1
|
Kitaya K. B Cell Lineage in the Human Endometrium: Physiological and Pathological Implications. Cells 2025; 14:648. [PMID: 40358172 PMCID: PMC12071375 DOI: 10.3390/cells14090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/12/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Immunocompetent cells of B lineage function in the humoral immunity system in the adaptive immune responses. B cells differentiate into plasmacytes upon antigen-induced activation and produce different subclasses of immunoglobulins/antibodies. Secreted immunoglobulins not only interact with pathogens to inactivate and neutralize them, but also involve the complement system to exert antibacterial activities and trigger opsonization. Endometrium is a mucosal tissue that lines the mammalian uterus and is indispensable for the establishment of a successful pregnancy. The lymphocytes of B cell lineage are a minority in the human cycling endometrium. Human endometrial B cells have therefore been understudied so far. However, the disorders of the female reproductive tract, including chronic endometritis and endometriosis, have highlighted the importance of further research on the endometrial B cell lineage. This review aims to revisit lymphopoiesis, maturation, commitment, and survival of B cells, shedding light on their physiological and pathological implications in the human endometrium.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Infertility Center, Iryouhoujin Kouseikai Mihara Hospital, 6-8 Kamikatsura Miyanogo-cho, Nishikyo-ku, Kyoto 615-8227, Japan
| |
Collapse
|
2
|
Hu SH, Gao B, Li ZJ, Yuan YC. Whole‑exome sequencing insights into synchronous bilateral breast cancer with discordant molecular subtypes. Oncol Lett 2024; 28:595. [PMID: 39430730 PMCID: PMC11487496 DOI: 10.3892/ol.2024.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
The incidence of synchronous bilateral breast cancer (SBBC) is very low, and SBBC with discordant molecular subtypes is even more uncommon. As such, little is known about the pathogenesis of SBBC with discordant molecular subtypes, and reports about this entity are scarce. In the present study, the case of a 72-year-old female patient who presented with SBBC with discordant molecular subtypes is reported, with a stage IA hormone receptor negative {human epidermal growth factor receptor-2 [HER2(+)]} tumor in the left breast and a stage IIIA hormone sensitive tumor [HER2(-)] in the right breast. Whole-exome sequencing was performed to identify the differential genetic variations in the BBC tissues. A total of 8 key mutated cancer susceptibility genes (ALK, BRCA1, FAT1, HNF1A, KDR, PTCH1, SDHA and SETBP1) were screened, and mutations were found in 10 vital cancer driver genes, including BRCA1, EBF1, MET, NF2, NUMA1 RALGAPA1, ROBO2, SMYD4, UBR5 and ZNF844. The high-frequency mutated genes mainly contained missense mutations, among which single nucleotide variants were the most common mutations, with C > T and C > A as the main forms. The pathways associated with the high frequency mutated genes were further elucidated by functional category and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Heterogeneity in the hormone receptor and HER2 status of SBBC poses unique therapeutic challenges. Future studies should aim to identify the optimal management strategy for this disease.
Collapse
Affiliation(s)
- Shi-Han Hu
- Department of Pathology and Pathophysiology, College of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bo Gao
- Department of Pathology and Pathophysiology, College of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Zheng-Jin Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Ya-Chen Yuan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
3
|
Ma X, Lin L, Zhao Q, Iqbal M. TriTan: an efficient triple nonnegative matrix factorization method for integrative analysis of single-cell multiomics data. Brief Bioinform 2024; 26:bbae615. [PMID: 39581871 PMCID: PMC11586128 DOI: 10.1093/bib/bbae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Single-cell multiomics have opened up tremendous opportunities for understanding gene regulatory networks underlying cell states by simultaneously profiling transcriptomes, epigenomes, and proteomes of the same cell. However, existing computational methods for integrative analysis of these high-dimensional multiomics data are either computationally expensive or limited in interpretation. These limitations pose challenges in the implementation of these methods in large-scale studies and hinder a more in-depth understanding of the underlying regulatory mechanisms. Here, we propose TriTan (Triple inTegrative fast non-negative matrix factorization), an efficient joint factorization method for single-cell multiomics data. TriTan implements a highly efficient factorization algorithm, greatly improving its computational performance. Three matrix factorization produced by TriTan helps in clustering cells, identifying signature features for each cell type, and uncovering feature associations across omics, which facilitates the identification of domains of regulatory chromatin and the prediction of cell-type-specific regulatory networks. We applied TriTan to the single-cell multiomics data obtained from different technologies and benchmarked it against the state-of-the-art methods where it shows highly competitive performance. Furthermore, we showed a range of downstream analyses conducted utilizing TriTan outputs, highlighting its capacity to facilitate interpretation in biological discovery.
Collapse
Affiliation(s)
- Xin Ma
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Lijing Lin
- Centre for Health Informatics, Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Qian Zhao
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Banerjee S, Sanyal S, Hodawadekar S, Naiyer S, Bano N, Banerjee A, Rhoades J, Dong D, Allman D, Atchison ML. YY1 knockout in pro-B cells impairs lineage commitment, enabling unusual hematopoietic lineage plasticity. Genes Dev 2024; 38:887-914. [PMID: 39362773 PMCID: PMC11535188 DOI: 10.1101/gad.351734.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
During B-cell development, cells progress through multiple developmental stages, with the pro-B-cell stage defining commitment to the B-cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We found here that knockout of YY1 at the pro-B-cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9-DL4 feeder system and in vivo after injection into sublethally irradiated Rag1-/- mice. These T lineage-like cells lose their B lineage transcript profile and gain a T-cell lineage profile. Single-cell RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells in vitro, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages, indicating unusual lineage plasticity. In addition, YY1 KO pro-B cells in vivo can give rise to other hematopoietic lineages in vivo. Evaluation of RNA-seq, scRNA-seq, ChIP-seq, and scATAC-seq data indicates that YY1 controls numerous chromatin-modifying proteins leading to increased accessibility of alternative lineage genes in YY1 knockout pro-B cells. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 may regulate commitment in multiple cell lineages.
Collapse
Affiliation(s)
- Sarmistha Banerjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sulagna Sanyal
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Suchita Hodawadekar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sarah Naiyer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nasreen Bano
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anupam Banerjee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joshua Rhoades
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dawei Dong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael L Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
5
|
Pu Y, Liu Y, Zhou XY, Song BQ, Zhang J, Yan WH, Wang Q, Cen JN, Shen HJ, Wang QR, Chen SN, Pan JL, Qiu HY. [Clinical analysis of 7 cases of acute B cell lymphoblastic leukemia with t (17;19) (q21-22;p13)/TCF3-HLF fusion]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:867-871. [PMID: 39414614 PMCID: PMC11518915 DOI: 10.3760/cma.j.cn121090-20240220-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 10/18/2024]
Abstract
A retrospective analysis of the clinical data of seven acute B-lymphoblastic leukemia (B-ALL) patients with TCF3-HLF fusion gene-positive admitted to the First Affiliated Hospital of Soochow University from June 2017 to August 2022 was conducted to summarize their clinical features and prognoses. The seven B-ALL patients comprised four males and three females, with a median age of 18 (11-33) years. Five patients tested positive for CD33 expression, and four patients had a normal karyotype. Two patients had hypercalcemia at the initial diagnosis, and one patient developed hypercalcemia at relapse. Six patients presented with coagulation dysfunction at diagnosis. After induction chemotherapy, five out of seven patients achieved complete remission, of which four subsequently relapsed. Two patients did not achieve remission even after two rounds of induction chemotherapy, with one achieving complete remission after treatment with blinatumomab immunotherapy. Three patients underwent chimeric antigen receptor T cell therapy, whereas three patients subsequently underwent hematopoietic stem cell transplantation. Five patients died, while two patients survived with sustained complete remission. TCF3-HLF-positive B-ALL is rare and has a high relapse rate and poor prognosis.
