA subset of autoantibodies (p = 0.002). CONCLUSIONS In SSc patients, differential modulations of miRNAs involved in muscularity occur. The data obtained suggest that mechanisms other than disease-related malnutrition might be responsible for SSc-associated skeletal muscle loss.
Collapse
Affiliation(s)
- Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmen Gallicchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Belli
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | | | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Park JS, Kim C, Choi J, Jeong HY, Moon YM, Kang H, Lee EK, Cho ML, Park SH. MicroRNA-21a-5p inhibition alleviates systemic sclerosis by targeting STAT3 signaling. J Transl Med 2024; 22:323. [PMID: 38561750 PMCID: PMC10983659 DOI: 10.1186/s12967-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS A murine SSc model was induced by subcutaneously injecting 100 μg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 μg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1β, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
- Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-Gu, Seoul, 06591, South Korea.
| |
Collapse
|
4
|
Basalova N, Alexandrushkina N, Grigorieva O, Kulebyakina M, Efimenko A. Fibroblast Activation Protein Alpha (FAPα) in Fibrosis: Beyond a Perspective Marker for Activated Stromal Cells? Biomolecules 2023; 13:1718. [PMID: 38136590 PMCID: PMC10742035 DOI: 10.3390/biom13121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of tissue fibrosis is a complex process involving the interaction of multiple cell types, which makes the search for antifibrotic agents rather challenging. So far, myofibroblasts have been considered the key cell type that mediated the development of fibrosis and thus was the main target for therapy. However, current strategies aimed at inhibiting myofibroblast function or eliminating them fail to demonstrate sufficient effectiveness in clinical practice. Therefore, today, there is an unmet need to search for more reliable cellular targets to contribute to fibrosis resolution or the inhibition of its progression. Activated stromal cells, capable of active proliferation and invasive growth into healthy tissue, appear to be such a target population due to their more accessible localization in the tissue and their high susceptibility to various regulatory signals. This subpopulation is marked by fibroblast activation protein alpha (FAPα). For a long time, FAPα was considered exclusively a marker of cancer-associated fibroblasts. However, accumulating data are emerging on the diverse functions of FAPα, which suggests that this protein is not only a marker but also plays an important role in fibrosis development and progression. This review aims to summarize the current data on the expression, regulation, and function of FAPα regarding fibrosis development and identify promising advances in the area.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalya Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
5
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
6
|
Liu Y, Cheng L, Zhan H, Li H, Li X, Huang Y, Li Y. The Roles of Noncoding RNAs in Systemic Sclerosis. Front Immunol 2022; 13:856036. [PMID: 35464474 PMCID: PMC9024074 DOI: 10.3389/fimmu.2022.856036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNAs) constitute more than 90% of the RNAs in the human genome. In the past decades, studies have changed our perception of ncRNAs from “junk” transcriptional products to functional regulatory molecules that mediate critical processes, including chromosomal modifications, mRNA splicing and stability, and translation, as well as key signaling pathways. Emerging evidence suggests that ncRNAs are abnormally expressed in not only cancer but also autoimmune diseases, such as systemic sclerosis (SSc), and may serve as novel biomarkers and therapeutic targets for the diagnosis and treatment of SSc. However, the functions and underlying mechanisms of ncRNAs in SSc remain incompletely understood. In this review, we discuss the current findings on the biogenetic processes and functions of ncRNAs, including microRNAs and long noncoding RNAs, as well as explore emerging ncRNA-based diagnostics and therapies for SSc.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Yongzhe Li,
| |
Collapse
|
7
|
Rosendahl AH, Schönborn K, Krieg T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J Med Sci 2022; 38:187-195. [PMID: 35234358 DOI: 10.1002/kjm2.12505] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (scleroderma) is an autoimmune-triggered chronic fibrosing disease that affects the skin and many other organs. Its pathophysiology is complex and involves an early endothelial damage, an inflammatory infiltrate and a resulting fibrotic reaction. Based on a predisposing genetic background, an altered balance of the acquired and the innate immune system leads to the release of many cytokines and chemokines as well as autoantibodies, which induce the activation of fibroblasts with the formation of myofibroblasts and the deposition of a stiff and rigid connective tissue. A curative treatment is still not available but remarkable progress has been made in the management of organ complications. In addition, several breakthroughs in the pathophysiology have led to new therapeutic concepts. Based on these, many new compounds have been developed during the last years, which target these different pathways and offer specific therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Helen Rosendahl
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Katrin Schönborn
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Dermatology, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Yu J, Tang R, Ding K. Epigenetic Modifications in the Pathogenesis of Systemic Sclerosis. Int J Gen Med 2022; 15:3155-3166. [PMID: 35342304 PMCID: PMC8942200 DOI: 10.2147/ijgm.s356877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic sclerosis is a rare chronic autoimmune disease, which mainly manifests as immune disorders, vascular damage, and progressive fibrosis. The etiology of SSc is complex and involves multiple factors. Both genetic and environmental factors are involved in its pathogenesis. As one of the molecular mechanisms of environmental factors, epigenetic regulation plays an important role in the occurrence and development of systemic sclerosis, which involves DNA methylation, histone modification and non-coding RNA regulation. This review summarizes research advances in epigenetics, including exosomes, lncRNA, and mentions possible biomarkers and therapeutic targets among them.
