1
|
A Novel Form of Arginine-Chitosan as Nanoparticles Efficient for siRNA Delivery into Mouse Leukemia Cells. Int J Mol Sci 2023; 24:ijms24021040. [PMID: 36674556 PMCID: PMC9864149 DOI: 10.3390/ijms24021040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The modification of chitosan (CS) has greatly expanded its application in the field of medicine. In this study, low-molecular-weight chitosan was modified with arginine (Arg) by a simple method. The identification by the Fourier transform infrared spectra (FTIR) showed that Arg was successfully covalently attached to the CS. Interestingly, Arg-CS was identified as nanoparticles by atomic force microscopy (AFM) and transmission electron microscopy (TEM), whose particle size was 75.76 ± 12.07 nm based on Dynamic Light Scattering (DLS) characterization. Then, whether the prepared Arg-CS nanoparticles could encapsulate and deliver siRNA safely was investigated. Arg-CS was found to be able to encapsulate siRNAs in vitro via electrostatic interaction with siRNA; the Arg-CS/siRNA complex was safe for L1210 leukemia cells. Therefore, modification of chitosan by Arg produces novel nanoparticles to deliver siRNA into leukemia cells. This is the first time to identify Arg-CS as nanoparticles and explore their ability to deliver Rhoa siRNA into T-cell acute lymphoblastic leukemia (T-ALL) cells to advance therapies targeting Rhoa in the future.
Collapse
|
2
|
Shannon SR, Ben-Akiva E, Green JJ. Approaches towards biomaterial-mediated gene editing for cancer immunotherapy. Biomater Sci 2022; 10:6675-6687. [PMID: 35858470 PMCID: PMC10112382 DOI: 10.1039/d2bm00806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapies are transforming treatment modalities for many human diseases and disorders, including those in ophthalmology, oncology, and nephrology. To maximize the clinical efficacy and safety of these treatments, consideration of both delivery materials and cargos is critical. In consideration of the former, a large effort has been placed on transitioning away from potentially immunoreactive and toxic viral delivery mechanisms towards safer and highly tunable nonviral delivery mechanisms, including polymeric, lipid-based, and inorganic carriers. This change of paradigm does not come without obstacles, as efficient non-viral delivery is challenging, particularly to immune cells, and has yet to see clinical translation breakthroughs for gene editing. This mini-review describes notable examples of biomaterial-based gene delivery to immune cells, with emphasis on recent in vivo successes. In consideration of delivery cargos, clustered regularly interspaced palindromic repeat (CRISPR) technology is reviewed and its great promise in the field of immune cell gene editing is described. This mini-review describes how leading non-viral delivery materials and CRISPR technology can be integrated together to advance its clinical potential for therapeutic gene transfer to immune cells to treat cancer.
Collapse
Affiliation(s)
- Sydney R Shannon
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Elana Ben-Akiva
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Huang W, Sakuma S, Tottori N, Sugano SS, Yamanishi Y. Viscosity-aided electromechanical poration of cells for transfecting molecules. LAB ON A CHIP 2022; 22:4276-4291. [PMID: 36263697 DOI: 10.1039/d2lc00628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell poration technologies offer opportunities not only to understand the activities of biological molecules but also to investigate genetic manipulation possibilities. Unfortunately, transferring large molecules that can carry huge genomic information is challenging. Here, we demonstrate electromechanical poration using a core-shell-structured microbubble generator, consisting of a fine microelectrode covered with a dielectric material. By introducing a microcavity at its tip, we could concentrate the electrical field with the application of electric pulses and generate microbubbles for electromechanical stimulation of cells. Specifically, the technology enables transfection with molecules that are thousands of kDa even into osteoblasts and Chlamydomonas, which are generally considered to be difficult to inject. Notably, we found that the transfection efficiency can be enhanced by adjusting the viscosity of the cell suspension, which was presumably achieved by remodeling of the membrane cytoskeleton. The applicability of the approach to a variety of cell types opens up numerous emerging gene engineering applications.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shinya Sakuma
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naotomo Tottori
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan.
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022; 342:362-371. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
Harnessing RNA-based therapeutics for cancer, inflammation, and viral diseases is hindered by poor delivery of therapeutic RNA molecules. Targeting leukocytes to treat these conditions holds great promise, as they are key participants in their initiation, drug response, and treatment. The various extra- and intra-cellular obstacles that impediment the clinical implementation of therapeutic RNA can be overcome by utilizing drug delivery systems. However, delivery of therapeutic RNA to leukocytes poses an even greater challenge as these cells are difficult to reach and transfect upon systemic administration. This review briefly describes the existing successful delivery strategies that efficiently target leukocytes in vivo and discuss their potential clinical applicability.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Biber G, Sabag B, Raiff A, Ben‐Shmuel A, Puthenveetil A, Benichou JIC, Jubany T, Levy M, Killner S, Barda‐Saad M. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity. EMBO Mol Med 2022; 14:e14073. [PMID: 34725941 PMCID: PMC8749471 DOI: 10.15252/emmm.202114073] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells provide a powerful weapon mediating immune defense against viral infections, tumor growth, and metastatic spread. NK cells demonstrate great potential for cancer immunotherapy; they can rapidly and directly kill cancer cells in the absence of MHC-dependent antigen presentation and can initiate a robust immune response in the tumor microenvironment (TME). Nevertheless, current NK cell-based immunotherapies have several drawbacks, such as the requirement for ex vivo expansion of modified NK cells, and low transduction efficiency. Furthermore, to date, no clinical trial has demonstrated a significant benefit for NK-based therapies in patients with advanced solid tumors, mainly due to the suppressive TME. To overcome current obstacles in NK cell-based immunotherapies, we describe here a non-viral lipid nanoparticle-based delivery system that encapsulates small interfering RNAs (siRNAs) to gene silence the key intrinsic inhibitory NK cell molecules, SHP-1, Cbl-b, and c-Cbl. The nanoparticles (NPs) target NK cells in vivo, silence inhibitory checkpoint signaling molecules, and unleash NK cell activity to eliminate tumors. Thus, the novel NP-based system developed here may serve as a powerful tool for future NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Guy Biber
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Aviad Ben‐Shmuel
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Jennifer I C Benichou
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Shiran Killner
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Mira Barda‐Saad
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| |
Collapse
|
6
|
Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck K, Huang C, De Smedt SC, Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells. NATURE NANOTECHNOLOGY 2021; 16:1281-1291. [PMID: 34675410 PMCID: PMC7612007 DOI: 10.1038/s41565-021-00976-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/03/2021] [Indexed: 05/18/2023]
Abstract
Nanoparticle-sensitized photoporation is an upcoming approach for the intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here we show that light-sensitive iron oxide nanoparticles embedded in biocompatible electrospun nanofibres induce membrane permeabilization by photothermal effects without direct cellular contact with the nanoparticles. The photothermal nanofibres have been successfully used to deliver effector molecules, including CRISPR-Cas9 ribonucleoprotein complexes and short interfering RNA, to adherent and suspension cells, including embryonic stem cells and hard-to-transfect T cells, without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrated successful tumour regression in mice treated with chimeric antibody receptor T cells in which the expression of programmed cell death protein 1 (PD1) is downregulated after nanofibre photoporation with short interfering RNA to PD1. In conclusion, cell membrane permeabilization with photothermal nanofibres is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Dawei Hua
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Laurens Léger
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences and Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Laurens Raes
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jeffrey Aalders
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Joke Belza
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Thibaut Van Acker
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Eduardo Bolea-Fernandez
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Frank Vanhaecke
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Stefaan C De Smedt
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Abu-Izneid T, AlHajri N, Ibrahim AM, Javed MN, Salem KM, Pottoo FH, Kamal MA. Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections. J Adv Res 2021; 30:133-145. [PMID: 33282419 PMCID: PMC7708232 DOI: 10.1016/j.jare.2020.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection. AIM OF REVIEW We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections. KEY SCIENTIFIC CONCEPTS OF REVIEW miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/β) signalling cascade or upregulation of the IFN-α/β production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Noora AlHajri
- Department of Epidemiology and Population Health, College of Medicine, Khalifa University, United Arab Emirates
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India
| | - Khairi Mustafa Salem
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
8
|
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS NANO 2021; 15:3736-3753. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.
