1
|
Healy C, Ehrt S, Gouzy A. An exacerbated phosphate starvation response triggers Mycobacterium tuberculosis glycerol utilization at acidic pH. mBio 2025; 16:e0282524. [PMID: 39611843 PMCID: PMC11708021 DOI: 10.1128/mbio.02825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
The mechanisms controlling Mycobacterium tuberculosis (Mtb) replication and survival inside its human host remain ill-defined. Phagosome acidification and nutrient deprivation are common mechanisms used by macrophages to restrict the replication of intracellular bacteria. Mtb stops replicating at mildly acidic pH (
Collapse
Affiliation(s)
- Claire Healy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Thomas SS, Abhinand K, Menon AM, Nair BG, Kumar GB, Arun KB, Edison LK, Madhavan A. Epigenetic Mechanisms Induced by Mycobacterium tuberculosis to Promote Its Survival in the Host. Int J Mol Sci 2024; 25:11801. [PMID: 39519352 PMCID: PMC11546203 DOI: 10.3390/ijms252111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis caused by the obligate intracellular pathogen, Mycobacterium tuberculosis, is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications. The quest for better treatment approaches is driving the research in the field of host epigenomics forward in context with tuberculosis. The interplay between various host epigenetic factors and the pathogen is under investigation. A comprehensive understanding of how Mycobacterium tuberculosis orchestrates such epigenetic factors and favors its survival within the host is in increasing demand. The modifications beneficial to the pathogen are reversible and possess the potential to be better targets for various therapeutic approaches. The mechanisms, including histone modifications, DNA methylation, and miRNA modification, are being explored for their impact on pathogenesis. In this article, we are deciphering the role of mycobacterial epigenetic regulators on various strategies like cytokine expression, macrophage polarization, autophagy, and apoptosis, along with a glimpse of the potential of host-directed therapies.
Collapse
Affiliation(s)
- Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Kuniyil Abhinand
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Arjun M. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - K. B. Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| |
Collapse
|
3
|
Zhang X, Ding G, Yang X, Lu H, Xu Y, Hu Y, Liu S, Zhang H, Huang K, Deng G, Ye T, Yu Q, Cai Y, Xie S, Wang W, Chen X. Myriocin enhances the clearance of M. tuberculosis by macrophages through the activation of PLIN2. mSphere 2024; 9:e0025724. [PMID: 38920406 PMCID: PMC11288015 DOI: 10.1128/msphere.00257-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Myriocin is an inhibitor of de novo synthesis of sphingolipids and ceramides. In this research, we showed myriocin could significantly reduce Mtb burden and histopathological inflammation in mice. However, the underlying mechanism remains unclear. RNA-seq analysis revealed a significant increase in gene expression of PLIN2/CD36/CERT1 after myriocin treatment. The reduced bactericidal burden was only reversed after silencing the lipid droplets (LDs) surface protein PLIN2. This suggests that myriocin enhances the ability of macrophages to clear Mtb depending on the PLIN2 gene, which is part of the PPARγ pathway. Indeed, we observed a significant increase in the number of LDs following myriocin treatment.IMPORTANCEMycobacterium tuberculosis has the ability to reprogram host cell lipid metabolism and alter the antimicrobial functions of infected macrophages. The sphingolipids, such as ceramides, are the primary host lipids utilized by the bacteria, making the sphingomyelinase/ceramide system critical in Mtb infections. Surprisingly, the antimicrobial effect of myriocin was found to be independent of its role in reducing ceramides, but instead, it depends on the lipid droplets surface protein PLIN2. Our findings provide a novel mechanism for how myriocin enhances Mtb clearance in macrophages.
Collapse
Affiliation(s)
- Ximeng Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Guanggui Ding
- Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xirui Yang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Hailin Lu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, Shenzhen, China
| | - Yunlong Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Song Liu
- Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huihua Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Guofang Deng
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qing Yu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Shuixiang Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wenfei Wang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Koyyada P, Mishra S. A systematic computational analysis of Mycobacterium tuberculosis H37Rv and human CD34+ genomic expression reveals crucial molecular entities involved in infection progression. J Biomol Struct Dyn 2023; 41:13332-13347. [PMID: 36744528 DOI: 10.1080/07391102.2023.2175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
The co-evolution of Mycobacterium tuberculosis H37Rv along with its host systems enables the pathogenic bacterium to emerge as a multi-drug resistant form. This creates challenges for a more efficacious treatment strategy that can mitigate the infection. Working towards the same, our study followed a mathematical and statistical approach proposing that mycobacterial transcription factors regulating virulence and adaptation, host cell cytoplasmic component metabolism, oxidoreductase activity and respiratory ETC would be targets for antibiotics against Mycobacterium tuberculosis. Simultaneously, extending the statistical study on Mycobacterium-infected human cord blood CD34+ cells revealed that the human CD34+ genes, S100A8 and FGR (tyrosine-protein kinase, Src2), might be affected in the infection pathogenesis by Mycobacterium. Further, the deduced Mycobacterium-human gene interaction network proposed that mycobacterial coregulators Rv0452 (MarR family regulator) and Rv3862c (WhiB6) triggered genes controlling bacterial metabolism, which influences human immunological pathways involving TLR2 and CXCL8/MAPK8.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Praveena Koyyada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
