1
|
Cai J, Han X, Peng S, Chen J, Zhang JV, Huang C. Chemerin facilitates placental trophoblast invasion and spiral artery remodeling through the pentose phosphate pathway. Life Sci 2025; 373:123645. [PMID: 40280299 DOI: 10.1016/j.lfs.2025.123645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
AIMS The invasion of trophoblasts and remodeling of spiral arteries are the requisite processes for successful placentation. A defect of trophoblast invasion is closely associated with pregnancy complications, including miscarriage and preeclampsia. In this study, we investigated the function of chemerin in trophoblast invasion and artery remodeling and explored the underlying mechanism in this process. MAIN METHODS Immunostaining was performed to examine chemerin expression in different days of mouse placenta and early stage of human placenta. Chemerin KO and LPS-treated mice, with exogenous chemerin peptide, were used to evaluate trophoblast giant cells (TGC) invasion, artery remodeling, and NK cell infiltration. Chemerin KO and LPS-treated decidua on E8.5 were conducted in metabolites file and measured related enzymes' expression. Chemerin's function was further examined by human trophoblast HTR-8 cell migration and the enzymes expression in the pentose phosphate pathway. KEY FINDINGS Chemerin has high expression in mouse-invasive TGC and human extra-villous trophoblast cells. Deficiency of chemerin and LPS treatment in pregnant mice impaired placental TGC invasion, spiral artery remodeling, and NK cell infiltration in decidua, which mainly attributed to the downregulation of metabolites and G6PD and RPIA expression in pentose phosphate pathway (PPP). Chemerin activated the PPP to accelerate HTR-8 cell migration. Exogenous chemerin administration remarkably attenuated the defect of TGC invading and artery remodeling in LPS-treated mice, and promoted NK infiltration and maternal blood perfusion. SIGNIFICANCE This study described the indispensable role of chemerin in trophoblast invasion and arterial remodeling, and suggested its potential application in pregnancy complications miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jiaxuan Cai
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinyue Han
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Suohao Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Alexandrova M, Manchorova D, Vangelov I, Terzieva A, Dimitrova V, Mor G, Dimova T. First trimester extravillous trophoblast secretes HLA class I molecules via small extracellular vesicles. Placenta 2025; 167:11-21. [PMID: 40300266 DOI: 10.1016/j.placenta.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION Human pregnancy requires acceptance and support for the semi-allogeneic embryo and effective protection of both mother and fetus. A failure to adapt, from either side, may cause abortion. The placenta-derived extracellular vesicles (EVs) have a crucial role in human implantation and pregnancy. These are lipid bilayer membrane-delimited, nano-to-micro sized extracellular microvesicles of endosomal origin, containing diverse signaling molecules, and functioning as short and long-distance messengers. We have already shown that first-trimester placenta releases the soluble HLA-C and HLA-G KIR ligands to modulate maternal cytotoxicity via the KIR/HLA axis. This study is to find whether extravillous trophoblast (EVT) secretes these HLA class I molecules via small EVs. METHODS sEVs were isolated by ultrafiltration or precipitation from serum-free conditioned media from primary trophoblast-derived EVT, and non-tumor EVT-like model Sw71 cell line, cultured as monolayer and spheroids. sEVs from cultured placental explants served as a positive control. Combined data from several methods was used for their characterization including BCA, DLS, TEM, IEM, Dot blot, and FACS. RESULTS Primary trophoblast-derived EVT and Sw71 EVT-like cells produced intact and well-visible CD63+, HLA-G- and HLA-C-bearing sEVs, regardless of culture mode and type of isolation. Both methods yielded sEVs sized 30-100 nm. DISCUSSION We show original data on the HLA-C secretion via sEVs by early pregnancy EVT and confirm the production of HLA-G-positive sEVs. A new asset to the usefulness of the Sw71 spheroid model as an implanting blastocyst surrogate is added as a tool to elucidate the sEV-based signalization in the implantation.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonia Terzieva
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- University Obstetrics and Gynecology Hospital "Maichin dom", Medical University, Sofia, Bulgaria
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
3
|
Wang Y, He X, Yang C, Ding J. Global research on NK cells in miscarriage: a bibliometric study. Front Med (Lausanne) 2025; 12:1513213. [PMID: 40034381 PMCID: PMC11872723 DOI: 10.3389/fmed.2025.1513213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Background This study aimed to assess the evolution, trends, and research hotspots of publications related to natural killer (NK) cells and miscarriage. Methods The literature on NK cells and miscarriage was retrieved from the Web of Science Core Collection. VOSviewer and CiteSpace were used to analyze the publication years, countries, institutions, journals, highly cited authors, categories, and citation bursts of keywords. Results A total of 1,275 articles were analyzed. The annual publication outputs showed steady growth, with the majority of publications in 2020 and citations in 2022. The number of publications in this field fluctuated from 1981 to 2023, with a slight downward trend observed. However, the number of citations increased steadily until 2023, followed by a minor decline. The United States contributed the highest number of publications and had the highest h-index. The American Journal of Reproductive Immunology ranked first in terms of number of publications and h-index. Reproductive biology, immunology, and obstetrics and gynecology were the most representative disciplines. Kwak-kim J, Chaouat G, and Croy BA were the top three most productive authors in the field. Keyword burst analysis demonstrated that the immune system and cytotoxicity receptors were current research hotspots. Conclusion This is the first bibliometric study to comprehensively summarize trends and advances in the study of NK cells in miscarriage. This information highlights the recent research frontiers and emerging directions and provides a reference for subsequent research in the future.
Collapse
Affiliation(s)
- Yinan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Xiaoqin He
- Teaching Office, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
- The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
4
|
Baumdick ME, Bunders MJ. Macrophages boosting human skin morphogenesis. Trends Immunol 2025; 46:1-3. [PMID: 39665908 DOI: 10.1016/j.it.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Gopee and colleagues' recent analyses of diverse high-dimensional datasets of prenatal and adult skin, together with data from complex skin organoids, uncover the important contributions of macrophages in modulating prenatal skin development, scarless wound healing, and angiogenesis. These findings identify a role for skin immune cells in tissue development.