Collapse
Affiliation(s)
| | | | - Ewa Czuba-Wojnilowicz
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Sharon R Lewin
- Victorian Infectious Diseases, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 2020; 154-155:37-63. [PMID: 32526452 DOI: 10.1016/j.addr.2020.06.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Nucleic Acid (NA) based therapeutics are poised to disrupt modern medicine and augment traditional pharmaceutics in a meaningful way. However, a key challenge to advancing NA therapies into the clinical setting and on to the market is the safe and effective delivery to the target tissue and cell. Lipid Nanoparticles (LNP) have been extensively investigated and are currently the most advanced vector for the delivery of NA drugs, as evidenced by the approval of Onpattro for treatment of Amyloidosis in the US and EU in 2018. This article provides a comprehensive review of the state-of-the-art for LNP technology. We discuss key advances in the design and development of LNP, leading to a broad range of therapeutic applications. Finally, the current status of this technology in clinical trials and its future prospects are discussed.
Collapse
Affiliation(s)
- Eleni Samaridou
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - James Heyes
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Peter Lutwyche
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada.
| |
Collapse
|
10
|
Recent advances in micro/nanoscale intracellular delivery. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kulkarni S, Pandey A, Mutalik S. Heterogeneous surface-modified nanoplatforms for the targeted therapy of haematological malignancies. Drug Discov Today 2020; 25:160-167. [DOI: 10.1016/j.drudis.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
|
12
|
Backlund CM, Hango CR, Minter LM, Tew GN. Protein and Antibody Delivery into Difficult-to-Transfect Cells by Polymeric Peptide Mimics. ACS APPLIED BIO MATERIALS 2019; 3:180-185. [DOI: 10.1021/acsabm.9b00876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Coralie M. Backlund
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
13
|
Man T, Zhu X, Chow YT, Dawson ER, Wen X, Patananan AN, Liu TL, Zhao C, Wu C, Hong JS, Chung PS, Clemens DL, Lee BY, Weiss PS, Teitell MA, Chiou PY. Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS NANO 2019; 13:10835-10844. [PMID: 31487464 DOI: 10.1021/acsnano.9b06025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient intracellular delivery of biomolecules into cells that grow in suspension is of great interest for biomedical research, such as for applications in cancer immunotherapy. Although tremendous effort has been expended, it remains challenging for existing transfer platforms to deliver materials efficiently into suspension cells. Here, we demonstrate a high-efficiency photothermal delivery approach for suspension cells using sharp nanoscale metal-coated tips positioned at the edge of microwells, which provide controllable membrane disruption for each cell in an array. Self-aligned microfabrication generates a uniform microwell array with three-dimensional nanoscale metallic sharp tip structures. Suspension cells self-position by gravity within each microwell in direct contact with eight sharp tips, where laser-induced cavitation bubbles generate transient pores in the cell membrane to facilitate intracellular delivery of extracellular cargo. A range of cargo sizes were tested on this platform using Ramos suspension B cells with an efficiency of >84% for Calcein green (0.6 kDa) and >45% for FITC-dextran (2000 kDa), with retained viability of >96% and a throughput of >100 000 cells delivered per minute. The bacterial enzyme β-lactamase (29 kDa) was delivered into Ramos B cells and retained its biological activity, whereas a green fluorescence protein expression plasmid was delivered into Ramos B cells with a transfection efficiency of >58%, and a viability of >89% achieved.
Collapse
Affiliation(s)
- Tianxing Man
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Emma R Dawson
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ximiao Wen
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Tingyi Leo Liu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Chuanzhen Zhao
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Cong Wu
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Jason S Hong
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pei-Shan Chung
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Molecular Biology Institute, Department of Pathology and Laboratory Medicine, Department of Pediatrics, Jonsson Comprehensive Cancer Center, Broad Center of Regenerative Medicine and Stem Cell Research , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
14
|
Fazil MHUT, Ong ST, Chalasani MLS, Kizhakeyil A, Verma NK. GapmeR-Mediated Gene Silencing in Motile T-Cells. Methods Mol Biol 2019; 1930:67-73. [PMID: 30610600 DOI: 10.1007/978-1-4939-9036-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gene silencing is an important method to study gene functions in health and diseases. While there are various techniques that are applied to knockdown specific gene(s) of interest, they have certain limitations in application to T-lymphocytes. T-cells are "hard-to-transfect" cells and are recalcitrant to transfection reagents. Here, we describe the use of novel cell-permeating antisense molecules, called "GapmeR", to knockdown specific gene(s) in human primary T-cells.
