1
|
Chen Z, Wang X, Tan M, Hu W, Wang J, Jin Z. Overexpressed Rv0222 in M. smegmatis suppresses host innate immunity by downregulating miR-9 target SIRT1. Microb Pathog 2025; 204:107525. [PMID: 40180236 DOI: 10.1016/j.micpath.2025.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Tuberculosis (TB) remains one of the most fatal infectious diseases, the pathogenic bacterium Mycobacterium tuberculosis (Mtb) has a thick wall to resist the invasion of extracellular substances and secretes a variety of virulence proteins to antagonize host innate immunity. Rv0222, a protein encoded by the gene Rv0222 in the RD4 region of Mtb, is a critical virulence factor in the pathogenicity of Mtb. However, the mechanism of its regulation of miRNAs during bacterial infection is unclear. We used Rv0222 gene and Mycobacterium smegmatis (M. smegmatis), which is highly homologous to Mtb, to construct Rv0222 recombinant M. smegmatis Ms_Rv0222. Ms_Rv0222 induced down-regulation of miR-9 expression and up-regulation of SIRT1 in RAW264.7 cells and mice post-infection. Up-regulation of SIRT1 caused down-regulation of p65 activity and decreased the expression of pro-inflammatory cytokine, which increased the intracellular survival of M. smegmatis. Si-SIRT1 induced up-regulation of p65 activity and increased the expression of pro-inflammatory cytokine, then decreased the intracellular survival of M. smegmatis. This study reveals that Mtb Rv0222 mediates the suppression of host innate immunity by miR-9 and its target SIRT1, and may provide a potential site for the development of new anti-TB drugs targeting Rv0222.
Collapse
Affiliation(s)
- Zonghai Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China; Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xianghu Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Ming Tan
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenxu Hu
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Jinsuan Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Zixuan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
3
|
Menon AR, Prest RJ, Tobin DM, Champion PA. Mycobacterium marinum as a model for understanding principles of mycobacterial pathogenesis. J Bacteriol 2025:e0004725. [PMID: 40304497 DOI: 10.1128/jb.00047-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Mycobacterium marinum is a fish pathogen that has become a powerful and well-established model that has accelerated our understanding of the mechanisms of mycobacterial disease. M. marinum is a versatile surrogate for understanding the closely related human pathogen M. tuberculosis, which causes tuberculosis in humans. M. marinum has defined key mechanisms of pathogenesis, both shared with M. tuberculosis and unique to this species. In this review, we discuss the discovery of M. marinum as an occasional human pathogen, the shared aspects of pathogenesis with M. tuberculosis, and how M. marinum has been exploited as a model to define the molecular mechanisms of mycobacterial pathogenesis across several phases of infection.
Collapse
Affiliation(s)
- Aruna R Menon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rebecca J Prest
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Heidarnejad K, Bahtouee M, Faraji SN, Moazen S, Abbasi F, Sahebkar A, Nejatollahi F. Enhancing TB diagnosis: Improving specificity with scFv antibodies targeting the PPE17 epitope. Tissue Cell 2025; 96:102933. [PMID: 40349557 DOI: 10.1016/j.tice.2025.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/05/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Serological assays have demonstrated enhanced simplicity, accuracy, and effectiveness in detecting Mycobacterium Tuberculosis (Mtb) antigens. The proline-proline-glutamic acid 17 (PPE17) antigen, specifically localized on the surface of Mtb, has been identified as unique to the Mtb species. The unique properties of single-chain antibodies make them well-suited for accurate diagnostic applications. In this study, specialized single-chain antibodies (scFvs) targeting PPE17 were employed to create a precise indirect immunofluorescent assay for diagnosing pulmonary tuberculosis (TB). METHODS To select an immunodominant epitope of PPE17 in silico analysis was applied. The sequence was evaluated using the BLAST algorithm. A phage antibody display library of scFv was applied and two scFvs were isolated against the epitope by panning process. Specific clones were distinguished through PCR and DNA fingerprinting techniques. The reactivity of the chosen scFvs towards the selected epitope was assessed by ELISA. An Indirect Immunofluorescence Assay (IFA) was performed on 50 positive and 50 negative TB sputum smears, which were confirmed through both culture and genotype methods, to evaluate the performance of anti-PPE17 scFvs in accurately and rapidly detecting TB-positive smears, and TB-negative and Nocardia smears serving as negative controls for comparison. RESULTS An immunodominant epitope of the PPE17 antigen consisting of amino acids 27-39, was identified. Two specific anti-PPE17-scFvs with frequencies of 25 % and 20 % were selected. ELISA results confirmed the reactivity of the scFvs against the epitope. Immunofluorescence assays demonstrated positive results for both antibodies when tested against positive TB sputum smears, whereas no positive results were obtained in tests against TB-negative and Nocardia smears. CONCLUSION A fast and accurate indirect immunofluorescence assay was developed to identify Mtb bacteria in TB sputum smears using specific anti-PPE17 scFvs. The results illustrated the capability of both scFvs in detecting Mtb in TB samples and differentiating Mtb from Nocardia smears. This suggests the potential for a novel diagnostic test that ensures precise TB detection in sputum samples, thereby preventing any potential misdiagnosis of tuberculosis.
Collapse
Affiliation(s)
- Kamran Heidarnejad
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Bahtouee
- Department of Pulmonology and Internal Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Nooreddin Faraji
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Setareh Moazen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Farhad Abbasi
- Department of infectious diseases, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amirhossein Sahebkar
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Foroogh Nejatollahi
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Fang C, He X, Tang F, Wang Z, Pan C, Zhang Q, Wu J, Wang Q, Liu D, Zhang Y. Where lung cancer and tuberculosis intersect: recent advances. Front Immunol 2025; 16:1561719. [PMID: 40242762 PMCID: PMC11999974 DOI: 10.3389/fimmu.2025.1561719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) represent two major global public health issues. Prior evidence has suggested a link between TB infection and an increased risk of LC. As advancements in LC treatment have led to extended survival rates for LC patients, the co-occurrence of TB and LC has grown more prevalent and poses novel clinical challenges. The intricate molecular mechanisms connecting TB and LC are closely intertwined and many issues remain to be addressed. This review focuses on resemblance between the immunosuppression in tumor and granuloma microenvironments, exploring immunometabolism, cell plasticity, inflammatory signaling pathways, microbiomics, and up-to-date information derived from spatial multi-omics between TB and LC. Furthermore, we outline immunization-related molecular mechanisms underlying these two diseases and propose future research directions. By discussing recent advances and potential targets, this review aims to establish a foundation for developing future therapeutic strategies targeting LC with concurrent TB infection.
