1
|
Mandal M, Mamun MAA, Rakib A, Kumar S, Park F, Hwang DJ, Li W, Miller DD, Singh UP. Modulation of occludin, NF-κB, p-STAT3, and Th17 response by DJ-X-025 decreases inflammation and ameliorates experimental colitis. Biomed Pharmacother 2025; 185:117939. [PMID: 40036995 DOI: 10.1016/j.biopha.2025.117939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
SCOPE Inflammatory bowel disease (IBD) involves a range of immune-mediated disorders marked by systemic and local intestinal inflammation. We synthesized a novel compound DJ-X-025 and uncovered its anti-inflammatory properties using lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in vitro and a dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS We evaluated the alteration in cell morphology, cytoskeletal proteins, and inflammatory markers of DJ-X-025 treated LPS-stimulated RAW 264.7 macrophages. We administered DJ-X-025 by oral gavage in DSS-induced colitis, examined colon histology, and alterations of immune cells by flow cytometry, and performed molecular studies using RT-qPCR and western blot analysis. DJ-X-025 treatment markedly altered the morphology of LPS-treated RAW 264.7 macrophages from elongated to round shapes, modulated actin and tubulin, and reduced the level of inflammatory markers like TNF-α, IL-1β, IL-6, and iNOS. Further, we observed that DJ-X-025 steered to improve colon length, muscularis mucosa thickness, and colon inflammatory score compared to the DSS group alone. DJ-X-025 effectively inverted the increased population of activated T cells, Th17, and macrophages in lamina propria by DSS treatment, leading to a substantial reduction in the inflammatory response in the colon. Strikingly, DJ-X-025 treatment enhanced the expression of occludin and diminished the expression of NF-κB and phosphorylation of STAT3 in the colon of DSS-treated mice compared to DSS-alone. Additionally, DJ-X-025 induced the expression of Foxp3 in the colon and, reduced systemic inflammatory cytokine/chemokine levels further supporting its immunomodulatory effects. These results suggest that DJ-X-025 is linked to the induction of occludin expression and decreased expression of p-STAT3/NF-κB and Th17 response in the colon, which together suppresses systemic and colon inflammatory cytokines for effective amelioration of experimental colitis. CONCLUSION These findings suggest that DJ-X-025 might be a promising therapeutic agent for the treatment of IBD.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
2
|
Flanagan K, Gassner K, Lang M, Ozelyte J, Hausmann B, Crepaz D, Pjevac P, Gasche C, Berry D, Vesely C, Pereira FC. Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal Bacteroides thetaiotaomicron. mBio 2025; 16:e0392824. [PMID: 39878512 PMCID: PMC11898669 DOI: 10.1128/mbio.03928-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function. When incubated with the human fecal microbiota, miR-21 revealed a rapid internalization or binding to microbial cells, which varied in extent across different donor samples. Fluorescence-activated cell sorting and sequencing of microbial cells incubated with fluorescently labeled miR-21 identified organisms belonging to the genera Bacteroides, Limosilactobacillus, Ruminococcus, or Coprococcus, which predominantly interacted with miR-21. Surprisingly, these and other genera also interacted with a miRNA scramble control, suggesting that physical interaction and/or uptake of these miRNAs by gut microbiota is not sequence-dependent. Nevertheless, transcriptomic analysis of the gut commensal Bacteroides thetaiotaomicron revealed a miRNA sequence-specific effect on bacterial transcript levels. Supplementation of miR-21, but not of small RNA controls, resulted in significantly altered levels of many cellular transcripts and increased transcription of a biosynthetic operon for indole and L-tryptophan, metabolites known to regulate host inflammation and colonic motility. Our study identifies a novel putative miR-21-dependent pathway of regulation of intestinal function through the gut microbiome with implications for gastrointestinal conditions. IMPORTANCE The mammalian gut represents one of the largest and most dynamic host-microbe interfaces. Host-derived microRNAs (miRNAs), released from the gut epithelium into the lumen, have emerged as important contributors to host-microbe crosstalk. Levels of several miRNAs are altered in the stool of patients with irritable bowel syndrome or inflammatory bowel disease. Understanding how miRNAs interact with and shape gut microbiota function is crucial as it may enable the development of new targeted treatments for intestinal diseases. This study provides evidence that the miRNA miR-21 can rapidly associate with diverse microbial cells form the gut and increase levels of transcripts involved in tryptophan synthesis in a ubiquitous gut microbe. Tryptophan catabolites regulate key functions, such as gut immune response or permeability. Therefore, this mechanism represents an unexpected host-microbe interaction and suggests that host-derived miR-21 may help regulate gut function via the gut microbiota.
Collapse
Affiliation(s)
- Kayla Flanagan
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Kirsten Gassner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michaela Lang
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Jurgita Ozelyte
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility, Medical University of Vienna and University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Daniel Crepaz
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Cornelia Vesely
- Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Fatima C. Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Brusnic O, Boicean A, Fleacă SR, Grama B, Sofonea F, Roman-Filip C, Roman-Filip I, Solomon A, Birsan S, Dura H, Porr C, Adrian C, Onisor DM. Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases. Nutrients 2024; 16:4411. [PMID: 39771031 PMCID: PMC11676862 DOI: 10.3390/nu16244411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier. These miRNAs serve as biomarkers for disease progression and severity, as well as therapeutic targets for controlling inflammation. This comprehensive review highlights the intricate interplay between the gut microbiota, fecal microbiota transplantation (FMT), and miRNA regulation. It concludes that microbiota and FMT influence miRNA activity, presenting a promising avenue for personalized IBD treatment.
Collapse
Affiliation(s)
- Olga Brusnic
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania; (B.O.); (D.M.O.)
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Sorin-Radu Fleacă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Blanca Grama
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (G.B.); (S.F.)
| | - Florin Sofonea
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (G.B.); (S.F.)
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Iulian Roman-Filip
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania;
| | - Adelaida Solomon
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Corina Porr
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Cristian Adrian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (S.-R.F.); (R.-F.C.); (S.A.); (B.S.); (H.D.); (P.C.); (A.C.)
| | - Danusia Maria Onisor
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania; (B.O.); (D.M.O.)
| |
Collapse
|
4
|
Kumar P, Kedia S, Ahuja V. Target potential of miRNAs in ulcerative colitis: what do we know? Expert Opin Ther Targets 2024; 28:829-841. [PMID: 39307951 DOI: 10.1080/14728222.2024.2408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The global rise in ulcerative colitis (UC) incidence highlights the urgent need for enhanced diagnostic and therapeutic strategies. Recent advances in genome-wide association studies (GWAS) have identified genetic loci associated with UC, providing insights into the disease's molecular mechanisms, including immune modulation, mucosal defense, and epithelial barrier function. Despite these findings, many GWAS signals are located in non-coding regions and are linked to low risk, suggesting that protein-coding genes alone do not fully explain UC's pathophysiology. Emerging research emphasizes the potential of microRNAs (miRNAs) as biomarkers and therapeutic targets due to their crucial role in UC. This review explores the current understanding of miRNAs in UC, including their mechanisms of action and their potential as both biomarkers and therapeutic targets. The present review provides the latest update on their potential as a biomarker and therapeutic target. AREAS COVERED This review synthesizes an extensive literature search on miRNAs in UC, focusing on their roles in the mucosal barrier, innate and adaptive immunity, and their potential applications as biomarkers and therapeutic modalities. EXPERT OPINION While miRNAs present promising opportunities as biomarkers and novel therapeutic agents in UC, challenges in validation, specificity, delivery, and clinical application need to be addressed through rigorous, large-scale studies.
Collapse
Affiliation(s)
- Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| |
Collapse
|
5
|
Mandal M, Rakib A, Mamun MAA, Kumar S, Park F, Hwang DJ, Li W, Miller DD, Singh UP. DJ-X-013 reduces LPS-induced inflammation, modulates Th17/ myeloid-derived suppressor cells, and alters NF-κB expression to ameliorate experimental colitis. Biomed Pharmacother 2024; 179:117379. [PMID: 39255739 PMCID: PMC11479677 DOI: 10.1016/j.biopha.2024.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
SCOPE Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition of unknown etiology, although recent evidence suggests that it is caused by an excessive immune response to mucosal antigens. We determined the anti-inflammatory properties of novel compound DJ-X-013 in vitro in lipopolysaccharide (LPS)-induced macrophages and in an in vivo dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS To evaluate the anti-inflammatory properties of DJ-X-013, we used LPS-activated RAW 264.7 macrophages in vitro and a DSS-induced experimental model of colitis in vivo. We examine cellular morphology, and tissue architecture by histology, flow cytometry, RT-qPCR, multiplex, and immunoblot analysis to perform cellular and molecular studies. DJ-X-013 treatment altered cell morphology and expression of inflammatory cytokines in LPS-activated macrophages as compared to cells treated with LPS alone. DJ-X-013 also impeded the migration of RAW 264.7 macrophages by modulating cytoskeletal organization and suppressed the expression of NF-κB and inflammatory markers as compared to LPS alone. DJ-X-013 treatment improved body weight, and colon length and attenuated inflammation in the colon of DSS-induced colitis. Intriguingly, DSS-challenged mice treated with DJ-X-013 induced the numbers of myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and natural killer T cells (NKT) in the colon lamina propria (LP) relative to DSS. DJ-X-013 also reduced the influx of neutrophils, TNF-α producing macrophages, restricted the number of Th17 cells, and suppressed inflammatory cytokines and NF-κB in the LP relative to DSS. CONCLUSION DJ-X-013 is proposed to be a therapeutic strategy for ameliorating inflammation and experimental colitis.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
6
|
Ahmad W, Din AU, Khan TM, Rehman MU, Hassan A, Aziz T, Alharbi M, Wu J. Lacticaseibacillusparacasei BNCC345679 revolutionizes DSS-induced colitis and modulates gut microbiota. Front Microbiol 2024; 15:1343891. [PMID: 38601942 PMCID: PMC11004379 DOI: 10.3389/fmicb.2024.1343891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
The gut microbiota plays an important role in the disease progression of inflammatory bowel disease. Although probiotics are effective against IBD, not many studies have investigated their effects on gut microbiota composition and immunomodulation in mouse colitis models. Our study aimed at the therapeutic effects of Lacticaseibacillus paracasei BNCC345679 for the first time and explored its impact on gut microbiome dysbiosis, inflammatory cytokines, related miRNAs, VCAM-1, oxidative stress, intestinal integrity, and mucus barrier. We found that oral intervention of L. paracasei BNCC345679 affects recovering beneficial microbial taxa, including lactobacillus spp. and akkermansia spp., followed by improved body weight, DAI score, and inflammatory cytokines. L. paracasei BNCC345679 mitigated oxidative stress and increased the expression of intestinal integrity proteins MUC2 and ZO-1. These results suggested that L. paracasei BNCC345679 has the capacity to reduce DSS-induced colitis and has the potential as a supplement for the mitigation of IBD.