Collapse
Affiliation(s)
| | - Seow Theng Ong
- Lee Kong Chain School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Madhavi Latha Somaraju Chalasani
- Lee Kong Chain School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Autoimmunity and Inflammation Program, Hospital for Special Surgery, NY, USA
| | - Atish Kizhakeyil
- Lee Kong Chain School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Navin Kumar Verma
- Lee Kong Chain School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. CRYSTALS 2019. [DOI: 10.3390/cryst9080411] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of CD4+ T cells with exogenous nucleic acids or proteins is a critical step in several research and therapeutic applications, such as HIV studies and cancer immunotherapies. However, efficient cell transfections are not always easily achieved when working with these primary hard-to-transfect cells. While the modification of T cells is typically performed by viral transduction or electroporation, their use is associated with safety issues or cytotoxicity. Vapor nanobubble (VNB) photoporation with sensitizing gold nanoparticles (AuNPs) has recently emerged as a new technology for safe and flexible cell transfections. In this work, we evaluated the potential of VNB photoporation as a novel technique for the intracellular delivery of macromolecules in primary human CD4+ T cells using fluorescent dextrans as model molecules. Our results show that VNB photoporation enables efficient delivery of fluorescent dextrans of 10 kDa in Jurkat (>60% FD10+ cells) as well as in primary human CD4+ T cells (±40% FD10+ cells), with limited cell toxicity (>70% cell viability). We also demonstrated that the technique allows the delivery of dextrans that are up to 500 kDa in Jurkat cells, suggesting its applicability for the delivery of biological macromolecules with a wide range of molecular weights. Altogether, VNB photoporation represents a promising technique for the universal delivery of macromolecules in view of engineering CD4+ T cells for use in a wide variety of research and therapeutic applications.
Collapse
|
16
|
Ramishetti S, Peer D. Engineering lymphocytes with RNAi. Adv Drug Deliv Rev 2019; 141:55-66. [PMID: 30529305 DOI: 10.1016/j.addr.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Lymphocytes are the gatekeepers of the body's immune system and are involved in pathogenesis if their surveillance is stalled by inhibitory molecules or when they act as mediators for viral entry. Engineering lymphocytes in order to restore their functions is an unmet need in immunological disorders, cancer and in lymphotropic viral infections. Recently, the FDA approved several therapeutic antibodies for blocking inhibitory signals on T cells. This has revolutionized the field of solid tumor care, together with chimeric antigen receptor T cell (CAR-T) therapy that did the same for hematological malignancies. RNA interference (RNAi) is a promising approach where gene function can be inhibited in almost all types of cells. However, manipulation of genes in lymphocyte subsets are difficult due to their hard-to-transfect nature and in vivo targeting remains challenging as they are dispersed throughout the body. The ability of RNAi molecules to gain entry into cells is almost impossible without delivery strategy. Nanotechnology approaches are rapidly growing and their impact in the field of drug and gene delivery applications to transport payloads inside cells have been extensively studied. Here we discuss various technologies available for RNAi delivery to lymphocytes. We shed light on the importance of targeting molecules in order to target lymphocytes in vivo. In addition, we discuss recent developments of RNAi delivery to lymphocyte subsets, and detail the potential implication for the future of molecular medicine in leukocytes implicated diseases.
Collapse
|
17
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
18
|
Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 2018; 9:1293. [PMID: 29615605 PMCID: PMC5882967 DOI: 10.1038/s41467-018-03650-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023] Open
Abstract
Effective transfection of genetic molecules such as DNA usually relies on vectors that can reversibly uptake and release these molecules, and protect them from digestion by nuclease. Non-viral vectors meeting these requirements are rare due to the lack of specific interactions with DNA. Here, we design a series of four isoreticular metal-organic frameworks (Ni-IRMOF-74-II to -V) with progressively tuned pore size from 2.2 to 4.2 nm to precisely include single-stranded DNA (ssDNA, 11–53 nt), and to achieve reversible interaction between MOFs and ssDNA. The entire nucleic acid chain is completely confined inside the pores providing excellent protection, and the geometric distribution of the confined ssDNA is visualized by X-ray diffraction. Two MOFs in this series exhibit excellent transfection efficiency in mammalian immune cells, 92% in the primary mouse immune cells (CD4+ T cell) and 30% in human immune cells (THP-1 cell), unrivaled by the commercialized agents (Lipo and Neofect). Non-viral vectors are important for transfection but can be limited in the uptake, protection and release of ssDNA. Here, the authors report on the design of metal-organic-framework vectors with precisely controlled pore geometry and demonstrate the vector in the transfection of immune cells.
Collapse
|
19
|
Puplampu-Dove Y, Gefen T, Rajagopalan A, Muheramagic D, Schrand B, Gilboa E. Potentiating tumor immunity using aptamer-targeted RNAi to render CD8 + T cells resistant to TGFβ inhibition. Oncoimmunology 2018; 7:e1349588. [PMID: 29632714 DOI: 10.1080/2162402x.2017.1349588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022] Open
Abstract
TGFβ secreted by tumor cells and/or tumor infiltrating stromal cells is a key mediator of tumor growth and immune suppression at the tumor site. Nonetheless, clinical trials in cancer patients targeting the TGFβ pathway exhibited at best a modest therapeutic benefit. A likely reason, a common limitation of many cancer drugs, is that the physiologic roles of TGFβ in tissue homeostasis, angiogenesis, and immune regulation precluded the dose escalation necessary to achieve a profound clinical response. Murine studies have suggested that countering immune suppressive effects of TGFβ may be sufficient to inhibit tumor growth. Here we describe an approach to render vaccine-activated CD8+ T cells transiently resistant to TGFβ inhibition using an siRNA against Smad4 to inhibit a key step in the canonical TGFβ signaling pathway. The siRNA was targeted to vaccine activated CD8+ T cells in the mouse by conjugation to a 4-1BB binding oligonucleotide (ODN) aptamer ligand (4-1BB-Smad4 conjugate). In vitro the 4-1BB-Smad4 conjugate rendered T cells partially resistant to TGFβ inhibition, and treatment of tumor bearing mice with systemically administered 4-1BB-Smad4 conjugate enhanced vaccine- and irradiation-induced antitumor immunity. Limiting the inhibitory effects of TGFβ to tumor-specific T cells will not interfere with its multiple physiologic roles and hence reduce the risk of toxicity.