Collapse
Affiliation(s)
- Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xuanlu He
- School of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Fei Tang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cong Pan
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Translational Medicine Research Center, eBond Pharmaceutical Technology Co., Ltd., Chengdu, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Wu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
- National Health Commission Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
6
|
McCaffrey EF, Delmastro AC, Fitzhugh I, Ranek JS, Douglas S, Peters JM, Fullaway CC, Bosse M, Liu CC, Gillen C, Greenwald NF, Anzick S, Martens C, Winfree S, Bai Y, Sowers C, Goldston M, Kong A, Boonrat P, Bigbee CL, Venugopalan R, Maiello P, Klein E, Rodgers MA, Scanga CA, Lin PL, Kirschner D, Fortune S, Bryson BD, Butler JR, Mattila JT, Flynn JL, Angelo M. The immunometabolic topography of tuberculosis granulomas governs cellular organization and bacterial control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638923. [PMID: 40027668 PMCID: PMC11870603 DOI: 10.1101/2025.02.18.638923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Despite being heavily infiltrated by immune cells, tuberculosis (TB) granulomas often subvert the host response to Mycobacterium tuberculosis (Mtb) infection and support bacterial persistence. We previously discovered that human TB granulomas are enriched for immunosuppressive factors typically associated with tumor-immune evasion, raising the intriguing possibility that they promote tolerance to infection. In this study, our goal was to identify the prime drivers for establishing this tolerogenic niche and to determine if the magnitude of this response correlates with bacterial persistence. To do this, we conducted a multimodal spatial analysis of 52 granulomas from 16 non-human primates (NHP) who were infected with low dose Mtb for 9-12 weeks. Notably, each granuloma's bacterial burden was individually quantified allowing us to directly ask how granuloma spatial structure and function relate to infection control. We found that a universal feature of TB granulomas was partitioning of the myeloid core into two distinct metabolic environments, one of which is hypoxic. This hypoxic environment associated with pathologic immune cell states, dysfunctional cellular organization of the granuloma, and a near-complete blockade of lymphocyte infiltration that would be required for a successful host response. The extent of these hypoxia-associated features correlated with worsened bacterial burden. We conclude that hypoxia governs immune cell state and organization within granulomas and is a potent driver of subverted immunity during TB.
Collapse
Affiliation(s)
- Erin F. McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Spatial Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Alea C. Delmastro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Isobel Fitzhugh
- The Department of Biomedical Sciences and Technology, AdventHealth University, Orlando, FL
| | - Jolene S. Ranek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Sarah Douglas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Joshua M. Peters
- Department of Biological Engineering, MIT, Cambridge, MA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, MA
| | | | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Candace C. Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Craig Gillen
- The Department of Biomedical Sciences and Technology, AdventHealth University, Orlando, FL
| | - Noah F. Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Sarah Anzick
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT
| | - Seth Winfree
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT
| | - Yunhao Bai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Cameron Sowers
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Mako Goldston
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Alex Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Potchara Boonrat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Carolyn L. Bigbee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Roopa Venugopalan
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Edwin Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Philana Ling Lin
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Pediatrics, Division of Infectious Disease, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Sarah Fortune
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, MA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, MA
| | - J. Russell Butler
- The Department of Biomedical Sciences and Technology, AdventHealth University, Orlando, FL
| | - Joshua T. Mattila
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Zhai Y, Ren J, Ding Z, Xu F, Qu S, Bian K, Chen J, Yao M, Yao F, Liu B, Ni M. The diagnostic value of hydroxyproline combined with tuberculosis infection T lymphocyte spot assay in pulmonary tuberculosis. J Thorac Dis 2024; 16:7052-7062. [PMID: 39552900 PMCID: PMC11565317 DOI: 10.21037/jtd-24-1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Background Tuberculosis (TB) is an infectious disease which has long threatened human health, and new molecular diagnostic markers for its diagnosis are urgently needed. The study was designed to analyze the expression of hydroxyproline (HYP) in different specimens of pulmonary TB (PTB) and assess its auxiliary diagnostic value alone or in combination with the TB infection T lymphocyte spot assay (TSPOT.TB). Methods According to the inclusion criteria, 43 healthy controls (HCs) and 39 patients with nontuberculous general respiratory diseases were included as the respiratory control (RC) group, while 42 patients with newly treated TB were included as the PTB group. The expression of HYP in serum, urine, and bronchoalveolar lavage fluid (BALF) was detected with a HYP detection kit. Correlation analysis was used to detect the correlation of HYP and clinical indicators. Receiver operating characteristic (ROC) curve analysis was used to determine the sensitivity and specificity of HYP in diagnosing TB, both when used alone and in combination with TSPOT.TB. Results The expression of HYP in serum of patients with TB was significantly increased as compared to that in controls (P=0.03), but there was no significant difference in the expression of HYP in urine (P>0.05). Compared with the general pneumonia control group, the expression of HYP in BALF of the PTB group was significantly increased (P<0.001). HYP expression in serum was positively correlated with C-reactive protein (CRP) level (r=0.4661, P=0.002), neutrophil (r=0.3338, P=0.03) and monocyte count (r=0.3462, P=0.02), and was negatively correlated with serum albumin expression (r=-0.3575, P=0.02). The expression of HYP in urine was positively correlated with neutrophil count (r=0.3508, P=0.02), neutrophil percentage (r=0.3804, P=0.047), and monocyte count (r=0.3263, P=0.04) but was negatively correlated with serum albumin expression (r=-0.4031, P=0.008). The expression of HYP in BALF was positively correlated with CRP (r=0.3652, P=0.02) but not with other indexes (P>0.05). ROC curve analysis indicated that the sensitivity, specificity, and area under the curve (AUC) of blood HYP were 66.67%, 72.09%, and 0.6481, respectively, while those of its combined diagnosis with TSPOT.TB were 78.57%, 96.77%, and 0.8690, respectively. The sensitivity, specificity, and AUC of HYP in BALF were 67.74%, 64.29%, and 0.7435, respectively, while those of its combined diagnosis with TSPOT.TB were 78.59%, 93.55%, and 0.8606, respectively. Conclusions The expression of HYP in the serum and BALF of patients with PTB was higher than that of control group, and the expression of HYP was correlated with some clinical indicators. HYP demonstrated good sensitivity and specificity for the primary screening of PTB and higher sensitivity and specificity in the diagnosis of HYP when combined with TSPOT.TB. It may thus have certain value for auxiliary diagnosis in clinic.