Collapse
Affiliation(s)
- Y Pu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Y Liu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - X Y Zhou
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - B Q Song
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J Zhang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - W H Yan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Q Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J N Cen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - H J Shen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Q R Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - S N Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J L Pan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - H Y Qiu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| |
Collapse
|
6
|
Otto DJ, Jordan C, Dury B, Dien C, Setty M. Quantifying cell-state densities in single-cell phenotypic landscapes using Mellon. Nat Methods 2024; 21:1185-1195. [PMID: 38890426 DOI: 10.1038/s41592-024-02302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Cell-state density characterizes the distribution of cells along phenotypic landscapes and is crucial for unraveling the mechanisms that drive diverse biological processes. Here, we present Mellon, an algorithm for estimation of cell-state densities from high-dimensional representations of single-cell data. We demonstrate Mellon's efficacy by dissecting the density landscape of differentiating systems, revealing a consistent pattern of high-density regions corresponding to major cell types intertwined with low-density, rare transitory states. We present evidence implicating enhancer priming and the activation of master regulators in emergence of these transitory states. Mellon offers the flexibility to perform temporal interpolation of time-series data, providing a detailed view of cell-state dynamics during developmental processes. Mellon facilitates density estimation across various single-cell data modalities, scaling linearly with the number of cells. Our work underscores the importance of cell-state density in understanding the differentiation processes, and the potential of Mellon to provide insights into mechanisms guiding biological trajectories.
Collapse
Affiliation(s)
- Dominik J Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cailin Jordan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Brennan Dury
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christine Dien
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Xu Y, Zhou Q, Wang X, Zhang A, Qi W, Li Y, Zheng C, Guan J, Sun T, Li J, Lu C, Shen Y, Zhao B. PELI2 regulates early B-cell progenitor differentiation and related leukemia via the IL-7R expression. Haematologica 2024; 109:1800-1814. [PMID: 38058209 PMCID: PMC11141684 DOI: 10.3324/haematol.2023.284041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Little is known about the transition mechanisms that govern early lymphoid lineage progenitors from common lymphoid progenitors (CLP). Pellino2 (PELI2) is a newly discovered E3 ubiquitin ligase, which plays important roles in inflammation and the immune system. However, the physiological and molecular roles of PELI2 in the differentiation of immune cells are largely unknown. Here, by using a conditional knockout mouse model, we demonstrated that PELI2 is required for early B-cell development and stressed hematopoiesis. PELI2 interacted with and stabilized PU.1 via K63-polyubiquitination to regulate IL-7R expression. The defects of B-cell development induced by PELI2 deletion were restored by overexpression of PU.1. Similarly, PELI2 promoted TCF3 protein stability via K63-polyubiquitination to regulate IL-7R expression, which is required for the proliferation of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. These results underscore the significance of PELI2 in both normal B lymphopoiesis and malignant B-cell acute lymphoblastic leukemia via the regulation of IL-7R expression, providing a potential therapeutic approach for BCP-ALL.
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Qian Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Xiaoming Wang
- Department of Pediatrics, Qilu hospital of Shandong University, Jinan, Shandong, 250012
| | - Aijun Zhang
- Department of Pediatrics, Qilu hospital of Shandong University, Jinan, Shandong, 250012
| | - Wentao Qi
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012
| | - Jianmin Guan
- Department of Hematology, Heze Municipal Hospital, Heze, Shandong
| | - Tao Sun
- Department of Hematology, Qilu hospital of Shandong University, Jinan, Shandong, 250012
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012
| | - Yuemao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012.
| |
Collapse
|
8
|
Zolotarev N, Wang Y, Du M, Bayer M, Grosschedl A, Cisse I, Grosschedl R. Regularly spaced tyrosines in EBF1 mediate BRG1 recruitment and formation of nuclear subdiffractive clusters. Genes Dev 2024; 38:4-10. [PMID: 38233109 PMCID: PMC10903943 DOI: 10.1101/gad.350828.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
B lineage priming by pioneer transcription factor EBF1 requires the function of an intrinsically disordered region (IDR). Here, we examine the role of regularly spaced tyrosines in the IDR as potential determinants of IDR function and activity of EBF1. We found that four Y > A mutations in EBF1 reduced the formation of condensates in vitro and subdiffractive clusters in vivo. Notably, Y > A mutant EBF1 was inefficient in promoting B cell differentiation and showed impaired chromatin binding, recruitment of BRG1, and activation of specific target genes. Thus, regularly spaced tyrosines in the IDR contribute to the biophysical and functional properties of EBF1.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Yuanting Wang
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Manyu Du
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Anna Grosschedl
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim Cisse
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| |
Collapse
|
9
|
Lambo S, Trinh DL, Ries RE, Jin D, Setiadi A, Ng M, Leblanc VG, Loken MR, Brodersen LE, Dai F, Pardo LM, Ma X, Vercauteren SM, Meshinchi S, Marra MA. A longitudinal single-cell atlas of treatment response in pediatric AML. Cancer Cell 2023; 41:2117-2135.e12. [PMID: 37977148 DOI: 10.1016/j.ccell.2023.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.
Collapse
Affiliation(s)
- Sander Lambo
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Jin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Audi Setiadi
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Veronique G Leblanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | | | - Fangyan Dai
- Hematologics, Incorporated, Seattle, WA, USA
| | | | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne M Vercauteren
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Kim EE, Shekhar A, Ramachandran J, Khodadadi-Jamayran A, Liu FY, Zhang J, Fishman GI. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 2023; 150:dev202054. [PMID: 37787076 PMCID: PMC10652039 DOI: 10.1242/dev.202054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
Collapse
Affiliation(s)
- Eugene E. Kim
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jayalakshmi Ramachandran
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Xu Y, Zheng C, Ashaq MS, Zhou Q, Li Y, Lu C, Zhao B. Regulatory role of E3 ubiquitin ligases in normal B lymphopoiesis and B-cell malignancies. Life Sci 2023; 331:122043. [PMID: 37633415 DOI: 10.1016/j.lfs.2023.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
E3 ubiquitin ligases play an essential role in protein ubiquitination, which is involved in the regulation of protein degradation, protein-protein interactions and signal transduction. Increasing evidences have shed light on the emerging roles of E3 ubiquitin ligases in B-cell development and related malignances. This comprehensive review summarizes the current understanding of E3 ubiquitin ligases in B-cell development and their contribution to B-cell malignances, which could help explore the molecular mechanism of normal B-cell development and provide potential therapeutic targets of the related diseases.
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
13
|
Xu Z, He L, Wu Y, Yang L, Li C, Wu H. PTEN regulates hematopoietic lineage plasticity via PU.1-dependent chromatin accessibility. Cell Rep 2023; 42:112967. [PMID: 37561626 DOI: 10.1016/j.celrep.2023.112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
PTEN loss in fetal liver hematopoietic stem cells (HSCs) leads to alterations in myeloid, T-, and B-lineage potentials and T-lineage acute lymphoblastic leukemia (T-ALL) development. To explore the mechanism underlying PTEN-regulated hematopoietic lineage choices, we carry out integrated assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell RNA-seq, and in vitro culture analyses using in vivo-isolated mouse pre-leukemic HSCs and progenitors. We find that PTEN loss alters chromatin accessibility of key lineage transcription factor (TF) binding sites at the prepro-B stage, corresponding to increased myeloid and T-lineage potentials and reduced B-lineage potential. Importantly, we find that PU.1 is an essential TF downstream of PTEN and that altering PU.1 levels can reprogram the chromatin accessibility landscape and myeloid, T-, and B-lineage potentials in Ptennull prepro-B cells. Our study discovers prepro-B as the key developmental stage underlying PTEN-regulated hematopoietic lineage choices and suggests a critical role of PU.1 in modulating the epigenetic state and lineage plasticity of prepro-B progenitors.