7
|
Sharebiani H, Hajimiri S, Abbasnia S, Soleimanpour S, Hashem Asnaashari AM, Valizadeh N, Derakhshan M, Pilpa R, Firouzeh A, Ghazvini K, Amel Jamehdar S, Rezaee SA. Game theory applications in host-microbe interactions toward disease manifestation: Mycobacterium tuberculosis infection as an example. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1324-1335. [PMID: 35096290 PMCID: PMC8769512 DOI: 10.22038/ijbms.2021.55471.12410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Game theory describes the interactions between two players and the pay-off from winning, losing, or compromising. In the present study, Mycobacterium tuberculosis (Mtb)-host interactions were used as an example for the application of game theory to describe and predict the different outcomes of Mtb-infection and introducing target molecules for use in protection or therapy. MATERIALS AND METHODS The gene expression for eight main markers (CCR1, CCR2, IDO, Tbet, TGFβ, iNOS, MMP3, MMP9) of host response and three Mtb virulence factors (Ag85B, CFP-10, ESAT-6) were assessed in broncho-alveolar lavage of TB+ and TB- patients. RESULTS The players' strategies in the "Nash equilibrium", showed that Ag85B is the main virulence factor for Mtb in active phase, and also the most immunogenic factor, if the host can respond by high expression of T-bet and iNOS toward a Th1 response. In this situation, Mtb can express high levels of ESAT-6 and CFP10 and change the game to the latency, in which host responses by medium expression of T-bet and iNOS and medium level of TGF-β and IDO. Consistently, the IDO expression was 134-times higher in TB+s than the TB-s,and the T-bet expression,~200-times higher in the TB-s than the TB+s. Furthermore, Mtb-Ag85B had a strong positive association with CCR2, T-bet and iNOS, but had a negative correlation with IDO. CONCLUSION Ag85B and maybe ESAT6 (without its suppressive C-terminal) should be considered for making subunit vaccines. And, preventing IDO formation in dendritic cells might be a novel target for immunotherapy of tuberculosis, to reduce the pressure of immune-suppression on Th1 responses.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hajimiri
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran, Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Pilpa
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Firouzeh
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Amel Jamehdar
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Seyed Abdolrahim Rezaee. Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Jacoby C, Goerke M, Bezold D, Jessen H, Boll M. A fully reversible 25-hydroxy steroid kinase involved in oxygen-independent cholesterol side-chain oxidation. J Biol Chem 2021; 297:101105. [PMID: 34425106 PMCID: PMC8449060 DOI: 10.1016/j.jbc.2021.101105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
The degradation of cholesterol and related steroids by microbes follows fundamentally different strategies in aerobic and anaerobic environments. In anaerobic bacteria, the primary C26 of the isoprenoid side chain is hydroxylated without oxygen via a three-step cascade: (i) water-dependent hydroxylation at the tertiary C25, (ii) ATP-dependent dehydration to form a subterminal alkene, and (iii) water-dependent hydroxylation at the primary C26 to form an allylic alcohol. However, the enzymes involved in the ATP-dependent dehydration have remained unknown. Here, we isolated an ATP-dependent 25-hydroxy-steroid kinase (25-HSK) from the anaerobic bacterium Sterolibacterium denitrificans. This highly active enzyme preferentially phosphorylated the tertiary C25 of steroid alcohols, including metabolites of cholesterol and sitosterol degradation or 25-OH-vitamin D3. Kinetic data were in agreement with a sequential mechanism via a ternary complex. Remarkably, 25-HSK readily catalyzed the formation of γ-(18O)2-ATP from ADP and the C25-(18O)2-phosphoester. The observed full reversibility of 25-HSK with an equilibrium constant below one can be rationalized by an unusual high phosphoryl transfer potential of tertiary steroid C25-phosphoesters, which is ≈20 kJ mol−1 higher than that of standard sugar phosphoesters and even slightly greater than the β,γ-phosphoanhydride of ATP. In summary, 25-HSK plays an essential role in anaerobic bacterial degradation of zoo- and phytosterols and shows only little similarity to known phosphotransferases.
Collapse
Affiliation(s)
- Christian Jacoby
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Malina Goerke
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dominik Bezold
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response. Infect Immun 2021; 89:e0081220. [PMID: 34097459 DOI: 10.1128/iai.00812-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although nontuberculous mycobacteria (NTM) are considered opportunistic infections, incidence and prevalence of NTM infection are increasing worldwide becoming a major public health threat. Innate immunity plays an essential role in mediating the initial host response against these intracellular bacteria. Specifically, macrophages phagocytose and eliminate NTM and act as antigen-presenting cells, which trigger downstream activation of cellular and humoral adaptive immune responses. Identification of macrophage receptors, mycobacterial ligands, phagosome maturation, autophagy/necrosis, and escape mechanisms are important components of this immunity network. The role of the macrophage in mycobacterial disease has mainly been studied in tuberculosis (TB), but limited information exists on its role in NTM. In this review, we focus on NTM immunity, the role of macrophages, and host interaction in NTM infection.