Collapse
Affiliation(s)
- Yuchen Zhai
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Jingjing Ren
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Zhengyuan Ding
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Shengyan Qu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Keyun Bian
- Department of Microbiology Laboratory, Disease Control and Prevention Center of Rugao, Rugao, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Min Yao
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Fan Yao
- Department of Tuberculosis, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Bin Liu
- Department of Clinical Laboratory, Affiliated Wuxi Fifth Hospital of Jiangnan University (The Fifth People’s Hospital of Wuxi), Wuxi, China
| | - Ming Ni
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
- Department of Microbiology Laboratory, Disease Control and Prevention Center of Rugao, Rugao, China
| |
Collapse
|
8
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
9
|
Hammond FR, Lewis A, Pollara G, Tomlinson GS, Noursadeghi M, Kiss-Toth E, Elks PM. Tribbles1 is host protective during in vivo mycobacterial infection. eLife 2024; 13:e95980. [PMID: 38896446 PMCID: PMC11186633 DOI: 10.7554/elife.95980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.
Collapse
Affiliation(s)
- Ffion R Hammond
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Amy Lewis
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Gabriele Pollara
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Gillian S Tomlinson
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Endre Kiss-Toth
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
10
|
Woo SJ, Kim Y, Kang HJ, Jung H, Youn DH, Hong Y, Lee JJ, Hong JY. Tuberculous pleural effusion-induced Arg-1 + macrophage polarization contributes to lung cancer progression via autophagy signaling. Respir Res 2024; 25:198. [PMID: 38720340 PMCID: PMC11077851 DOI: 10.1186/s12931-024-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.
Collapse
Affiliation(s)
- Seong Ji Woo
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Youngmi Kim
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyun-Jung Kang
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ji Young Hong
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon, Republic of Korea.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea.
- Department of Internal Medicine, Hallym University Chuncheon Hospital, Chuncheon, South Korea.
| |
Collapse
|
11
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Vankayalapati A, Durojaye O, Mukherjee T, Paidipally P, Owusu-Afriyie B, Vankayalapati R, Radhakrishnan RK. Metabolic changes enhance necroptosis of type 2 diabetes mellitus mice infected with Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012148. [PMID: 38728367 PMCID: PMC11086854 DOI: 10.1371/journal.ppat.1012148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.
Collapse
Affiliation(s)
- Abhinav Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Olamipejo Durojaye
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Tanmoy Mukherjee
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Padmaja Paidipally
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Bismark Owusu-Afriyie
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Rajesh Kumar Radhakrishnan
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| |
Collapse
|
13
|
Ferdosnejad K, Zamani MS, Soroush E, Fateh A, Siadat SD, Tarashi S. Tuberculosis and lung cancer: metabolic pathways play a key role. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1262-1281. [PMID: 38305273 DOI: 10.1080/15257770.2024.2308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Despite the fact that some cases of tuberculosis (TB) are undiagnosed and untreated, it remains a serious global public health issue. In the diagnosis, treatment, and control of latent and active TB, there may be a lack of effectiveness. An understanding of metabolic pathways can be fundamental to treat latent TB infection and active TB disease. Rather than targeting Mycobacterium tuberculosis, the control strategies aim to strengthen host responses to infection and reduce chronic inflammation by effectively enhancing host resistance to infection. The pathogenesis and progression of TB are linked to several metabolites and metabolic pathways, and they are potential targets for host-directed therapies. Additionally, metabolic pathways can contribute to the progression of lung cancer in patients with latent or active TB. A comprehensive metabolic pathway analysis is conducted to highlight lung cancer development in latent and active TB. The current study aimed to emphasize the association between metabolic pathways of tumor development in patients with latent and active TB. Health control programs around the world are compromised by TB and lung cancer due to their special epidemiological and clinical characteristics. Therefore, presenting the importance of lung cancer progression through metabolic pathways occurring upon TB infection can open new doors to improving control of TB infection and active TB disease while stressing that further evaluations are required to uncover this correlation.
Collapse
Affiliation(s)
| | | | - Erfan Soroush
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Xia A, Wan J, Li X, Quan J, Chen X, Xu Z, Jiao X. M. tb Rv0927c suppresses the activation of HIF-1α pathway through VHL-mediated ubiquitination and NF-κB/COX-2 pathway to enhance mycobacteria survival. Microbiol Res 2024; 278:127529. [PMID: 37922696 DOI: 10.1016/j.micres.2023.127529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, employs various effector proteins to target and modulate host defenses. Our previous study showed that M. tuberculosis protein Rv0927c can promote the survival of intracellular mycobacteria, but the underlying mechanisms remain poorly understood. Here, we found that Rv0927c inhibited Mycobacterium smegmatis (M. smegmatis) induced hypoxia-inducible factor-1α (HIF-1α) activation in macrophages, and HIF-1α is required for Rv0927c to promote mycobacteria survival. Western blot analysis showed that Rv0927c promoted the proteasomal degradation of HIF-1α via Von Hippel-Lindau (VHL)-mediated ubiquitination and inhibited the nuclear localization of HIF-1α through the NF-κB/COX-2 pathway, thereby suppressing HIF-1α pathway activation. Furthermore, Rv0927c suppressed the host glycolytic metabolism, which is known to be regulated by HIF-1α and depended on the glycolysis process to promote mycobacterial survival. Our findings provide evidence that Rv0927c inhibits the activation of HIF-1α pathway, allowing pathogens to evade host immune responses, suggesting that targeting Rv0927c or HIF-1α might be a potential anti-tuberculosis therapy.