Collapse
Affiliation(s)
- Zihan Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China
| | - Libing He
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
14
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
15
|
Otto D, Jordan C, Dury B, Dien C, Setty M. Quantifying Cell-State Densities in Single-Cell Phenotypic Landscapes using Mellon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548272. [PMID: 37502954 PMCID: PMC10369887 DOI: 10.1101/2023.07.09.548272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cell-state density characterizes the distribution of cells along phenotypic landscapes and is crucial for unraveling the mechanisms that drive cellular differentiation, regeneration, and disease. Here, we present Mellon, a novel computational algorithm for high-resolution estimation of cell-state densities from single-cell data. We demonstrate Mellon's efficacy by dissecting the density landscape of various differentiating systems, revealing a consistent pattern of high-density regions corresponding to major cell types intertwined with low-density, rare transitory states. Utilizing hematopoietic stem cell fate specification to B-cells as a case study, we present evidence implicating enhancer priming and the activation of master regulators in the emergence of these transitory states. Mellon offers the flexibility to perform temporal interpolation of time-series data, providing a detailed view of cell-state dynamics during the inherently continuous developmental processes. Scalable and adaptable, Mellon facilitates density estimation across various single-cell data modalities, scaling linearly with the number of cells. Our work underscores the importance of cell-state density in understanding the differentiation processes, and the potential of Mellon to provide new insights into the regulatory mechanisms guiding cellular fate decisions.
Collapse
Affiliation(s)
- Dominik Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA
- Computational Biology Program, Public Health Sciences Division, Seattle WA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle WA
| | - Cailin Jordan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA
- Computational Biology Program, Public Health Sciences Division, Seattle WA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle WA
- Molecular and Cellular Biology Program, University of Washington, Seattle WA
| | - Brennan Dury
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA
- Computational Biology Program, Public Health Sciences Division, Seattle WA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle WA
| | - Christine Dien
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA
- Computational Biology Program, Public Health Sciences Division, Seattle WA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle WA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA
- Computational Biology Program, Public Health Sciences Division, Seattle WA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle WA
| |
Collapse
|
16
|
Külp M, Larghero P, Alten J, Cario G, Eckert C, Caye-Eude A, Cavé H, Schmachtel T, Bardini M, Cazzaniga G, De Lorenzo P, Valsecchi MG, Bonig H, Meyer C, Rieger MA, Marschalek R. The EGR3 regulome of infant KMT2A-r acute lymphoblastic leukemia identifies differential expression of B-lineage genes predictive for outcome. Leukemia 2023:10.1038/s41375-023-01895-z. [PMID: 37100882 PMCID: PMC10132433 DOI: 10.1038/s41375-023-01895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
KMT2A-rearranged acute lymphoblastic infant leukemia (KMT2A-r iALL) is associated with outsize risk of relapse and relapse mortality. We previously reported strong upregulation of the immediate early gene EGR3 in KMT2A::AFF1 iALL at relapse; now we provide analyses of the EGR3 regulome, which we assessed through binding and expression target analysis of an EGR3-overexpressing t(4;11) cell culture model. Our data identify EGR3 as a regulator of early B-lineage commitment. Principal component analysis of 50 KMT2A-r iALL patients at diagnosis and 18 at relapse provided strictly dichotomous separation of patients based on the expression of four B-lineage genes. Absence of B-lineage gene expression translates to more than two-fold poorer long-term event-free survival. In conclusion, our study presents four B-lineage genes with prognostic significance, suitable for gene expression-based risk stratification of KMT2A-r iALL patients.
Collapse
Affiliation(s)
- Marius Külp
- Diagnostic Center of Acute Leukemia (DCAL), Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Patrizia Larghero
- Diagnostic Center of Acute Leukemia (DCAL), Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| | - Julia Alten
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Cornelia Eckert
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aurélie Caye-Eude
- Genetics Department, AP-HP, Hôpital Robert Debré, F-75019, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, F-75010, Paris, France
| | - Hélène Cavé
- Genetics Department, AP-HP, Hôpital Robert Debré, F-75019, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, F-75010, Paris, France
| | - Tessa Schmachtel
- Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Michela Bardini
- Centro Ricerca Tettamanti, Pediatrics, University of Milan-Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM)/San Gerardo Hospital, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Pediatrics, University of Milan-Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM)/San Gerardo Hospital, Monza, Italy
- Genetics, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Paola De Lorenzo
- Statistical Section, Pediatric Clinic, University of Milan-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- Center of Bioinformatics, Biostatistics and Bioimaging, University of Milan-Bicocca, Monza, Italy
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
- Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
| | - Claus Meyer
- Diagnostic Center of Acute Leukemia (DCAL), Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKZF), Heidelberg, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Diagnostic Center of Acute Leukemia (DCAL), Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
18
|
Smits JG, Arts JA, Frölich S, Snabel RR, Heuts BM, Martens JH, van Heeringen SJ, Zhou H. scANANSE gene regulatory network and motif analysis of single-cell clusters. F1000Res 2023; 12:243. [PMID: 38116584 PMCID: PMC10728588 DOI: 10.12688/f1000research.130530.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 12/21/2023] Open
Abstract
The recent development of single-cell techniques is essential to unravel complex biological systems. By measuring the transcriptome and the accessible genome on a single-cell level, cellular heterogeneity in a biological environment can be deciphered. Transcription factors act as key regulators activating and repressing downstream target genes, and together they constitute gene regulatory networks that govern cell morphology and identity. Dissecting these gene regulatory networks is crucial for understanding molecular mechanisms and disease, especially within highly complex biological systems. The gene regulatory network analysis software ANANSE and the motif enrichment software GimmeMotifs were both developed to analyse bulk datasets. We developed scANANSE, a software pipeline for gene regulatory network analysis and motif enrichment using single-cell RNA and ATAC datasets. The scANANSE pipeline can be run from either R or Python. First, it exports data from standard single-cell objects. Next, it automatically runs multiple comparisons of cell cluster data. Finally, it imports the results back to the single-cell object, where the result can be further visualised, integrated, and interpreted. Here, we demonstrate our scANANSE pipeline on a publicly available PBMC multi-omics dataset. It identifies well-known cell type-specific hematopoietic factors. Importantly, we also demonstrated that scANANSE combined with GimmeMotifs is able to predict transcription factors with both activating and repressing roles in gene regulation.
Collapse
Affiliation(s)
- Jos G.A. Smits
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Julian A. Arts
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Siebren Frölich
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Rebecca R. Snabel
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Branco M.H. Heuts
- Molecular Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Joost H.A. Martens
- Molecular Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Simon J. van Heeringen
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Huiqing Zhou
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
- Human Genetics, Radboud University Medical Centre, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
19
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
20
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
21
|
Shi X, Yu Z, Ren P, Dong X, Ding X, Song J, Zhang J, Li T, Wang C. HUSCH: an integrated single-cell transcriptome atlas for human tissue gene expression visualization and analyses. Nucleic Acids Res 2023; 51:D1029-D1037. [PMID: 36318258 PMCID: PMC9825509 DOI: 10.1093/nar/gkac1001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding gene expression patterns across different human cell types is crucial for investigating mechanisms of cell type differentiation, disease occurrence and progression. The recent development of single-cell RNA-seq (scRNA-seq) technologies significantly boosted the characterization of cell type heterogeneities in different human tissues. However, the huge number of datasets in the public domain also posed challenges in data integration and reuse. We present Human Universal Single Cell Hub (HUSCH, http://husch.comp-genomics.org), an atlas-scale curated database that integrates single-cell transcriptomic profiles of nearly 3 million cells from 185 high-quality human scRNA-seq datasets from 45 different tissues. All the data in HUSCH were uniformly processed and annotated with a standard workflow. In the single dataset module, HUSCH provides interactive gene expression visualization, differentially expressed genes, functional analyses, transcription regulators and cell-cell interaction analyses for each cell type cluster. Besides, HUSCH integrated different datasets in the single tissue module and performs data integration, batch correction, and cell type harmonization. This allows a comprehensive visualization and analysis of gene expression within each tissue based on single-cell datasets from multiple sources and platforms. HUSCH is a flexible and comprehensive data portal that enables searching, visualizing, analyzing, and downloading single-cell gene expression for the human tissue atlas.