Collapse
|
10
|
Zhou W, Yang B, Zou Y, Rahman K, Cao X, Lei Y, Lai R, Fu ZF, Chen X, Cao G. Screening of Compounds for Anti-tuberculosis Activity, and in vitro and in vivo Evaluation of Potential Candidates. Front Microbiol 2021; 12:658637. [PMID: 34276592 PMCID: PMC8278749 DOI: 10.3389/fmicb.2021.658637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a debilitating infectious disease responsible for more than one million deaths per year. The emergence of drug-resistant TB poses an urgent need for the development of new anti-TB drugs. In this study, we screened a library of over 4,000 small molecules and found that orbifloxacin and the peptide AK15 possess significant bactericidal activity against Mycobacterium tuberculosis (Mtb) in vitro. Orbifloxacin also showed an effective ability on the clearance of intracellular Mtb and protect mice from a strong inflammatory response but not AK15. Moreover, we identified 17 nucleotide mutations responsible for orbifloxacin resistance by whole-genome sequencing. A critical point mutation (D94G) of the DNA gyrase (gyrA) gene was found to be the key role of resistance to orbifloxacin. The computational docking revealed that GyrA D94G point mutation can disrupt the orbifloxacin–protein gyrase interactions mediated by magnesium ion bridge. Overall, this study indicated the potential ability of orbifloxacin as an anti-tuberculosis drug, which can be used either alone or in combination with first-line antibiotics to achieve more effective therapy on TB.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khaista Rahman
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production (CICSPPS), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Dong W, Nie X, Zhu H, Liu Q, Shi K, You L, Zhang Y, Fan H, Yan B, Niu C, Lyu LD, Zhao GP, Yang C. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc Natl Acad Sci U S A 2021; 118:e2019305118. [PMID: 33853942 PMCID: PMC8072231 DOI: 10.1073/pnas.2019305118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from β-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Collapse
Affiliation(s)
- Wenyue Dong
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hong Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Kunxiong Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Linlin You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hongyan Fan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Bo Yan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Chen Niu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
12
|
Brown AC. Gene Switching and Essentiality Testing. Methods Mol Biol 2021; 2314:285-299. [PMID: 34235659 DOI: 10.1007/978-1-0716-1460-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of essential genes is of major importance to mycobacterial research, and a number of essential genes have been identified in mycobacteria, however confirming essentiality is not straightforward, as deletion of essential genes results in a lethal phenotype. In this chapter, protocols are described which can be used to confirm gene essentiality using gene switching, following the construction of a strain carrying its only functional copy on an integrated plasmid (Δ'int). Since deletion mutants cannot be created for essential genes, a second gene copy is introduced via an integrating vector, which allows the chromosomal gene copy to be deleted. The integrated vector can then be replaced using the gene switching method, where no transformants are obtained, essentiality is confirmed. This technique can also be used to confirm functionality of gene homologs and to easily identify essential operon members.
Collapse
Affiliation(s)
- Amanda Claire Brown
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVDML), College Station, TX, USA.
- Department of Animal Science, Texas A&M University, Kleberg Center, College Station, TX, USA.
| |
Collapse
|
13
|
Prasla Z, Sutliff RL, Sadikot RT. Macrophage Signaling Pathways in Pulmonary Nontuberculous Mycobacteria Infections. Am J Respir Cell Mol Biol 2020; 63:144-151. [PMID: 32160017 DOI: 10.1165/rcmb.2019-0241tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The incidence and prevalence of nontuberculous mycobacteria (NTM) lung disease is rising worldwide and accounts for most clinical cases of NTM disease. NTM infections occur in both immunocompetent and immunocompromised hosts. Macrophages are the primary host cells that initiate an immune response to NTM. Defining the molecular events that govern the control of infection within macrophages is fundamental to understanding the pathogenesis of NTM disease. Here, we review key macrophage host signaling pathways that contribute to the host immune response to pulmonary NTM infections. In this review, we focus primarily on NTM that are known to cause lung disease, including Mycobacterium avium intracellulare, M. abscessus, and M. kansasii.
Collapse
Affiliation(s)
- Zohra Prasla
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Ruxana T Sadikot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
14
|
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci 2020; 21:ijms21134573. [PMID: 32605029 PMCID: PMC7369821 DOI: 10.3390/ijms21134573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Some intracellular pathogens are able to avoid the defense mechanisms contributing to host epigenetic modifications. These changes trigger alterations tothe chromatin structure and on the transcriptional level of genes involved in the pathogenesis of many bacterial diseases. In this way, pathogens manipulate the host cell for their own survival. The better understanding of epigenetic consequences in bacterial infection may open the door for designing new vaccine approaches and therapeutic implications. This article characterizes selected intracellular bacterial pathogens, including Mycobacterium spp., Listeria spp., Chlamydia spp., Mycoplasma spp., Rickettsia spp., Legionella spp. and Yersinia spp., which can modulate and reprogram of defense genes in host innate immune cells.