Collapse
Affiliation(s)
- Jiangfan Yu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, 410011, People’s Republic of China
| | - Rui Tang
- Department of Rheumatology and Immunology, Second Xiangya Hospital of Central South University, Changsha, 410011, People’s Republic of China
| | - Ke Ding
- Department of Urology, Xiangya Hospital of Central South University, Changsha, 410008, People’s Republic of China
- Correspondence: Ke Ding, Department of Urology, Xiangya Hospital of Central South University, Changsha, 410008, People’s Republic of China, Email
| |
Collapse
|
9
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
11
|
Wang F, Gao Y, Yuan Y, Du R, Li P, Liu F, Tian Y, Wang Y, Zhang R, Zhao B, Wang C. MicroRNA-31 Can Positively Regulate the Proliferation, Differentiation and Migration of Keratinocytes. Biomed Hub 2021; 5:93-104. [PMID: 33564659 DOI: 10.1159/000508612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
In the past decades, the key roles of most microRNA in dermatosis and skin development have been explored one after another. Among them, microRNA-31 (miR-31) has a prominent role in the regulation of keratinocytes. Numerous studies show that miR-31 can positively regulate the proliferation, differentiation and cell activity of keratinocytes via regulating the NF-κB, RAS/MAPK, Notch signaling pathways, and some cytokines. At present, the interaction between miR-31 and the NF-κB signaling pathway in keratinocytes is a hot research topic. The positive feedback loop formed by miR-31 and NF-κB signaling may bring new ideas for the prevention of psoriasis. The abnormal state of keratinocytes is usually the pathological basis of many skin and immune system diseases. Therefore, strengthening the ability to regulate keratinocytes may be a breakthrough for a variety of diseases. At the same time, miR-31's capacity to accelerate wound healing via positively regulating keratinocytes should be further investigated in the treatment of chronic ulcers and trauma.
Collapse
Affiliation(s)
- Fei Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Yuantao Gao
- Nanchang University Queen Mary School, Nanchang, China
| | - Yitong Yuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Ruochen Du
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Pengfei Li
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Fang Liu
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Ye Tian
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Yali Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Ruxin Zhang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Bichun Zhao
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Wolska-Gawron K, Bartosińska J, Rusek M, Kowal M, Raczkiewicz D, Krasowska D. Circulating miRNA-181b-5p, miRNA-223-3p, miRNA-210-3p, let 7i-5p, miRNA-21-5p and miRNA-29a-3p in patients with localized scleroderma as potential biomarkers. Sci Rep 2020; 10:20218. [PMID: 33214624 PMCID: PMC7678876 DOI: 10.1038/s41598-020-76995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Localized scleroderma (LoSc) is a rare disease manifested by an inflammation and sclerosis of the skin. The latest studies focused on glycoprotein Krebs von den Lungen-6, surfactant protein-D, chemokine ligand 18 and dipeptidylpeptidase 4 as potential biomarkers of skin fibrosis in systemic scleroderma. Our study aimed to identify 6 miRNAs with elevated or decreased levels in 38 LoSc patients (31 females, 7 males) compared to healthy volunteers (HVs) and to correlate the selected miRNAs' serum levels with the severity and the clinical symptoms of LoSc and some laboratory parameters with the selected miRNAs' serum levels. The serum levels of miRNAs, i.e. miRNA-181b-5p, miRNA-223-3p, miRNA-21-5p, let 7i-5p, miRNA-29a-3p and miRNA-210-3p were significantly increased in the LoSc patients compared to the HVs. The level of let-7i increase in the female LoSc patients correlated negatively with BSA (r = - 0.355, p = 0.049) and mLoSSI (r = - 0.432, p = 0.015). Moreover, the female patients with inactive LoSc had significantly higher level of let-7i (2.68-fold on average) in comparison to those with active disease (p = 0.045). The exact role of those molecules has not been revealed in LoSc and a long-term longitudinal research is pivotal to confirm their prognostic value.