Collapse
Affiliation(s)
- Xiaoying Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiguang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi 530004, China
| | - Pengfei Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xuanxin Ding
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiaming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi 530004, China
| | - Jing Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
23
|
Takano J, Ito S, Dong Y, Sharif J, Nakajima-Takagi Y, Umeyama T, Han YW, Isono K, Kondo T, Iizuka Y, Miyai T, Koseki Y, Ikegaya M, Sakihara M, Nakayama M, Ohara O, Hasegawa Y, Hashimoto K, Arner E, Klose RJ, Iwama A, Koseki H, Ikawa T. PCGF1-PRC1 links chromatin repression with DNA replication during hematopoietic cell lineage commitment. Nat Commun 2022; 13:7159. [PMID: 36443290 PMCID: PMC9705430 DOI: 10.1038/s41467-022-34856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Polycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs). This function of PCGF1-PRC1 in turn facilitates PRC2-mediated repression of target genes such as Hmga2 and restricts premature myeloid differentiation. PCGF1-PRC1, therefore, maintains the differentiation potential of HSPCs by linking proper nucleosome configuration at the replication fork with PcG-mediated gene silencing to ensure life-long hematopoiesis.
Collapse
Affiliation(s)
- Junichiro Takano
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.136304.30000 0004 0370 1101Department of Cellular and Molecular Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shinsuke Ito
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yixing Dong
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Jafar Sharif
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yaeko Nakajima-Takagi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taichi Umeyama
- grid.7597.c0000000094465255Laboratory for Microbiome Sciences, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Yong-Woon Han
- grid.7597.c0000000094465255Laboratory for Integrative Genomics, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Kyoichi Isono
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.412857.d0000 0004 1763 1087Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kondo
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yusuke Iizuka
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Tomohiro Miyai
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yoko Koseki
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Mika Ikegaya
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Mizuki Sakihara
- grid.143643.70000 0001 0660 6861Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Manabu Nakayama
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yoshinori Hasegawa
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kosuke Hashimoto
- grid.136593.b0000 0004 0373 3971Laboratory of Computational Biology, Institute for Protein Research, Osaka University Osaka, Japan ,grid.7597.c0000000094465255Laboratory for Transcriptome Technology, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Erik Arner
- grid.7597.c0000000094465255Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Robert J. Klose
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsushi Iwama
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Haruhiko Koseki
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.136304.30000 0004 0370 1101Department of Cellular and Molecular Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomokatsu Ikawa
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.143643.70000 0001 0660 6861Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
24
|
Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022; 219:e20220038. [PMID: 35938989 PMCID: PMC9365674 DOI: 10.1084/jem.20220038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.
Collapse
Affiliation(s)
- Sara A. Rubin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Chloé S. Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Cecilia Pessoa Rodrigues
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra F. Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Song P. Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
25
|
Yamagishi M, Huang T, Hozumi A, Onuma TA, Sasakura Y, Ogasawara M. Differentiation of endostyle cells by Nkx2-1 and FoxE in the ascidian Ciona intestinalis type A: insights into shared gene regulation in glandular- and thyroid-equivalent elements of the chordate endostyle. Cell Tissue Res 2022; 390:189-205. [PMID: 36048302 DOI: 10.1007/s00441-022-03679-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Due to similarities in iodine concentrations and peroxidase activities, the thyroid in vertebrates is considered to originate from the endostyle of invertebrate chordates even though it is a glandular (mucus-producing) organ for aquatic suspension feeding. Among chordates with an endostyle, urochordates are useful evolutionary research models for the study of vertebrate traits. The ascidian Ciona intestinalis forms an endostyle with specific components of glandular- and thyroid-related elements, and molecular markers have been identified for these components. Since we previously examined a simple endostyle in the larvacean Oikopleura dioica, the expression of the thyroid-related transcription factor genes, Ciona Nkx2-1 and FoxE, was perturbed by TALEN-mediated gene knockout in the present study to elucidate the shared and/or divergent features of a complex ascidian endostyle. The knockout of Ciona Nkx2-1 and FoxE exerted different effects on the morphology of the developing endostyle. The knockout of Nkx2-1 eliminated the expression of both glandular and thyroidal differentiation marker genes, e.g., vWFL1, vWFL2, CiEnds1, TPO, and Duox, while that of FoxE eliminated the expression of the differentiation marker genes, TPO and CiEnds1. The supporting element-related expression of Pax2/5/8a, Pax2/5/8b, FoxQ1, and β-tubulin persisted in the hypoplastic endostyles of Nkx2-1- and FoxE-knockout juveniles. Although the gene regulation of ascidian-specific CiEnds1 remains unclear, these results provide insights into the evolution of the vertebrate thyroid as well as the urochordate endostyle.
Collapse
Affiliation(s)
- Masayuki Yamagishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Taoruo Huang
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
26
|
Bayer M, Boller S, Ramamoothy S, Zolotarev N, Cauchy P, Iwanami N, Mittler G, Boehm T, Grosschedl R. Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling. Genes Dev 2022; 36:901-915. [PMID: 36167471 PMCID: PMC9575695 DOI: 10.1101/gad.349696.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023]
Abstract
Transcription factor EBF1 (early B cell factor 1) acts as a key regulator of B cell specification. The transcriptional network in which EBF1 operates has been extensively studied; however, the regulation of EBF1 function remains poorly defined. By mass spectrometric analysis of proteins associated with endogenous EBF1 in pro-B cells, we identified the nuclear import receptor Transportin-3 (Tnpo3) and found that it interacts with the immunoglobulin-like fold domain of EBF1. We delineated glutamic acid 271 of EBF1 as a critical residue for the association with Tnpo3. EBF1E271A showed normal nuclear localization; however, it had an impaired B cell programming ability in conditions of Notch signaling, as determined by retroviral transduction of Ebf1 -/- progenitors. By RNA-seq analysis of EBF1E271A-expressing progenitors, we found an up-regulation of T lineage determinants and down-regulation of early B genes, although similar chromatin binding of EBF1E271A and EBF1wt was detected in pro-B cells expressing activated Notch1. B lineage-specific inactivation of Tnpo3 in mice resulted in a block of early B cell differentiation, accompanied by a down-regulation of B lineage genes and up-regulation of T and NK lineage genes. Taken together, our observations suggest that Tnpo3 ensures B cell programming by EBF1 in nonpermissive conditions.