Collapse
Affiliation(s)
- Marek Fol
- Correspondence: ; Tel.: +48-42-635-44-72
| | | | | |
Collapse
|
15
|
Rizvi A, Shankar A, Chatterjee A, More TH, Bose T, Dutta A, Balakrishnan K, Madugulla L, Rapole S, Mande SS, Banerjee S, Mande SC. Rewiring of Metabolic Network in Mycobacterium tuberculosis During Adaptation to Different Stresses. Front Microbiol 2019; 10:2417. [PMID: 31736886 PMCID: PMC6828651 DOI: 10.3389/fmicb.2019.02417] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic adaptation of Mycobacterium tuberculosis (M. tuberculosis) to microbicidal intracellular environment of host macrophages is fundamental to its pathogenicity. However, an in-depth understanding of metabolic adjustments through key reaction pathways and networks is limited. To understand how such changes occur, we measured the cellular metabolome of M. tuberculosis subjected to four microbicidal stresses using liquid chromatography-mass spectrometric multiple reactions monitoring (LC-MRM/MS). Overall, 87 metabolites were identified. The metabolites best describing the separation between stresses were identified through multivariate analysis. The coupling of the metabolite measurements with existing genome-scale metabolic model, and using constraint-based simulation led to several new concepts and unreported observations in M. tuberculosis; such as (i) the high levels of released ammonia as an adaptive response to acidic stress was due to increased flux through L-asparaginase rather than urease activity; (ii) nutrient starvation-induced anaplerotic pathway for generation of TCA intermediates from phosphoenolpyruvate using phosphoenolpyruvate kinase; (iii) quenching of protons through GABA shunt pathway or sugar alcohols as possible mechanisms of early adaptation to acidic and oxidative stresses; and (iv) usage of alternate cofactors by the same enzyme as a possible mechanism of rewiring metabolic pathways to overcome stresses. Besides providing new leads and important nodes that can be used for designing intervention strategies, the study advocates the strength of applying flux balance analyses coupled with metabolomics to get a global picture of complex metabolic adjustments.
Collapse
Affiliation(s)
- Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arvind Shankar
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | | | | | - Tungadri Bose
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lavanya Madugulla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
16
|
Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol 2019; 16:496-507. [PMID: 29691481 DOI: 10.1038/s41579-018-0013-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolism was once relegated to the supply of energy and biosynthetic precursors, but it has now become clear that it is a specific mediator of nearly all physiological processes. In the context of microbial pathogenesis, metabolism has expanded outside its canonical role in bacterial replication. Among human pathogens, this expansion has emerged perhaps nowhere more visibly than for Mycobacterium tuberculosis, the causative agent of tuberculosis. Unlike most pathogens, M. tuberculosis has evolved within humans, which are both host and reservoir. This makes unrestrained replication and perpetual quiescence equally incompatible strategies for survival as a species. In this Review, we summarize recent work that illustrates the diversity of metabolic functions that not only enable M. tuberculosis to establish and maintain a state of chronic infection within the host but also facilitate its survival in the face of drug pressure and, ultimately, completion of its life cycle.
Collapse
|
17
|
Retrospective Analysis of Archived Pyrazinamide Resistant Mycobacterium tuberculosis Complex Isolates from Uganda-Evidence of Interspecies Transmission. Microorganisms 2019; 7:microorganisms7080221. [PMID: 31362370 PMCID: PMC6723201 DOI: 10.3390/microorganisms7080221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of Mycobacterium bovis to the proportion of tuberculosis cases in humans is unknown. A retrospective study was undertaken on archived Mycobacterium tuberculosis complex (MTBC) isolates from a reference laboratory in Uganda to identify the prevalence of human M. bovis infection. A total of 5676 isolates maintained in this repository were queried and 136 isolates were identified as pyrazinamide resistant, a hallmark phenotype of M. bovis. Of these, 1.5% (n = 2) isolates were confirmed as M. bovis by using regions of difference PCR analysis. The overall size of whole genome sequences (WGSs) of these two M. bovis isolates were ~4.272 Mb (M. bovis Bz_31150 isolated from a captive chimpanzee) and 4.17 Mb (M. bovis B2_7505 from a human patient), respectively. Alignment of these genomes against 15 MTBC genome sequences revealed 7248 single nucleotide polumorphisms (SNPs). Theses SNPs were used for phylogenetic analysis that indicated a strong relationship between M. bovis and the chimpanzee isolate (Bz_31150) while the other M. bovis genome from the human patient (B2_7505) analyzed did not cluster with any M. bovis or M. tuberculosis strains. WGS analysis also revealed multidrug resistance genotypes; these genomes revealed pncA mutations at positions H57D in Bz_31150 and B2_7505. Phenotypically, B2_7505 was an extensively drug-resistant strain and this was confirmed by the presence of mutations in the major resistance-associated proteins for all anti-tuberculosis (TB) drugs, including isoniazid (KatG (S315T) and InhA (S94A)), fluoroquinolones (S95T), streptomycin (rrs (R309C)), and rifampin (D435Y, a rare but disputed mutation in rpoB). The presence of these mutations exclusively in the human M. bovis isolate suggested that these occurred after transmission from cattle. Genome analysis in this study identified M. bovis in humans and great apes, suggesting possible transmission from domesticated ruminants in the area due to a dynamic and changing interface, which has created opportunity for exposure and transmission.