Collapse
Affiliation(s)
- Yvonne Puplampu-Dove
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, and Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tal Gefen
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, and Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Anugraha Rajagopalan
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, and Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Darija Muheramagic
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, and Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Brett Schrand
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, and Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Eli Gilboa
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, and Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
20
|
Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, Zhong Z. Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules 2017; 18:3207-3214. [DOI: 10.1021/acs.biomac.7b00846] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Qiu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Alvarez MM, Aizenberg J, Analoui M, Andrews AM, Bisker G, Boyden ES, Kamm RD, Karp JM, Mooney DJ, Oklu R, Peer D, Stolzoff M, Strano MS, Trujillo-de Santiago G, Webster TJ, Weiss PS, Khademhosseini A. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS NANO 2017; 11:5195-5214. [PMID: 28524668 DOI: 10.1021/acsnano.7b01493] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We discuss the state of the art and innovative micro- and nanoscale technologies that are finding niches and opening up new opportunities in medicine, particularly in diagnostic and therapeutic applications. We take the design of point-of-care applications and the capture of circulating tumor cells as illustrative examples of the integration of micro- and nanotechnologies into solutions of diagnostic challenges. We describe several novel nanotechnologies that enable imaging cellular structures and molecular events. In therapeutics, we describe the utilization of micro- and nanotechnologies in applications including drug delivery, tissue engineering, and pharmaceutical development/testing. In addition, we discuss relevant challenges that micro- and nanotechnologies face in achieving cost-effective and widespread clinical implementation as well as forecasted applications of micro- and nanotechnologies in medicine.
Collapse
Affiliation(s)
- Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey , Ave. Eugenio Garza Sada 2501, Col. Tecnológico, CP 64849 Monterrey, Nuevo León, México
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Mostafa Analoui
- UConn Venture Development and Incubation, UConn , Storrs, CT 06269, United States
| | | | | | | | | | | | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Rahmi Oklu
- Division of Interventional Radiology, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | | | | | | | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey , Ave. Eugenio Garza Sada 2501, Col. Tecnológico, CP 64849 Monterrey, Nuevo León, México
| | - Thomas J Webster
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou 325000, China
| | | | - Ali Khademhosseini
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
22
|
Mizrahy S, Hazan-Halevy I, Dammes N, Landesman-Milo D, Peer D. Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Mol Ther 2017; 25:1491-1500. [PMID: 28392163 DOI: 10.1016/j.ymthe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
RNAi-based therapy holds great promise, as it can be utilized for the treatment of multiple conditions in an accurate manner via sequence-specific manipulation of gene expression. To date, RNAi therapeutics have advanced into clinical trials for liver diseases and solid tumors; however, delivery of RNAi to leukocytes in general and to lymphocytes in particular remains a challenge. Lymphocytes are notoriously hard to transduce with RNAi payloads and are disseminated throughout the body, often located in deep tissues; therefore, developing an efficient systemic delivery system directed to lymphocytes is not a trivial task. Successful manipulation of lymphocyte function with RNAi possesses immense therapeutic potential, as it will enable researchers to resolve lymphocyte-implicated diseases such as inflammation, autoimmunity, transplant rejection, viral infections, and blood cancers. This potential has propelled the development of novel targeted delivery systems relying on the accumulating research knowledge from multiple disciplines, including materials science and engineering, immunology, and genetics. Here, we will discuss the recent progress in non-viral delivery strategies of RNAi payloads to lymphocytes. Special emphasis will be made on the challenges and potential opportunities in manipulating lymphocyte function with RNAi. These approaches might ultimately become a novel therapeutic modality to treat leukocyte-related diseases.
Collapse
Affiliation(s)
- Shoshy Mizrahy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niels Dammes
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Mizrahy S, Hazan-Halevy I, Landesman-Milo D, Ng BD, Peer D. Advanced Strategies in Immune Modulation of Cancer Using Lipid-Based Nanoparticles. Front Immunol 2017; 8:69. [PMID: 28220118 PMCID: PMC5292579 DOI: 10.3389/fimmu.2017.00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/16/2017] [Indexed: 02/04/2023] Open
Abstract
Immunotherapy has a great potential in advancing cancer treatment, especially in light of recent discoveries and therapeutic interventions that lead to complete response in specific subgroups of melanoma patients. By using the body's own immune system, it is possible not only to specifically target and eliminate cancer cells while leaving healthy cells unharmed but also to elicit long-term protective response. Despite the promise, current immunotherapy is limited and fails in addressing all tumor types. This is probably due to the fact that a single treatment strategy is not sufficient in overcoming the complex antitumor immunity. The use of nanoparticle-based system for immunotherapy is a promising strategy that can simultaneously target multiple pathways with the same kinetics to enhance antitumor response. Here, we will highlight the recent advances in the field of cancer immunotherapy that utilize lipid-based nanoparticles as delivery vehicles and address the ongoing challenges and potential opportunities.
Collapse
Affiliation(s)
- Shoshy Mizrahy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Brandon D Ng
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Rajagopalan A, Berezhnoy A, Schrand B, Puplampu-Dove Y, Gilboa E. Aptamer-Targeted Attenuation of IL-2 Signaling in CD8 + T Cells Enhances Antitumor Immunity. Mol Ther 2017; 25:54-61. [PMID: 28129128 DOI: 10.1016/j.ymthe.2016.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022] Open
Abstract
Immune responses elicited against cancer using existing therapies such as vaccines or immune stimulatory antibodies are often not curative. One way to potentiate antitumor immunity is to enhance the long-term persistence of anti-tumor CD8+ T cells. Studies have shown that the persistence of activated CD8+ T cells is negatively impacted by the strength of interleukin 2 (IL-2) signaling. Here, we used small interfering RNAs (siRNAs) against CD25 (IL-2Rα) to attenuate IL-2 signaling in CD8+ T cells. The siRNAs were targeted to 4-1BB-expressing CD8+ T cells by conjugation to a 4-1BB-binding oligonucleotide aptamer. Systemic administration of the 4-1BB aptamer-CD25 siRNA conjugate downregulated CD25 mRNA only in 4-1BB-expressing CD8+ T cells promoting their differentiation into memory cells. Treatment with the 4-1BB aptamer-CD25 siRNA conjugates enhanced the antitumor response of a cellular vaccine or local radiation therapy. Indicative of the generality of this approach, 4-1BB aptamer-targeted delivery of an Axin-1 siRNA, a rate-limiting component of the β-catenin destruction complex, enhanced CD8+ T cell memory development and antitumor activity. These findings show that aptamer-targeted siRNA therapeutics can be used to modulate the function of circulating CD8+ T cells, skewing their development into long-lasting memory CD8+ T cells, and thereby potentiating antitumor immunity.