Collapse
Affiliation(s)
- Waqar Ahmad
- Basic Medicine Research Innovation Centre for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Ahmad Ud Din
- Basic Medicine Research Innovation Centre for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Taj Malook Khan
- Basic Medicine Research Innovation Centre for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adil Hassan
- Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Tariq Aziz
- Department of Agriculture, University of Ioannina, Ioannina, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jianbo Wu
- Basic Medicine Research Innovation Centre for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Gao X, Lin X, Wang Q, Chen J. Artemisinins: Promising drug candidates for the treatment of autoimmune diseases. Med Res Rev 2024; 44:867-891. [PMID: 38054758 DOI: 10.1002/med.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.
Collapse
Affiliation(s)
- Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| |
Collapse
|
8
|
de Síbia CDF, Quaglio AEV, de Oliveira ECS, Pereira JN, Ariede JR, Lapa RML, Severino FE, Reis PP, Sassaki LY, Saad-Hossne R. microRNA-mRNA Networks Linked to Inflammation and Immune System Regulation in Inflammatory Bowel Disease. Biomedicines 2024; 12:422. [PMID: 38398024 PMCID: PMC10886709 DOI: 10.3390/biomedicines12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024] Open
Abstract
UNLABELLED The molecular processes linked to the development and progression of Crohn's disease (CD) and ulcerative colitis (UC) are not completely understood. MicroRNAs (miRNAs) regulate gene expression and are indicated as diagnostic, prognostic, and predictive biomarkers in chronic degenerative diseases. Our objectives included the identification of global miRNA expression in CD and UC, as well as miRNA target genes, miRNA-mRNA interaction networks, and biological functions associated with these different forms of inflammatory bowel disease (IBD). METHODS By performing a comprehensive meta-analysis, we integrated miRNA expression data from nine studies in IBD. We obtained detailed information on significantly deregulated miRNAs (fold change, FC ≥ 2 and p < 0.05), sample type and number, and platform applied for analysis in the training and validation sets. Further bioinformatic analyses were performed to identify miRNA target genes, by using the microRNA Data Integration Portal tool. We also sought to identify statistically enriched pathways of genes regulated by miRNAs using ToppGene Suite. Additional analyses were performed to filter for genes expressed in intestinal tissue using the European Bioinformatics Institute (EBI) database. RESULTS Our findings showed the upregulation of 15 miRNAs in CD and 33 in UC. Conversely, six miRNAs were downregulated in CD, while seven were downregulated in UC. These results indicate a greater deregulation of miRNAs in UC compared to CD. Of note, miRNA target genes were enriched for immune system regulation pathways. Among significantly deregulated miRNAs with a higher number of miRNA-target gene interactions, we identified miR-199a-5p and miR-362-3p altered in CD, while among UC case patients, miRNA-target gene interactions were higher for miR-155-5p. CONCLUSIONS The identified miRNAs play roles in regulating genes associated with immune system regulation and inflammation in IBD. Such miRNAs and their target genes have the potential to serve as clinically relevant biomarkers. These findings hold promise for enhancing the accuracy of diagnoses and facilitating the development of personalized treatment strategies for individuals with various forms of IBD.
Collapse
Affiliation(s)
- Carina de F. de Síbia
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (C.d.F.d.S.); (J.R.A.); (F.E.S.); (P.P.R.)
| | - Ana E. V. Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil;
| | - Ellen C. S. de Oliveira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (J.N.P.); (L.Y.S.)
| | - Jéssica N. Pereira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (J.N.P.); (L.Y.S.)
| | - Jovita R. Ariede
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (C.d.F.d.S.); (J.R.A.); (F.E.S.); (P.P.R.)
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rainer M. L. Lapa
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Instituto de Investigación en Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
- Facultad de Ciencias de la Salud, Instituto de Investigación de Salud Integral Intercultural, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Fábio E. Severino
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (C.d.F.d.S.); (J.R.A.); (F.E.S.); (P.P.R.)
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Patricia P. Reis
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (C.d.F.d.S.); (J.R.A.); (F.E.S.); (P.P.R.)
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Lígia Y. Sassaki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (J.N.P.); (L.Y.S.)
| | - Rogerio Saad-Hossne
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (C.d.F.d.S.); (J.R.A.); (F.E.S.); (P.P.R.)
| |
Collapse
|
9
|
Mandal M, Rakib A, Kiran S, Al Mamun MA, Raghavan S, Kumar S, Singla B, Park F, Leo MD, Singh UP. Inhibition of microRNA-34c reduces detrusor ROCK2 expression and urinary bladder inflammation in experimental cystitis. Life Sci 2024; 336:122317. [PMID: 38040245 PMCID: PMC10872291 DOI: 10.1016/j.lfs.2023.122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Interstitial cystitis (IC), also called painful bladder syndrome (PBS), is 2 to 5 times more common in women than in men, yet its cause and pathogenesis remain unclear. In our study using the cyclophosphamide (CYP)-induced mouse model of cystitis, histological evaluation of the urinary bladder (UB) lamina propria (LP) showed immune cell infiltrations, indicating moderate to severe inflammation. In this study, we noticed a differential expression of a subset of microRNAs (miRs) in the UB cells (UBs) of CYP-induced cystitis as compared to the control. UB inflammatory scores and inflammatory signaling were also elevated in CYP-induced cystitis as compared to control. We identified eight UBs miRs that exhibited altered expression after CYP induction and are predicted to have a role in inflammation and smooth muscle function (miRs-34c-5p, -34b-3p, -212-3p, -449a-5p, -21a-3p, -376b-3p, -376b-5p and - 409-5p). Further analysis using ELISA for inflammatory markers and real-time PCR (RT-PCR) for differentially enriched miRs identified miR-34c as a potential target for the suppression of UB inflammation in cystitis. Blocking miR-34c by antagomir ex vivo reduced STAT3, TGF-β1, and VEGF expression in the UBs, which was induced during cystitis as compared to control. Interestingly, miR-34c inhibition also downregulated ROCK2 but elevated ROCK1 expression in bladder and detrusor cells. Thus, the present study shows that targeting miR-34c can mitigate the STAT3, TGF-β, and VEGF, inflammatory signaling in UB, and suppress ROCK2 expression in UBs to effectively suppress the inflammatory response in cystitis. This study highlights miR-34c as a potential biomarker and/or serves as the basis for new therapies for the treatment of cystitis.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Somasundaram Raghavan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - M Dennis Leo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA.