Collapse
Affiliation(s)
- Aihong Xia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaxu Wan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xin Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Juanjuan Quan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
16
|
Ma Q, Yu J, Liu L, Ma X, Zhang J, Zhang J, Wang X, Deng G, Wu X. TRAF6 triggers Mycobacterium-infected host autophagy through Rab7 ubiquitination. Cell Death Discov 2023; 9:427. [PMID: 38016969 PMCID: PMC10684575 DOI: 10.1038/s41420-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase that is extensively involved in the autophagy process by interacting with diverse autophagy initiation and autophagosome maturation molecules. However, whether TRAF6 interacts with lysosomal proteins to regulate Mycobacterium-induced autophagy has not been completely characterized. Herein, the present study showed that TRAF6 interacted with lysosomal key proteins Rab7 through RING domain which caused Rab7 ubiquitination and subsequently ubiquitinated Rab7 binds to STX17 (syntaxin 17, a SNARE protein that is essential for mature autophagosome), and thus promoted the fusion of autophagosomes and lysosomes. Furthermore, TRAF6 enhanced the initiation and formation of autophagosomes in Mycobacterium-induced autophagy in both BMDMs and RAW264.7 cells, as evidenced by autophagic flux, colocalization of LC3 and BCG, autophagy rates, and autophagy-associated protein expression. Noteworthy to mention, TRAF6 deficiency exacerbated lung injury and promoted BCG survival. Taken together, these results identify novel molecular and cellular mechanisms by which TRAF6 positively regulates Mycobacterium-induced autophagy.
Collapse
Affiliation(s)
- Qinmei Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jialin Yu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Li Liu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoyan Ma
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiaxue Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Jiamei Zhang
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China
| | - Xiaoping Wang
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, NingXia, 750021, China
| | - Guangcun Deng
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| | - Xiaoling Wu
- School of Life Science, Ningxia University, Yinchuan, NingXia, 750021, China.
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia, 750021, China.
| |
Collapse
|
17
|
Borah Slater K, Moraes L, Xu Y, Kim D. Metabolic flux reprogramming in Mycobacterium tuberculosis-infected human macrophages. Front Microbiol 2023; 14:1289987. [PMID: 38045029 PMCID: PMC10690623 DOI: 10.3389/fmicb.2023.1289987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Metabolic fluxes are at the heart of metabolism and growth in any living system. During tuberculosis (TB) infection, the pathogenic Mycobacterium tuberculosis (Mtb) adapts its nutritional behaviour and metabolic fluxes to survive in human macrophages and cause infection. The infected host cells also undergo metabolic changes. However, our knowledge of the infected host metabolism and identification of the reprogrammed metabolic flux nodes remains limited. In this study, we applied systems-based 13C-metabolic flux analysis (MFA) to measure intracellular carbon metabolic fluxes in Mtb-infected human THP-1 macrophages. We provide a flux map for infected macrophages that quantified significantly increased fluxes through glycolytic fluxes towards pyruvate synthesis and reduced pentose phosphate pathway fluxes when compared to uninfected macrophages. The tri carboxylic acid (TCA) cycle fluxes were relatively low, and amino acid fluxes were reprogrammed upon Mtb infection. The knowledge of host metabolic flux profiles derived from our work expands on how the host cell adapts its carbon metabolism in response to Mtb infection and highlights important nodes that may provide targets for developing new therapeutics to improve TB treatment.
Collapse
Affiliation(s)
| | - Luana Moraes
- School of Biosciences, University of Surrey, Guildford, United Kingdom
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia-USP, São Paulo, Brazil
| | - Ye Xu
- School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Kim
- School of Biosciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
18
|
Fan X, Zhao B, Zhang W, Li N, Mi K, Wang B. Coevolution of furA-Regulated Hyper-Inflammation and Mycobacterial Resistance to Oxidative Killing through Adaptation to Hydrogen Peroxide. Microbiol Spectr 2023; 11:e0536722. [PMID: 37358434 PMCID: PMC10433983 DOI: 10.1128/spectrum.05367-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is highly resistant to host oxidative killing. We hypothesized that the evolutionary adaptation of M. smegmatis to hydrogen peroxide (H2O2) would endow the nonpathogenic Mycobacterium persistent in a host. In the study, we screened a highly H2O2-resistant strain (mc2114) via evolutionary H2O2 adaptation in vitro. The MIC of mc2114 to H2O2 is 320 times that of wild-type mc2155. Mouse infection experiments showed that mc2114, similar to Mtb, was persistent in the lungs and caused high lethality in mice with restricted responses of NOX2, ROS, IFN-γ, decreased macrophage apoptosis, and overexpressed inflammatory cytokines in the lungs. Whole-genome sequencing analysis revealed that mc2114 harbored 29 single nucleotide polymorphisms in multiple genes; one of them was on the furA gene that caused FurA deficiency-mediated overexpression of KatG, a catalase-peroxidase to detoxify ROS. Complementation of mc2114 with a wild-type furA gene reversed lethality and hyper-inflammatory response in mice with rescued overexpression of KatG and inflammatory cytokines, whereas NOX2, ROS, IFN-γ, and macrophage apoptosis remained reduced. The results indicate that although FurA regulates KatG expression, it does not contribute significantly to the restriction of ROS response. Instead, FurA deficiency is responsible for the detrimental pulmonary inflammation that contributes to the severity of the infection, a previously nonrecognized function of FurA in mycobacterial pathogenesis. The study also indicates that mycobacterial resistance to oxidative burst results from complex mechanisms involving adaptive genetic changes in multiple genes. IMPORTANCE Mycobacterium tuberculosis (Mtb) causes human tuberculosis (TB), which has killed more people in human history than any other microorganism. However, the mechanisms underlying Mtb pathogenesis and related genes have not yet been fully elucidated, which impedes the development of effective strategies for containing and eradicating TB. In the study, we generated a mutant of M. smegmatis (mc2114) with multiple mutations by an adaptive evolutionary screen with H2O2. One of the mutations in furA caused a deficiency of FurA, which mediated severe inflammatory lung injury and higher lethality in mice by overexpression of inflammatory cytokines. Our results indicate that FurA-regulated pulmonary inflammation plays a critical role in mycobacterial pathogenesis in addition to the known downregulation of NOX2, ROS, IFN-γ responses, and macrophage apoptosis. Further analysis of the mutations in mc2114 would identify more genes related to the increased pathogenicity and help in devising new strategies for containing and eradicating TB.