Collapse
Affiliation(s)
- Anugraha Rajagopalan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33134, USA
| | - Alexey Berezhnoy
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33134, USA
| | - Brett Schrand
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33134, USA
| | - Yvonne Puplampu-Dove
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33134, USA
| | - Eli Gilboa
- Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33134, USA; Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33134, USA.
| |
Collapse
|
25
|
Zhou J, Wu Y, Wang C, Cheng Q, Han S, Wang X, Zhang J, Deng L, Zhao D, Du L, Cao H, Liang Z, Huang Y, Dong A. pH-Sensitive Nanomicelles for High-Efficiency siRNA Delivery in Vitro and in Vivo: An Insight into the Design of Polycations with Robust Cytosolic Release. NANO LETTERS 2016; 16:6916-6923. [PMID: 27748606 DOI: 10.1021/acs.nanolett.6b02915] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extremely low efficient cytosolic release of the internalized siRNA has emerged recently as a central issue for siRNA delivery, while there is a lack of guidelines to facilitate the cytosolic release of internalized siRNA. To address these concerns, we studied the contribution of the pH-sensitive inner core on handling the cytosolic release of siRNA delivered by a series of PG-P(DPAx-co-DMAEMAy)-PCB amphiphilic polycation nanomicelles (GDDC-Ms) with extremely low internalization (<1/4 of lipofactamine 2000 (Lipo2000)). Significantly, just by varying the mole ratio of DPA and DMAEMA to adjust the initial disassembly pH (pHdis) of the core near to 6.8, GDDC4-Ms/siRNA could get nearly 98.8% silencing efficiency at w/w = 12 with 50 nM siRNA and ∼78% silencing efficiency at w/w = 30 with a very low dose of 5 nM siRNA in HepG-2 cell lines, while Lipo2000 only got 65.7% with 50 nM siRNA. Furthermore, ∼98.4% silencing efficiency was also realized in the hard-to-transfect human acute monoblastic leukemia cell line U937 by GDDC4-Ms/siRNA (at w/w = 15, 50 nM siRNA), in the inefficient case for Lipo2000. Additionally, the high silencing efficiency (∼80%) in skin tissue in vivo was discovered. Undoubtedly, the robust potential of GDDC4-Ms in handling the cytosolic release paves a simple but efficient new way for the design of the nonviral siRNA vector.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yidi Wu
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Changrong Wang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | - Qiang Cheng
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Shangcong Han
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University , Qingdao 266021, China
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | - Deyao Zhao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Lili Du
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yuanyu Huang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing 100871, China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
26
|
Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 2016; 34:291-301. [PMID: 25948376 DOI: 10.1007/s10555-015-9554-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metastatic lung cancer is one of the most common cancers leading to mortality worldwide. Current treatment includes chemo- and pathway-dependent therapy aiming at blocking the spread and proliferation of these metastatic lesions. Nanomedicine is an emerging multidisciplinary field that offers unprecedented access to living cells and promises the state of the art in cancer detection and treatment. Development of nanomedicines as drug carriers (nanocarriers) that target cancer for therapy draws upon principles in the fields of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by more than 30 nanocarriers already approved for clinical use and given the promise of recent clinical results in various studies, nanocarrier-based strategies are anticipated to soon have a profound impact on cancer medicine and human health. Herein, we will detail the latest innovations in therapeutic nanomedicine with examples from lipid-based nanoparticles and polymer-based approaches, which are engineered to deliver anticancer drugs to metastatic lung cells. Emphasis will be placed on the latest and most attractive delivery platforms, which are developed specifically to target lung metastatic tumors. These novel nanomedicines may open new avenues for therapeutic intervention carrying new class of drugs such as RNAi and mRNA and the ability to edit the genome using the CRISPER/Cas9 system. Ultimately, these strategies might become a new therapeutic modality for advanced-stage lung cancer.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
27
|
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538:183-192. [DOI: 10.1038/nature19764] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
|
28
|
Gilboa E, Berezhnoy A, Schrand B. Reducing Toxicity of Immune Therapy Using Aptamer-Targeted Drug Delivery. Cancer Immunol Res 2016; 3:1195-200. [PMID: 26541880 DOI: 10.1158/2326-6066.cir-15-0194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modulating the function of immune receptors with antibodies is ushering in a new era in cancer immunotherapy. With the notable exception of PD-1 blockade used as monotherapy, immune modulation can be associated with significant toxicities that are expected to escalate with the development of increasingly potent immune therapies. A general way to reduce toxicity is to target immune potentiating drugs to the tumor or immune cells of the patient. This Crossroads article discusses a new class of nucleic acid-based immune-modulatory drugs that are targeted to the tumor or to the immune system by conjugation to oligonucleotide aptamer ligands. Cell-free chemically synthesized short oligonucleotide aptamers represent a novel and emerging platform technology for generating ligands with desired specificity that offer exceptional versatility and feasibility in terms of development, manufacture, and conjugation to an oligonucleotide cargo. In proof-of-concept studies, aptamer ligands were used to target immune-modulatory siRNAs or aptamers to induce neoantigens in the tumor cells, limit costimulation to the tumor lesion, or enhance the persistence of vaccine-induced immunity. Using increasingly relevant murine models, the aptamer-targeted immune-modulatory drugs engendered protective antitumor immunity that was superior to that of current "gold-standard" therapies in terms of efficacy and lack of toxicity or reduced toxicity. To overcome immune exhaustion aptamer-targeted siRNA conjugates could be used to downregulate intracellular mediators of exhaustion that integrate signals from multiple inhibitory receptors. Recent advances in aptamer development and second-generation aptamer-drug conjugates suggest that we have only scratched the surface.