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Mao J, Zhao Y, Wang L, Wu T, Jin Y, Meng J, Zhang M. Sea Cucumber Peptide Alleviates Ulcerative Colitis Induced by Dextran Sulfate Sodium by Alleviating Gut Microbiota Imbalance and Regulating miR-155/SOCS1 Axis in Mice. Foods 2023; 12:3434. [PMID: 37761144 PMCID: PMC10530247 DOI: 10.3390/foods12183434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Sea cucumber peptides have been proven to exhibit a variety of biological activities. Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the rectum and colon with increasing incidence and long duration, and is difficult to cure. The effect of sea cucumber peptide on UC is currently unknown. In this study, 1.5% dextran sulfate sodium (DSS) was added to the drinking water of mice to induce a UC model, and the daily doses of sea cucumber peptide (SP) solution of 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW were given to UC mice to detect the relieving effect of SP. The results showed that SP can reduce the disease activity index (DAI) of UC mice induced by DSS and can alleviate colon shortening, intestinal tissue damage, and the loss of intestinal tight junction proteins (Claudin-1, Occludin). SP decreased the spleen index, pro-inflammatory factors (IL-1β, IL-6, TNF-α), and myeloperoxidase (MPO) levels in UC mice. SP can alleviate the imbalance of gut microbiota in UC mice, increase the abundance of the Lachnospiraceae NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus, and reduce the abundance of Bacteroides and the Eubacterium rum group, as well as alleviating the decrease in short-chain fatty acid (SCFA) content in the feces of UC mice. Notably, SP inhibited miR-155 expression in the colon tissue of UC mice and increased its target protein, suppressor of cytokine signaling 1 (SOCS1), which acts as an inflammatory inhibitor. In summary, the ameliorative effect of SP on UC may be achieved by improving the imbalance of gut microbiota and regulating the miR-155/SOCS1 axis. This study provides a new idea for developing SP as a nutritional supplement to maintain intestinal health.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Min Zhang
- China−Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
11
|
Ren Z, Liu X, Abdollahi E, Tavasolian F. Genetically Engineered Exosomes as a Potential Regulator of Th1 Cells Response in Rheumatoid Arthritis. Biopreserv Biobank 2023; 21:355-366. [PMID: 36779995 DOI: 10.1089/bio.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Background: Rheumatoid arthritis is a long-lasting inflammatory disease that usually involves joints, but it can also affect other organs, including the skin and lungs. In this case, it is important to maintain a balance between beneficial pro-inflammatory activity and harmful overactivation of the T helper cells (Th). We strive to investigate in this study the possibilities for the effect of mesenchymal stem cells (MSCs)-derived exosomes containing miR-146a/miR-155 on the lymphocyte population and function. Methods: Exosomes were isolated from overexpressed miR-146a/miR-155 MSCs for the purpose of this analysis. Splenocytes were isolated from collagen-induced arthritis (CIA) and control mice. It was important to consider the expressions of certain predominant autoimmune-response genes, including T-bet and interferon-γ (IFNγ), by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. It turned out to be a significant consideration with p < 0.05. Results: The results are expressed in percentages with respect to miR-146a/AntimiR-155 transduced MSC-derived exosomes treatment, which significantly decreased the mRNA expression level of IFNγ in healthy mice (p < 0.05). miR-146a transduced MSC-derived exosomes treatment significantly reduced the mRNA expression level of IFNγ in CIA mice (p < 0.05). It should be noted that the secretion of the pro-inflammatory factor IFNγ in CIA mice was inhibited in almost all groups (p < 0.05). Conclusion: Many research groups have mainly focused on strategies for reducing pro-inflammatory cytokines. This approach was recently suggested and investigated in our research team and suggested that manipulation of MSCs-derived exosomes could minimize pro-inflammatory cytokine production to strike a balance among Th subsets. These approaches tend to appear to achieve better results in the regulation of the immune system by the use of engineered exosomes derived from MSCs. By providing accurate information the reasonably practicable use of exosomes for cell-free therapy can be established.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Orthopedics and Orthopedics, The sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiuxin Liu
- Department of Orthopedics and Orthopedics, The sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Elham Abdollahi
- Supporting the family and the youth of the population Research Core, Department of Gynecology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
12
|
Cheng T, Xu C, Shao J. Updated immunomodulatory roles of gut flora and microRNAs in inflammatory bowel diseases. Clin Exp Med 2023; 23:1015-1031. [PMID: 36385416 PMCID: PMC9668223 DOI: 10.1007/s10238-022-00935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease is a heterogeneous intestinal inflammatory disorder, including ulcerative colitis (UC) and Crohn's disease (CD). Existing studies have shown that the pathogenesis of IBD is closely related to the host's genetic susceptibility, intestinal flora disturbance and mucosal immune abnormalities, etc. It is generally believed that there are complicated interactions between host immunity and intestinal microflora/microRNAs during the occurrence and progression of IBD. Intestinal flora is mainly composed of bacteria, fungi, viruses and helminths. These commensals are highly implicated in the maintenance of intestinal microenvironment homeostasis alone or in combination. MiRNA is an endogenous non-coding small RNA with a length of 20 to 22 nucleotides, which can perform a variety of biological functions by silencing or activating target genes through complementary pairing bonds. A large quantity of miRNAs are involved in intestinal inflammation, mucosal barrier integrity, autophagy, vesicle transportation and other small RNA alterations in IBD circumstance. In this review, the immunomodulatory roles of gut flora and microRNAs are updated in the occurrence and progression of IBD. Meanwhile, the gut flora and microRNA targeted therapeutic strategies as well as other immunomodulatory approaches including TNF-α monoclonal antibodies are also emphasized in the treatment of IBD.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Wu Z, Yan Y, Li W, Li Y, Yang H. Expression Profile of miR-199a and Its Role in the Regulation of Intestinal Inflammation. Animals (Basel) 2023; 13:1979. [PMID: 37370489 DOI: 10.3390/ani13121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Early weaning stress impairs intestinal health in piglets. miRNAs are crucial for maintaining host homeostasis, while their implication for animal health remains unclear. To identify weaning-associated miRNAs, piglets were sampled at day 0, 1, 3, 7 and 14 after weaning. The data indicated that the highest levels of miR-199a-5p in jejunal villus upper cells were observed on day 14 after weaning, while the lowest levels in crypt cells were noted on day 7 and 14. In contrast, miR-199a-3p was down-regulated in both of these two cells on day 7 after weaning compared with day 0. Both miR-199a-5p and -3p were differently expressed along the villus-crypt axis. To further clarify the function of miR-199a, mice deficient in miR-199a were exposed to dextran sulfate sodium (DSS) to induce colitis. Results revealed that silencing of miR-199a enhanced sensitivity to DSS-induced colitis. Moreover, the increased morbidity and mortality were correlated with enhanced inflammatory cell infiltration, elevated pro-inflammatory cytokine expression, impaired barrier function, and a concomitant increase in permeability-related parameters. Bioinformatic analysis further demonstrated that lipid metabolism-related pathways were significantly enriched and Ndrg1 was verified as a target of miR-199a-3p. These findings indicate that miR-199a may be important for animal health management.
Collapse
Affiliation(s)
- Zijuan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Yanyun Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Wenli Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| |
Collapse
|
14
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
15
|
Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm Bowel Dis 2023; 29:308-323. [PMID: 35749310 DOI: 10.1093/ibd/izac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 02/05/2023]
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs usually 24-30 nucleotides long that play a central role in epigenetic mechanisms of inflammatory diseases and cancers. Recently, several studies have assessed the involvement of miRNAs in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated neoplasia. Particularly, it has been shown that many members of miRNAs family are involved in the pathways of inflammation and fibrogenesis of IBD; therefore, their use as inflammatory and fibrosis biomarkers has been postulated. In light of these results, the role of miRNAs in IBD therapy has been proposed and is currently under investigation with many in vitro and in vivo studies, murine models, and a phase 2a trial. The accumulating data have pushed miRNA-based therapy closer to clinical practice, although many open questions remain. With this systematic review, we discuss the current knowledge about the therapeutic effects of miRNAs mimicking and inhibition, and we explore the new potential targets of miRNA family for the treatment of inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Erica Nicola Lynch
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
16
|
Guo JG, Rao YF, Jiang J, Li X, Zhu SM. MicroRNA-155-5p inhibition alleviates irritable bowel syndrome by increasing claudin-1 and ZO-1 expression. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:34. [PMID: 36819593 PMCID: PMC9929797 DOI: 10.21037/atm-22-4859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Background Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Emerging studies have demonstrated that microRNAs (miRNAs) are commonly dysregulated in patients with IBS, and aberrant miRNAs are implicated in IBS occurrence. Although miR-155-5p participates in inflammatory bowel disease (IBD) and intestinal barrier dysfunction, the role of miR-155-5p in IBS is unclear. Methods In the present study, colon samples were obtained from IBS patients and IBS mice induced by trinitrobenzenesulfonic acid (TNBS), and the levels of miR-155-5p, claudin-1 (CLDN1), and zonula occludens-1 (ZO-1) were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical analysis. The regulatory role of miR-155-5p in CLDN1 and ZO-1 expression was validated using dual luciferase reporter assay. Results We found that miR-155-5p levels were upregulated in colon samples of IBS patients and mice compared with healthy subjects and normal mice, respectively. Meanwhile, the levels of CLDN1 and ZO-1 were decreased in colon samples of IBS patients and mice. Importantly, forced expression of miR-155-5p inhibited CLDN1 and ZO-1 expression. In IBS mice, intraperitoneal injection with miR-155-5p inhibitor increased CLDN1 and ZO-1 expression in intestinal mucosal epithelium, enhanced visceral response thresholds, and decreased myeloperoxidase (MPO) activity. Conclusions In summary, these results suggested that miR-155-5p participated in the pathogenesis of IBS, at least in part by inhibiting CLDN1 and ZO-1 expression, indicating that miR-155-5p may be a potential therapeutic target for IBS.