Collapse
Affiliation(s)
- Katarzyna Wolska-Gawron
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland.
| | - Joanna Bartosińska
- Department of Cosmetology and Aesthetic Medicine, The Medical University of Lublin, Lublin, Poland
| | - Marta Rusek
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
- Department of Pathophysiology, The Medical University of Lublin, Lublin, Poland
| | - Małgorzata Kowal
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
| | - Dorota Raczkiewicz
- SGH Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and Demography, Warsaw, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
| |
Collapse
|
13
|
Zhang L, Wu H, Zhao M, Lu Q. Meta‐analysis of differentially expressed microRNAs in systemic sclerosis. Int J Rheum Dis 2020; 23:1297-1304. [DOI: 10.1111/1756-185x.13924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Lian Zhang
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| | - Haijing Wu
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| | - Ming Zhao
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| | - Qianjin Lu
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| |
Collapse
|
14
|
Sun C, Zhang H, Wang X, Liu X. Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J 2020; 34:9854-9868. [PMID: 32608536 DOI: 10.1096/fj.202000635r] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Hypertrophy of ligamentum flavum (LF), along with disk protrusion and facet joints degeneration, is associated with the development of lumbar spinal canal stenosis (LSCS). Of note, LF hypertrophy is deemed as an important cause of LSCS. Histologically, fibrosis is proved to be the main pathology of LF hypertrophy. Despite the numerous studies explored the mechanisms of LF fibrosis at the molecular and cellular levels, the exact mechanism remains unknown. It is suggested that pathophysiologic stimuli such as mechanical stress, aging, obesity, and some diseases are the causative factors. Then, many cytokines and growth factors secreted by LF cells and its surrounding tissues play different roles in activating the fibrotic response. Here, we summarize the current status of detailed knowledge available regarding the causative factors, pathology, molecular and cellular mechanisms implicated in LF fibrosis and hypertrophy, also focusing on the possible avenues for anti-fibrotic strategies.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Fioretto BS, Rosa I, Romano E, Wang Y, Guiducci S, Zhang G, Manetti M, Matucci-Cerinic M. The contribution of epigenetics to the pathogenesis and gender dimorphism of systemic sclerosis: a comprehensive overview. Ther Adv Musculoskelet Dis 2020; 12:1759720X20918456. [PMID: 32523636 PMCID: PMC7236401 DOI: 10.1177/1759720x20918456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc) is a life-threatening connective tissue disorder of unknown etiology characterized by widespread vascular injury and dysfunction, impaired angiogenesis, immune dysregulation and progressive fibrosis of the skin and internal organs. Over the past few years, a new trend of investigations is increasingly reporting aberrant epigenetic modifications in genes related to the pathogenesis of SSc, suggesting that, besides genetics, epigenetics may play a pivotal role in disease development and clinical manifestations. Like many other autoimmune diseases, SSc presents a striking female predominance, and even if the reason for this gender imbalance has yet to be completely understood, it appears that the X chromosome, which contains many gender and immune-related genes, could play a role in such gender-biased prevalence. Besides a short summary of the genetic background of SSc, in this review we provide a comprehensive overview of the most recent insights into the epigenetic modifications which underlie the pathophysiology of SSc. A particular focus is given to genetic variations in genes located on the X chromosome as well as to the main X-linked epigenetic modifications that can influence SSc susceptibility and clinical phenotype. On the basis of the most recent advances, there is realistic hope that integrating epigenetic data with genomic, transcriptomic, proteomic and metabolomic analyses may provide in the future a better picture of their functional implications in SSc, paving the right way for a better understanding of disease pathogenesis and the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence, Viale Pieraccini
6, Florence, 50139, Italy
| | - Irene Rosa
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC),Florence, Italy
Department of Experimental and Clinical Medicine, Section of Anatomy and
Histology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence,
Italy
| | - Yukai Wang
- Department of Rheumatology and Immunology,
Shantou Central Hospital, Shantou, China
| | - Serena Guiducci
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence,
Italy
| | - Guohong Zhang
- Department of Pathology, Shantou University
Medical College, Shantou, China
| | - Mirko Manetti
- Department of Experimental and Clinical
Medicine, Section of Anatomy and Histology, University of Florence,
Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence,
Italy
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Epigenetics has been implicated in the pathogenesis of systemic sclerosis (SSc). In this review, the involvement of the three epigenetic mechanisms in SSc development and progression-DNA methylation, histone modifications, and non-coding RNAs-will be discussed. RECENT FINDINGS Alteration in epigenetics was observed in immune cells, dermal fibroblasts, and endothelial cells derived from SSc patients. Genes that are affected include those involved in immune cell function and differentiation, TGFβ and Wnt pathways, extracellular matrix accumulation, transcription factors, and angiogenesis. All the studies remain in the pre-clinical stage. Extensive research provides evidence that epigenetic alterations are critical for SSc pathogenesis. Future epigenomic studies will undoubtedly continue to broaden our understanding of disease pathogenesis and clinical heterogeneity. They will also provide the scientific basis for repurposing epigenetic-modifying agents for SSc patients.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Pl., 4025 BSRB, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
17
|
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.
Collapse
|
18
|
He Y, Liu H, Wang S, Chen Y. In Silico Detection and Characterization of microRNAs and Their Target Genes in microRNA Microarray Datasets from Patients with Systemic Sclerosis-Interstitial Lung Disease. DNA Cell Biol 2019; 38:933-944. [PMID: 31361540 DOI: 10.1089/dna.2019.4780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interstitial lung disease (ILD) is the main reason of death in patients with systemic sclerosis (SSc). The potential microRNA (miRNA)-messenger RNA (mRNA) interaction networks of SSc-ILD from a systematic biological perspective are unclear. To characterize differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DEGs) likely related to SSc-ILD, we downloaded the miRNA microarray dataset (GSE81923) and mRNA datasets (GSE76808 and GSE81292) from the Gene Expression Omnibus database. Comprehensive bioinformatic analyses were conducted to predict target genes for DE-miRNAs and generate an miRNA-hub gene network with SSc-ILD. In total, 26 DE-miRNAs were detected in SSc-ILD, among which 2 were upregulated and 24 were downregulated. Additionally, 178 common DEGs (55 upregulated and 123 downregulated) were identified. miRNAs were primarily enriched in pathways involving inflammation and regulation of fibroblasts. The hub genes identified were MMP7, IER2, HBEGF, CCL4, NFKBIA, JUNB, LIF, SERPINE1, FOSL1, and NAMPT. We discovered the miRNA-mediated regulatory network in SSc-ILD using an integrated bioinformatic analysis. The findings provide novel insight and expand our comprehension of the molecular mechanisms participating in the pathogenesis of SSc-ILD, along with identification of new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Yanqi He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shuai Wang
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yu Chen
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China, and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
19
|
Jafarinejad-Farsangi S, Gharibdoost F, Farazmand A, Kavosi H, Jamshidi A, Karimizadeh E, Noorbakhsh F, Mahmoudi M. MicroRNA-21 and microRNA-29a modulate the expression of collagen in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 2019; 52:108-116. [DOI: 10.1080/08916934.2019.1621856] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Immunology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Autoimmune diseases are of unknown origin, and they represent significant causes of morbidity and mortality. Here, we review new developments in the understanding of their pathogenesis that have led to development of well tolerated and effective treatments. RECENT FINDINGS In addition to the long-recognized genetic impact of the HLA locus, interferon regulatory factors, PTPN22, STAT4, and NOX have been implicated in pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Smoking, ultraviolet light, diet, and microbiota exert strong environmental influence on development of RA and SLE. Metabolism has been recognized as a critical integrator of genetic and environmental factors, and it controls immune cell differentiation both under physiological and pathological conditions. SUMMARY With the advent of high-throughput genetic, proteomic, and metabolomic technologies, the field of medicine has been shifting towards systems-based and personalized approaches to diagnose and treat common conditions, including rheumatic diseases. Regulatory checkpoints of metabolism and signal transduction, such as glucose utilization, mitochondrial electron transport, JAK, mTOR, and AMPK pathway activation, and production of pro-inflammatory cytokines IL-1, IL-6, and IL-17 have presented new targets for therapeutic intervention. This review amalgamates recent discoveries in genetics and metabolomics with immunological pathways of pathogenesis in rheumatic diseases.