Collapse
Affiliation(s)
- Martin E Baumdick
- Division of Regenerative Medicine and Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Immune Ontogeny and Viral Infections Group, Leibniz Institute of Virology, Hamburg, Germany; Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Madeleine J Bunders
- Division of Regenerative Medicine and Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Immune Ontogeny and Viral Infections Group, Leibniz Institute of Virology, Hamburg, Germany; Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany.
| |
Collapse
|
5
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
6
|
Altoum AA, Oghenemaro EF, Pallathadka H, Sanghvi G, Hjazi A, Abbot V, Kumar MR, Sharma R, Zwamel AH, Taha ZA. lncRNA-mediated immune system dysregulation in RIF; a comprehensive insight into immunological modifications and signaling pathways' dysregulation. Hum Immunol 2024; 85:111170. [PMID: 39549305 DOI: 10.1016/j.humimm.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The initial stage of biological pregnancy is referred to as implantation, during which the interaction between the endometrium and the fetus is crucial for successful implantation. Around 10% of couples undergoing in vitro fertilization and embryo transfer encounter recurrent implantation failure (RIF), a clinical condition characterized by the absence of implantation after multiple embryo transfers. It is believed that implantation failure may be caused by inadequate or excessive endometrial inflammatory responses during the implantation window, as the female immune system plays a complex role in regulating endometrial receptivity and embryo implantation. Recent approaches to enhance the likelihood of pregnancy in RIF patients have focused on modifying the mother's immune response during implantation by regulating inflammation. Long non-coding RNAs (lncRNAs) play a significant role in gene transcription during the inflammatory response. Current research suggests that dysfunctional lncRNAs are linked to various human disorders, such as cancer, diabetes, allergies, asthma, and inflammatory bowel disease. These non-coding RNAs are crucial for immune functions as they control protein interactions or the ability of RNA and DNA to form complexes, which are involved in differentiation, cell migration, and the production of inflammatory mediators. Given the apparent involvement of the immune system in RIF and the modulatory effect of lncRNAs on the immune system, this review aims to delve into the role of lncRNAs in immune system modulation and their potential contribution to RIF.
Collapse
Affiliation(s)
- Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 302131, India
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq
| |
Collapse
|
7
|
Bos M, Colucci F. A New Look at Immunogenetics of Pregnancy: Maternal Major Histocompatibility Complex Class I Educates Uterine Natural Killer Cells. Int J Mol Sci 2024; 25:8869. [PMID: 39201555 PMCID: PMC11354926 DOI: 10.3390/ijms25168869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Our incomplete knowledge of maternal-fetal interface (MFI) physiology impedes a better understanding of the pathological mechanisms leading to pregnancy complications, such as pre-eclampsia and fetal growth restriction. At the MFI, uterine natural killer (uNK) cells do not attack fetal cells but engage in crosstalk with both fetal and maternal cells to support feto-placental development. However, mother and fetus are genetically half-mismatched and certain combinations of variable immune genes-human leukocyte antigens (HLAs) and killer-cell immunoglobulin-like receptor (KIR), indeed, the most variable gene sets in the genome-associate with pregnancy outcomes, suggesting that these interactions regulate uNK cell function. How do these interactions influence the physiology and pathology at the MFI? Uterine NK cell function is regulated by both maternal and fetal Major Histocompatibility Complex (MHC); however, evidence for fetal cells educating uNK cells is lacking, and new evidence shows that maternal rather than fetal MHC class I molecules educate uNK cells. Furthermore, uNK cell education works through self-recognition by the ancient and conserved NKG2A receptor. Pregnant mice lacking this receptor produce normal litter sizes, but a significant portion of the offspring have low birthweight and abnormal brain development. Evidence from a genome-wide association study of over 150,000 human pregnancies validates the finding because women whose NKG2A receptor is genetically determined to engage their own MHC class I molecules are exposed to lower risk of developing pre-eclampsia, suggesting that maternal uNK cell education is a pre-requisite for a healthy pregnancy and, likely, for healthy offspring too.
Collapse
Affiliation(s)
- Manon Bos
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
8
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Seles L, Zaha IA, Luncan M, Bodog A, Sachelarie L, Sandor M, Macovei IC, Bimbo-Szuhai E, Huniadi A. Immunomodulatory Treatment Impact on IVF Outcomes in KIR AA Genotype: Personalized Fertility Insights. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:948. [PMID: 38929565 PMCID: PMC11205848 DOI: 10.3390/medicina60060948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Recurrent implantation failure (RIF) affects 10% of couples undergoing in vitro fertilization (IVF), spurring exploration into tailored treatments to enhance implantation rates. Maternal immune tolerance towards embryos, particularly killer-cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells, is a focal point in RIF research. Materials and Methods: This retrospective cohort study, conducted at fertility clinic in Oradea, Romania, involved 65 infertile couples undergoing IVF treatment between January 2022 and December 2023. Couples were divided into two groups: KIR AA (Group A) and KIR Bx (Group B). Results: Factors such as age, type of infertility, oocytes retrieved, embryos produced, pregnancy rates in Group A without and with immunomodulatory treatment were documented. Group A, receiving immunomodulatory treatment, achieved a pregnancy rate of 47.8%, significantly higher than the 23.73% rate without treatment (p = 0.008). Group B had a higher mean patient age than Group A. However, miscarriage rates did not significantly differ between Group A with treatment and Group B (p = 0.2457), suggesting comparable outcomes with immunomodulation. Conclusions: The impact of immunological factors on recurrent implantation failure is being more and more emphasized and warrants the attention of specialists in human reproduction. Uterine natural killers and their function though KIR receptors deserve particular attention as immunomodulatory treatment may improve pregnancy rates in patients with KIR AA haplotype.
Collapse
Affiliation(s)
- Luana Seles
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Oradea County Hospital, Gheorghe Doja Street 65-67, 410169 Oradea, Romania
| | - Ioana Alexandra Zaha
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Calla-Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania
- Pelican Clinical Hospital, Corneliu Coposu Street 2, 410450 Oradea, Romania
| | - Mihai Luncan
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Pelican Clinical Hospital, Corneliu Coposu Street 2, 410450 Oradea, Romania
| | - Alin Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Pelican Clinical Hospital, Corneliu Coposu Street 2, 410450 Oradea, Romania
| | - Liliana Sachelarie
- Department of Clinical Discipline, Apollonia University, 700511 Iasi, Romania
| | - Mircea Sandor
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
| | - Iulia Codruta Macovei
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Calla-Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania
| | - Erika Bimbo-Szuhai
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Pelican Clinical Hospital, Corneliu Coposu Street 2, 410450 Oradea, Romania
| | - Anca Huniadi
- Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.S.); (I.A.Z.); (M.L.); (M.S.); (I.C.M.); (E.B.-S.); (A.H.)