Collapse
Affiliation(s)
- Jian-Guo Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Feng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Jiang
- Hangzhou Dunen Medical Laboratory Co., Ltd., Hangzhou, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-Mei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Aggeletopoulou I, Mouzaki A, Thomopoulos K, Triantos C. miRNA Molecules-Late Breaking Treatment for Inflammatory Bowel Diseases? Int J Mol Sci 2023; 24:2233. [PMID: 36768556 PMCID: PMC9916785 DOI: 10.3390/ijms24032233] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a critical role in regulating epigenetic mechanisms in inflammation-related diseases. Inflammatory bowel diseases (IBDs), which primarily include ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic recurrent inflammation of intestinal tissues. Due to the multifactorial etiology of these diseases, the development of innovative treatment strategies that can effectively maintain remission and alleviate disease symptoms is a major challenge. In recent years, evidence for the regulatory role of miRNAs in the pathogenetic mechanisms of various diseases, including IBD, has been accumulating. In light of these findings, miRNAs represent potential innovative candidates for therapeutic application in IBD. In this review, we discuss recent findings on the role of miRNAs in regulating inflammatory responses, maintaining intestinal barrier integrity, and developing fibrosis in clinical and experimental IBD. The focus is on the existing literature, indicating potential therapeutic application of miRNAs in both preclinical experimental IBD models and translational data in the context of clinical IBD. To date, a large and diverse data set, which is growing rapidly, supports the potential use of miRNA-based therapies in clinical practice, although many questions remain unanswered.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
18
|
Li D, Liu L, Du X, Ma W, Zhang J, Piao W. MiRNA-374b-5p and miRNA-106a-5p are related to inflammatory bowel disease via regulating IL-10 and STAT3 signaling pathways. BMC Gastroenterol 2022; 22:492. [DOI: 10.1186/s12876-022-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is one of the most frequent gastrointestinal disorders worldwide. Although the actual etiology of IBD remains unclear, growing evidence suggests that CD4+ T cells-associated cytokines, including interferon (IFN)-γ, interleukin (IL)-10 and IL-17A, are crucial for the occurrence of IBD. It has been reported that there is a positive association between miRNAs and IBD development. In this study, we investigated the roles of hsa-miRNA-374b-5p(miRNA-374b-5p) and hsa-miRNA-106a-5p(miRNA-106a-5p) in regulating IBD development.
Methods
Serum was obtained from vein blood of IBD patients and healthy controls, qRT-PCR was performed to study the expression of miRNA-374b-5p and miRNA-106a-5p. Furthermore, we investigate the effects of overexpression or inhibition of miRNA-374b-5p on naïve CD4 + T cell subsets differentiation from vein blood of healthy controls by RT-qPCR, flow cytometry and western blot. And more the prediction and confirmation of the targeting genes of miRNA-374b-5p and miRNA-106a-5p were performed by bioinformatics softwares and dual-luciferase reporter assay.
Results
The results showed that miRNA-106a-5p and miRNA-374b-5p were significantly overexpressed in IBD patients. MiRNA-374b-5p could enhance Th1/Th17 cell differentiation and was related to IBD pathogenesis. MiRNA-374b-5p overexpression induced the mRNA expression of IL-17A and IFN-γ, and suppressed that of IL-10 in T cells. MiRNA-374b-5p inhibition decreased the mRNA expression of IL-17A and IFN-γ, while upregulated that of IL-10 in T cells. These qPCR data were further verified at protein level by western blotting and flow cytometry. In addition, dual-luciferase reporter (DLR) assay indicated that miRNA-374b-5p was directly targeted by IL-10, a key anti-inflammatory cytokine for preventing the occurrence of IBD. Meanwhile, STAT3 was identified as a target gene of miRNA-106a-5p by DLR assays. Further analysis revealed that miRNA-374b-5p regulated JAK1 and STAT3 pathways in CD4+ T cells via IL-10/STAT3 axis. MiRNA-374b-5p overexpression remarkably decreased the mRNA expression and phosphorylated (ser-727) protein levels of STAT3, while miRNA-374b-5p inhibition had the opposite effects.
Conclusion
MiRNA-374b-5p and miRNA-106a-5p may contribute to IBD development by regulating IL-10/STAT3 signal transduction.
Collapse
|
19
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm Res 2022; 71:1501-1517. [DOI: 10.1007/s00011-022-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
|
21
|
Chen S, Ma B, Li X, Zhang K, Wei Y, Du B, Liu X, Wei R, Li X, Nian H. MYC-mediated silencing of miR-181a-5p promotes pathogenic Th17 responses by modulating AKT3-FOXO3 signaling. iScience 2022; 25:105176. [PMID: 36248732 PMCID: PMC9557906 DOI: 10.1016/j.isci.2022.105176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Pathogenic Th17 cells drive autoimmune pathology, but the molecular mechanisms underlying Th17 pathogenicity remain poorly understood. Here, we have shown that miR-181a-5p was significantly decreased in pathogenic Th17 cells, and it negatively regulated pathogenic Th17 cell responses in vitro and in vivo. Th17 cells overexpressing miR-181a-5p exhibited impaired ability to induce pathogenesis in an adoptive transfer model of experimental autoimmune uveitis (EAU). Mechanistically, miR-181a-5p directly targeted AKT3, diminishing AKT3-mediated phosphorylation of FOXO3, and thereby activating FOXO3, a transcriptional repressor of pathogenic Th17 cell program. Supporting this, decreasing miR-181a-5p and up-regulated AKT3 expression were found in uveitis patients. Furthermore, intravitreal administration of miR-181a-5p mimics in mice effectively attenuated clinical and pathological signs of established EAU. Collectively, our results reveal a previously unappreciated T cell-intrinsic role of miR-181a-5p in restraining autoimmunity and may provide a potential therapeutic target for uveitis treatment.
Collapse
Affiliation(s)
- Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Xue Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
22
|
MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea. J Biol Chem 2022; 298:102461. [PMID: 36067883 PMCID: PMC9647533 DOI: 10.1016/j.jbc.2022.102461] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a chronic and relapsing inflammatory disorder in which pathogenesis has been shown to be in part the result of miRNA-mediated signaling. Here, we investigated the alleviatory role of miR-16 in IBS-D. First, we established an IBS-D mouse model using colonic instillation of acetic acid and developed an IBS-D cell model using lipopolysaccharide exposure. The experimental data demonstrated that miR-16 was underexpressed in the serum of IBS-D patients, as well as in the colorectal tissues of IBS-D mouse models and lipopolysaccharide-exposed intestinal epithelial cells. Next, miR-16 and TLR4 were overexpressed or inhibited to characterize their roles in the viability and apoptosis of intestinal epithelial cells, inflammation, and epithelial tight junction. We found that miR-16 overexpression increased the viability of intestinal epithelial cells, maintained tight junction integrity, and inhibited cell apoptosis and inflammation. We showed that miR-16 targeted TLR4 and inhibited the TLR4/NF-κB signaling pathway. Additionally, inhibition of NF-κB suppressed the long noncoding RNA XIST, thereby promoting enterocyte viability, inhibiting apoptosis and cytokine production, and maintaining tight junction integrity. In vivo experiments further verified the alleviatory effect of miR-16 on IBS-D symptoms in mice. Taken together, we conclude that miR-16 downregulates XIST through the TLR4/NF-κB pathway, thereby relieving IBS-D. This study suggests that miR-16 may represent a potential target for therapeutic intervention against IBS-D.
Collapse
|
23
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109:109101. [PMID: 35777588 DOI: 10.1016/j.jnutbio.2022.109101] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder associated with the inflammation in the digestive tract. The exact cause of IBD is unknown; nevertheless, in IBD, the homeostasis of key regulatory factors involved in intestinal immunity has been documented to be disrupted. Despite the lack of a viable treatment for IBD, synthetic drugs and monoclonal antibodies are currently used to treat it. However, these treatments have side effects, and the high relapse rate limits their usage. Dietary polyphenols constitute a great variety of compounds and have shown an array of biological properties. Resveratrol is a natural polyphenol found in grapevines and berries. The therapeutic ability of resveratrol against IBD is amply demonstrated in many in vivo studies. Resveratrol can interact with several molecular targets (Nf-kB, SIRT1, mTOR, HIF-1α, miRNAs, and TNF-α) and effectively prevent/ alleviate IBD symptoms with promising results. Although resveratrol has profound anti-inflammatory properties against IBD, its therapeutic employment is limited due to its low water solubility, less chemical stability, less bioavailability, and rapid metabolism in vivo. Hence, resveratrol encapsulation using different carries and its controlled release has become a promising strategy to overcome limitations. Herein, we meticulously review, talk-over the anti-inflammatory effect and mechanisms of resveratrol in IBD. We further provide the latest information on resveratrol formulations and nano-delivery systems used in oral delivery of resveratrol for the treatment of IBD and offer our view on future research on resveratrol in IBD treatment.
Collapse
|
25
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
26
|
Casado-Bedmar M, Viennois E. MicroRNA and Gut Microbiota: Tiny but Mighty-Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. J Crohns Colitis 2021; 16:992-1005. [PMID: 34918052 PMCID: PMC9282881 DOI: 10.1093/ecco-jcc/jjab223] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
MicroRNAs [miRNAs], small non-coding RNAs, have recently been described as crucial contributors to intestinal homeostasis. They can interact with the gut microbiota in a reciprocal manner and deeply affect host health status, leading to several disorders when unbalanced. Inflammatory bowel disease [IBD] is a chronic inflammation of the gastrointestinal tract that co-occurs with alterations of the gut microbiota, and whose aetiology remains largely unclear. On one hand, host miRNA could be playing a relevant role in IBD pathophysiology by shaping the gut microbiota. The gut microbiome, on the other hand, may regulate the expression of host miRNAs, resulting in intestinal epithelial dysfunction, altered autophagy, and immune hyperactivation. Interestingly, it has been hypothesised that their reciprocal impact may be used for therapeutic goals. This review describes the latest research and suggests mechanisms through which miRNA and intestinal microbiota, as joint actors, may participate specifically in IBD pathophysiology. Furthermore, we discuss the diagnostic power and therapeutic potential resulting from their bidirectional communication after faecal transplantation, probiotics intake, or anti-miRNAs or miRNA mimics administration. The current literature is summarised in the present work in a comprehensive manner, hoping to provide a better understanding of the miRNA-microbiota cross-talk and to facilitate their application in IBD.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- INSERM, U1149, Center for Research on Inflammation, Université de Paris, Paris, France
| | - Emilie Viennois
- Corresponding author: Emilie Viennois, INSERM, U1149, Center for Research on Inflammation, Université de Paris, 75018 Paris, France.