Collapse
Affiliation(s)
- Eric Liu
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | |
Collapse
|
21
|
Henderson J, Distler J, O'Reilly S. The Role of Epigenetic Modifications in Systemic Sclerosis: A Druggable Target. Trends Mol Med 2019; 25:395-411. [PMID: 30858032 DOI: 10.1016/j.molmed.2019.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder characterised by skin fibrosis that often also affects internal organs, eventually resulting in mortality. Although management of the symptoms has extended lifespan, patients still suffer from poor quality of life, hence the need for improved therapies. Development of efficacious treatments has been stymied by the unknown aetiology, although recent advancements suggest a potentially key role for epigenetics - the regulation of gene expression by noncoding RNAs and chemical modifications to DNA or DNA-associated proteins. Herein, the evidence implicating epigenetics in the pathogenesis of SSc is discussed with an emphasis on the therapeutic potential this introduces to the field - particularly the repurposing of epigenetic targeting cancer therapeutics and newly emerging miRNA-based strategies.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Tyne and Wear, Newcastle upon Tyne NE2 8ST, UK
| | - Joerg Distler
- Department of Internal Medicine 3, Erlangen University, Erlangen, Germany
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Tyne and Wear, Newcastle upon Tyne NE2 8ST, UK.
| |
Collapse
|
22
|
Mahmoudi MB, Farashahi Yazd E, Gharibdoost F, Sheikhha MH, Karimizadeh E, Jamshidi A, Mahmoudi M. Overexpression of apoptosis-related protein, survivin, in fibroblasts from patients with systemic sclerosis. Ir J Med Sci 2019; 188:1443-1449. [PMID: 30761457 DOI: 10.1007/s11845-019-01978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Recent studies suggest that, in addition to activation and hypersecretion of matrix components, fibroblasts from patients with systemic sclerosis (SSc) are resistant to apoptosis. Previous studies have shown that survivin, a member of inhibition of apoptosis (IAP) family, plays an important role in apoptosis resistance. Accordingly, we decided to study the expression of the most important members of IAP family in SSc fibroblasts, which can block apoptosis either by binding and inhibiting caspases or through caspase-independent mechanisms. METHOD Skin biopsy samples were obtained from 19 patients with diffuse cutaneous SSc (DcSSc) and 16 healthy controls. Dermal fibroblasts were cultured and the total RNA was isolated from cells followed by cDNA synthesis. Real-time PCR was performed using SYBR Green PCR master mix and specific primers for cIAP1, cIAP2, XIAP, and Survivin mRNA quantification. RESULTS A significantly increased expression level of Survivin was observed in fibroblasts from SSc patients compared to controls (2.26-fold, P = 0.04). However, mRNA expression of cIAP1, cIAP2, and XIAP did not change significantly between cases and controls. CONCLUSIONS Our results showed that survivin is upregulated in SSc skin fibroblast which may lead to resistance to apoptosis. Further studies should be performed to reveal the role of survivin in apoptosis pathway of SSc fibroblasts.