Collapse
Affiliation(s)
- Eli Gilboa
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Alexey Berezhnoy
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Brett Schrand
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
29
|
Hazan-Halevy I, Landesman-Milo D, Rosenblum D, Mizrahy S, Ng BD, Peer D. Immunomodulation of hematological malignancies using oligonucleotides based-nanomedicines. J Control Release 2016; 244:149-156. [PMID: 27491881 DOI: 10.1016/j.jconrel.2016.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Hematological malignancies are a group of diseases characterized by clonal proliferation of blood-forming cells. Malignant blood cells are classified as myeloid or lymphoid cells depending on their stem cell origin. Lymphoid malignancies are characterized by lymphocyte accumulation in the blood stream, in the bone marrow, or in lymphatic nodes and organs. Several of these diseases are associated with chromosomal translocations, which cause gene fusion and amplification of expression, while others are characterized with aberrant expression of oncogenes. Overall, these genes play a major role in development and maintenance of malignant clones. The discovery of antisense oligonucleotides and RNA interference (RNAi) mechanisms offer new tools to specifically manipulate gene expression. Systemic delivery of inhibitory oligonucleotides molecules for manipulation of gene expression in lymphocytes holds a great potential for facilitating the development of an oligonucleotides -based therapy platform for lymphoid blood cancer. However, lymphocytes are among the most difficult targets for oligonucleotides delivery, as they are resistant to conventional transfection reagents and are dispersed throughout the body, making it difficult to successfully localize or deliver oligonucleotides payloads via systemic administration. In this review, we will survey the latest progress in the field of oligonucleotides based nanomedicine in the heterogeneous group of hematological malignancies with special emphasis on RNA based strategies. We will describe the most advanced non-viral nanocarriers for RNA delivery to malignant blood cells. We will also discuss targeted strategies for cell specific delivery of RNA molecules using nanoparticles and the therapeutic benefit of manipulating gene function in hematological malignancies. Finally, we will focus on the ex vivo, in vivo, and clinical trial strategies, that are currently under development in hematological malignancies - strategies that might increase the arsenal of drugs available to hematologists in the upcoming years.
Collapse
Affiliation(s)
- Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shoshy Mizrahy
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Brandon D Ng
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
30
|
Nascimento TL, Hillaireau H, Vergnaud J, Fattal E. Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs. Nanomedicine (Lond) 2016; 11:1865-87. [DOI: 10.2217/nnm-2016-5000] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extensive experimental evidence demonstrates the important role of hyaluronic acid (HA)-CD44 interaction in cell proliferation and migration, inflammation and tumor growth. Taking advantage of this interaction, the design of HA-modified nanocarriers has been investigated for targeting CD44-overexpressing cells with the purpose of delivering drugs to cancer or inflammatory cells. The effect of such modification on targeting efficacy is influenced by several factors. In this review, we focus on the impact of HA-modification on the characteristics of lipid-based nanoparticles. We try to understand how these modifications influence particle physicochemical properties, interaction with CD44 receptors, intracellular trafficking pathways, toxicity, complement/macrophage activation and pharmacokinetics. Our aim is to provide insight in tailoring particle modification by HA in order to design more efficient CD44-targeting lipid nanocarriers.
Collapse
Affiliation(s)
- Thais Leite Nascimento
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 70040-020, Brazil
| | - Hervé Hillaireau
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| | - Juliette Vergnaud
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| | - Elias Fattal
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
31
|
Ramishetti S, Landesman-Milo D, Peer D. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles. J Drug Target 2016; 24:780-786. [PMID: 27030014 DOI: 10.3109/1061186x.2016.1172587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Srinivas Ramishetti
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dalit Landesman-Milo
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dan Peer
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
32
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
33
|
Landesman-Milo D, Peer D. Transforming Nanomedicines From Lab Scale Production to Novel Clinical Modality. Bioconjug Chem 2016; 27:855-62. [PMID: 26734836 DOI: 10.1021/acs.bioconjchem.5b00607] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles as anticancer drug carriers has been studied for over 50 years. These nanoparticles that can carry drugs are now termed "nanomedicines". Since the approval of the first FDA "nanodrug", DOXIL in 1995, tremendous efforts have been made to develop hundreds of nanomedicines based on different materials. The development of drug nanocarriers (NCs) for cancer therapy is especially challenging and requires multidisciplinary approach. Not only is the translation from a lab scale production of the NCs to clinical scale a challenge, but tumor biology and its unique physiology also possess challenges that need to be overcome with cleverer approaches. Yet, with all the efforts made to develop new strategies to deliver drugs (including small molecules and biologics) for cancer therapy, the number of new NCs that are reaching clinical trials is extremely low. Here we discuss the reasons most of the NCs loaded with anticancer drugs are not likely to reach the clinic and emphasize the importance of understanding tumor physiology and heterogeneity, the use of predictive animal models, and the importance of sharing data as key denominators for potential successful translation of NCs from a bench scale into clinical modality for cancer care.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Moyano DF, Liu Y, Peer D, Rotello VM. Modulation of Immune Response Using Engineered Nanoparticle Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:76-82. [PMID: 26618755 PMCID: PMC4749139 DOI: 10.1002/smll.201502273] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NPs) coated with a monolayer of ligands can be recognized by different components of the immune system, opening new doors for the modulation of immunological responses. By the use of different physical or chemical properties at the NP surface (such as charge, functional groups, and ligand density), NPs can be designed to have distinct cellular uptake, cytokine secretion, and immunogenicity, factors that influence the distribution and clearance of these particles. Understanding these immunological responses is critical for the development of new NP-based carriers for the delivery of therapeutic molecules, and as such several studies have been performed to understand the relationships between immune responses and NP surface functionality. In this review, we will discuss recent reports of these structure-activity relationships, and explore how these motifs can be controlled to elicit therapeutically useful immune responses.
Collapse
Affiliation(s)
- Daniel F. Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Tel: (+1) 413-545-2058
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Tel: (+1) 413-545-2058
| | - Dan Peer
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, Department of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv , 69978, Israel. Tel (+972) 3640-7925
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Tel: (+1) 413-545-2058
| |
Collapse
|
35
|
Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci U S A 2015; 113:E16-22. [PMID: 26699502 DOI: 10.1073/pnas.1519273113] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite progress in systemic small interfering RNA (siRNA) delivery to the liver and to solid tumors, systemic siRNA delivery to leukocytes remains challenging. The ability to silence gene expression in leukocytes has great potential for identifying drug targets and for RNAi-based therapy for leukocyte diseases. However, both normal and malignant leukocytes are among the most difficult targets for siRNA delivery as they are resistant to conventional transfection reagents and are dispersed in the body. We used mantle cell lymphoma (MCL) as a prototypic blood cancer for validating a novel siRNA delivery strategy. MCL is an aggressive B-cell lymphoma that overexpresses cyclin D1 with relatively poor prognosis. Down-regulation of cyclin D1 using RNA interference (RNAi) is a potential therapeutic approach to this malignancy. Here, we designed lipid-based nanoparticles (LNPs) coated with anti-CD38 monoclonal antibodies that are specifically taken up by human MCL cells in the bone marrow of xenografted mice. When loaded with siRNAs against cyclin D1, CD38-targeted LNPs induced gene silencing in MCL cells and prolonged survival of tumor-bearing mice with no observed adverse effects. These results highlight the therapeutic potential of cyclin D1 therapy in MCL and present a novel RNAi delivery system that opens new therapeutic opportunities for treating MCL and other B-cell malignancies.