| |
Collapse
|
27
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
28
|
Yang ZB, Qiu LZ, Chen Q, Lin JD. Artesunate alleviates the inflammatory response of ulcerative colitis by regulating the expression of miR-155. PHARMACEUTICAL BIOLOGY 2021; 59:97-105. [PMID: 33524272 PMCID: PMC8871614 DOI: 10.1080/13880209.2020.1867196] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Ulcerative colitis (UC) is a recrudescent and chronic inflammatory disease. Artesunate (ART) has shown its anti-inflammatory and antioxidative properties in severe diseases, including UC. OBJECTIVE The present study investigates the molecular mechanisms for effects of ART on UC, and the role of miR-155 in this process. MATERIALS AND METHODS The in vitro UC model was established by using lipopolysaccharide (LPS)-induced RAW264.7 cells. For BALB/c mice model, different concentrations/doses of ART were treated once a day for 7 days. The apoptosis and viability were measured by CCK-8 and flow cytometry assay, respectively. The expressions and concentrations of inflammatory factors were detected by qRT-PCR and ELISA, respectively. Colon tissues of mice were used for detecting the activity of MPO, and the histological changes were observed by H&E staining. RESULTS The IC50 of ART for RAW264.7 cells was 107.3 μg/mL. In LPS-induced cells, ART treatment inhibited the cell apoptosis and promoted cell viability compared with the model group. Besides, ART treatment also reduced the expressions of pro-inflammatory factors and miR-155. However, overexpression of miR-155 showed opposite effects and attenuated the effects of ART. Meanwhile, inhibiting miR-155 expression also improved the inflammatory response induced by LPS. In UC mice model, ART treatment also alleviated the mice's survival and alleviated the inflammatory response. In addition, the expression of p-NF-κB was suppressed by ART. CONCLUSION ART reduced the inflammatory response by inhibiting the expression of miR-155 in UC to inhibit the NF-κB pathway. This research showed ART might have potential in UC treatment.
Collapse
Affiliation(s)
- Zhao-Bin Yang
- Department of Medical Intensive Care Unit, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, P. R China
| | - Lu-Zhen Qiu
- Department of Medical Intensive Care Unit, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, P. R China
- CONTACT Lu-Zhen Qiu Department of Medical Intensive Care Unit, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shenglixi Road, Xiangcheng, Zhangzhou363000, Fujian, P. R China
| | - Quan Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, P. R China
| | - Jian-Dong Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R China
- Jian-Dong Lin Department of Intensive Care Unit, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang, Fuzhou350005, Fujian, P. R China
| |
Collapse
|
29
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
30
|
Tan IL, Barisani D, Panceri R, Modderman R, Visschedijk M, Weersma RK, Wijmenga C, Jonkers I, Coutinho de Almeida R, Withoff S. A Combined mRNA- and miRNA-Sequencing Approach Reveals miRNAs as Potential Regulators of the Small Intestinal Transcriptome in Celiac Disease. Int J Mol Sci 2021; 22:11382. [PMID: 34768815 PMCID: PMC8583991 DOI: 10.3390/ijms222111382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CeD) is triggered by gluten and results in inflammation and villous atrophy of the small intestine. We aimed to explore the role of miRNA-mediated deregulation of the transcriptome in CeD. Duodenal biopsies of CeD patients (n = 33) and control subjects (n = 10) were available for miRNA-sequencing, with RNA-sequencing also available for controls (n = 5) and CeD (n = 6). Differential expression analysis was performed to select CeD-associated miRNAs and genes. MiRNA‒target transcript pairs selected from public databases that also displayed a strong negative expression correlation in the current dataset (R < -0.7) were used to construct a CeD miRNA‒target transcript interaction network. The network includes 2030 miRNA‒target transcript interactions, including 423 experimentally validated pairs. Pathway analysis found that interactions are involved in immune-related pathways (e.g., interferon signaling) and metabolic pathways (e.g., lipid metabolism). The network includes 13 genes previously prioritized to be causally deregulated by CeD-associated genomic variants, including STAT1. CeD-associated miRNAs might play a role in promoting inflammation and decreasing lipid metabolism in the small intestine, thereby contributing unbalanced cell turnover in the intestinal crypt. Some CeD-associated miRNAs deregulate genes that are also affected by genomic CeD-risk variants, adding an additional layer of complexity to the deregulated transcriptome in CeD.
Collapse
Affiliation(s)
- Ineke Luise Tan
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.V.); (R.K.W.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | | | - Rutger Modderman
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| | - Marijn Visschedijk
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.V.); (R.K.W.)
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.V.); (R.K.W.)
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| | - Iris Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| | - Rodrigo Coutinho de Almeida
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (I.L.T.); (R.M.); (C.W.); (I.J.)
| |
Collapse
|
31
|
Grillo TG, Quaglio AEV, Beraldo RF, Lima TB, Baima JP, Di Stasi LC, Sassaki LY. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer. World J Gastrointest Oncol 2021; 13:995-1016. [PMID: 34616508 PMCID: PMC8465441 DOI: 10.4251/wjgo.v13.i9.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules composed of 19-25 nucleotides that regulate gene expression and play a central role in the regulation of several immune-mediated disorders, including inflammatory bowel diseases (IBD). IBD, represented by ulcerative colitis and Crohn's disease, is characterized by chronic intestinal inflammation associated with an increased risk of colorectal cancer (CRC). CRC is one of the most prevalent tumors in the world, and its main risk factors are obesity, physical inactivity, smoking, alcoholism, advanced age, and some eating habits, in addition to chronic intestinal inflammatory processes and the use of immunosuppressants administered to IBD patients. Recent studies have identified miRNAs associated with an increased risk of developing CRC in this population. The identification of miRNAs involved in this tumorigenic process could be useful to stratify cancer risk development for patients with IBD and to monitor and assess prognosis. Thus, the present review aimed to summarize the role of miRNAs as biomarkers for the diagnosis and prognosis of IBD-associated CRC. In the future, therapies based on miRNA modulation could be used both in clinical practice to achieve remission of the disease and restore the quality of life for patients with IBD, and to identify the patients with IBD at high risk for tumor development.
Collapse
Affiliation(s)
- Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Ana Elisa Valencise Quaglio
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Rodrigo Fedatto Beraldo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Talles Bazeia Lima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Julio Pinheiro Baima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
32
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
33
|
Kumar V, Kiran S, Shamran HA, Singh UP. Differential Expression of microRNAs Correlates With the Severity of Experimental Autoimmune Cystitis. Front Immunol 2021; 12:716564. [PMID: 34335632 PMCID: PMC8317613 DOI: 10.3389/fimmu.2021.716564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Interstitial cystitis (IC)/bladder pain syndrome (BPS) primarily affects women. It varies in its severity and currently has no effective treatment. The symptoms of IC include pelvic pain, urgency and frequency of urination, and discomfort or pain in the bladder and lower abdomen. The bladders of IC patients exhibit infiltration by immune cells, which lends credence to the hypothesis that immune mechanisms also play a role in the etiology and pathophysiology of IC. The Differentially expressed microRNAs (miRs) in immune cells may serve as crucial immunoregulators in the IC. Therefore, we sought to determine whether miRs might play a regulatory role in the progression and pathogenesis of IC, using experimental autoimmune cystitis (EAC) model. In the present study, we observed differential expression of a specific subset of miRs in iliac lymph nodes (ILNs) and urinary bladders (UB) of IC mice compared to that in control mice. Microarray analysis of 96 miRs from the bladder and 135 miRs from ILNs allowed us to identify 50 that exhibited at least a 1.5-fold greater difference in expression in EAC mice compared to control mice. Hierarchical cluster analysis of the microarray data was used to search available databases to predict molecular pathways with which the miRs might interact. Four miRs from each organ that exhibited altered expression in EAC mice and that were predicted to have roles in inflammation (miR-146a, -181, -1931, and -5112) were selected for further analysis by reverse transcription-polymerase chain reaction (RT-PCR). All were confirmed to be elevated in EAC mice. Histological inflammatory scores, systemic chemokines, and cytokines expressed by T helper type 1 (Th1) lymphocytes were also elevated in EAC mice as compared to control animals. We hypothesize that the mechanism of EAC induction might involve the modulation of specific miRs that increase local and systemic levels of chemokines and cytokines. The present study identifies novel miRs expressed in UB and ILNs that will allow us to highlight mechanisms of EAC pathogenesis and may provide potential biomarkers and/or serve as the basis of new therapies for the treatment of IC.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Haidar A Shamran
- Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
34
|
Mastiha has efficacy in immune-mediated inflammatory diseases through a microRNA-155 Th17 dependent action. Pharmacol Res 2021; 171:105753. [PMID: 34224858 DOI: 10.1016/j.phrs.2021.105753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Mastiha is a natural nutritional supplement with known anti-inflammatory properties. Non-alcoholic fatty liver disease (NAFLD) and Inflammatory bowel disease (IBD) are immune mediated inflammatory diseases that share common pathophysiological features. Mastiha has shown beneficial effects in both diseases. MicroRNAs have emerged as key regulators of inflammation and their modulation by phytochemicals have been extensively studied over the last years. Therefore, the aim of this study was to investigate whether a common route exists in the anti-inflammatory activity of Mastiha, specifically through the regulation of miRNA levels. Plasma miR-16, miR-21 and miR-155 were measured by Real-Time PCR before and after two double blinded and placebo-controlled randomized clinical trials with Mastiha. In IBD and particularly in ulcerative colitis patients in relapse, miR-155 increased in the placebo group (p = 0.054) whereas this increase was prevented by Mastiha. The mean changes were different in the two groups even after adjusting for age, sex and BMI (p = 0.024 for IBD and p = 0.042). Although the results were not so prominent in NAFLD, miR-155 displayed a downward trend in the placebo group (p = 0.054) whereas the levels did not changed significantly in the Mastiha group in patients with less advanced fibrosis. Our results propose a regulatory role for Mastiha in circulating levels of miR-155, a critical player in T helper-17 (Th17) differentiation and function.