Collapse
Affiliation(s)
- Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hasan Sheikhha
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
24
|
Shi X, Liu Q, Li N, Tu W, Luo R, Mei X, Ma Y, Xu W, Chu H, Jiang S, Du Z, Zhao H, Zhao L, Jin L, Wu W, Wang J. MiR-3606-3p inhibits systemic sclerosis through targeting TGF-β type II receptor. Cell Cycle 2018; 17:1967-1978. [PMID: 30145936 PMCID: PMC6224271 DOI: 10.1080/15384101.2018.1509621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/24/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystemic fibrotic disease characterized by excessive collagen deposition and extracellular matrix synthesis. Though transforming growth factor-β (TGF-β) plays a fundamental role in the pathogenesis of SSc, the mechanism by which TGF-β signaling acts in SSc remains largely unclear. Here, we showed that TGF-β type II receptor (TGFBR2) was significantly upregulated in both human SSc dermal tissues and primary fibroblasts. In fibroblasts, siRNA-induced knockdown of TGFBR2 resulted in a reduction of p-SMAD2/3 levels and reduced production of type I collagen. Additionally, functional experiments revealed that downregulation of TGFBR2 yielded an anti-growth effect on fibroblasts through inhibiting cell cycle progression. Further studies showed that miR-3606-3p could directly target the 3'-UTR of TGFBR2 and significantly decrease the levels of both TGFBR2 mRNA and protein. Furthermore, SSc dermal tissues and primary fibroblasts contain significantly reduced amounts of miR-3606-3p, and the overexpression of miR-3606-3p in fibroblasts replicates the phenotype of TGFBR2 downregulation. Collectively, our findings demonstrated that increased TGFBR2 could be responsible for the hyperactive TGF-β signaling observed in SSc. Moreover, we identified a pivotal role for miR-3606-3p in SSc, which acts, at least partly, through the attenuation of TGF-β signaling via TGFBR2 repression, suggesting that the regulation of miR-3606-3p/TGFBR2 could be a promising therapeutic target that could improve the treatment strategy for fibrosis.
Collapse
Affiliation(s)
- Xiangguang Shi
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Ruoyu Luo
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xueqian Mei
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Weihong Xu
- The Clinical Laboratory of Shanghai Tongren Hosipital, Jiaotong University, Shanghai, China
| | - Haiyan Chu
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Zhimin Du
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Liang Zhao
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Mahmoudi MB, Abed Khojasteh M, Alsahebfosoul F, Gharibdoost F, Mostafaei S, Ganjalikhani-Hakemi M, Mahmoudi M. Expressions of p53 and PUMA in fibroblasts of systemic sclerosis patients are normal at transcription level. J Cosmet Dermatol 2018; 17:549-554. [PMID: 28905491 DOI: 10.1111/jocd.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) fibroblasts show resistance apoptosis mechanisms, which enhances the fibrosis stage of the disease. Impaired function of p53 upregulated modulator of apoptosis (PUMA) has been related to deficits in p53-dependant apoptosis pathway. This study aimed to evaluate the transcriptional levels of p53 and PUMA mRNAs in fibroblasts from SSc patients and compare it with healthy individuals. METHODS In this case-control study, skin biopsy samples were obtained from 19 patients with diffuse cutaneous SSc (DcSSc) and 16 healthy controls. Afterward, dermal fibroblasts were isolated and cultured. After extraction of total RNA from cultured fibroblasts, complementary DNA (cDNA) was synthesized. mRNA quantification was carried out using real-time PCR, SYBR Green PCR master mix, and specific primers for p53 and PUMA. RESULTS No significant alteration was observed in mRNA expression levels of p53 and PUMA (P = .99 and .23, respectively) in fibroblasts from SSc patients compared with controls. CONCLUSIONS Apoptosis pathways are impaired in fibroblasts from patients with SSc, leading to chronic fibrosis. Nonetheless, PUMA/p53 pathway may not be involved in dysfunction of apoptosis mechanisms in fibroblasts of patients with SSc.