- Calla-Infertility Diagnostic and Treatment Center, Constantin A. Rosetti Street, 410103 Oradea, Romania
- Pelican Clinical Hospital, Corneliu Coposu Street 2, 410450 Oradea, Romania
| |
Collapse
|
10
|
Bogomiakova ME, Bogomazova AN, Lagarkova MA. Dysregulation of Immune Tolerance to Autologous iPSCs and Their Differentiated Derivatives. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:799-816. [PMID: 38880643 DOI: 10.1134/s0006297924050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 06/18/2024]
Abstract
Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to obtain a personalized, i.e., patient-specific, cell product transplantation of which should not cause problems related to histocompatibility of the transplanted tissues and organs. At the same time, inconsistent information about the main advantage of autologous iPSC-derivatives - lack of immunogenicity - still casts doubt on the possibility of using such cells beyond immunosuppressive therapy protocols. This review is devoted to immunogenic properties of the syngeneic and autologous iPSCs and their derivatives, as well as to the reasons for dysregulation of their immune tolerance.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Boulanger H, Bounan S, Mahdhi A, Drouin D, Ahriz-Saksi S, Guimiot F, Rouas-Freiss N. Immunologic aspects of preeclampsia. AJOG GLOBAL REPORTS 2024; 4:100321. [PMID: 38586611 PMCID: PMC10994979 DOI: 10.1016/j.xagr.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Preeclampsia is a syndrome with multiple etiologies. The diagnosis can be made without proteinuria in the presence of dysfunction of at least 1 organ associated with hypertension. The common pathophysiological pathway includes endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. There is evidence to support, among others, immunologic causes of preeclampsia. Unlike defense immunology, reproductive immunology is not based on immunologic recognition systems of self/non-self and missing-self but on immunotolerance and maternal-fetal cellular interactions. The main mechanisms of immune escape from fetal to maternal immunity at the maternal-fetal interface are a reduction in the expression of major histocompatibility complex molecules by trophoblast cells, the presence of complement regulators, increased production of indoleamine 2,3-dioxygenase, activation of regulatory T cells, and an increase in immune checkpoints. These immune protections are more similar to the immune responses observed in tumor biology than in allograft biology. The role of immune and nonimmune decidual cells is critical for the regulation of trophoblast invasion and vascular remodeling of the uterine spiral arteries. Regulatory T cells have been found to play an important role in suppressing the effectiveness of other T cells and contributing to local immunotolerance. Decidual natural killer cells have a cytokine profile that is favored by the presence of HLA-G and HLA-E and contributes to vascular remodeling. Studies on the evolution of mammals show that HLA-E, HLA-G, and HLA-C1/C2, which are expressed by trophoblasts and their cognate receptors on decidual natural killer cells, are necessary for the development of a hemochorial placenta with vascular remodeling. The activation or inhibition of decidual natural killer cells depends on the different possible combinations between killer cell immunoglobulin-like receptors, expressed by uterine natural killer cells, and the HLA-C1/C2 antigens, expressed by trophoblasts. Polarization of decidual macrophages in phenotype 2 and decidualization of stromal cells are also essential for high-quality vascular remodeling. Knowledge of the various immunologic mechanisms required for adequate vascular remodeling and their dysfunction in case of preeclampsia opens new avenues of research to identify novel biological markers or therapeutic targets to predict or prevent the onset of preeclampsia.
Collapse
Affiliation(s)
- Henri Boulanger
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Stéphane Bounan
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Amel Mahdhi
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Dominique Drouin
- Department of Obstetrics and Gynecology, Clinique de l'Estrée, Stains, France (Dr Drouin)
| | - Salima Ahriz-Saksi
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Fabien Guimiot
- Fetoplacental Unit, Robert-Debré Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France (Dr Guimiot)
| | - Nathalie Rouas-Freiss
- Fundamental Research Division, CEA, Institut de biologie François Jacob, Hemato-Immunology Research Unit, Inserm UMR-S 976, Institut de Recherche Saint-Louis, Paris University, Saint-Louis Hospital, Paris, France (Dr Rouas-Freiss)
| |
Collapse
|
12
|
Than NG, Romero R, Posta M, Györffy D, Szalai G, Rossi SW, Szilágyi A, Hupuczi P, Nagy S, Török O, Tarca AL, Erez O, Ács N, Papp Z. Classification of preeclampsia according to molecular clusters with the goal of achieving personalized prevention. J Reprod Immunol 2024; 161:104172. [PMID: 38141514 PMCID: PMC11027116 DOI: 10.1016/j.jri.2023.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
The prevention of pre-eclampsia is difficult due to the syndromic nature and multiple underlying mechanisms of this severe complication of pregnancy. The current clinical distinction between early- and late-onset disease, although clinically useful, does not reflect the true nature and complexity of the pathologic processes leading to pre-eclampsia. The current gaps in knowledge on the heterogeneous molecular pathways of this syndrome and the lack of adequate, specific diagnostic methods are major obstacles to early screening and tailored preventive strategies. The development of novel diagnostic tools for detecting the activation of the identified disease pathways would enable early, accurate screening and personalized preventive therapies. We implemented a holistic approach that includes the utilization of different proteomic profiling methods of maternal plasma samples collected from various ethnic populations and the application of systems biology analysis to plasma proteomic, maternal demographic, clinical characteristic, and placental histopathologic data. This approach enabled the identification of four molecular subclasses of pre-eclampsia in which distinct and shared disease mechanisms are activated. The current review summarizes the results and conclusions from these studies and the research and clinical implications of our findings.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Department of Obstetrics and Gynecology, School of Medicine, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary; Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Genesis Theranostix Group, Budapest, Hungary.
| | - Roberto Romero
- Pregnancy Research Branch(1), NICHD/NIH/DHHS, Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Genesis Theranostix Group, Budapest, Hungary; Semmelweis University Doctoral School, Budapest, Hungary
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Genesis Theranostix Group, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gábor Szalai
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Genesis Theranostix Group, Budapest, Hungary; Department of Surgery, School of Medicine, University of Pécs, Pécs, Hungary
| | | | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary; Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Sándor Nagy
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Olga Török
- Department of Obstetrics and Gynecology, School of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adi L Tarca
- Genesis Theranostix Group, Budapest, Hungary; Pregnancy Research Branch(1), NICHD/NIH/DHHS, Bethesda, MD, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Offer Erez
- Genesis Theranostix Group, Budapest, Hungary; Pregnancy Research Branch(1), NICHD/NIH/DHHS, Bethesda, MD, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Nándor Ács
- Department of Obstetrics and Gynecology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, School of Medicine, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| |
Collapse
|
13
|
Li Q, Sharkey A, Sheridan M, Magistrati E, Arutyunyan A, Huhn O, Sancho-Serra C, Anderson H, McGovern N, Esposito L, Fernando R, Gardner L, Vento-Tormo R, Turco MY, Moffett A. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy. Cell Stem Cell 2024; 31:181-195.e9. [PMID: 38237587 DOI: 10.1016/j.stem.2023.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 02/04/2024]
Abstract
In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.