Collapse
|
35
|
Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the Role of miR-155 in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:669382. [PMID: 34025671 PMCID: PMC8137895 DOI: 10.3389/fimmu.2021.669382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding conserved RNAs containing 19 to 24 nucleotides that are regulators of post-translational modifications and are involved in the majority of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. Autoimmune diseases are characterized by immune system dysregulation, which ultimately leads to destructive responses to self-antigens. A large body of literature suggests that autoimmune diseases and immune dysregulation are associated with different miRNA expression changes in the target cells and tissues of adaptive or innate immunity. miR-155 is identified as a critical modulator of immune responses. Recently conducted studies on the expression profile of miR-155 suggest that the altered expression and function of miR-155 can mediate vulnerability to autoimmune diseases and cause significant dysfunction of the immune system.
Collapse
Affiliation(s)
- Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vafashoar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Khalvandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Varikuti S, Verma C, Natarajan G, Oghumu S, Satoskar AR. MicroRNA155 Plays a Critical Role in the Pathogenesis of Cutaneous Leishmania major Infection by Promoting a Th2 Response and Attenuating Dendritic Cell Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:809-816. [PMID: 33539779 PMCID: PMC8132173 DOI: 10.1016/j.ajpath.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/10/2023]
Abstract
Interferon (IFN)-γ is indispensable in the resolution of cutaneous leishmaniasis (CL), while the Th2 cytokines IL-4, IL-10, and IL-13 mediate susceptibility. A recent study found that miR155, which promotes CD4+ Th1 response and IFN-γ production, is dispensable in the control of Leishmania donovani infection. Here, the role of miR155 in CL caused by L. major was investigated using miR155-deficient (miR155-/-) mice. Infection was controlled significantly quicker in the miR155-/- mice than in their wild-type (WT) counterparts, indicating that miR155 contributes to the pathogenesis of CL. Faster resolution of infection in miR155-/- mice was associated with increased levels of Th1-associated IL-12 and IFN-γ and reduced production of Th2- associated IL-4, IL-10, and IL-13. Concentrations of IFN-γ+CD8+ T cells and natural killer cells in draining lymph nodes were significantly higher in the L. major-infected miR155-/- mice than in the infected WT mice, as indicated by flow-cytometry. After in vitro IFN-γ stimulation, nitric oxide and IL-12 production were increased, IL-10 production was decreased, and parasite clearance was enhanced in L. major-infected miR155-/- DCs compared to those in WT DCs. Furthermore, IFN-γ production from activated miR155-/- T cells was significantly enhanced in L. major-infected miR155-/- DCs. Together, these findings demonstrate that miR155 promotes susceptibility to CL caused by L. major by promoting Th2 response and inhibiting DC function.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Chaitenya Verma
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Gayathri Natarajan
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio; Department of Microbiology, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
37
|
Bocchetti M, Ferraro MG, Ricciardiello F, Ottaiano A, Luce A, Cossu AM, Scrima M, Leung WY, Abate M, Stiuso P, Caraglia M, Zappavigna S, Yau TO. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2021; 22:3967. [PMID: 33921348 PMCID: PMC8068787 DOI: 10.3390/ijms22083967] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes' expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.
Collapse
Affiliation(s)
- Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, via D. Montesano 49, 80131 Naples, Italy;
| | | | - Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Wing-Yan Leung
- Division of Haematology, Department of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
38
|
Malham M, James JP, Jakobsen C, Hoegdall E, Holmstroem K, Wewer V, Nielsen BS, Riis LB. Mucosal microRNAs relate to age and severity of disease in ulcerative colitis. Aging (Albany NY) 2021; 13:6359-6374. [PMID: 33647883 PMCID: PMC7993741 DOI: 10.18632/aging.202715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Despite significant evidence that the expression of several microRNAs (miRNAs) impacts disease activity in patients with ulcerative colitis (UC), it remains unknown if the more severe disease phenotype seen in pediatric onset UC can be explained by an altered miRNA expression. In this study, we assessed the relationship between miRNA expression, age, and disease severity in pediatric and adult patients with UC. Using RT-qPCR, we analyzed the expression of miR-21, miR-31, miR-126, miR-142 and miR-155 in paraffin embedded rectum biopsies from 30 pediatric and 30 adult-onset UC patients. We found that lesions from adult patients had significantly higher expression levels of miR-21 compared to pediatric patients and that the expression levels of miR-31 (all patients) and miR-155 (pediatric patients only) correlated inversely with histological assessed disease severity. Using in situ hybridization followed by image analysis, the expression level estimates of miR-21 and miR-126 correlated with histological assessed disease severity. In conclusion, we found that the expression of miRNAs depends on the age of the patient and/or the severity of the disease, suggesting that miRNAs may contribute to the regulation of inflammation in UC and could be useful biomarkers in the surveillance of disease severity.
Collapse
Affiliation(s)
- Mikkel Malham
- The Pediatric Department, Copenhagen University Hospital, Hvidovre 2650, Denmark.,The Pediatric Department, Holbaek Hospital, Holbaek 4300, Denmark
| | - Jaslin P James
- Department of Pathology, Copenhagen University Hospital, Herlev 2730, Denmark.,Biomedical Technology, Bioneer A/S, Hoersholm 2970, Denmark
| | - Christian Jakobsen
- The Pediatric Department, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Estrid Hoegdall
- Department of Pathology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Kim Holmstroem
- Biomedical Technology, Bioneer A/S, Hoersholm 2970, Denmark
| | - Vibeke Wewer
- The Pediatric Department, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Boye S Nielsen
- Biomedical Technology, Bioneer A/S, Hoersholm 2970, Denmark
| | - Lene B Riis
- Department of Pathology, Copenhagen University Hospital, Herlev 2730, Denmark
| |
Collapse
|
39
|
Diaz-Garrido N, Cordero C, Olivo-Martinez Y, Badia J, Baldomà L. Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease. Int J Mol Sci 2021; 22:ijms22042213. [PMID: 33672304 PMCID: PMC7927122 DOI: 10.3390/ijms22042213] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.
Collapse
Affiliation(s)
- Natalia Diaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Yenifer Olivo-Martinez
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-403-44-96
| |
Collapse
|
40
|
Battistini C, Ballan R, Herkenhoff ME, Saad SMI, Sun J. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci 2020; 22:E362. [PMID: 33396382 PMCID: PMC7795229 DOI: 10.3390/ijms22010362] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract (GIT), including Crohn's disease (CD) and ulcerative colitis (UC), which differ in the location and lesion extensions. Both diseases are associated with microbiota dysbiosis, with a reduced population of butyrate-producing species, abnormal inflammatory response, and micronutrient deficiency (e.g., vitamin D hypovitaminosis). Vitamin D (VitD) is involved in immune cell differentiation, gut microbiota modulation, gene transcription, and barrier integrity. Vitamin D receptor (VDR) regulates the biological actions of the active VitD (1α,25-dihydroxyvitamin D3), and is involved in the genetic, environmental, immune, and microbial aspects of IBD. VitD deficiency is correlated with disease activity and its administration targeting a concentration of 30 ng/mL may have the potential to reduce disease activity. Moreover, VDR regulates functions of T cells and Paneth cells and modulates release of antimicrobial peptides in gut microbiota-host interactions. Meanwhile, beneficial microbial metabolites, e.g., butyrate, upregulate the VDR signaling. In this review, we summarize the clinical progress and mechanism studies on VitD/VDR related to gut microbiota modulation in IBD. We also discuss epigenetics in IBD and the probiotic regulation of VDR. Furthermore, we discuss the existing challenges and future directions. There is a lack of well-designed clinical trials exploring the appropriate dose and the influence of gender, age, ethnicity, genetics, microbiome, and metabolic disorders in IBD subtypes. To move forward, we need well-designed therapeutic studies to examine whether enhanced vitamin D will restore functions of VDR and microbiome in inhibiting chronic inflammation.