Collapse
Affiliation(s)
| | - Majid Abed Khojasteh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 2018; 428:90-103. [PMID: 29680223 DOI: 10.1016/j.canlet.2018.04.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, endogenous non-coding RNAs that repress the expression of target genes via post-transcriptional mechanisms. Due to their broad regulatory effects, the precisely regulated, spatial-specific and temporal-specific expression of miRNAs is fundamentally important to various biological processes including the immune homeostasis and normal function of both innate and adaptive immune response. Aberrance of miRNAs is implicated in the development of various human diseases, especially cancers. Increasing evidence has revealed a dysregulated expression pattern of miRNAs in autoimmune diseases, among which many play key roles in the pathogenesis. In this review we summarize these findings on miRNA dysregulation implicated in autoimmune diseases, focusing on four representative systemic autoimmune diseases, i.e. systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis and dermatomyositis. The causes of the dysregulation of miRNA expression in autoimmune diseases may include genetic and epigenetic variants, and various environmental factors. Further understanding of miRNA dysregulation and its mechanisms during the development of different autoimmune diseases holds enormous potential to bring about novel therapeutic targets or strategies for these complex human disorders, as well as novel circulating or exosomal miRNA biomarkers.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xin Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yongjian Chen
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ling Wang
- Department of Stomatology, The Third Hospital of Changsha, 176 Laodong West Road, Changsha, Hunan, 410015, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
27
|
Dashti N, Mahmoudi M, Gharibdoost F, Kavosi H, Rezaei R, Imeni V, Jamshidi A, Aslani S, Mostafaei S, Vodjgani M. Evaluation of ITGB2 (CD18) and SELL (CD62L) genes expression and methylation of ITGB2 promoter region in patients with systemic sclerosis. Rheumatol Int 2018; 38:489-498. [PMID: 29356883 DOI: 10.1007/s00296-017-3915-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
Abstract
Systemic sclerosis (SSc), an autoimmune disease of connective tissue, is characterized by inflammation, fibrosis, and vessel endothelial damage. Products of Integrin subunit beta 2 (ITGB2) and selectin L (SELL) genes participate in several functional pathways of immune system. The aim of this investigation was to survey the transcript level of ITGB2 and SELL genes as well as methylation status of CpG sites in promoter region of differently expressed gene in PBMCs of SSc patients. PBMCs were isolated from whole blood of 50 SSc patients and 30 healthy controls. Total RNA and DNA contents of PBMCs were extracted. Gene expression was analyzed by real-time PCR using the SYBR Green PCR Master Mix. To investigate the methylation status of CpG sites, DNA samples were treated by bisulfite, amplified through nested PCR, and sequenced through Sanger difficult sequencing method. ITGB2 gene in PBMCs of SSc patients was overexpressed significantly in comparison to healthy controls. However, no altered SELL expression was observed. Three CpG sites of 12, 13 and 14 were significantly hypomethylated in patients group, despite overall methylation status of ITGB2 gene promoter revealed no significant difference between study groups. There was no statistically significant correlation between methylation status of ITGB2 promoter and the gene expression in patients. Regarding to lack of correlation of increased expression of ITGB2 with its promoter hypomethylation in SSc patients, our study suggests that upregulation of ITGB2 in PBMCs from SSc patients is probably due to another mechanism other than methylation alteration.
Collapse
Affiliation(s)
- Navid Dashti
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Vahideh Imeni
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vodjgani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
28
|
Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018; 79:178-187. [PMID: 29330110 DOI: 10.1016/j.humimm.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
The pathogenesis of many diseases is influenced by environmental factors which can affect human genome and be inherited from generation to generation. Adverse environmental stimuli are recognized through the epigenetic regulatory complex, leading to gene expression alteration, which in turn culminates in disease outcomes. Three epigenetic regulatory mechanisms modulate the manifestation of a gene, namely DNA methylation, histone changes, and microRNAs. Both epigenetics and genetics have been implicated in the pathogenesis of systemic sclerosis (SSc) disease. Genetic inheritance rate of SSc is low and the concordance rate in both monozygotic (MZ) and dizygotic (DZ) twins is little, implying other possible pathways in SSc pathogenesis scenario. Here, we provide an extensive overview of the studies regarding different epigenetic events which may offer insights into the pathology of SSc. Furthermore, epigenetic-based interventions to treat SSc patients were discussed.