Collapse
|
18
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
19
|
Li W, Deng W, Xie J. Expression and regulatory networks of Mycobacterium tuberculosis PE/PPE family antigens. J Cell Physiol 2018; 234:7742-7751. [PMID: 30478834 DOI: 10.1002/jcp.27608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023]
Abstract
PE/PPE family antigens are distributed mainly in pathogenic mycobacteria and serve as potential antituberculosis (TB) vaccine components. Some PE/PPE family antigens can regulate the host innate immune response, interfere with macrophage activation and phagolysosome fusion, and serve as major sources of antigenic variation. PE/PPE antigens have been associated with mycobacteria pathogenesis; pe/ppe genes are mainly found in pathogenic mycobacteria and are differentially expressed between Mtb and Mycobacterium bovis. PE/PPE proteins were essential for the growth of Mtb, and PE/PPE proteins were differentially expressed under a variety of conditions. Multiple mycobacterial-virulence-related transcription factors, sigma factors, the global transcriptional regulation factor Lsr2, MprAB, and PhoPR two-component regulatory systems, and cyclic adenine monophosphate-dependent regulators, regulate the expression of PE/PPE family antigens. Multiple-scale integrative analysis revealed the expression and regulatory networks of PE/PPE family antigens underlying the virulence and pathogenesis of Mtb, providing important clues for the discovery of new anti-TB measures.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
20
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
21
|
Jaisinghani N, Dawa S, Singh K, Nandy A, Menon D, Bhandari PD, Khare G, Tyagi A, Gandotra S. Necrosis Driven Triglyceride Synthesis Primes Macrophages for Inflammation During Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:1490. [PMID: 30018616 PMCID: PMC6037689 DOI: 10.3389/fimmu.2018.01490] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary tuberculosis (TB) exhibits granulomatous inflammation, a site of controlling bacterial dissemination at the cost of host tissue damage. Intrigued by the granuloma type-dependent expression of inflammatory markers in TB, we sought to investigate underlying metabolic changes that drive amplification of inflammation in TB. Here, we show an association of higher inflammation in necrotic granulomas with the presence of triglyceride (TG)-rich foamy macrophages. The conspicuous absence of these macrophages in solid granulomas identified a link between the ensuing pathology and the metabolic programming of foamy macrophages. Consistent with in vivo findings, in vitro infection of macrophages with Mycobacterium tuberculosis (Mtb) led to increase in TG synthesis only under conditions of ~60% necrosis. Genetic and pharmacologic intervention that reduced necrosis prevented this bystander response. We further demonstrate that necrosis independent of Mtb also elicits the same bystander response in human macrophages. We identified a role for the human enzyme involved in TG synthesis, diacylglycerol O-acyltransferase (DGAT1), in this phenomenon. The increased TG levels in necrosis-associated foamy macrophages promoted the pro-inflammatory state of macrophages to infection while silencing expression of diacylglycerol O-acyltransferase (DGAT1) suppressed expression of pro-inflammatory genes. Our data thus invoke a role for storage lipids in the heightened host inflammatory response during infection-associated necrosis. Our data provide a functional role to macrophage lipid droplets in host defense and open new avenues for developing host-directed therapies against TB.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Stanzin Dawa
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kaurab Singh
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ananya Nandy
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dilip Menon
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Purva Deepak Bhandari
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sheetal Gandotra
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
22
|
Matern WM, Rifat D, Bader JS, Karakousis PC. Gene Enrichment Analysis Reveals Major Regulators of Mycobacterium tuberculosis Gene Expression in Two Models of Antibiotic Tolerance. Front Microbiol 2018; 9:610. [PMID: 29670589 PMCID: PMC5893760 DOI: 10.3389/fmicb.2018.00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/15/2018] [Indexed: 01/10/2023] Open
Abstract
The development of antibiotic tolerance is believed to be a major factor in the lengthy duration of current tuberculosis therapies. In the current study, we have modeled antibiotic tolerance in vitro by exposing Mycobacterium tuberculosis to two distinct stress conditions: progressive hypoxia and nutrient starvation [phosphate-buffered saline (PBS)]. We then studied the bacterial transcriptional response using RNA-seq and employed a bioinformatics approach to identify important transcriptional regulators, which was facilitated by a novel Regulon Enrichment Test (RET). A total of 17 transcription factor (TF) regulons were enriched in the hypoxia gene set and 16 regulons were enriched in the nutrient starvation, with 12 regulons enriched in both conditions. Using the same approach to analyze previously published gene expression datasets, we found that three M. tuberculosis regulons (Rv0023, SigH, and Crp) were commonly induced in both stress conditions and were also among the regulons enriched in our data. These regulators are worthy of further study to determine their potential role in the development and maintenance of antibiotic tolerance in M. tuberculosis following stress exposure.
Collapse
Affiliation(s)
- William M Matern
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dalin Rifat
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel S Bader
- Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
23
|
Green KD, Biswas T, Pang AH, Willby MJ, Reed MS, Stuchlik O, Pohl J, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Acetylation by Eis and Deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: Biochemical and Structural Insight. Biochemistry 2018; 57:781-790. [PMID: 29345920 DOI: 10.1021/acs.biochem.7b01089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial nucleoid-associated proteins (NAPs) are critical to genome integrity and chromosome maintenance. Post-translational modifications of bacterial NAPs appear to function similarly to their better studied mammalian counterparts. The histone-like NAP HupB from Mycobacterium tuberculosis (Mtb) was previously observed to be acetylated by the acetyltransferase Eis, leading to genome reorganization. We report biochemical and structural aspects of acetylation of HupB by Eis. We also found that the SirT-family NAD+-dependent deacetylase Rv1151c from Mtb deacetylated HupB in vitro and characterized the deacetylation kinetics. We propose that activities of Eis and Rv1151c could regulate the acetylation status of HupB to remodel the mycobacterial chromosome in response to environmental changes.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | | | | | | | | | | | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
24
|
López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC SYSTEMS BIOLOGY 2017; 11:107. [PMID: 29157227 PMCID: PMC5697012 DOI: 10.1186/s12918-017-0496-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb's vulnerability and metabolic adaptation have been carried out. RESULTS A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports. CONCLUSIONS This study demonstrates the potential application of genome-scale modeling, flux balance analysis (FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb metabolic reprogramming in the context of human granulomas.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | - Silvia Ochoa
- Grupo de investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
25
|
Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems 2017; 2:mSystems00057-17. [PMID: 28845460 PMCID: PMC5566787 DOI: 10.1128/msystems.00057-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen metabolism sharing the majority of metabolic pathways and hence metabolites. Here, we investigated the metabolic changes of Mycobacterium tuberculosis, the causative agent of tuberculosis, and its human host cell during early infection. To this aim, we combined gene expression data of both organisms and metabolite changes during the course of infection through integration into a genome-wide metabolic network. This led to the identification of infection-specific metabolic alterations, which we further exploited to model host-pathogen interactions quantitatively by flux balance analysis. These in silico data suggested that tubercle bacilli consume up to 33 different nutrients during early macrophage infection, which the bacteria utilize to generate energy and biomass to establish intracellular growth. Such multisubstrate fueling strategy renders the pathogen’s metabolism robust toward perturbations, such as innate immune responses or antibiotic treatments. Nutrient acquisition from the host environment is crucial for the survival of intracellular pathogens, but conceptual and technical challenges limit our knowledge of pathogen diets. To overcome some of these technical roadblocks, we exploited an experimentally accessible model for early infection of human macrophages by Mycobacterium tuberculosis, the etiological agent of tuberculosis, to study host-pathogen interactions with a multi-omics approach. We collected metabolomics and complete transcriptome RNA sequencing (dual RNA-seq) data of the infected macrophages, integrated them in a genome-wide reaction pair network, and identified metabolic subnetworks in host cells and M. tuberculosis that are modularly regulated during infection. Up- and downregulation of these metabolic subnetworks suggested that the pathogen utilizes a wide range of host-derived compounds, concomitant with the measured metabolic and transcriptional changes in both bacteria and host. To quantify metabolic interactions between the host and intracellular pathogen, we used a combined genome-scale model of macrophage and M. tuberculosis metabolism constrained by the dual RNA-seq data. Metabolic flux balance analysis predicted coutilization of a total of 33 different carbon sources and enabled us to distinguish between the pathogen’s substrates directly used as biomass precursors and the ones further metabolized to gain energy or to synthesize building blocks. This multiple-substrate fueling confers high robustness to interventions with the pathogen’s metabolism. The presented approach combining multi-omics data as a starting point to simulate system-wide host-pathogen metabolic interactions is a useful tool to better understand the intracellular lifestyle of pathogens and their metabolic robustness and resistance to metabolic interventions. IMPORTANCE The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen metabolism sharing the majority of metabolic pathways and hence metabolites. Here, we investigated the metabolic changes of Mycobacterium tuberculosis, the causative agent of tuberculosis, and its human host cell during early infection. To this aim, we combined gene expression data of both organisms and metabolite changes during the course of infection through integration into a genome-wide metabolic network. This led to the identification of infection-specific metabolic alterations, which we further exploited to model host-pathogen interactions quantitatively by flux balance analysis. These in silico data suggested that tubercle bacilli consume up to 33 different nutrients during early macrophage infection, which the bacteria utilize to generate energy and biomass to establish intracellular growth. Such multisubstrate fueling strategy renders the pathogen’s metabolism robust toward perturbations, such as innate immune responses or antibiotic treatments.
Collapse
|
26
|
Mycobacterial Acid Tolerance Enables Phagolysosomal Survival and Establishment of Tuberculous Infection In Vivo. Cell Host Microbe 2017; 20:250-8. [PMID: 27512905 PMCID: PMC4985559 DOI: 10.1016/j.chom.2016.07.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
The blockade of phagolysosomal fusion is considered a critical mycobacterial strategy to survive in macrophages. However, viable mycobacteria have been observed in phagolysosomes during infection of cultured macrophages, and mycobacteria have the virulence determinant MarP, which confers acid resistance in vitro. Here we show in mice and zebrafish that innate macrophages overcome mycobacterial lysosomal avoidance strategies to rapidly deliver a substantial proportion of infecting bacteria to phagolysosomes. Exploiting the optical transparency of the zebrafish, we tracked the fates of individual mycobacteria delivered to phagosomes versus phagolysosomes and discovered that bacteria survive and grow in phagolysosomes, though growth is slower. MarP is required specifically for phagolysosomal survival, making it an important determinant for the establishment of mycobacterial infection in their hosts. Our work suggests that if pathogenic mycobacteria fail to prevent lysosomal trafficking, they tolerate the resulting acidic environment of the phagolysosome to establish infection. In vivo, newly infecting mycobacteria are rapidly trafficked to lysosomes within macrophages The mycobacterial acid tolerance determinant MarP enables lysosomal survival and growth Phagolysosomal mycobacteria can successfully establish infection, which is MarP dependent
Collapse
|
27
|
Gidon A, Åsberg SE, Louet C, Ryan L, Haug M, Flo TH. Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MyD88 in human primary macrophages. PLoS Pathog 2017; 13:e1006551. [PMID: 28806745 PMCID: PMC5570494 DOI: 10.1371/journal.ppat.1006551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Pathogenic mycobacteria reside in macrophages where they avoid lysosomal targeting and degradation through poorly understood mechanisms proposed to involve arrest of phagosomal maturation at an early endosomal stage. A clear understanding of how this relates to host defenses elicited from various intracellular compartments is also missing and can only be studied using techniques allowing single cell and subcellular analyses. Using confocal imaging of human primary macrophages infected with Mycobacterium avium (Mav) we show evidence that Mav phagosomes are not arrested at an early endosomal stage, but mature to a (LAMP1+/LAMP2+/CD63+) late endosomal/phagolysosomal stage where inflammatory signaling and Mav growth restriction is initiated through a mechanism involving Toll-like receptors (TLR) 7 and 8, the adaptor MyD88 and transcription factors NF-κB and IRF-1. Furthermore, a fraction of the mycobacteria re-establish in a less hostile compartment (LAMP1-/LAMP2-/CD63-) where they not only evade destruction, but also recognition by TLRs, growth restriction and inflammatory host responses that could be detrimental for intracellular survival and establishment of chronic infections. Mycobacterium avium is increasingly reported as a causative agent of non-tuberculous disease in immunocompromised patients and in individuals with underlying disease or using immunosuppressant drugs, with prevalence often higher than the more pathogenic M. tuberculosis in developed countries. Both M. avium and M. tuberculosis cause persistent infections by surviving inside host macrophages. Here, we identify from which compartment M. avium evoke inflammatory signaling in human primary macrophages, and the pattern-recognition receptors involved. In essence, we present three key findings: 1) M. avium phagosomes are not arrested at an early endosomal stage, but rather mature normally into phagolysosomes from where a fraction of the bacteria escape and re-establish in a new compartment. 2) In addition to avoiding degradation in phagolysosomes, by escaping M. avium also evade inflammatory signaling. 3) M. avium unable to escape is degraded in phagolysosomes and recognized by Toll-like receptors 7 and 8. Our results can contribute to new understanding of intracellular infections, and thus have vital clinical implications for development of novel anti-microbial strategies and host-targeted therapy to mycobacterial and other infectious diseases.