Collapse
Affiliation(s)
- Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoothy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
27
|
Azagra A, Meler A, de Barrios O, Tomás-Daza L, Collazo O, Monterde B, Obiols M, Rovirosa L, Vila-Casadesús M, Cabrera-Pasadas M, Gusi-Vives M, Graf T, Varela I, Sardina JL, Javierre BM, Parra M. The HDAC7-TET2 epigenetic axis is essential during early B lymphocyte development. Nucleic Acids Res 2022; 50:8471-8490. [PMID: 35904805 PMCID: PMC9410891 DOI: 10.1093/nar/gkac619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell–based hematological malignancies.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Ainara Meler
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Oriol de Barrios
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Laureano Tomás-Daza
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Olga Collazo
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Beatriz Monterde
- Instituto de Biomedicina y Biotecnología de Cantabria. Universidad de Cantabria-CSIC. 39011 Santander, Spain
| | - Mireia Obiols
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Llorenç Rovirosa
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Maria Vila-Casadesús
- Centre for Genomic Regulation (CRG), PRBB Building, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mónica Cabrera-Pasadas
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mar Gusi-Vives
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), PRBB Building, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria. Universidad de Cantabria-CSIC. 39011 Santander, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| |
Collapse
|
28
|
EBF1 promotes triple-negative breast cancer progression by surveillance of the HIF1α pathway. Proc Natl Acad Sci U S A 2022; 119:e2119518119. [PMID: 35867755 PMCID: PMC9282371 DOI: 10.1073/pnas.2119518119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Early B cell factor 1 (EBF1) is a transcriptional factor with a variety of roles in cell differentiation and metabolism. However, the functional roles of EBF1 in tumorigenesis remain elusive. Here, we demonstrate that EBF1 is highly expressed in triple-negative breast cancer (TNBC). Furthermore, EBF1 has a pivotal role in the tumorigenicity and progression of TNBC. Moreover, we found that depletion of EBF1 induces extensive cell mitophagy and inhibits tumor growth. Genome-wide mapping of the EBF1 transcriptional regulatory network revealed that EBF1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that fine-tunes the expression of HIF1α targets via suppression of p300 activity. EBF1 therefore holds HIF1α activity in check to avert extensive mitophagy-induced cell death. Our findings reveal a key function for EBF1 as a master regulator of mitochondria homeostasis in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.
Collapse
|
29
|
Notter DR, Heidaritabar M, Burke JM, Shirali M, Murdoch BM, Morgan JLM, Morota G, Sonstegard TS, Becker GM, Spangler GL, MacNeil MD, Miller JE. Single Nucleotide Polymorphism Effects on Lamb Fecal Egg Count Estimated Breeding Values in Progeny-Tested Katahdin Sires. Front Genet 2022; 13:866176. [PMID: 35591856 PMCID: PMC9110833 DOI: 10.3389/fgene.2022.866176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/14/2022] [Indexed: 01/31/2023] Open
Abstract
Estimated breeding values (EBV) for fecal egg counts (FEC) at 42–90 days of age (WFEC) and 91–150 days of age (PFEC) for 84 progeny-tested Katahdin sires were used to identify associations of deregressed EBV with single-nucleotide polymorphisms (SNP) using 388,000 SNP with minor-allele frequencies ≥0.10 on an Illumina high-density ovine array. Associations between markers and FEC EBV were initially quantified by single-SNP linear regression. Effects of linkage disequilibrium (LD) were minimized by assigning SNP to 2,535 consecutive 1-Mb bins and focusing on the effect of the most significant SNP in each bin. Bonferroni correction was used to define bin-based (BB) genome- and chromosome-wide significance. Six bins on chromosome 5 achieved BB genome-wide significance for PFEC EBV, and three of those SNP achieved chromosome-wide significance after Bonferroni correction based on the 14,530 total SNP on chromosome 5. These bins were nested within 12 consecutive bins between 59 and 71 Mb on chromosome 5 that reached BB chromosome-wide significance. The largest SNP effects were at 63, 67, and 70 Mb, with LD among these SNP of r2 ≤ 0.2. Regional heritability mapping (RHM) was then used to evaluate the ability of different genomic regions to account for additive variance in FEC EBV. Chromosome-level RHM indicated that one 500-SNP window between 65.9 and 69.9 Mb accounted for significant variation in PFEC EBV. Five additional 500-SNP windows between 59.3 and 71.6 Mb reached suggestive (p < 0.10) significance for PFEC EBV. Although previous studies rarely identified markers for parasite resistance on chromosome 5, the IL12B gene at 68.5 Mb codes for the p40 subunit of both interleukins 12 and 23. Other immunoregulatory genes are also located in this region of chromosome 5, providing opportunity for additive or associative effects.
Collapse
Affiliation(s)
- David R. Notter
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: David R. Notter,
| | - Marzieh Heidaritabar
- Livestock Gentec, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Joan M. Burke
- United States Department of Agriculture, Agricultural Research Service, Dale Bumpers Small Farms Research Center, Booneville, AR, United States
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | | | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Gabrielle M. Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Gordon L. Spangler
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Michael D. MacNeil
- Delta G, Miles City, MT, United States
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | - James E. Miller
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
30
|
Wang Z, Zhang C, Warden CD, Liu Z, Yuan YC, Guo C, Wang C, Wang J, Wu X, Ermel R, Vonderfecht SL, Wang X, Brown C, Forman S, Yang Y, James You M, Chen W. Loss of SIRT1 inhibits hematopoietic stem cell aging and age-dependent mixed phenotype acute leukemia. Commun Biol 2022; 5:396. [PMID: 35484199 PMCID: PMC9051098 DOI: 10.1038/s42003-022-03340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/05/2022] [Indexed: 01/07/2023] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is linked to various blood disorders and malignancies. SIRT1 has been implicated in healthy aging, but its role in HSC aging is poorly understood. Surprisingly, we found that Sirt1 knockout improved the maintenance of quiescence of aging HSCs and their functionality as well as mouse survival in serial bone marrow transplantation (BMT) recipients. The majority of secondary and tertiary BMT recipients of aging wild type donor cells developed B/myeloid mixed phenotype acute leukemia (MPAL), which was markedly inhibited by Sirt1 knockout. SIRT1 inhibition also reduced the growth and survival of human B/myeloid MPAL cells. Sirt1 knockout suppressed global gene activation in old HSCs, prominently the genes regulating protein synthesis and oxidative metabolism, which may involve multiple downstream transcriptional factors. Our results demonstrate an unexpected role of SIRT1 in promoting HSC aging and age-dependent MPAL and suggest SIRT1 may be a new therapeutic target for modulating functions of aging HSCs and treatment of MPAL.
Collapse
Affiliation(s)
- Zhiqiang Wang
- grid.410425.60000 0004 0421 8357Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA ,grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Chunxiao Zhang
- grid.410425.60000 0004 0421 8357Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Charles David Warden
- grid.410425.60000 0004 0421 8357Integrative Genomics Core, Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Zheng Liu
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Yate-Ching Yuan
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Chao Guo
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Charles Wang
- grid.410425.60000 0004 0421 8357Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA ,grid.43582.380000 0000 9852 649XPresent Address: Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350 USA
| | - Jinhui Wang
- grid.410425.60000 0004 0421 8357Integrative Genomics Core, Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Xiwei Wu
- grid.410425.60000 0004 0421 8357Integrative Genomics Core, Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Richard Ermel
- grid.410425.60000 0004 0421 8357Center for Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | | | - Xiuli Wang
- grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Christine Brown
- grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Stephen Forman
- grid.410425.60000 0004 0421 8357Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Yaling Yang
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - M. James You
- grid.240145.60000 0001 2291 4776Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - WenYong Chen
- grid.410425.60000 0004 0421 8357Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
31
|
van Nijnatten J, Brandsma CA, Steiling K, Hiemstra PS, Timens W, van den Berge M, Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep 2022; 12:5610. [PMID: 35379844 PMCID: PMC8980043 DOI: 10.1038/s41598-022-09093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.
Collapse
|
32
|
Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms23063067. [PMID: 35328487 PMCID: PMC8950780 DOI: 10.3390/ijms23063067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the rapid development of medicine, even nowadays, acute lymphoblastic leukemia (ALL) is still a problem for pediatric clinicians. Modern medicine has reached a limit of curability even though the recovery rate exceeds 90%. Relapse occurs in around 20% of treated patients and, regrettably, 10% of diagnosed ALL patients are still incurable. In this article, we would like to focus on the treatment resistance and disease relapse of patients with B-cell leukemia in the context of prognostic factors of ALL. We demonstrate the mechanisms of the resistance to steroid therapy and Tyrosine Kinase Inhibitors and assess the impact of genetic factors on the treatment resistance, especially TCF3::HLF translocation. We compare therapeutic protocols and decipher how cancer cells become resistant to innovative treatments—including CAR-T-cell therapies and monoclonal antibodies. The comparisons made in our article help to bring closer the main factors of resistance in hematologic malignancies in the context of ALL.