Collapse
|
36
|
Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, Gozin M, Cullis PR, Dykxhoorn DM, Peer D. Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS NANO 2015; 9:6706-16. [PMID: 26042619 DOI: 10.1021/acsnano.5b02796] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Modulating T cell function by down-regulating specific genes using RNA interference (RNAi) holds tremendous potential in advancing targeted therapies in many immune-related disorders including cancer, inflammation, autoimmunity, and viral infections. Hematopoietic cells, in general, and primary T lymphocytes, in particular, are notoriously hard to transfect with small interfering RNAs (siRNAs). Herein, we describe a novel strategy to specifically deliver siRNAs to murine CD4(+) T cells using targeted lipid nanoparticles (tLNPs). To increase the efficacy of siRNA delivery, these tLNPs have been formulated with several lipids designed to improve the stability and efficacy of siRNA delivery. The tLNPs were surface-functionalized with anti-CD4 monoclonal antibody to permit delivery of the siRNAs specifically to CD4(+) T lymphocytes. Ex vivo, tLNPs demonstrated specificity by targeting only primary CD4(+) T lymphocytes and no other cell types. Systemic intravenous administration of these particles led to efficient binding and uptake into CD4(+) T lymphocytes in several anatomical sites including the spleen, inguinal lymph nodes, blood, and the bone marrow. Silencing by tLNPs occurs in a subset of circulating and resting CD4(+) T lymphocytes. Interestingly, we show that tLNP internalization and not endosome escape is a fundamental event that takes place as early as 1 h after systemic administration and determines tLNPs' efficacy. Taken together, these results suggest that tLNPs may open new avenues for the manipulation of T cell functionality and may help to establish RNAi as a therapeutic modality in leukocyte-associated diseases.
Collapse
Affiliation(s)
| | | | | | - Fransisca Leonard
- ⊥Department of NanoMedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Andrew G Sprague
- ∥Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Biana Godin
- ⊥Department of NanoMedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | | | | | - Derek M Dykxhoorn
- △Dr. John T Macdonald Foundation, Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida 33136, United States
| | | |
Collapse
|
37
|
Manipulating the in vivo immune response by targeted gene knockdown. Curr Opin Immunol 2015; 35:63-72. [PMID: 26149459 DOI: 10.1016/j.coi.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic.
Collapse
|
38
|
Jeker LT, Marone R. Targeting microRNAs for immunomodulation. Curr Opin Pharmacol 2015; 23:25-31. [PMID: 26021286 DOI: 10.1016/j.coph.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNA) are small regulatory RNAs exerting pleiotropic functions in virtually any immune cell-type. Dozens of miRNAs with a known function in the immune system constitute interesting drug targets for immunomodulation. Chemical modifications of nucleic acid-based miRNA mimics and inhibitors largely solved instability issues but delivery to immune cells remains a major challenge. However, recent success targeting the acidic tumor microenvironment is very promising for inflammatory diseases. Moreover, small molecules are being explored as an interesting alternative. Although RNA is often considered 'undruggable' by small molecules recent progress modulating miRNA function through small molecules is encouraging. Computational approaches even allow predictions about specific small molecule/RNA interactions. Finally, recent clinical success demonstrates that drugs targeting RNAs work in humans.
Collapse
Affiliation(s)
- Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|
39
|
Haussecker D. Current issues of RNAi therapeutics delivery and development. J Control Release 2014; 195:49-54. [DOI: 10.1016/j.jconrel.2014.07.056] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022]
|
40
|
Abstract
INTRODUCTION Cancer remains the leading cause of death worldwide. Numerous therapeutic strategies that include smart biological treatments toward specific cellular pathways are being developed. Yet, inherent and acquired multidrug resistance (MDR) to chemotherapeutic drugs remains the major obstacle in effective cancer treatments. AREAS COVERED Herein, we focused on an implementation of nanoscale drug delivery strategies (nanomedicines) to treat tumors that resist MDR. Specifically, we briefly discuss the MDR phenomenon and provide structural and functional characterization of key proteins that account for MDR. We next describe the strategies to target tumors using nanoparticles and provide a mechanistic overview of how changes in the influx:efflux ratio result in overcoming MDR. EXPERT OPINION Various strategies have been applied in preclinical and clinical settings to overcome cancer MDR. Among them are the use of chemosensitizers that aim to sensitize the cancer cells to chemotherapeutic treatment and the use of nanomedicines as delivery vehicles that can increase the influx of drugs into cancer cells. These strategies can enhance the therapeutic response in resistant tumors by bypassing efflux pumps or by increasing the nominal amounts of therapeutic payloads into the cancer cells at a given time point.
Collapse
Affiliation(s)
- Assaf Ganoth
- The Interdisciplinary Center (IDC) , P.O. Box 167, Herzliya 46150 , Israel
| | | | | |
Collapse
|
41
|
Rosenblum D, Peer D. Omics-based nanomedicine: The future of personalized oncology. Cancer Lett 2014; 352:126-36. [DOI: 10.1016/j.canlet.2013.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
|
42
|
Berezhnoy A, Rajagopalan A, Gilboa E. A clinically useful approach to enhance immunological memory and antitumor immunity. Oncoimmunology 2014; 3:e28811. [PMID: 25057446 PMCID: PMC4091317 DOI: 10.4161/onci.28811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Persistence of vaccine-induced immune responses, not the initial magnitude, best correlates with protective antitumor immunity. In mice, oligonucleotide aptamer-targeted siRNA inhibition of mammalian target of rapamycin (mTOR) activity in activated CD8+ T cells promotes their differentiation into functionally competent memory cells leading to enhanced antitumor immunity, a protective effect superior to that of non-targeted administration of the mTOR inhibitor rapamycin.