Collapse
Affiliation(s)
- Alexandre Gidon
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Elisabeth Åsberg
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
28
|
Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages. Sci Rep 2017; 7:6484. [PMID: 28744015 PMCID: PMC5526930 DOI: 10.1038/s41598-017-05916-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) uses alveolar macrophages as primary host cells during infection. In response to an infection, macrophages switch from pyruvate oxidation to reduction of pyruvate into lactate. Lactate might present an additional carbon substrate for Mtb. Here, we demonstrate that Mtb can utilize L-lactate as sole carbon source for in vitro growth. Lactate conversion is strictly dependent on one of two potential L-lactate dehydrogenases. A knock-out mutant lacking lldD2 (Rv1872c) was unable to utilize L-lactate. In contrast, the lldD1 (Rv0694) knock-out strain was not affected in growth on lactate and retained full enzymatic activity. On the basis of labelling experiments using [U-13C3]-L-lactate as a tracer the efficient uptake of lactate by Mtb and its conversion into pyruvate could be demonstrated. Moreover, carbon flux from lactate into the TCA cycle, and through gluconeogenesis was observed. Gluconeogenesis during lactate consumption depended on the phosphoenolpyruvate carboxykinase, a key enzyme for intracellular survival, showing that lactate utilization requires essential metabolic pathways. We observed that the ΔlldD2 mutant was impaired in replication in human macrophages, indicating a critical role for lactate oxidation during intracellular growth.
Collapse
|
29
|
Akhter Y, Thakur S. Targets of ubiquitin like system in mycobacteria and related actinobacterial species. Microbiol Res 2017; 204:9-29. [PMID: 28870295 DOI: 10.1016/j.micres.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Protein turnover and recycling is a prerequisite in all living organisms to maintain normal cellular physiology. Many bacteria are proteasome deficient but they possess typical protease enzymes for carrying out protein turnover. However, several groups of actinobacteria such as mycobacteria harbor both proteasome and proteases. In these bacteria, for cellular protein turnover the target proteins undergo post-translational modification referred as pupylation in which a small protein Pup (prokaryotic ubiquitin-like protein) is tagged to the specific lysine residues of the target proteins and after that those target proteins undergo proteasomal degradation. Thus, Pup serves as a degradation signal, helps in directing proteins toward the bacterial proteasome for a turnover. Although the Pup-proteasome system has a multifaceted role in environmental stresses, pathogenicity and regulation of cellular signaling, but the fate of all types of pupylation such as mono and polypupylation on the proteins is still not completely understood. In this review, we present the mechanisms involved in the activation and conjugation of Pup to the target proteins, describing the structural sketch of pupylation and fundamental differences between the eukaryotic ubiquitin-proteasome and bacterial Pup-proteasome systems. We are also presenting a concise classification and cataloging of the complete battery of experimentally identified Pup-substrates from various species of actinobacteria.
Collapse
Affiliation(s)
- Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India.
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
30
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
31
|
PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog 2017; 13:e1006399. [PMID: 28545104 PMCID: PMC5448819 DOI: 10.1371/journal.ppat.1006399] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/30/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022] Open
Abstract
Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.
Collapse
|
32
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
33
|
Jee B, Sharma P, Katoch K, Joshi B, Awasthi SK. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage. Braz J Infect Dis 2017; 21:386-390. [PMID: 28435012 PMCID: PMC9427975 DOI: 10.1016/j.bjid.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 03/03/2017] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) adopts a special survival strategy to overcome the killing mechanism(s) of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3) of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ) and recombinant murine interleukin-10 (rmIL-10) on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml) of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml) significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.