Collapse
|
33
|
Huang J, Long Z, Jia R, Wang M, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Mao S, Ou X, Sun D, Gao Q, Cheng A. The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines. Front Immunol 2021; 12:680442. [PMID: 34956167 PMCID: PMC8702497 DOI: 10.3389/fimmu.2021.680442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Nagel S, Meyer C. Establishment of the TBX-code reveals aberrantly activated T-box gene TBX3 in Hodgkin lymphoma. PLoS One 2021; 16:e0259674. [PMID: 34807923 PMCID: PMC8608327 DOI: 10.1371/journal.pone.0259674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
T-box genes encode transcription factors which control basic processes in development of several tissues including cell differentiation in the hematopoietic system. Here, we analyzed the physiological activities of all 17 human T-box genes in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells. The resultant expression pattern comprised six genes, namely EOMES, MGA, TBX1, TBX10, TBX19 and TBX21. We termed this gene signature TBX-code which enables discrimination of normal and aberrant activities of T-box genes in lymphoid malignancies. Accordingly, expression analysis of T-box genes in Hodgkin lymphoma (HL) patients using a public profiling dataset revealed overexpression of EOMES, TBX1, TBX2, TBX3, TBX10, TBX19, TBX21 and TBXT while MGA showed aberrant downregulation. Analysis of T-cell acute lymphoid leukemia patients indicated aberrant overexpression of six T-box genes while no deregulated T-box genes were detected in anaplastic large cell lymphoma patients. As a paradigm we focused on TBX3 which was ectopically activated in about 6% of HL patients analyzed. Normally, TBX3 is expressed in tissues like lung, adrenal gland and retina but not in hematopoiesis. HL cell line KM-H2 expressed enhanced TBX3 levels and was used as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line showed focal amplification of the TBX3 locus at 12q24 which may underlie its aberrant expression. In addition, promoter analysis and comparative expression profiling of HL cell lines followed by knockdown experiments revealed overexpressed transcription factors E2F4 and FOXC1 and chromatin modulator KDM2B as functional activators. Furthermore, we identified repressed target genes of TBX3 in HL including CDKN2A, NFKBIB and CD19, indicating its respective oncogenic function in proliferation, NFkB-signaling and B-cell differentiation. Taken together, we have revealed a lymphoid TBX-code and used it to identify an aberrant network around deregulated T-box gene TBX3 in HL which promotes hallmark aberrations of this disease. These findings provide a framework for future studies to evaluate deregulated T-box genes in lymphoid malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
35
|
A regulatory network of microRNAs confers lineage commitment during early developmental trajectories of B and T lymphocytes. Proc Natl Acad Sci U S A 2021; 118:2104297118. [PMID: 34750254 DOI: 10.1073/pnas.2104297118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
The commitment of hematopoietic multipotent progenitors (MPPs) toward a particular lineage involves activation of cell type-specific genes and silencing of genes that promote alternate cell fates. Although the gene expression programs of early-B and early-T lymphocyte development are mutually exclusive, we show that these cell types exhibit significantly correlated microRNA (miRNA) profiles. However, their corresponding miRNA targetomes are distinct and predominated by transcripts associated with natural killer, dendritic cell, and myeloid lineages, suggesting that miRNAs function in a cell-autonomous manner. The combinatorial expression of miRNAs miR-186-5p, miR-128-3p, and miR-330-5p in MPPs significantly attenuates their myeloid differentiation potential due to repression of myeloid-associated transcripts. Depletion of these miRNAs caused a pronounced de-repression of myeloid lineage targets in differentiating early-B and early-T cells, resulting in a mixed-lineage gene expression pattern. De novo motif analysis combined with an assay of promoter activities indicates that B as well as T lineage determinants drive the expression of these miRNAs in lymphoid lineages. Collectively, we present a paradigm that miRNAs are conserved between developing B and T lymphocytes, yet they target distinct sets of promiscuously expressed lineage-inappropriate genes to suppress the alternate cell-fate options. Thus, our studies provide a comprehensive compendium of miRNAs with functional implications for B and T lymphocyte development.
Collapse
|
36
|
Salim M, Heldt F, Thomay K, Lentes J, Behrens YL, Kaune B, Möricke A, Cario G, Schieck M, Hofmann W, Davenport C, Steinemann D, Schrappe M, Schlegelberger B, Göhring G. Cryptic TCF3 fusions in childhood leukemia: Detection by RNA sequencing. Genes Chromosomes Cancer 2021; 61:22-26. [PMID: 34460133 DOI: 10.1002/gcc.22998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in childhood and adolescence. In more than 60% of cases of this heterogeneous disease, a genetic marker is identified via cytogenetic or molecular analyses. TCF3 gene fusions occur in 5%-11% of ALL patients. In < 1%, the TCF3 alteration in ALL leads to a TCF3-HLF fusion gene. Even though this is a very rare event, the detection of a TCF3-HLF fusion gene is associated with a very poor prognosis with incurable relapses in almost all patients. The frequent TCF3-PBX1 fusion gene, which is detectable in 5%-10% of childhood B-cell precursor ALLs and ~3.8% of adult B-cell precursor ALLs, is associated with a rather good prognosis, that is, an observed event-free 5-year survival of approximately 85%. Thus, the distinction of the different partner genes fused to TCF3 is essential for risk assessment. To verify RNA sequencing as a tool for detection of known and unknown fusion genes, we screened 200 cases of pediatric B-cell precursor ALL with "targeted" RNA sequencing in a pilot project in comparison to classical cytogenetic analyses (chromosome R-banding analysis), fluorescence in situ hybridization, and PCR. We observed a TCF3 fusion gene in 6.5% (13/200) of the patients. Ten (5%) patients displayed a TCF3-PBX1 fusion gene, two (1%) patients a TCF3-FLI1 fusion gene, and one (0.5%) patient a TCF3-HLF fusion gene. For the TCF3 fusions, we obtained discrepant results with the different methods, which are described in the article. Taken together, translocations leading to TCF3 fusion genes might appear cryptic and may remain undetected by a single method.
Collapse
Affiliation(s)
- Mustafa Salim
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Frederik Heldt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Beate Kaune
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anja Möricke
- General Paediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- General Paediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maximilian Schieck
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- General Paediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
37
|
Liao W, Kohler ME, Fry T, Ernst P. Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Exp Hematol 2021; 100:1-11. [PMID: 34298117 PMCID: PMC8611617 DOI: 10.1016/j.exphem.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 01/20/2023]
Abstract
The clinical success of engineered, CD19-directed chimeric antigen receptor (CAR) T cells in relapsed, refractory B-cell acute lymphoblastic leukemia (B-ALL) has generated great enthusiasm for the use of CAR T cells in patients with cytogenetics that portend a poor prognosis with conventional cytotoxic therapies. One such group includes infants and children with mixed lineage leukemia (MLL1, KMT2A) rearrangements (MLL-r), who fare much worse than patients with low- or standard-risk B-ALL. Although early clinical trials using CD19 CAR T cells for MLL-r B-ALL produced complete remission in most patients, relapse with CD19-negative disease was a common mechanism of treatment failure. Whereas CD19neg relapse has been observed across a broad spectrum of B-ALL patients treated with CD19-directed therapy, patients with MLL-r have manifested the emergence of AML, often clonally related to the B-ALL, suggesting that the inherent heterogeneity or lineage plasticity of MLL-r B-ALL may predispose patients to a myeloid relapse. Understanding the factors that enable and drive myeloid relapse may be important to devise strategies to improve durability of remissions. In this review, we summarize clinical observations to date with MLL-r B-ALL and generally discuss lineage plasticity as a mechanism of escape from immunotherapy.