Collapse
Affiliation(s)
- Xin Fan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bei Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Hang NTL, Hijikata M, Maeda S, Thuong PH, Huan HV, Hoang NP, Tam DB, Anh PT, Huyen NT, Cuong VC, Kobayashi N, Wakabayashi K, Miyabayashi A, Seto S, Keicho N. Host-pathogen relationship in retreated tuberculosis with major rifampicin resistance-conferring mutations. Front Microbiol 2023; 14:1187390. [PMID: 37469437 PMCID: PMC10352910 DOI: 10.3389/fmicb.2023.1187390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction It is assumed that host defense systems eliminating the pathogen and regulating tissue damage make a strong impact on the outcome of tuberculosis (TB) disease and that these processes are affected by rifampicin (RIF) resistance-conferring mutations of Mycobacterium tuberculosis (Mtb). However, the host responses to the pathogen harboring different mutations have not been studied comprehensively in clinical settings. We analyzed clinico-epidemiological factors and blood transcriptomic signatures associated with major rpoB mutations conferring RIF resistance in a cohort study. Methods Demographic data were collected from 295 active pulmonary TB patients with treatment history in Hanoi, Vietnam. When recruited, drug resistance-conferring mutations and lineage-specific variations were identified using whole-genome sequencing of clinical Mtb isolates. Before starting retreatment, total RNA was extracted from the whole blood of HIV-negative patients infected with Mtb that carried either the rpoB H445Y or rpoB S450L mutation, and the total RNA was subjected to RNA sequencing after age-gender matching. The individual RNA expression levels in the blood sample set were also measured using real-time RT-PCR. Logistic and linear regression models were used to assess possible associations. Results In our cohort, rpoB S450L and rpoB H445Y were major RIF resistance-conferring mutations [32/87 (36.8%) and 15/87 (17.2%), respectively]. H445Y was enriched in the ancient Beijing genotype and was associated with nonsynonymous mutations of Rv1830 that has been reported to regulate antibiotic resilience. H445Y was also more frequently observed in genetically clustered strains and in samples from patients who had received more than one TB treatment episode. According to the RNA sequencing, gene sets involved in the interferon-γ and-α pathways were downregulated in H445Y compared with S450L. The qRT-PCR analysis also confirmed the low expression levels of interferon-inducible genes, including BATF2 and SERPING1, in the H445Y group, particularly in patients with extensive lesions on chest X-ray. Discussion Our study results showed that rpoB mutations as well as Mtb sublineage with additional genetic variants may have significant effects on host response. These findings strengthen the rationale for investigation of host-pathogen interactions to develop countermeasures against epidemics of drug-resistant TB.
Collapse
Affiliation(s)
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | | | | | | | - Do Bang Tam
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Pham Thu Anh
- Tuberculosis Network Management Office, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Nguyen Thu Huyen
- NCGM-BMH Medical Collaboration Center, Hanoi, Vietnam
- Department of Health Policy and Economics, Hanoi University of Public Health, Hanoi, Vietnam
| | | | | | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, JATA, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
21
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
22
|
Johansson A, Lin DS, Mercier FE, Yamashita M, Divangahi M, Sieweke MH. Trained immunity and epigenetic memory in long-term self-renewing hematopoietic cells. Exp Hematol 2023; 121:6-11. [PMID: 36764598 DOI: 10.1016/j.exphem.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Immunologic memory is a feature typically ascribed to the adaptive arm of the immune system. However, recent studies have demonstrated that hematopoietic stem cells (HSCs) and innate immune cells such as monocytes and macrophages can gain epigenetic signatures to enhance their response in the context of reinfection. This suggests the presence of long-term memory, a phenomenon referred to as trained immunity. Trained immunity in HSCs can occur via changes in the epigenetic landscape and enhanced chromatin accessibility in lineage-specific genes, as well as through metabolic alterations. These changes can lead to a skewing in lineage bias, particularly enhanced myelopoiesis and the generation of epigenetically modified innate immune cells that provide better protection against pathogens on secondary infection. Here, we summarize recent advancements in trained immunity and epigenetic memory formation in HSCs and self-renewing alveolar macrophages, which was the focus of the Spring 2022 International Society for Experimental Hematology (ISEH) webinar.
Collapse
Affiliation(s)
- Alban Johansson
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Dawn S Lin
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| | - Francois E Mercier
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Canada
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology and Immunology, Research Institute McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Canada
| | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany; Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
23
|
Koyyada P, Mishra S. A systematic computational analysis of Mycobacterium tuberculosis H37Rv and human CD34+ genomic expression reveals crucial molecular entities involved in infection progression. J Biomol Struct Dyn 2023; 41:13332-13347. [PMID: 36744528 DOI: 10.1080/07391102.2023.2175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
The co-evolution of Mycobacterium tuberculosis H37Rv along with its host systems enables the pathogenic bacterium to emerge as a multi-drug resistant form. This creates challenges for a more efficacious treatment strategy that can mitigate the infection. Working towards the same, our study followed a mathematical and statistical approach proposing that mycobacterial transcription factors regulating virulence and adaptation, host cell cytoplasmic component metabolism, oxidoreductase activity and respiratory ETC would be targets for antibiotics against Mycobacterium tuberculosis. Simultaneously, extending the statistical study on Mycobacterium-infected human cord blood CD34+ cells revealed that the human CD34+ genes, S100A8 and FGR (tyrosine-protein kinase, Src2), might be affected in the infection pathogenesis by Mycobacterium. Further, the deduced Mycobacterium-human gene interaction network proposed that mycobacterial coregulators Rv0452 (MarR family regulator) and Rv3862c (WhiB6) triggered genes controlling bacterial metabolism, which influences human immunological pathways involving TLR2 and CXCL8/MAPK8.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Praveena Koyyada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
24
|
Ashenafi S, Brighenti S. Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer field. Front Immunol 2022; 13:1059725. [PMID: 36591229 PMCID: PMC9797505 DOI: 10.3389/fimmu.2022.1059725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in the world and every 20 seconds a person dies from TB. An important attribute of human TB is induction of a granulomatous inflammation that creates a dynamic range of local microenvironments in infected organs, where the immune responses may be considerably different compared to the systemic circulation. New and improved technologies for in situ quantification and multimodal imaging of mRNA transcripts and protein expression at the single-cell level have enabled significantly improved insights into the local TB granuloma microenvironment. Here, we review the most recent data on regulation of immunity in the TB granuloma with an enhanced focus on selected in situ studies that enable spatial mapping of immune cell phenotypes and functions. We take advantage of the conceptual framework of the cancer-immunity cycle to speculate how local T cell responses may be enhanced in the granuloma microenvironment at the site of Mycobacterium tuberculosis infection. This includes an exploratory definition of "hot", immune-inflamed, and "cold", immune-excluded TB granulomas that does not refer to the level of bacterial replication or metabolic activity, but to the relative infiltration of T cells into the infected lesions. Finally, we reflect on the current knowledge and controversy related to reactivation of active TB in cancer patients treated with immune checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4. An understanding of the underlying mechanisms involved in the induction and maintenance or disruption of immunoregulation in the TB granuloma microenvironment may provide new avenues for host-directed therapies that can support standard antibiotic treatment of persistent TB disease.