Collapse
Affiliation(s)
- Qian Li
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Megan Sheridan
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Elisa Magistrati
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Anna Arutyunyan
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Oisin Huhn
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carmen Sancho-Serra
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Holly Anderson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Laura Esposito
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ridma Fernando
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Roser Vento-Tormo
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK.
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
14
|
Dai M, Xu Y, Gong G, Zhang Y. Roles of immune microenvironment in the female reproductive maintenance and regulation: novel insights into the crosstalk of immune cells. Front Immunol 2023; 14:1109122. [PMID: 38223507 PMCID: PMC10786641 DOI: 10.3389/fimmu.2023.1109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/25/2023] [Indexed: 01/16/2024] Open
Abstract
Female fertility decline is an accumulative consequence caused by complex factors, among them, the disruption of the immune profile in female reproduction stands out as a crucial contributor. Presently, the effects of immune microenvironment (IME) on the female reproductive process have attracted increasing attentions for their dynamic but precisive roles. Immunocytes including macrophages, dendritic cells, T cells, B cells and neutrophils, with diverse subpopulations as well as high plasticity functioned dynamically in the process of female reproduction through indirect intercellular communication via specific cytokine release transduced by molecular signal networks or direct cell-cell contact to maintain the stability of the reproductive process have been unveiled. The immune profile of female reproduction in each stage has also been meticulously unveiled. Especially, the application of single-cell sequencing (scRNA-seq) technology in this process reveals the distribution map of immune cells, which gives a novel insight for the homeostasis of IME and provides a research direction for better exploring the role of immune cells in female reproduction. Here, we provide an all-encompassing overview of the latest advancements in immune modulation within the context of the female reproductive process. Our approach involves structuring our summary in accordance with the physiological sequence encompassing gonadogenesis, folliculogenesis within the ovaries, ovulation through the fallopian tubes, and the subsequent stages of embryo implantation and development within the uterus. Our overarching objective is to construct a comprehensive portrayal of the immune microenvironment (IME), thereby accentuating the pivotal role played by immune cells in governing the intricate female reproductive journey. Additionally, we emphasize the pressing need for heightened attention directed towards strategies that focus on immune interventions within the female reproductive process, with the ultimate aim of enhancing female fertility.
Collapse
Affiliation(s)
- Mengyuan Dai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Guidong Gong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Lundin K, Bentzen JG, Bozdag G, Ebner T, Harper J, Le Clef N, Moffett A, Norcross S, Polyzos NP, Rautakallio-Hokkanen S, Sfontouris I, Sermon K, Vermeulen N, Pinborg A. Good practice recommendations on add-ons in reproductive medicine†. Hum Reprod 2023; 38:2062-2104. [PMID: 37747409 PMCID: PMC10628516 DOI: 10.1093/humrep/dead184] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
STUDY QUESTION Which add-ons are safe and effective to be used in ART treatment? SUMMARY ANSWER Forty-two recommendations were formulated on the use of add-ons in the diagnosis of fertility problems, the IVF laboratory and clinical management of IVF treatment. WHAT IS KNOWN ALREADY The innovative nature of ART combined with the extremely high motivation of the patients has opened the door to the wide application of what has become known as 'add-ons' in reproductive medicine. These supplementary options are available to patients in addition to standard fertility procedures, typically incurring an additional cost. A diverse array of supplementary options is made available, encompassing tests, drugs, equipment, complementary or alternative therapies, laboratory procedures, and surgical interventions. These options share the common aim of stating to enhance pregnancy or live birth rates, mitigate the risk of miscarriage, or expedite the time to achieving pregnancy. STUDY DESIGN, SIZE, DURATION ESHRE aimed to develop clinically relevant and evidence-based recommendations focusing on the safety and efficacy of add-ons currently used in fertility procedures in order to improve the quality of care for patients with infertility. PARTICIPANTS/MATERIALS, SETTING, METHODS ESHRE appointed a European multidisciplinary working group consisting of practising clinicians, embryologists, and researchers who have demonstrated leadership and expertise in the care and research of infertility. Patient representatives were included in the working group. To ensure that the guidelines are evidence-based, the literature identified from a systematic search was reviewed and critically appraised. In the absence of any clear scientific evidence, recommendations were based on the professional experience and consensus of the working group. The guidelines are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines were reviewed by 46 independent international reviewers. A total of 272 comments were received and incorporated where relevant. MAIN RESULTS AND THE ROLE OF CHANCE The multidisciplinary working group formulated 42 recommendations in three sections; diagnosis and diagnostic tests, laboratory tests and interventions, and clinical management. LIMITATIONS, REASONS FOR CAUTION Of the 42 recommendations, none could be based on high-quality evidence and only four could be based on moderate-quality evidence, implicating that 95% of the recommendations are supported only by low-quality randomized controlled trials, observational data, professional experience, or consensus of the development group. WIDER IMPLICATIONS OF THE FINDINGS These guidelines offer valuable direction for healthcare professionals who are responsible for the care of patients undergoing ART treatment for infertility. Their purpose is to promote safe and effective ART treatment, enabling patients to make informed decisions based on realistic expectations. The guidelines aim to ensure that patients are fully informed about the various treatment options available to them and the likelihood of any additional treatment or test to improve the chance of achieving a live birth. STUDY FUNDING/COMPETING INTEREST(S) All costs relating to the development process were covered from ESHRE funds. There was no external funding of the development process or manuscript production. K.L. reports speakers fees from Merck and was part of a research study by Vitrolife (unpaid). T.E. reports consulting fees from Gynemed, speakers fees from Gynemed and is part of the scientific advisory board of Hamilton Thorne. N.P.P. reports grants from Merck Serono, Ferring Pharmaceutical, Theramex, Gedeon Richter, Organon, Roche, IBSA and Besins Healthcare, speakers fees from Merck Serono, Ferring Pharmaceutical, Theramex, Gedeon Richter, Organon, Roche, IBSA and Besins Healthcare. S.R.H. declares being managing director of Fertility Europe, a not-for-profit organization receiving financial support from ESHRE. I.S. is a scientific advisor for and has stock options from Alife Health, is co-founder of IVFvision LTD (unpaid) and received speakers' fee from the 2023 ART Young Leader Prestige workshop in China. A.P. reports grants from Gedeon Richter, Ferring Pharmaceuticals and Merck A/S, consulting fees from Preglem, Novo Nordisk, Ferring Pharmaceuticals, Gedeon Richter, Cryos and Merck A/S, speakers fees from Gedeon Richter, Ferring Pharmaceuticals, Merck A/S, Theramex and Organon, travel fees from Gedeon Richter. The other authors disclosed no conflicts of interest. DISCLAIMER This Good Practice Recommendations (GPRs) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or bedeemedinclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results.Theydo not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.