Collapse
Affiliation(s)
- Alex Berezhnoy
- Department of Microbiology & Immunology; Dodson Interdisciplinary Immunotherapy Institute; Sylvester Comprehensive Cancer Center; Miller School of Medicine; University of Miami; Miami, FL USA
| | - Anugraha Rajagopalan
- Department of Microbiology & Immunology; Dodson Interdisciplinary Immunotherapy Institute; Sylvester Comprehensive Cancer Center; Miller School of Medicine; University of Miami; Miami, FL USA
| | - Eli Gilboa
- Department of Microbiology & Immunology; Dodson Interdisciplinary Immunotherapy Institute; Sylvester Comprehensive Cancer Center; Miller School of Medicine; University of Miami; Miami, FL USA
| |
Collapse
|
43
|
Cohen K, Emmanuel R, Kisin-Finfer E, Shabat D, Peer D. Modulation of drug resistance in ovarian adenocarcinoma using chemotherapy entrapped in hyaluronan-grafted nanoparticle clusters. ACS NANO 2014; 8:2183-2195. [PMID: 24494862 DOI: 10.1021/nn500205b] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Resistance to anticancer drugs is considered a major cause of chemotherapy failure. One of the major mediators of resistance is the multidrug extrusion pump protein, P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter with broad substrate specificity. In order to bypass this drug resistance mechanism, we have devised phospholipid-based nanoparticle clusters coated with the glycosaminoglycan hyaluronan, the major ligand of CD44, which is upregulated and undergoes different splice variations in many types of cancer cells. These particles, termed glycosaminoglycan particle nanoclusters or gagomers (GAGs), were self-assembled into ∼500 nm diameter clusters, with zeta-potential values of ∼-70 mV. Flow cytometry analysis provided evidence that, unlike free doxorubicin (DOX), a model chemotherapy, DOX entrapped in the GAGs (DOX-GAGs) accumulated in P-gp-overexpressing human ovarian adenocarcinoma cell line and dramatically decreased cell viability, while drug-free GAGs and the commercially available drug DOXIL (PEGylated liposomal DOX) did not produce therapeutic benefit. Furthermore, by using RNA interference strategy, we showed that DOX-GAGs were able to overcome the P-gp-mediated resistant mechanism of these cells. Most importantly, DOX-GAGs showed a superior therapeutic effect over free DOX in a resistant human ovarian adenocarcinoma mouse xenograft model. Taken together, these results demonstrated that GAGs might serve as an efficient platform for delivery of therapeutic payloads by bypassing P-gp-mediated multidrug resistance.
Collapse
Affiliation(s)
- Keren Cohen
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ⊥School of Chemistry, Tel Aviv University , Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
44
|
Shubhra QTH, Tóth J, Gyenis J, Feczkó T. Poloxamers for Surface Modification of Hydrophobic Drug Carriers and Their Effects on Drug Delivery. POLYM REV 2014. [DOI: 10.1080/15583724.2013.862544] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Howard KA, Peer D. Providing the full picture: a mandate for standardizing nanoparticle-based drug delivery. Nanomedicine (Lond) 2014; 8:1031-3. [PMID: 23837825 DOI: 10.2217/nnm.13.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
46
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054 DOI: 10.1186/2052-8426-2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel ; Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel ; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
47
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- />Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel
- />Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel
- />Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
48
|
Wang X, Peer D, Petersen B. Molecular and Cellular Therapies: New challenges and opportunities. MOLECULAR AND CELLULAR THERAPIES 2013; 1:1. [PMID: 26056567 PMCID: PMC4448952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2023]
Abstract
Gene therapy is suggested to be one of the most specific and efficient modulations for gene deficient diseases and extended to other diseases like cancer and inflammation, even though there are still challenges to be faced, such as specific and selective delivery, minimal to no toxicity, efficient metabolism, simplicity, and measurable efficiency. It is important to identify and validate drug-able disease-specific targets for molecular and cellular therapies, while it is equally important to have disease biomarkers to trace and define the biological effects of molecular and cellular therapies. The importance and significance of allostery in molecular and cellular therapies and "allosteric disease", "allosteric effect", and "allosteric drug" should be more carefully examined and validated. Cell therapy has been attracting an increasing amount of consideration in the development of new treatments for diseases. Molecular and Cellular Therapies (MCT) is a new, open-access journal, devoted to molecular mechanisms, preclinical and clinical research and development of gene-, peptide-, protein-, and cell-based therapies.
Collapse
Affiliation(s)
- Xiangdong Wang
- />Shanghai Institute of Respiratory Diseases; Department of Respiratory Medicine, Fudan University Zhongshan Hospital, Shanghai, Sweden
- />Institute of Clinical Science, Lund University, Lund, Sweden
| | - Dan Peer
- />Department of Cell Research & Immunology, Laboratory of NanoMedicine, and the center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bryon Petersen
- />Department of Pediatrics, University of Florida, Children Health Research Institute, Gainesville, FL USA
| |
Collapse
|
49
|
Wang X, Peer D, Petersen B. Molecular and Cellular Therapies: New challenges and opportunities. MOLECULAR AND CELLULAR THERAPIES 2013; 1:1. [PMID: 26056567 PMCID: PMC4448952 DOI: 10.1186/2052-8426-1-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022]
Abstract
Gene therapy is suggested to be one of the most specific and efficient modulations for gene deficient diseases and extended to other diseases like cancer and inflammation, even though there are still challenges to be faced, such as specific and selective delivery, minimal to no toxicity, efficient metabolism, simplicity, and measurable efficiency. It is important to identify and validate drug-able disease-specific targets for molecular and cellular therapies, while it is equally important to have disease biomarkers to trace and define the biological effects of molecular and cellular therapies. The importance and significance of allostery in molecular and cellular therapies and "allosteric disease", "allosteric effect", and "allosteric drug" should be more carefully examined and validated. Cell therapy has been attracting an increasing amount of consideration in the development of new treatments for diseases. Molecular and Cellular Therapies (MCT) is a new, open-access journal, devoted to molecular mechanisms, preclinical and clinical research and development of gene-, peptide-, protein-, and cell-based therapies.
Collapse
Affiliation(s)
- Xiangdong Wang
- Shanghai Institute of Respiratory Diseases; Department of Respiratory Medicine, Fudan University Zhongshan Hospital, Shanghai, Sweden ; Institute of Clinical Science, Lund University, Lund, Sweden
| | - Dan Peer
- Department of Cell Research & Immunology, Laboratory of NanoMedicine, and the center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bryon Petersen
- Department of Pediatrics, University of Florida, Children Health Research Institute, Gainesville, FL USA
| |
Collapse
|
50
|
Affiliation(s)
- K Mark Ansel
- Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|