Collapse
Affiliation(s)
- Senait Ashenafi
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,Department of Pathology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanna Brighenti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,*Correspondence: Susanna Brighenti,
| |
Collapse
|
25
|
Ma C, Wu X, Zhang X, Liu X, Deng G. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol 2022; 12:1004148. [PMID: 36211962 PMCID: PMC9539760 DOI: 10.3389/fcimb.2022.1004148] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophages are the host cells and the frontline defense against Mycobacterium tuberculosis (Mtb) infection, and the form of death of infected macrophages plays a pivotal role in the outcome of Mtb infections. Ferroptosis, a programmed necrotic cell death induced by overwhelming lipid peroxidation, was confirmed as one of the mechanisms of Mtb spread following infection and the pathogenesis of tuberculosis (TB). However, the mechanism underlying the macrophage ferroptosis induced by Mtb infection has not yet been fully understood. In the present study, transcriptome analysis revealed the upregulation of heme oxygenase-1 (HMOX1) and pro-ferroptosis cytokines, but downregulation of glutathione peroxidase 4 (GPX4) and other key anti-lipid peroxidation factors in the peripheral blood of both patients with extra-pulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB). This finding was further corroborated in mice and RAW264.7 murine macrophage-like cells infected with Bacillus Calmette-Guerin (BCG). A mechanistic study further demonstrated that heme oxygenase-1 protein (HO-1) regulated the production of reactive oxygen species (ROS) and iron metabolism, and ferroptosis in BCG-infected murine macrophages. The knockdown of Hmox1 by siRNA resulted in a significant increase of intracellular ROS, Fe2+, and iron autophagy-mediated factor Ncoa4, along with the reduction of antioxidant factors Gpx4 and Fsp1 in macrophages infected with BCG. The siRNA-mediated knockdown of Hmox1 also reduced cell survival rate and increased the release of intracellular bacteria in BCG-infected macrophages. By contrast, scavenging ROS by N-acetyl cysteine led to the reduction of intracellular ROS, Fe2+, and Hmox1 concentrations, and subsequently inhibited ferroptosis and the release of intracellular BCG in RAW264.7 cells infected with BCG. These findings suggest that HO-1 is an essential regulator of Mtb-induced ferroptosis, which regulates ROS production and iron accretion to alter macrophage death against Mtb infections.
Collapse
Affiliation(s)
- Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xu Zhang
- Department of Beijing National Biochip Research Center sub-center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Analysis and Testing Center, Ningxia University, Yinchuan, China
| |
Collapse
|
26
|
Gong W, Liang Y, Wang J, Liu Y, Xue Y, Mi J, Li P, Wang X, Wang L, Wu X. Prediction of Th1 and Cytotoxic T Lymphocyte Epitopes of Mycobacterium tuberculosis and Evaluation of Their Potential in the Diagnosis of Tuberculosis in a Mouse Model and in Humans. Microbiol Spectr 2022; 10:e0143822. [PMID: 35938824 PMCID: PMC9430503 DOI: 10.1128/spectrum.01438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Latent tuberculosis infection (LTBI) is the primary source of tuberculosis (TB) but there is no suitable detection method to distinguish LTBI from active tuberculosis (ATB). In this study, five antigens of Mycobacterium tuberculosis belonging to LTBI and regions of difference (RDs) were selected to predict Th1 and cytotoxic T lymphocyte (CTL) epitopes. The immunodominant Th1 and CTL peptides were identified in mouse models, and their performance in distinguishing LTBI from ATB was determined in mice and humans. Ten Th1 and ten CTL immunodominant peptides were predicted and synthesized in vitro. The enzyme-linked immunosorbent spot assay results showed that the combination of five Th1 peptides (area under the curve [AUC] = 1, P < 0.0001; sensitivity = 100% and specificity = 93.33%), the combination of seven CTL peptides (AUC = 1, P < 0.0001; 100 and 95.24%), and the combination of four peptide pools (AUC = 1, P < 0.0001; sensitivity = 100% and specificity = 91.67%) could significantly discriminate mice with LTBI from mice with ATB or uninfected controls (UCs). The combined peptides or peptide pools induced significantly different cytokine levels between the three groups, improving their ability to differentiate ATB from LTBI. Furthermore, it was found that pool 2 could distinguish patients with ATB from UCs (AUC = 0.6728, P = 0.0041; sensitivity = 72.58% and specificity = 59.46%). The combination of Th1 and CTL immunodominant peptides derived from LTBI-RD antigens might be a promising strategy for diagnosing ATB and LTBI in mice and patients with ATB and uninfected controls. IMPORTANCE Latent tuberculosis infection (LTBI) is a challenging problem in preventing, diagnosing, and treating tuberculosis (TB). The innate and adaptive immune responses are essential for eliminating or killing the mycobacteria. Antigen-presenting cells (APCs) present and display mycobacterium peptides on their surfaces, and recognition between T cells and APCs is based on some essential peptides rather than the full-length protein. Therefore, the selection of candidate antigens and the prediction and screening of potential immunodominant peptides have become a key to designing a new generation of TB diagnostic biomarkers. This study is the first to report that the combination of Th1 and CTL immunodominant peptides derived from LTBI-RD antigens can distinguish LTBI from active TB (ATB) in animals and ATB patients from uninfected individuals. These findings provide a novel insight for discovering potential biomarkers for the differential diagnosis of ATB and LTBI in the future.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Pengchuan Li
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoou Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Immunometabolism of Immune Cells in Mucosal Environment Drives Effector Responses against Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23158531. [PMID: 35955665 PMCID: PMC9369211 DOI: 10.3390/ijms23158531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberculosis remains a major threat to global public health, with more than 1.5 million deaths recorded in 2020. Improved interventions against tuberculosis are urgently needed, but there are still gaps in our knowledge of the host-pathogen interaction that need to be filled, especially at the site of infection. With a long history of infection in humans, Mycobacterium tuberculosis (Mtb) has evolved to be able to exploit the microenvironment of the infection site to survive and grow. The immune cells are not only reliant on immune signalling to mount an effective response to Mtb invasion but can also be orchestrated by their metabolic state. Cellular metabolism was often overlooked in the past but growing evidence of its importance in the functions of immune cells suggests that it can no longer be ignored. This review aims to gain a better understanding of mucosal immunometabolism of resident effector cells, such as alveolar macrophages and mucosal-associated invariant T cells (MAIT cells), in response to Mtb infection and how Mtb manipulates them for its survival and growth, which could address our knowledge gaps while opening up new questions, and potentially be applied for future vaccination and therapeutic strategies.