Collapse
Affiliation(s)
- Wenjuan Liao
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - M Eric Kohler
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Terry Fry
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Immunology Department and HI3 Initiative, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Pharmacology Department, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO.
| |
Collapse
|
38
|
Baizan-Edge A, Stubbs BA, Stubbington MJT, Bolland DJ, Tabbada K, Andrews S, Corcoran AE. IL-7R signaling activates widespread V H and D H gene usage to drive antibody diversity in bone marrow B cells. Cell Rep 2021; 36:109349. [PMID: 34260907 PMCID: PMC8293627 DOI: 10.1016/j.celrep.2021.109349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7Rα-/- bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences VH gene selection during VH-to-DJH recombination. We find skewing toward 3' VH genes during de novo VH-to-DJH recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in DH-to-JH recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of DH and VH antisense transcription in IL-7Rα-/- B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.
Collapse
Affiliation(s)
- Amanda Baizan-Edge
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bryony A Stubbs
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
39
|
Abstract
EBF1 is a pioneer transcription factor involved in B lymphocyte specification. In this issue of Immunity, Wang et al. localize EBF1's pioneering activity to a prion-like domain that mediates recruitment of the nucleosome remodeler Brg1 and FUS-assisted liquid-liquid phase separation.
Collapse
|
40
|
NKL-Code in Normal and Aberrant Hematopoiesis. Cancers (Basel) 2021; 13:cancers13081961. [PMID: 33921702 PMCID: PMC8073162 DOI: 10.3390/cancers13081961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gene codes represent expression patterns of closely related genes in particular tissues, organs or body parts. The NKL-code describes the activity of NKL homeobox genes in the hematopoietic system. NKL homeobox genes encode transcription factors controlling basic developmental processes. Therefore, aberrations of this code may contribute to deregulated hematopoiesis including leukemia and lymphoma. Normal and abnormal activities of NKL homeobox genes are described and mechanisms of (de)regulation, function, and diseases exemplified. Abstract We have recently described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis and myelopoiesis, including terminally differentiated blood cells. We thereby systematized differential expression patterns of eleven such genes which form the so-called NKL-code. Due to the developmental impact of NKL homeobox genes, these data suggest a key role for their activity in normal hematopoietic differentiation processes. On the other hand, the aberrant overexpression of NKL-code-members or the ectopical activation of non-code members have been frequently reported in lymphoid and myeloid leukemia/lymphoma, revealing the oncogenic potential of these genes in the hematopoietic compartment. Here, I provide an overview of the NKL-code in normal hematopoiesis and instance mechanisms of deregulation and oncogenic functions of selected NKL genes in hematologic cancers. As well as published clinical studies, our conclusions are based on experimental work using hematopoietic cell lines which represent useful models to characterize the role of NKL homeobox genes in specific tumor types.
Collapse
|
41
|
Pongubala JMR, Murre C. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Front Immunol 2021; 12:633825. [PMID: 33854505 PMCID: PMC8039525 DOI: 10.3389/fimmu.2021.633825] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Higher-order spatial organization of the genome into chromatin compartments (permissive and repressive), self-associating domains (TADs), and regulatory loops provides structural integrity and offers diverse gene regulatory controls. In particular, chromatin regulatory loops, which bring enhancer and associated transcription factors in close spatial proximity to target gene promoters, play essential roles in regulating gene expression. The establishment and maintenance of such chromatin loops are predominantly mediated involving CTCF and the cohesin machinery. In recent years, significant progress has been made in revealing how loops are assembled and how they modulate patterns of gene expression. Here we will discuss the mechanistic principles that underpin the establishment of three-dimensional (3D) chromatin structure and how changes in chromatin structure relate to alterations in gene programs that establish immune cell fate.
Collapse
Affiliation(s)
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Liu GJ, Jaritz M, Wöhner M, Agerer B, Bergthaler A, Malin SG, Busslinger M. Repression of the B cell identity factor Pax5 is not required for plasma cell development. J Exp Med 2021; 217:152012. [PMID: 32780801 PMCID: PMC7596824 DOI: 10.1084/jem.20200147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/20/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023] Open
Abstract
B cell and plasma cell fates are controlled by different transcriptional networks, as exemplified by the mutually exclusive expression and cross-antagonism of the B cell identity factor Pax5 and the plasma cell regulator Blimp1. It has been postulated that repression of Pax5 by Blimp1 is essential for plasma cell development. Here, we challenged this hypothesis by analyzing the IghPax5/+ mouse, which expressed a Pax5 minigene from the immunoglobulin heavy-chain locus. Despite high Pax5 expression, plasma cells efficiently developed in young IghPax5/+ mice at steady state and upon immunization, while their number moderately declined in older mice. Although Pax5 significantly deregulated the plasma cell expression program, key plasma cell regulators were normally expressed in IghPax5/+ plasma cells. While IgM and IgA secretion by IghPax5/+ plasma cells was normal, IgG secretion was modestly decreased. Hence, Pax5 repression is not essential for robust plasma cell development and antibody secretion, although it is required for optimal IgG production and accumulation of long-lived plasma cells.
Collapse
Affiliation(s)
- Grace J Liu
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Miriam Wöhner
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Benedikt Agerer
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stephen G Malin
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
43
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
44
|
Jackson TR, Ling RE, Roy A. The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:637975. [PMID: 33679795 PMCID: PMC7928347 DOI: 10.3389/fimmu.2021.637975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis and how it changes in postnatal life is vital for building a complete picture of normal B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with many of the leukemia-initiating events originating in utero. It is likely that the biology of B-ALL, including leukemia initiation, maintenance and progression depends on the developmental stage and type of B-lymphoid cell in which it originates. This is particularly important for early life leukemias, where specific characteristics of fetal B-cells might be key to determining how the disease behaves, including response to treatment. These cellular, molecular and/or epigenetic features are likely to change with age in a cell intrinsic and/or microenvironment directed manner. Most of our understanding of fetal B-lymphopoiesis has been based on murine data, but many recent studies have focussed on characterizing human fetal B-cell development, including functional and molecular assays at a single cell level. In this mini-review we will give a short overview of the recent advances in the understanding of human fetal B-lymphopoiesis, including its relevance to infant/childhood leukemia, and highlight future questions in the field.
Collapse
Affiliation(s)
- Thomas R Jackson
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca E Ling
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
45
|
Bąk A, Skonieczka K, Jaśkowiec A, Junkiert-Czarnecka A, Heise M, Pilarska-Deltow M, Potoczek S, Czyżewska M, Haus O. Searching for germline mutations in the RUNX1 gene among Polish patients with acute myeloid leukemia. Leuk Lymphoma 2021; 62:1749-1755. [PMID: 33563056 DOI: 10.1080/10428194.2021.1881503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of the study was the identification of constitutional RUNX1 mutations among AML patients. The study group included 100 patients of Polish origin, diagnosed with de novo AML. 14 out of 100 AML patients had together 17 RUNX1 mutations, three of which were found to be germline changes. The difference in germline mutation frequency between study and control groups was not statistically significant (p = 0.193), but the odds ratio was 7.215. In all patients with germline mutations, chromosome 7 aberrations were found. The difference in the frequency of chromosome 7 aberrations between the group of patients with and without germline mutations was statistically significant (p = 0.008, OR = 73.00). We showed a higher frequency of germline mutations of RUNX1 in AML patients than in the control group, which confirms the role of these mutations in the development of AML, and an association of germline mutations with aberrations of chromosome 7.