Collapse
Affiliation(s)
- Babban Jee
- National JALMA Institute for Leprosy and other Mycobacterial Diseases (ICMR), Department of Microbiology and Molecular Biology, Agra, India; Chhatrapati Shahu Ji Maharaj University, Institute of Life Sciences, Kanpur, India
| | - Pawan Sharma
- International Centre for Genetic Engineering and Biotechnology, Immunology Group, New Delhi, India
| | - Kiran Katoch
- National JALMA Institute for Leprosy and other Mycobacterial Diseases (ICMR), Agra, India
| | - Beenu Joshi
- National JALMA Institute for Leprosy and other Mycobacterial Diseases (ICMR), Department of Immunology, Agra, India
| | - Sudhir Kumar Awasthi
- Chhatrapati Shahu Ji Maharaj University, Institute of Life Sciences, Kanpur, India.
| |
Collapse
|
34
|
Abstract
Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress.
Collapse
|
35
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
36
|
Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress. Infect Immun 2016; 84:2505-23. [PMID: 27324481 DOI: 10.1128/iai.00072-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/10/2016] [Indexed: 12/27/2022] Open
Abstract
Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1.
Collapse
|
37
|
Bhavanam S, Rayat GR, Keelan M, Kunimoto D, Drews SJ. Understanding the pathophysiology of the human TB lung granuloma using in vitro granuloma models. Future Microbiol 2016; 11:1073-89. [PMID: 27501829 DOI: 10.2217/fmb-2016-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis remains a major human health threat that infects one in three individuals worldwide. Infection with Mycobacterium tuberculosis is a standoff between host and bacteria in the formation of a granuloma. This review will introduce a variety of bacterial and host factors that impact individual granuloma fates. The authors describe advances in the development of in vitro granuloma models, current evidence surrounding infection and granuloma development, and the applicability of existing in vitro models in the study of human disease. In vitro models of infection help improve our understanding of pathophysiology and allow for the discovery of other potential models of study.
Collapse
Affiliation(s)
- Sudha Bhavanam
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Keelan
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Drews
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Lienhardt C, Kraigsley AM, Sizemore CF. Driving the Way to Tuberculosis Elimination: The Essential Role of Fundamental Research. Clin Infect Dis 2016; 63:370-5. [PMID: 27270671 DOI: 10.1093/cid/ciw250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis has impacted human health for millennia. The World Health Organization estimated that, in 2014, 9.6 million people developed tuberculosis and 1.5 million people died from the disease. In May 2014, the World Health Assembly endorsed the new "End TB Strategy" that presents a pathway to tuberculosis elimination. The strategy outlines 3 areas of emphasis, one of which is intensified research and innovation. In this article we highlight the essential role for fundamental tuberculosis research in the future of tuberculosis diagnostics, treatment, and prevention. To maximize the impact of fundamental research, we must foster collaboration among all stakeholders engaged in tuberculosis research and control to facilitate open dialogue to assure that critical gaps in outcome-oriented science are identified and addressed. We present here a framework for future discussions among scientists, physicians, research and development specialists, and public health managers for the reinforcement of national and international strategies toward tuberculosis elimination.
Collapse
Affiliation(s)
- Christian Lienhardt
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Alison M Kraigsley
- American Association for the Advancement of Science, Washington D.C. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christine F Sizemore
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Nathan C. What can immunology contribute to the control of the world's leading cause of death from bacterial infection? Immunol Rev 2015; 264:2-5. [PMID: 25703548 DOI: 10.1111/imr.12277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Video podcast available Go to www.immunologicalreviews.com to watch an interview with Guest Editor Carl Nathan.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
40
|
Development of an Intracellular Screen for New Compounds Able To Inhibit Mycobacterium tuberculosis Growth in Human Macrophages. Antimicrob Agents Chemother 2015; 60:640-5. [PMID: 26503663 DOI: 10.1128/aac.01920-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Here we describe the development and validation of an intracellular high-throughput screening assay for finding new antituberculosis compounds active in human macrophages. The assay consists of a luciferase-based primary identification assay, followed by a green fluorescent protein-based secondary profiling assay. Standard tuberculosis drugs and 158 previously recognized active antimycobacterial compounds were used to evaluate assay robustness. Data show that the assay developed is a short and valuable tool for the discovery of new antimycobacterial compounds.
Collapse
|
41
|
Ng TW, Saavedra-Ávila NA, Kennedy SC, Carreño LJ, Porcelli SA. Current efforts and future prospects in the development of live mycobacteria as vaccines. Expert Rev Vaccines 2015; 14:1493-507. [PMID: 26366616 DOI: 10.1586/14760584.2015.1089175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis (Mtb) remains a major goal in the effort to reduce the enormous global burden of disease caused by this pathogen. Whole-cell vaccines based on live mycobacteria with attenuated virulence represent an appealing approach, providing broad antigen exposure and intrinsic adjuvant properties to prime durable immune responses. However, designing vaccine strains with an optimal balance between attenuation and immunogenicity has proven to be extremely challenging. Recent basic and clinical research efforts have broadened our understanding of Mtb pathogenesis and created numerous new vaccine candidates that have been designed to overcome different aspects of immune evasion by Mtb. In this review, we provide an overview of the current efforts to create improved vaccines against tuberculosis based on modifications of live attenuated mycobacteria. In addition, we discuss the use of such vaccine strains as vectors for stimulating protective immunity against other infectious diseases and cancers.
Collapse
Affiliation(s)
- Tony W Ng
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Noemí A Saavedra-Ávila
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Kennedy
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Leandro J Carreño
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,b 2 Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steven A Porcelli
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
42
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|