Collapse
Affiliation(s)
- Carolina Battistini
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Rafael Ballan
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Marcos Edgar Herkenhoff
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Susana Marta Isay Saad
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Kim WK, Han DH, Jang YJ, Park S, Jang SJ, Lee G, Han HS, Ko G. Alleviation of DSS-induced colitis via Lactobacillus acidophilus treatment in mice. Food Funct 2020; 12:340-350. [PMID: 33325946 DOI: 10.1039/d0fo01724h] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut microbiota play a major role in host physiology and immunity. Inflammatory bowel diseases (IBDs), the important immune-related diseases, can occur through immune system malfunction originating due to dysregulation of the gut microbiota. The aim of this study was to investigate the capabilities and mechanisms of Lactobacillus acidophilus (L. acidophilus) KBL402 and KBL409 treatment in the alleviation of colitis using the in vivo dextran sodium sulfate (DSS)-induced colitis mice model. Various colitis symptoms of mice, including disease activity index score [4.55 ± 0.99 (P < 0.001) and 5.12 ± 0.94 (P < 0.001), respectively], colon length [6.18 ± 0.43 mm (P < 0.001) and 6.62 ± 0.47 mm (P < 0.001), respectively], and colon histological score [(5.33 ± 1.03 (P < 0.001) and 4.00 ± 0.89 (P < 0.01), respectively)], were significantly restored with L. acidophilus KBL402 or KBL409 administration (1 × 109 colony-forming units) for 8 days. Moreover, inflammatory cytokines, chemokines, and myeloperoxidase were downregulated in mice with L. acidophilus treatment. Upregulation of anti-inflammatory cytokine IL-10 or regulatory T cells were discovered with L. acidophilus KBL402 (12.90 ± 7.87 pg mL-1) (P < 0.05) or L. acidophilus KBL409 treatment (10.63 ± 2.70%) (P < 0.05), respectively. Expressions of inflammation-related micro-RNAs (miRs) were also significantly altered in mice with L. acidophilus. Finally, L. acidophilus treatment could restore the diversity of the gut microbiota. Mice with L. acidophilus KBL402 treatment showed a high relative abundance of the genus Akkermansia (0.022 ± 0.017) and Prevotella (0.010 ± 0.006) (P < 0.01). Butyrate and propionate, the major short-chain fatty acids, in the ceca of DSS + KBL402-treated mice were significantly higher than in that of the mice with DSS-induced colitis (0.03 ± 0.02 ng mg-1 and 0.03 ± 0.01 ng mg-1, respectively) (P < 0.05). Our study suggests that L. acidophilus KBL402 and KBL409 could be useful for the prevention or treatment of IBDs in various ways including the modulation of immune responses and miR expression, restoration of the gut microbiota, and production of metabolites.
Collapse
Affiliation(s)
- Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Dae Hee Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - You Jin Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - SungJun Park
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and N-Bio, Seoul National University, Seoul, Republic of Korea and KoBioLabs, Inc., Seoul, Republic of Korea
| | - Sung Jae Jang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and KoBioLabs, Inc., Seoul, Republic of Korea
| | - Giljae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk Seung Han
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - GwangPyo Ko
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea. and Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea and N-Bio, Seoul National University, Seoul, Republic of Korea and KoBioLabs, Inc., Seoul, Republic of Korea and Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
42
|
MiR-155-Mediated Deregulation of GPER1 Plays an Important Role in the Gender Differences Related to Inflammatory Bowel Disease. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:8811477. [PMID: 33014211 PMCID: PMC7516711 DOI: 10.1155/2020/8811477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/08/2023]
Abstract
Aim The incidence and clinical manifestations of inflammatory bowel disease (IBD) are thought to have gender differences, which suggests that the estrogen signaling pathway and intestinal flora may play key roles in the pathogenesis of IBD. In IBD, microRNA-155 (miR-155) is upregulated and regulates G protein coupled estrogen receptor (GPER1), which affects the intestinal flora. The objective of this study was to investigate the role of the estrogen receptors and miR-155 in the pathogenesis of IBD. Methods From July 2018 to July 2019, in the Department of Gastroenterology at Daping Hospital, Army Military Medical University, a total of 50 patients with IBD were included in this study, and 24 healthy examinees were randomly selected as the control group. Colonoscopies were performed, and clinical characteristics and blood samples were collected from all of the subjects. The serum cytokine levels in the patients with IBD and the health donors were detected by ELISA, and the estrogen receptor level measurements for all of the participants were assessed by immunohistochemistry (IHC) and quantitative real-time PCR (qPCR). The miR-155 levels were detected by qPCR in all of the participants, and miR-155−/− mice were used to investigate the mechanism of miR-155 in the pathogenesis of IBD. Results The clinical characteristics and medications were different for the IBD patients when gender was considered. The male patients produced more proinflammatory cytokines, and while GPER1 expression was downregulated, miR-155 was upregulated in the patients with IBD. MiR-155 showed proinflammatory activity, while GPER1 showed an anti-inflammatory response during the pathogenesis of IBD. The miR-155−/− mice showed improvements in weight loss, survival, rectal bleeding, colon length, and histopathological changes compared with the wild-type mice. Furthermore, the male miR-155−/− mice showed increased inflammation compared to the female miR-155−/− mice in the above aspects. Conclusion This study presents evidence indicating that miR-155 plays a key role in the pathogenesis of IBD for the different genders. MiR-155 was upregulated and showed proinflammatory activity, whereas GPER1 showed an anti-inflammatory response during the pathogenesis of IBD. The results demonstrated that more proinflammatory cytokines and reduced GPER1 levels were observed in the male IBD patients. Thus, miR-155 was involved in the regulation of GPER1 and induced gender differences in IBD patients. MiR-155 may be a potential marker for IBD-targeted therapy.
Collapse
|
43
|
Sampath SS, Venkatabalasubramanian S, Ramalingam S. Role of MicroRNAs in the Progression and Metastasis of Colon Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:35-46. [PMID: 32842949 DOI: 10.2174/1871530320666200825184924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours, while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn's disease and Ulcerative colitis, which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc, will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.
Collapse
Affiliation(s)
- Shruthi Sanjitha Sampath
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India
| | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India
| |
Collapse
|
44
|
Alkarkoushi RR, Hui Y, Tavakoli AS, Singh U, Nagarkatti P, Nagarkatti M, Chatzistamou I, Bam M, Testerman TL. Immune and microRNA responses to Helicobacter muridarum infection and indole-3-carbinol during colitis. World J Gastroenterol 2020; 26:4763-4785. [PMID: 32921956 PMCID: PMC7459201 DOI: 10.3748/wjg.v26.i32.4763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Indole-3-carbinol (I3C) and other aryl hydrocarbon receptor agonists are known to modulate the immune system and ameliorate various inflammatory and autoimmune diseases in animal models, including colitis induced by dextran sulfate sodium (DSS). MicroRNAs (miRNAs) are also gaining traction as potential therapeutic agents or diagnostic elements. Enterohepatic Helicobacter (EHH) species are associated with an increased risk of inflammatory bowel disease, but little is known about how these species affect the immune system or response to treatment.
AIM To determine whether infection with an EHH species alters the response to I3C and how the immune and miRNA responses of an EHH species compare with responses to DSS and inflammatory bowel disease.
METHODS We infected C57BL/6 mice with Helicobacter muridarum (H. muridarum), with and without DSS and I3C treatment. Pathological responses were evaluated by histological examination, symptom scores, and cytokine responses. MiRNAs analysis was performed on mesenteric lymph nodes to further evaluate the regional immune response.
RESULTS H. muridarum infection alone caused colonic inflammation and upregulated proinflammatory, macrophage-associated cytokines in the colon similar to changes seen in DSS-treated mice. Further upregulation occurred upon treatment with DSS. H. muridarum infection caused broad changes in mesenteric lymph node miRNA expression, but colitis-associated miRNAs were regulated similarly in H. muridarum-infected and uninfected, DSS-treated mice. In spite of causing colitis exacerbation, H. muridarum infection did not prevent disease amelioration by I3C. I3C normalized both macrophage- and T cell-associated cytokines.
CONCLUSION Thus, I3C may be useful for inflammatory bowel disease patients regardless of EHH infection. The miRNA changes associated with I3C treatment are likely the result of, rather than the cause of immune response changes.