Collapse
Affiliation(s)
| | - K Lundin
- Department Reproductive Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - J G Bentzen
- The Fertility Department, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - G Bozdag
- Department Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| | - T Ebner
- Department of Gynecology, Obstetrics, and Gynecological Endocrinology, Kepler University, MedCampus IV, Linz, Austria
| | - J Harper
- Institute for Women’s Health, London, UK
| | - N Le Clef
- European Society of Human Reproduction and Embryology, Brussels, Belgium
| | - A Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - N P Polyzos
- Department Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | | | | | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - N Vermeulen
- European Society of Human Reproduction and Embryology, Brussels, Belgium
| | - A Pinborg
- The Fertility Department, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Parisi F, Fenizia C, Introini A, Zavatta A, Scaccabarozzi C, Biasin M, Savasi V. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum Reprod Update 2023; 29:699-720. [PMID: 37353909 PMCID: PMC10628507 DOI: 10.1093/humupd/dmad016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Estrogens regulate disparate female physiological processes, thus ensuring reproduction. Altered estrogen levels and signaling have been associated with increased risks of pregnancy failure and complications, including hypertensive disorders and low birthweight babies. However, the role of estrogens in the periconceptional period and early pregnancy is still understudied. OBJECTIVE AND RATIONALE This review aims to summarize the current evidence on the role of maternal estrogens during the periconceptional period and the first trimester of pregnancies conceived naturally and following ART. Detailed molecular mechanisms and related clinical impacts are extensively described. SEARCH METHODS Data for this narrative review were independently identified by seven researchers on Pubmed and Embase databases. The following keywords were selected: 'estrogens' OR 'estrogen level(s)' OR 'serum estradiol' OR 'estradiol/estrogen concentration', AND 'early pregnancy' OR 'first trimester of pregnancy' OR 'preconceptional period' OR 'ART' OR 'In Vitro Fertilization (IVF)' OR 'Embryo Transfer' OR 'Frozen Embryo Transfer' OR 'oocyte donation' OR 'egg donation' OR 'miscarriage' OR 'pregnancy outcome' OR 'endometrium'. OUTCOMES During the periconceptional period (defined here as the critical time window starting 1 month before conception), estrogens play a crucial role in endometrial receptivity, through the activation of paracrine/autocrine signaling. A derailed estrogenic milieu within this period seems to be detrimental both in natural and ART-conceived pregnancies. Low estrogen levels are associated with non-conception cycles in natural pregnancies. On the other hand, excessive supraphysiologic estrogen concentrations at time of the LH peak correlate with lower live birth rates and higher risks of pregnancy complications. In early pregnancy, estrogen plays a massive role in placentation mainly by modulating angiogenic factor expression-and in the development of an immune-tolerant uterine micro-environment by remodeling the function of uterine natural killer and T-helper cells. Lower estrogen levels are thought to trigger abnormal placentation in naturally conceived pregnancies, whereas an estrogen excess seems to worsen pregnancy development and outcomes. WIDER IMPLICATIONS Most current evidence available endorses a relation between periconceptional and first trimester estrogen levels and pregnancy outcomes, further depicting an optimal concentration range to optimize pregnancy success. However, how estrogens co-operate with other factors in order to maintain a fine balance between local tolerance towards the developing fetus and immune responses to pathogens remains elusive. Further studies are highly warranted, also aiming to identify the determinants of estrogen response and biomarkers for personalized estrogen administration regimens in ART.
Collapse
Affiliation(s)
- F Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, via F. Sforza 35, Milan 20122, Italy
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - A Introini
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Nobels väg 5, Stockholm, Sweden
| | - A Zavatta
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Scaccabarozzi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - M Biasin
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - V Savasi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| |
Collapse
|
17
|
Zhuang BM, Cao DD, Li TX, Liu XF, Lyu MM, Wang SD, Cui XY, Wang L, Chen XL, Lin XL, Lee CL, Chiu PCN, Yeung WSB, Yao YQ. Single-cell characterization of self-renewing primary trophoblast organoids as modeling of EVT differentiation and interactions with decidual natural killer cells. BMC Genomics 2023; 24:618. [PMID: 37853336 PMCID: PMC10583354 DOI: 10.1186/s12864-023-09690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.
Collapse
Affiliation(s)
- Bai-Mei Zhuang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dan-Dan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
| | - Tian-Xi Li
- Geneplus-Shenzhen Institute, Shenzhen, China
| | - Xiao-Feng Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Min-Min Lyu
- Department of Clinical-Translational and Basic Research Laboratory, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Futian District, Guangdong, P.R. China
| | - Si-Dong Wang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin-Yuan Cui
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Lin Chen
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Li Lin
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Yuan-Qing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.
- Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
18
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
19
|
Velastegui E, Vera E, Vanden Berghe W, Muñoz MS, Orellana-Manzano A. "HLA-C: evolution, epigenetics, and pathological implications in the major histocompatibility complex". Front Genet 2023; 14:1206034. [PMID: 37465164 PMCID: PMC10350511 DOI: 10.3389/fgene.2023.1206034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
HLA-C, a gene located within the major histocompatibility complex, has emerged as a prominent target in biomedical research due to its involvement in various diseases, including cancer and autoimmune disorders; even though its recent addition to the MHC, the interaction between HLA-C and KIR is crucial for immune responses, particularly in viral infections. This review provides an overview of the structure, origin, function, and pathological implications of HLA-C in the major histocompatibility complex. In the last decade, we systematically reviewed original publications from Pubmed, ScienceDirect, Scopus, and Google Scholar. Our findings reveal that genetic variations in HLA-C can determine susceptibility or resistance to certain diseases. However, the first four exons of HLA-C are particularly susceptible to epigenetic modifications, which can lead to gene silencing and alterations in immune function. These alterations can manifest in diseases such as alopecia areata and psoriasis and can also impact susceptibility to cancer and the effectiveness of cancer treatments. By comprehending the intricate interplay between genetic and epigenetic factors that regulate HLA-C expression, researchers may develop novel strategies for preventing and treating diseases associated with HLA-C dysregulation.