Collapse
Affiliation(s)
- Aneta Bąk
- Department of Clinical Genetics, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Skonieczka
- Department of Clinical Genetics, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Jaśkowiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University, Wrocław, Poland
| | - Anna Junkiert-Czarnecka
- Department of Clinical Genetics, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Heise
- Department of Clinical Genetics, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Maria Pilarska-Deltow
- Department of Clinical Genetics, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Stanisław Potoczek
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University, Wrocław, Poland
| | | | - Olga Haus
- Department of Clinical Genetics, Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
46
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Establishment of the TALE-code reveals aberrantly activated homeobox gene PBX1 in Hodgkin lymphoma. PLoS One 2021; 16:e0246603. [PMID: 33539429 PMCID: PMC7861379 DOI: 10.1371/journal.pone.0246603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation and are grouped into classes and subclasses according to sequence similarities. Here, we analyzed the activities of the 20 members strong TALE homeobox gene class in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells (ILC). The resultant expression pattern comprised eleven genes and which we termed TALE-code enables discrimination of normal and aberrant activities of TALE homeobox genes in lymphoid malignancies. Subsequent expression analysis of TALE homeobox genes in public datasets of Hodgkin lymphoma (HL) patients revealed overexpression of IRX3, IRX4, MEIS1, MEIS3, PBX1, PBX4 and TGIF1. As paradigm we focused on PBX1 which was deregulated in about 17% HL patients. Normal PBX1 expression was restricted to hematopoietic stem cells and progenitors of T-cells and ILCs but absent in B-cells, reflecting its roles in stemness and early differentiation. HL cell line SUP-HD1 expressed enhanced PBX1 levels and served as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line therein showed a gain of the PBX1 locus at 1q23 which may underlie its aberrant expression. Comparative expression profiling analyses of HL patients and cell lines followed by knockdown experiments revealed NFIB and TLX2 as target genes activated by PBX1. HOX proteins operate as cofactors of PBX1. Accordingly, our data showed that HOXB9 overexpressed in HL coactivated TLX2 but not NFIB while activating TNFRSF9 without PBX1. Further downstream analyses showed that TLX2 activated TBX15 which operated anti-apoptotically. Taken together, we discovered a lymphoid TALE-code and identified an aberrant network around deregulated TALE homeobox gene PBX1 which may disturb B-cell differentiation in HL by reactivation of progenitor-specific genes. These findings may provide the framework for future studies to exploit possible vulnerabilities of malignant cells in therapeutic scenarios.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
47
|
Xing M, Ooi WF, Tan J, Qamra A, Lee PH, Li Z, Xu C, Padmanabhan N, Lim JQ, Guo YA, Yao X, Amit M, Ng LM, Sheng T, Wang J, Huang KK, Anene-Nzelu CG, Ho SWT, Ray M, Ma L, Fazzi G, Lim KJ, Wijaya GC, Zhang S, Nandi T, Yan T, Chang MM, Das K, Isa ZFA, Wu J, Poon PSY, Lam YN, Lin JS, Tay ST, Lee MH, Tan ALK, Ong X, White K, Rozen SG, Beer M, Foo RSY, Grabsch HI, Skanderup AJ, Li S, Teh BT, Tan P. Genomic and epigenomic EBF1 alterations modulate TERT expression in gastric cancer. J Clin Invest 2021; 130:3005-3020. [PMID: 32364535 DOI: 10.1172/jci126726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.
Collapse
Affiliation(s)
- Manjie Xing
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Wen Fong Ooi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Aditi Qamra
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Po-Hsien Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nisha Padmanabhan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Singapore
| | - Mandoli Amit
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ley Moy Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Taotao Sheng
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Jing Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Singapore
| | - Shamaine Wei Ting Ho
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mohana Ray
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Gregorio Fazzi
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Kevin Junliang Lim
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Giovani Claresta Wijaya
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Shenli Zhang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Tannistha Nandi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Tingdong Yan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Mei Mei Chang
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore
| | - Kakoli Das
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zul Fazreen Adam Isa
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Jeanie Wu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Polly Suk Yean Poon
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Yue Ning Lam
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Joyce Suling Lin
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kevin White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA.,Tempus Labs, Chicago, Illinois, USA
| | - Steven George Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| | - Michael Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Medicine, and.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Singapore
| | - Heike Irmgard Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,Pathology and Data Analyticis, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Biomedical Research Council, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
48
|
Rothenberg EV, Göttgens B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr Opin Hematol 2021; 28:1-10. [PMID: 33229891 PMCID: PMC7755131 DOI: 10.1097/moh.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
49
|
Kucinski I, Wilson NK, Hannah R, Kinston SJ, Cauchy P, Lenaerts A, Grosschedl R, Göttgens B. Interactions between lineage-associated transcription factors govern haematopoietic progenitor states. EMBO J 2020; 39:e104983. [PMID: 33103827 PMCID: PMC7737608 DOI: 10.15252/embj.2020104983|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent advances in molecular profiling provide descriptive datasets of complex differentiation landscapes including the haematopoietic system, but the molecular mechanisms defining progenitor states and lineage choice remain ill-defined. Here, we employed a cellular model of murine multipotent haematopoietic progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs) followed by RNA-Seq analysis, to functionally define a regulatory network of 16,992 regulator/target gene links. Focussed analysis of the subnetworks regulated by the B-lymphoid TF Ebf1 and T-lymphoid TF Gata3 revealed a surprising role in common activation of an early myeloid programme. Moreover, Gata3-mediated repression of Pax5 emerges as a mechanism to prevent precocious B-lymphoid differentiation, while Hox-mediated activation of Meis1 suppresses myeloid differentiation. To aid interpretation of large transcriptomics datasets, we also report a new method that visualises likely transitions that a progenitor will undergo following regulatory network perturbations. Taken together, this study reveals how molecular network wiring helps to establish a multipotent progenitor state, with experimental approaches and analysis tools applicable to dissecting a broad range of both normal and perturbed cellular differentiation landscapes.
Collapse
Affiliation(s)
- Iwo Kucinski
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Nicola K Wilson
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Rebecca Hannah
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Sarah J Kinston
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Pierre Cauchy
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Aurelie Lenaerts
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany,International Max Planck Research School for Molecular and Cellular BiologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Berthold Göttgens
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
50
|
Kucinski I, Wilson NK, Hannah R, Kinston SJ, Cauchy P, Lenaerts A, Grosschedl R, Göttgens B. Interactions between lineage-associated transcription factors govern haematopoietic progenitor states. EMBO J 2020; 39:e104983. [PMID: 33103827 PMCID: PMC7737608 DOI: 10.15252/embj.2020104983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in molecular profiling provide descriptive datasets of complex differentiation landscapes including the haematopoietic system, but the molecular mechanisms defining progenitor states and lineage choice remain ill-defined. Here, we employed a cellular model of murine multipotent haematopoietic progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs) followed by RNA-Seq analysis, to functionally define a regulatory network of 16,992 regulator/target gene links. Focussed analysis of the subnetworks regulated by the B-lymphoid TF Ebf1 and T-lymphoid TF Gata3 revealed a surprising role in common activation of an early myeloid programme. Moreover, Gata3-mediated repression of Pax5 emerges as a mechanism to prevent precocious B-lymphoid differentiation, while Hox-mediated activation of Meis1 suppresses myeloid differentiation. To aid interpretation of large transcriptomics datasets, we also report a new method that visualises likely transitions that a progenitor will undergo following regulatory network perturbations. Taken together, this study reveals how molecular network wiring helps to establish a multipotent progenitor state, with experimental approaches and analysis tools applicable to dissecting a broad range of both normal and perturbed cellular differentiation landscapes.
Collapse
Affiliation(s)
- Iwo Kucinski
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Nicola K Wilson
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Rebecca Hannah
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Sarah J Kinston
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Pierre Cauchy
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Aurelie Lenaerts
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Molecular and Cellular BiologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Berthold Göttgens
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|