Collapse
|
28
|
Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol 2022; 13:886822. [PMID: 35812393 PMCID: PMC9259854 DOI: 10.3389/fimmu.2022.886822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Collapse
Affiliation(s)
- Berkay Yahsi
- School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
30
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
31
|
Kim JK, Park EJ, Jo EK. Itaconate, Arginine, and Gamma-Aminobutyric Acid: A Host Metabolite Triad Protective Against Mycobacterial Infection. Front Immunol 2022; 13:832015. [PMID: 35185924 PMCID: PMC8855927 DOI: 10.3389/fimmu.2022.832015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Immune metabolic regulation shapes the host-pathogen interaction during infection with Mycobacterium tuberculosis (Mtb), the pathogen of human tuberculosis (TB). Several immunometabolites generated by metabolic remodeling in macrophages are implicated in innate immune protection against Mtb infection by fine-tuning defensive pathways. Itaconate, produced by the mitochondrial enzyme immunoresponsive gene 1 (IRG1), has antimicrobial and anti-inflammatory effects, restricting intracellular mycobacterial growth. L-arginine, a component of the urea cycle, is critical for the synthesis of nitric oxide (NO) and is implicated in M1-mediated antimycobacterial responses in myeloid cells. L-citrulline, a by-product of NO production, contributes to host defense and generates L-arginine in myeloid cells. In arginase 1-expressing cells, L-arginine can be converted into ornithine, a polyamine precursor that enhances autophagy and antimicrobial protection against Mtb in Kupffer cells. Gamma-aminobutyric acid (GABA), a metabolite and neurotransmitter, activate autophagy to induce antimycobacterial host defenses. This review discusses the recent updates of the functions of the three metabolites in host protection against mycobacterial infection. Understanding the mechanisms by which these metabolites promote host defense will facilitate the development of novel host-directed therapeutics against Mtb and drug-resistant bacteria.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
32
|
Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022; 176:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.
Collapse
Affiliation(s)
- He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia-Xin Zheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dong-Ran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
33
|
Awad K, Maghraby AS, Abd-Elshafy DN, Bahgat MM. Carbohydrates Metabolic Signatures in Immune Cells: Response to Infection. Front Immunol 2022; 13:912899. [PMID: 35983037 PMCID: PMC9380592 DOI: 10.3389/fimmu.2022.912899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Metabolic reprogramming in immune cells is diverse and distinctive in terms of complexity and flexibility in response to heterogeneous pathogenic stimuli. We studied the carbohydrate metabolic changes in immune cells in different types of infectious diseases. This could help build reasonable strategies when understanding the diagnostics, prognostics, and biological relevance of immune cells under alternative metabolic burdens. METHODS Search and analysis were conducted on published peer-reviewed papers on immune cell metabolism of a single pathogen infection from the four known types (bacteria, fungi, parasites, and viruses). Out of the 131 selected papers based on the PIC algorithm (pathogen type/immune cell/carbohydrate metabolism), 30 explored immune cell metabolic changes in well-studied bacterial infections, 17 were on fungal infections of known medical importance, and 12 and 57 were on parasitic and viral infections, respectively. RESULTS AND DISCUSSION While carbohydrate metabolism in immune cells is signaled by glycolytic shift during a bacterial or viral infection, it is widely evident that effector surface proteins are expressed on the surface of parasites and fungi to modulate metabolism in these cells. CONCLUSIONS Carbohydrate metabolism in immune cells can be categorized according to the pathogen or the disease type. Accordingly, this classification can be used to adopt new strategies in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kareem Awad
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- Department of Water Pollution Research, Institute of Environmental Research, National Research Center, Cairo, Egypt
| | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| |
Collapse
|
34
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
36
|
Rasi V, Wood DC, Eickhoff CS, Xia M, Pozzi N, Edwards RL, Walch M, Bovenschen N, Hoft DF. Granzyme A Produced by γ 9δ 2 T Cells Activates ER Stress Responses and ATP Production, and Protects Against Intracellular Mycobacterial Replication Independent of Enzymatic Activity. Front Immunol 2021; 12:712678. [PMID: 34413857 PMCID: PMC8368726 DOI: 10.3389/fimmu.2021.712678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the pathological agent that causes tuberculosis (TB) is the number one infectious killer worldwide with one fourth of the world's population currently infected. Data indicate that γ9δ2 T cells secrete Granzyme A (GzmA) in the extracellular space triggering the infected monocyte to inhibit growth of intracellular mycobacteria. Accordingly, deletion of GZMA from γ9δ2 T cells reverses their inhibitory capacity. Through mechanistic studies, GzmA's action was investigated in monocytes from human PBMCs. The use of recombinant human GzmA expressed in a mammalian system induced inhibition of intracellular mycobacteria to the same degree as previous human native protein findings. Our data indicate that: 1) GzmA is internalized within mycobacteria-infected cells, suggesting that GzmA uptake could prevent infection and 2) that the active site is not required to inhibit intracellular replication. Global proteomic analysis demonstrated that the ER stress response and ATP producing proteins were upregulated after GzmA treatment, and these proteins abundancies were confirmed by examining their expression in an independent set of patient samples. Our data suggest that immunotherapeutic host interventions of these pathways may contribute to better control of the current TB epidemic.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - David C. Wood
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Christopher S. Eickhoff
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Mei Xia
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Rachel L. Edwards
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft,
| |
Collapse
|
37
|