Collapse
Affiliation(s)
- Erick Velastegui
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Wim Vanden Berghe
- Epigenetic Signaling Lab, Faculty Biomedical Sciences, PPES, University of Antwerp, Antwerp, Belgium
| | - Mindy S. Muñoz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la Vida (FCV), Guayaquil, Ecuador
| |
Collapse
|
20
|
Jiang X, Zhai J, Xiao Z, Wu X, Zhang D, Wan H, Xu Y, Qi L, Wang M, Yu D, Liu Y, Wu H, Sun R, Xia S, Yu K, Guo J, Wang H. Identifying a dynamic transcriptomic landscape of the cynomolgus macaque placenta during pregnancy at single-cell resolution. Dev Cell 2023; 58:806-821.e7. [PMID: 37054708 DOI: 10.1016/j.devcel.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms in the primate placenta during gestation. Here, we present a single-cell transcriptome-wide view of the cynomolgus macaque placenta throughout gestation. Bioinformatics analyses and multiple validation experiments suggested that placental trophoblast cells exhibited stage-specific differences across gestation. Interactions between trophoblast cells and decidual cells also showed gestational stage-dependent differences. The trajectories of the villous core cells indicated that placental mesenchymal cells were derived from extraembryonic mesoderm (ExE.Meso) 1, whereas placental Hofbauer cells, erythrocytes, and endothelial cells were derived from ExE.Meso2. Comparative analyses of human and macaque placentas uncovered conserved features of placentation across species, and the discrepancies of extravillous trophoblast cells (EVTs) between human and macaque correlated to their differences in invasion patterns and maternal-fetal interactions. Our study provides a groundwork for elucidating the cellular basis of primate placentation.
Collapse
Affiliation(s)
- Xiangxiang Jiang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Jinglei Zhai
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhenyu Xiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xulun Wu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Haifeng Wan
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanhong Xu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Luqing Qi
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Meijiao Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dainan Yu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yawei Liu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hao Wu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Run Sun
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuwei Xia
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kunyuan Yu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingtao Guo
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
21
|
Moffett A, Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol 2023; 23:222-235. [PMID: 36192648 PMCID: PMC9527719 DOI: 10.1038/s41577-022-00777-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 02/02/2023]
Abstract
The role of the maternal immune system in reproductive success in humans remains controversial. Here we focus on the events that occur in the maternal decidua during the first few weeks of human pregnancy, because this is the site at which maternal leukocytes initially interact with and can recognize fetal trophoblast cells, potentially involving allorecognition by both T cells and natural killer (NK) cells. NK cells are the dominant leukocyte population in first-trimester decidua, and genetic studies point to a role of allorecognition by uterine NK cells in establishing a boundary between the mother and the fetus. By contrast, definitive evidence that allorecognition by decidual T cells occurs during the first trimester is lacking. Thus, our view is that during the crucial period when the placenta is established, damaging T cell-mediated adaptive immune responses towards placental trophoblast are minimized, whereas NK cell allorecognition contributes to successful implantation and healthy pregnancy.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Li L, Li J. Dimerization of Transmembrane Proteins in Cancer Immunotherapy. MEMBRANES 2023; 13:393. [PMID: 37103820 PMCID: PMC10143916 DOI: 10.3390/membranes13040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Transmembrane proteins (TMEMs) are integrated membrane proteins that span the entire lipid bilayer and are permanently anchored to it. TMEMs participate in various cellular processes. Some TMEMs usually exist and perform their physiological functions as dimers rather than monomers. TMEM dimerization is associated with various physiological functions, such as the regulation of enzyme activity, signal transduction, and cancer immunotherapy. In this review, we focus on the dimerization of transmembrane proteins in cancer immunotherapy. This review is divided into three parts. First, the structures and functions of several TMEMs related to tumor immunity are introduced. Second, the characteristics and functions of several typical TMEM dimerization processes are analyzed. Finally, the application of the regulation of TMEM dimerization in cancer immunotherapy is introduced.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingying Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
23
|
Ismail NI. Relative expression of receptors in uterine natural killer cells compared to peripheral blood natural killer cells. Front Immunol 2023; 14:1166451. [PMID: 37051244 PMCID: PMC10083503 DOI: 10.3389/fimmu.2023.1166451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
One would expect maternal immune cells to attack the invading trophoblast as the placenta is semi-allogenic. However, they appear to cooperate with the trophoblast in disrupting the arterial wall which has been determined in several studies. uNK cells are a particular type of immune cell that appears to play a role in pregnancy. As in pregnancy, the key contributors to trophoblast invasion appear to be a unique combination of genes, which appear to regulate multiple components of the interactions between placental and maternal cells, called HLA class 1b genes. The HLA class 1b genes have few alleles, which makes them unlikely to be recognized as foreign by the maternal cells. The low polymorphic properties of these particular HLAs may aid trophoblasts in actively avoiding immune attacks. This review gives a complete description of the mechanisms of interaction between HLAs and maternal uNK cells in humans.