Collapse
Affiliation(s)
- Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sobhani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Sun NN, Yu CH, Pan MX, Zhang Y, Zheng BJ, Yang QJ, Zheng ZM, Meng Y. Mir-21 Mediates the Inhibitory Effect of Ang (1-7) on AngII-induced NLRP3 Inflammasome Activation by Targeting Spry1 in lung fibroblasts. Sci Rep 2017; 7:14369. [PMID: 29084974 PMCID: PMC5662719 DOI: 10.1038/s41598-017-13305-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-21 (mir-21) induced by angiotensin II (AngII) plays a vital role in the development of pulmonary fibrosis, and the NLRP3 inflammasome is known to be involved in fibrogenesis. However, whether there is a link between mir-21 and the NLRP3 inflammasome in pulmonary fibrosis is unknown. Angiotensin-converting enzyme 2/angiotensin(1-7) [ACE2/Ang(1-7)] has been shown to attenuate AngII-induced pulmonary fibrosis, but it is not clear whether ACE2/Ang(1-7) protects against pulmonary fibrosis by inhibiting AngII-induced mir-21 expression. This study's aim was to investigate whether mir-21 activates the NLRP3 inflammasome and mediates the different effects of AngII and ACE2/Ang(1-7) on lung fibroblast apoptosis and collagen synthesis. In vivo, AngII exacerbated bleomycin (BLM)-induced lung fibrosis in rats, and elevated mir-21 and the NLRP3 inflammasome. In contrast, ACE2/Ang(1-7) attenuated BLM-induced lung fibrosis, and decreased mir-21 and the NLRP3 inflammasome. In vitro, AngII activated the NLRP3 inflammasome by up-regulating mir-21, and ACE2/Ang(1-7) inhibited NLRP3 inflammasome activation by down-regulating AngII-induced mir-21. Over-expression of mir-21 activated the NLRP3 inflammasome via the ERK/NF-κB pathway by targeting Spry1, resulting in apoptosis resistance and collagen synthesis in lung fibroblasts. These results indicate that mir-21 mediates the inhibitory effect of ACE2/Ang(1-7) on AngII-induced activation of the NLRP3 inflammasome by targeting Spry1 in lung fibroblasts.
Collapse
Affiliation(s)
- Na-Na Sun
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Hui Yu
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miao-Xia Pan
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Jun Zheng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian-Jie Yang
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-Mao Zheng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Rezaei R, Mahmoudi M, Gharibdoost F, Kavosi H, Dashti N, Imeni V, Jamshidi A, Aslani S, Mostafaei S, Vodjgani M. IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int J Rheum Dis 2017; 20:1551-1561. [DOI: 10.1111/1756-185x.13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ramazan Rezaei
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Hoda Kavosi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Navid Dashti
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Vahideh Imeni
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Shayan Mostafaei
- Rheumatology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
31
|
Li Y, Zhang J, Lei Y, Lyu L, Zuo R, Chen T. MicroRNA-21 in Skin Fibrosis: Potential for Diagnosis and Treatment. Mol Diagn Ther 2017; 21:633-642. [DOI: 10.1007/s40291-017-0294-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Sun C, Tian J, Liu X, Guan G. MiR-21 promotes fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis by activating IL-6 expression. Biochem Biophys Res Commun 2017; 490:1106-1111. [PMID: 28669725 DOI: 10.1016/j.bbrc.2017.06.182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 01/15/2023]
Abstract
The molecular mechanism underlying the fibrosis of ligamentum flavum(LF) in patients with lumbar spinal canal stenosis(LSCS) remains unknown. MicroRNAs are reported to play important roles in regulating fibrosis in different organs. The present study aimed to identify fibrosis related miR-21 expression profile and investigate the pathological process of miR-21 in the fibrosis of LF hypertrophy and associated regulatory mechanisms. 15 patients with LSCS underwent surgical treatment were enrolled in this study. For the control group, 11 patients with lumbar disc herniation(LDH) was included. The LF thickness was measured on MRI. LF samples were obtained during the surgery. Fibrosis score was assessed by Masson's trichrome staining. The expression of miR-21 in LF tissues were determined by RT-PCR. Correlation among LF thickness, fibrosis score, and miR-21 expression was analyzed. In addition, Lentiviral vectors for miR-21 mimic were constructed and transfected into LF cells to examine the role of miR-21 in LF fibrosis. Types I and III collagen were used as indicators of fibrosis. IL-6 expression in LF cells after transfection was investigated by RT-PCR and ELISA. Patients in two groups showed similar outcomes regarding age, gender, level of LF tissue. The thickness and fibrosis score of LF in the LSCS group were significantly greater than those in LDH group (all P < 0.05). Similarly, the expression of miR-21 in LSCS group was substantially higher than that in LDH group(P < 0.05). Furthermore, the miR-21 expression exhibited positive correlations with the LF thickness (r = 0.595, P < 0.05) and fibrosis score (r = 0.608, P < 0.05). Of note, miR-21 over-expression increased the expression levels of collagen I and III (P < 0.05). Also, IL-6 expression and secretion in LF cells was elevated after transfection of miR-21 mimic. MiR-21 is a fibrosis-associated miRNA and promotes inflammation in LF tissue by activating IL-6 expression, leading to LF fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Jiwei Tian
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Songjiang, 201600 Shanghai, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China.
| | - Guoping Guan
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|