Olson GS, Murray TA, Jahn AN, Mai D, Diercks AH, Gold ES, Aderem A. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep 2021; 35:109195. [PMID: 34077724 DOI: 10.1016/j.celrep.2021.109195] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming powers and polarizes macrophage functions, but the nature and regulation of this response during infection with pathogens remain controversial. In this study, we characterize the metabolic and transcriptional responses of murine macrophages to Mycobacterium tuberculosis (Mtb) in order to disentangle the underlying mechanisms. We find that type I interferon (IFN) signaling correlates with the decreased glycolysis and mitochondrial damage that is induced by live, but not killed, Mtb. Macrophages lacking the type I IFN receptor (IFNAR) maintain glycolytic flux and mitochondrial function during Mtb infection in vitro and in vivo. IFNβ itself restrains the glycolytic shift of inflammatory macrophages and initiates mitochondrial stress. We confirm that type I IFN acts upstream of mitochondrial damage using macrophages lacking the protein STING. We suggest that a type I IFN-mitochondrial feedback loop controls macrophage responses to mycobacteria and that this could contribute to pathogenesis across a range of diseases.
Collapse
Affiliation(s)
- Gregory S Olson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tara A Murray
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ana N Jahn
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Elizabeth S Gold
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Cardiology, Virginia Mason, Seattle, WA 98101, USA.
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Subhash N, Sundaramurthy V. Advances in host-based screening for compounds with intracellular anti-mycobacterial activity. Cell Microbiol 2021; 23:e13337. [PMID: 33813790 DOI: 10.1111/cmi.13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Intracellular pathogens interact with host systems in intimate ways to sustain a pathogenic lifestyle. Consequently, these interactions can potentially be targets of host-directed interventions against infectious diseases. In case of tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), while effective anti-tubercular compounds are available, the long treatment duration and emerging drug resistance necessitate identification of new class of molecules with anti-TB activity, as well as new treatment strategies. A significant part of the effort in finding new anti-TB drugs is focused on bacterial targets in bacterial systems. However, the host environment plays a major role in pathogenesis mechanisms and must be considered actively in these efforts. On the one hand, the bacterial origin targets must be relevant and accessible in the host, while on the other hand, new host origin targets required for the bacterial survival can be targeted. Such targets are good candidates for host-directed therapeutics, a strategy gaining traction as an adjunct in TB treatment. In this review, we will summarise the screening platforms used to identify compounds with anti-tubercular activities inside different host environments and outline recent technical advances in these platforms. Finally, while the examples given are specific to mycobacteria, the methods and principles outlined are broadly applicable to most intracellular infections.
Collapse
Affiliation(s)
- Neeraja Subhash
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,SASTRA University, Thanjavur, India
| | | |
Collapse
|
39
|
Patrick KL, Watson RO. Mitochondria: Powering the Innate Immune Response to Mycobacterium tuberculosis Infection. Infect Immun 2021; 89:e00687-20. [PMID: 33558322 PMCID: PMC8090963 DOI: 10.1128/iai.00687-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Within the last decade, we have learned that damaged mitochondria activate many of the same innate immune pathways that evolved to sense and respond to intracellular pathogens. These shared responses include cytosolic nucleic acid sensing and type I interferon (IFN) expression, inflammasome activation that leads to pyroptosis, and selective autophagy (called mitophagy when mitochondria are the cargo). Because mitochondria were once bacteria, parallels between how cells respond to mitochondrial and bacterial ligands are not altogether surprising. However, the potential for cross talk or synergy between bacterium- and mitochondrion-driven innate immune responses during infection remains poorly understood. This interplay is particularly striking, and intriguing, in the context of infection with the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Multiple studies point to a role for Mtb infection and/or specific Mtb virulence factors in disrupting the mitochondrial network in macrophages, leading to metabolic changes and triggering potent innate immune responses. Research from our laboratories and others argues that mutations in mitochondrial genes can exacerbate mycobacterial disease severity by hyperactivating innate responses or activating them at the wrong time. Indeed, growing evidence supports a model whereby different mitochondrial defects or mutations alter Mtb infection outcomes in distinct ways. By synthesizing the current literature in this minireview, we hope to gain insight into the molecular mechanisms driving, and consequences of, mitochondrion-dependent immune polarization so that we might better predict tuberculosis patient outcomes and develop host-directed therapeutics designed to correct these imbalances.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| |
Collapse
|
40
|
Amiel E, Perona‐Wright G. Sweet talk: Metabolic conversations between host and microbe during infection. Immunology 2021; 162:121-122. [PMID: 33443308 PMCID: PMC7808147 DOI: 10.1111/imm.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this issue, we introduce the second part of a series of reviews focusing on how immunometabolism influences host and pathogen interactions during infection. This part of the collection addresses the interface between metabolism and specific types of infection, including immunometabolism in macrophages during helminth infection, the role of metabolism in T-cell exhaustion during chronic viral infections and host immunometabolism in the defence against Mycobacterium tuberculosis infection. These reviews, together with the four articles published in part 1 of the series in November 2020, offer new insights into the complex interactions between mammalian hosts and microbial pathogens through the lens of cellular metabolic regulation.
Collapse
Affiliation(s)
- Eyal Amiel
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | | |
Collapse
|