Collapse
|
24
|
Than NG, Romero R, Györffy D, Posta M, Bhatti G, Done B, Chaemsaithong P, Jung E, Suksai M, Gotsch F, Gallo DM, Bosco M, Kim B, Kim YM, Chaiworapongsa T, Rossi SW, Szilágyi A, Erez O, Tarca AL, Papp Z. Molecular subclasses of preeclampsia characterized by a longitudinal maternal proteomics study: distinct biomarkers, disease pathways and options for prevention. J Perinat Med 2023; 51:51-68. [PMID: 36253935 PMCID: PMC9837387 DOI: 10.1515/jpm-2022-0433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The heterogeneous nature of preeclampsia is a major obstacle to early screening and prevention, and a molecular taxonomy of disease is needed. We have previously identified four subclasses of preeclampsia based on first-trimester plasma proteomic profiles. Herein, we expanded this approach by using a more comprehensive panel of proteins profiled in longitudinal samples. METHODS Proteomic data collected longitudinally from plasma samples of women who developed preeclampsia (n=109) and of controls (n=90) were available from our previous report on 1,125 proteins. Consensus clustering was performed to identify subgroups of patients with preeclampsia based on data from five gestational-age intervals by using select interval-specific features. Demographic, clinical, and proteomic differences among clusters were determined. Differentially abundant proteins were used to identify cluster-specific perturbed KEGG pathways. RESULTS Four molecular clusters with different clinical phenotypes were discovered by longitudinal proteomic profiling. Cluster 1 involves metabolic and prothrombotic changes with high rates of early-onset preeclampsia and small-for-gestational-age neonates; Cluster 2 includes maternal anti-fetal rejection mechanisms and recurrent preeclampsia cases; Cluster 3 is associated with extracellular matrix regulation and comprises cases of mostly mild, late-onset preeclampsia; and Cluster 4 is characterized by angiogenic imbalance and a high prevalence of early-onset disease. CONCLUSIONS This study is an independent validation and further refining of molecular subclasses of preeclampsia identified by a different proteomic platform and study population. The results lay the groundwork for novel diagnostic and personalized tools of prevention.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bomi Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Genesis Theranostix Group, Budapest, Hungary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Genesis Theranostix Group, Budapest, Hungary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Zoltán Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Ma J, Gao W, Li D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front Endocrinol (Lausanne) 2023; 13:1061766. [PMID: 36686483 PMCID: PMC9849692 DOI: 10.3389/fendo.2022.1061766] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Implantation is the first step in human reproduction. Successful implantation depends on the crosstalk between embryo and endometrium. Recurrent implantation failure (RIF) is a clinical phenomenon characterized by a lack of implantation after the transfer of several embryos and disturbs approximately 10% couples undergoing in vitro fertilization and embryo transfer. Despite increasing literature on RIF, there is still no widely accepted definition or standard protocol for the diagnosis and treatment of RIF. Progress in predicting and preventing RIF has been hampered by a lack of widely accepted definitions. Most couples with RIF can become pregnant after clinical intervention. The prognosis for couples with RIF is related to maternal age. RIF can be caused by immunology, thrombophilias, endometrial receptivity, microbiome, anatomical abnormalities, male factors, and embryo aneuploidy. It is important to determine the most possible etiologies, and individualized treatment aimed at the primary cause seems to be an effective method for increasing the implantation rate. Couples with RIF require psychological support and appropriate clinical intervention. Further studies are required to evaluate diagnostic method and he effectiveness of each therapy, and guide clinical treatment.
Collapse
Affiliation(s)
- Junying Ma
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Wenyan Gao
- Department of Obstetrics, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
26
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
27
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
28
|
Habets DHJ, Schlütter A, van Kuijk SMJ, Spaanderman MEA, Al‐Nasiry S, Wieten L. Natural killer cell profiles in recurrent pregnancy loss: Increased expression and positive associations with TACTILE and LILRB1. Am J Reprod Immunol 2022; 88:e13612. [PMID: 36004818 PMCID: PMC9787570 DOI: 10.1111/aji.13612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
PROBLEM NK cells are important for healthy pregnancy and aberrant phenotypes or effector functions have been associated with RPL. We compared expression of a broad panel of NK cell receptors, including immune checkpoint receptors, and investigated their clinical association with RPL as this might improve patient stratification and prediction of RPL. METHOD OF STUDY Peripheral blood mononuclear cells were isolated from 52 women with RPL and from 2 women with an uncomplicated pregnancy for flowcytometric analysis and plasma was used to determine anti-CMV IgG antibodies. RESULTS Between RPL and controls, we observed no difference in frequencies of T-, NKT or NK cells, in CD56dimCD16+ or CD56brightCD16- NK cell subsets or in the expression of KIRs, NKG2A, NKG2C, NKG2D, NKp30, NKp44, NKp46 or DNAM1. NK cells from women with RPL had a higher expression of LILRB1 and TACTILE and this was associated with the number of losses. The immune checkpoint receptors PD1, TIM3 and LAG3 were not expressed on peripheral blood NK cells. In RPL patients, there was a large variation in NKG2C expression and higher levels could be explained by CMV seropositivity. CONCLUSION Our study identified LILRB1 and TACTILE as NK cell receptors associated with RPL. Moreover, we provide first support for the potential role of CMV in RPL via its impact on the NK cell compartment. Thereby our study could guide future studies to confirm the clinical association of LILRB1, TACTILE and NKG2C with RPL in a larger cohort and to explore their functional relevance in reproductive success.