Collapse
Affiliation(s)
- Rasha Raheem Alkarkoushi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Abbas S Tavakoli
- College of Nursing, University of South Carolina, University of South Carolina, Columbia, SC 29208, United States
| | - Udai Singh
- Department of Medicine, Hematology and Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Traci L Testerman
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| |
Collapse
|
45
|
Srivastava J, Chaturvedi CP, Rahman K, Gupta R, Sharma A, Chandra D, Singh MK, Gupta A, Yadav S, Nityanand S. Differential expression of miRNAs and their target genes: Exploring a new perspective of acquired aplastic anemia pathogenesis. Int J Lab Hematol 2020; 42:501-509. [PMID: 32490599 DOI: 10.1111/ijlh.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) play a critical role in orchestrating T cell differentiation and activation and may thus play a vital role in acquired aplastic anemia (aAA). The study aimed to evaluate the differential expression of selected miRNAs and their relevant target genes in bone marrow samples of aAA patients. METHODS Differential expression of 8 miRNAs viz; hsa-miR-126-3p, miR-145-5p, miR-155-5p, miR-150-5p, miR-146b-5p, miR-34a, miR-29a, and miR-29b was evaluated in the bone marrow mononuclear cells of aAA patients. TaqMan microRNA assay was performed for preparing the cDNA of specific miRNA, followed by expression analysis using qRT-PCR. Data were normalized using two endogenous controls, RNU6B and RNU48. Delta-delta CT method was used to calculate the fold change (FC) of miRNA expression in individual samples, and a FC of >1.5 was taken as significant. Target genes of these miRNAs were evaluated by qRT-PCR. RESULTS Thirty five samples of aAA patients and 20 controls were evaluated. Irrespective of the disease severity, five miRNAs were found to be deregulated; miR-126 (FC-0.348; P-value-.0001) and miR-145 (FC-0.31; P-value-.0001) were downregulated, while miR-155 (FC-3.50; P-value-.0067), miR-146 (FC-3.13; P-value-.0105), and miR-150 (FC-5.78; P-value-.0001) were upregulated. Target gene study revealed an upregulation of PIK3R2, MYC, SOCS1, and TRAF-6, and downregulation of MYB. CONCLUSION This is the first study from the Indian subcontinent demonstrating the presence of altered miRNA expression in the bone marrow samples of aAA patients, suggesting their role in the pathogenesis of the disease. A comprehensive study focusing on the effect of these miRNA-mRNA interactions is likely to open new avenues of management.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Chandra P Chaturvedi
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Manish K Singh
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
46
|
The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD. Mucosal Immunol 2020; 13:423-436. [PMID: 31819170 DOI: 10.1038/s41385-019-0241-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent respiratory disease characterized by airflow limitation and chronic inflammation. MiR-155 is described as an ancient regulator of the immune system. Our objective was to establish a role for miR-155 in cigarette smoke (CS)-induced inflammation and COPD. We demonstrate increased miR-155 expression by RT-qPCR in lung tissue of smokers without airflow limitation and patients with COPD compared to never smokers and in lung tissue and alveolar macrophages of CS-exposed mice compared to air-exposed mice. In addition, we exposed wild type and miR-155 deficient mice to CS and show an attenuated inflammatory profile in the latter. Alveolar macrophages were sorted by FACS from the different experimental groups and their gene expression profile was analyzed by RNA sequencing. This analysis revealed increased expression of miR-155 targets and an attenuation of the CS-induced increase in inflammation-related genes in miR-155 deficient mice. Moreover, intranasal instillation of a specific miR-155 inhibitor attenuated the CS-induced pulmonary inflammation in mice. Finally, elastase-induced emphysema and lung functional changes were significantly attenuated in miR-155 deficient mice. In conclusion, we highlight a role for miR-155 in CS-induced inflammation and the pathogenesis of COPD, implicating miR-155 as a new therapeutic target in COPD.
Collapse
|
47
|
Duan Z, Zhang J, Li J, Pang X, Wang H. Inhibition of microRNA-155 Reduces Neuropathic Pain During Chemotherapeutic Bortezomib via Engagement of Neuroinflammation. Front Oncol 2020; 10:416. [PMID: 32296644 PMCID: PMC7141419 DOI: 10.3389/fonc.2020.00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/10/2020] [Indexed: 02/01/2023] Open
Abstract
As a chemotherapeutic agent, bortezomib (BTZ) is used for the treatment of multiple myeloma with adverse effect of painful peripheral neuropathy. Our current study was to determine the inhibitory effects of blocking microRNA-155 (miR-155) signal on BTZ-induced neuropathic pain and the underlying mechanisms. We employed real time RT-PCR and western blot analysis to examine the miR-155 and expression of pro−inflammatory tumor necrosis factor-α receptor (TNFR1) in the dorsal horn of the spinal cord. Its downstream signals p38-MAPK and JNK and transient receptor potential ankyrin 1 (TRPA1) were also determined. Mechanical pain and cold sensitivity were assessed by behavioral test. In result, inhibition of miR-155 significantly attenuated mechanical allodynia and thermal hyperalgesia in BTZ rats, which was accompanied with decreasing expression of TNFR1, p38-MAPK, JNK, and TRPA1. In contrast, miRNA-155 mimics amplified TNFR1-TRPA1 pathway and augmented mechanical pain and cold sensitivity. In addition, mechanical and thermal hypersensitivity induced by miRNA-155 mimics were attenuated after blocking TNFR1, p38-MAPK, JNK, and TRPA1. Overall, we show the key role of miR-155 in modifying BTZ-induced neuropathic pain through TNFR1-TRPA1 pathway, suggesting that miR-155 is a potential target in preventing neuropathic pain development during intervention of BTZ.
Collapse
Affiliation(s)
- Zongsheng Duan
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Radiology, The Second Part of The First Hospital of Jilin University, Changchun, China
| | - Xiaochuan Pang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Hushan Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Shi Y, Dai S, Qiu C, Wang T, Zhou Y, Xue C, Yao J, Xu Y. MicroRNA-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses in inflammatory bowel disease. Mucosal Immunol 2020; 13:303-312. [PMID: 31628427 DOI: 10.1038/s41385-019-0216-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
MicroRNA (miR)-219a-5p has been implicated in the development of numerous progression of carcinoma and autoimmune diseases. However, whether miR-219a-5p is involved in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. In this study, we demonstrated that miR-219a-5p expression was significantly decreased in the inflamed intestinal mucosa and peripheral blood (PB)-CD4+ T cells from patients with IBD. Proinflammatory cytokines (e.g., IL-6, IL-12, IL-23 and TNF-α) inhibited miR-219a-5p expression in CD4+ T cells in vitro. Lentivirus-mediated miR-219a-5p downregulation facilitated Th1/Th17 cell differentiation, whereas miR-219a-5p overexpression exerted an opposite effect. Luciferase assays confirmed that ETS variant 5 (ETV5) was a functional target of miR-219a-5p and ETV5 expression was significantly increased in the inflamed intestinal mucosa and PB-CD4+ T cells from IBD patients. ETV5 overexpression enhanced Th1/Th17 immune response through upregulating the phosphorylation of STAT3 and STAT4. Importantly, supplementation of miR-219a-5p ameliorated TNBS-induced intestinal mucosal inflammation, characterized by decreased IFN-γ+ CD4+ T cells and IL-17A+ CD4+ T cells infiltration in the colonic lamina propria. Our data thus reveal a novel mechanism whereby miR-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses. miR-219a-5p might be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Yan Shi
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Shenglan Dai
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Caiyu Qiu
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Tao Wang
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Yong Zhou
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Cuihua Xue
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China
| | - Jun Yao
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.
| | - Yaping Xu
- Department of Gastroenterology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.
| |
Collapse
|
49
|
Hodge J, Wang F, Wang J, Liu Q, Saaoud F, Wang Y, Singh UP, Chen H, Luo M, Ai W, Fan D. Overexpression of microRNA-155 enhances the efficacy of dendritic cell vaccine against breast cancer. Oncoimmunology 2020; 9:1724761. [PMID: 32117588 PMCID: PMC7028336 DOI: 10.1080/2162402x.2020.1724761] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
MicroRNA 155 (miR-155) plays important roles in the regulation of the development and functions of a variety of immune cells. We previously revealed a vital role of miR-155 in regulating the function of dendritic cells (DCs) in breast cancer. miR-155 deficiency in DCs impaired their maturation, migration, cytokine production, and ability to activate T cells. In the current study, to exploit the therapeutic value of miR-155 for breast cancer, we examined the impact of overexpression of miR-155 on antitumor responses generated by DC vaccines. We boosted miR-155 expression in DCs by generating a miR-155 transgenic mouse strain (miR-155tg) or using lentivirus transduction. DCs overexpressing miR-155 exhibited enhanced functions in response to tumor antigens. Using miR-155 overexpressing DCs, we generated a DC vaccine and found that the vaccine resulted in enhanced antitumor immunity against established breast cancers in mice, demonstrated by increased effector T cells in the mice, suppressed tumor growth, and drastically reduced lung metastasis. Our current study suggests that in future DC vaccine development for breast cancer or other solid tumors, introducing forced miR155 overexpression in DCs via various approaches such as viral transduction or nanoparticle delivery, as well as including other adjuvant agents such as TLR ligands or immune stimulating cytokines, may unleash the full therapeutic potential of the DC vaccines.
Collapse
Affiliation(s)
- Johnie Hodge
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Fang Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.,Department of Microbiology, Air Force Medical University, Xi'an, China
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Qing Liu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Fatma Saaoud
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Ming Luo
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Walden Ai
- Department of Biology and Environmental Health Science, Benedict College, Columbia, SC, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
50
|
Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, Tang C, Chatterjee S, Singh UP, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight 2020; 5:127551. [PMID: 31941837 PMCID: PMC7030851 DOI: 10.1172/jci.insight.127551] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Colitis, an inflammatory bowel disease, is caused by a variety of factors, but luminal microbiota are thought to play crucial roles in disease development and progression. Indole is produced by gut microbiota and is believed to protect the colon from inflammatory damage. In the current study, we investigated whether indole-3-carbinol (I3C), a naturally occurring plant product found in numerous cruciferous vegetables, can prevent colitis-associated microbial dysbiosis and attempted to identify the mechanisms. Treatment with I3C led to repressed colonic inflammation and prevention of microbial dysbiosis caused by colitis, increasing a subset of gram-positive bacteria known to produce butyrate. I3C was shown to increase production of butyrate, and when mice with colitis were treated with butyrate, there was reduced colonic inflammation accompanied by suppression of Th17 and induction of Tregs, protection of the mucus layer, and upregulation in Pparg expression. Additionally, IL-22 was increased only after I3C but not butyrate administration, and neutralization of IL-22 prevented the beneficial effects of I3C against colitis, as well as blocked I3C-mediated dysbiosis and butyrate induction. This study suggests that I3C attenuates colitis primarily through induction of IL-22, which leads to modulation of gut microbiota that promote antiinflammatory butyrate.
Collapse
Affiliation(s)
- Philip B. Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Lorenzo Menzel
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Chaunbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia, South Carolina, USA
| | - Udai P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|