Collapse
Affiliation(s)
- Denise H. J. Habets
- Department of Obstetrics and GynecologyMaastricht University Medical CentreMaastrichtthe Netherlands,Department of Transplantation ImmunologyMaastricht University Medical CentreMaastrichtthe Netherlands,GROW school for Oncology and Developmental BiologyMaastricht UniversityMaastrichtthe Netherlands
| | - Anna Schlütter
- Department of Obstetrics and GynecologyMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Sander M. J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology AssessmentMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Marc E. A. Spaanderman
- Department of Obstetrics and GynecologyMaastricht University Medical CentreMaastrichtthe Netherlands,GROW school for Oncology and Developmental BiologyMaastricht UniversityMaastrichtthe Netherlands,Department of Obstetrics and GynecologyRadboud University Medical CentreNijmegenthe Netherlands
| | - Salwan Al‐Nasiry
- Department of Obstetrics and GynecologyMaastricht University Medical CentreMaastrichtthe Netherlands,GROW school for Oncology and Developmental BiologyMaastricht UniversityMaastrichtthe Netherlands
| | - Lotte Wieten
- Department of Transplantation ImmunologyMaastricht University Medical CentreMaastrichtthe Netherlands,GROW school for Oncology and Developmental BiologyMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
29
|
Colucci F. Uterine NK Cells Ace an "A" in Education: NKG2A Sets Up Crucial Functions at the Maternal-Fetal Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1421-1425. [PMID: 36192118 PMCID: PMC7613701 DOI: 10.4049/jimmunol.2200384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
I argue here that reproduction was a driving force in the evolution of NK-cell education, which is set by interactions between inhibitory receptors and self MHC. Maternal lymphocytes also interact with allogeneic MHC on fetal trophoblast cells. How the maternal immune system accommodates the semi-allogeneic fetus is a fascinating question. But it may be the wrong question. Tissue lymphocytes, like uterine NK (uNK) cells, do not attack the mismatched fetus and its placenta. Instead, they help the local vasculature to accommodate changes necessary to nourish the fetus. Education of uNK cells, driven by the ancient CD94:NKG2A inhibitory receptor and self MHC, sets them up to deliver these key functions at the maternal-fetal interface. /112
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK,University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| |
Collapse
|
30
|
Duan L, Reisch B, Mach P, Kimmig R, Gellhaus A, Iannaccone A. The immunological role of b7-h4 in pregnant women with sars-cov2 infection. Am J Reprod Immunol 2022; 88:e13626. [PMID: 36121927 PMCID: PMC9538547 DOI: 10.1111/aji.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Problem T‐cells are key players in fighting the coronavirus disease 2019 (COVID‐19). The checkpoint molecule B7‐H4, a member of the B7 family, can inhibit T‐cell activation and proliferation by inhibiting NF‐kb expression. We aimed to elucidate the immunological role of soluble B7‐H4 (sB7‐H4) and B7‐H4 in pregnant women suffered from an acute Sars‐Cov2 infection. Methods Expression levels of sB7‐H4 and cytokines were detected by enzyme linked immunosorbent assay. B7‐H4 and cytokines mRNA expression was analyzed by qPCR, and B7‐H4 and NF‐κb (p65) protein levels were investigated by western blot and immunofluorescence staining in placenta chorionic villous and decidual basalis tissues of COVID‐19 affected women and healthy controls. Results Fibrinoid necrosis in the periphery of placental villi was increased in the COVID‐19‐affected patients. sB7‐H4 protein in maternal and cord blood serum and IL‐6/IL‐10 were increased while leukocytes were decreased during SARS‐CoV‐2 infection. Serum sB7‐H4 level was increased according to the severity of SARS‐Cov‐2 infection. Cytokines (IL‐6, IL‐18, IL‐1β, TNF‐α), B7‐H4 mRNA and protein in the decidual basalis tissues of COVID‐19‐infected pregnant women were significantly increased compared to healthy controls. IL‐18 and IL‐1β were significantly increased in the placenta chorionic villous samples of COVID‐19 affected patients, while NF‐κb (p65) expression was decreased. Conclusions The expression of the immunological marker sB7‐H4 correlated with the severity of COVID‐19 disease in pregnant women. sB7‐H4 and B7‐H4 can be used to monitor the progression of COVID‐19 infection during pregnancy, and for evaluating of the maternal immune status.
Collapse
Affiliation(s)
- Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
31
|
Barry F, Benart L, Robert L, Gala A, Ferrières-Hoa A, Loup V, Anahory T, Brouillet S, Hamamah S. [HLA-C KIR interactions and placental defects: Implications in ART pregnancy issues]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2022; 50:600-609. [PMID: 35724923 DOI: 10.1016/j.gofs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim of this review is to update data concerning the impact of HLA-C KIR system on placental disorders and assess the involvement on ART clinical outcomes. METHOD Ensuring the maintenance of human pregnancy requires the set up of immunological tolerance to prevent foetus rejection. This phenomenon involves different actors of the immune system: among them, uterine NK cells (uNK) hold specific KIR (killer-cell immunoglobulin-like) receptors linking to HLA molecules on the surface of trophoblastic cells at implantation. Many studies provided evidence that the specific interaction between maternal KIR and foetal HLA-C could influence the process of placentation; according to the KIR haplotype and the type of HLA-C, the interaction could be detrimental for placental function. We reviewed the latest data available regarding HLA-C KIR interactions and ART outcomes. RESULTS The available results highlight a significant increase of preeclampsia risk and recurrent miscarriages when the maternal inhibitory haplotype KIR AA is present, this risk is all the more enhanced when the interaction occurs with foetal HLA-C2. Recent data suggest the consequences of this detrimental interaction in case of DET (double embryo transfer) or use of donor's oocytes in ART practice. On the other hand, maternal KIR AB or BB haplotypes haven't been related to an additional obstetrical risk, as well as the foetal HLA-C1 homozygous allotype. CONCLUSION Despite the existence of many confoundings in current literature on the subject, interaction between maternal KIR and foetal HLA-C represent a promising target lead to broaden the spectrum of placental defects etiologies, especially in the reproductive health area.
Collapse
Affiliation(s)
- F Barry
- UMR Inserm DEFE 1203, développement embryonnaire, fertilité et environnement, université de Montpellier, Montpellier, France; Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - L Benart
- Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - L Robert
- Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - A Gala
- UMR Inserm DEFE 1203, développement embryonnaire, fertilité et environnement, université de Montpellier, Montpellier, France; Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - A Ferrières-Hoa
- UMR Inserm DEFE 1203, développement embryonnaire, fertilité et environnement, université de Montpellier, Montpellier, France; Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - V Loup
- Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - T Anahory
- Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - S Brouillet
- UMR Inserm DEFE 1203, développement embryonnaire, fertilité et environnement, université de Montpellier, Montpellier, France; Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France
| | - S Hamamah
- UMR Inserm DEFE 1203, développement embryonnaire, fertilité et environnement, université de Montpellier, Montpellier, France; Département de Biologie de la Reproduction et CECOS, unité AMP/DPI, CHU Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
32
|
Dunk CE, Bucher M, Zhang J, Hayder H, Geraghty DE, Lye SJ, Myatt L, Hackmon R. Human Leukocyte Antigen HLA-C, HLA-G, HLA-F and HLA-E placental profiles are altered in Early Severe Preeclampsia and Preterm Birth with Chorioamnionitis. Am J Obstet Gynecol 2022; 227:641.e1-641.e13. [PMID: 35863458 DOI: 10.1016/j.ajog.2022.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The extravillous trophoblast expresses each of the non-classical MHC class I antigens - HLA-E, F, and G and a single classical class I antigen HLA-C. We recently demonstrated dynamic expression patterns of HLA-C, G and F during early EVT invasion and placentation. OBJECTIVE In this study we investigate the hypothesis that the immune inflammatory mediated complications of pregnancy such as early preeclampsia and preterm labor, may show altered expression profiles of non-classical HLA. STUDY DESIGN Real time q-PCR, western blot and immunohistochemistry were performed on placental villous tissues and basal plate sections from term non-laboring deliveries, preterm deliveries and severe early onset preeclampsia both with and without small for gestational age neonates. RESULTS HLA-G is strongly and exclusively expressed by the EVT within the placental basal plate and its levels increase in pregnancies complicated by severe early onset PE with SGA neonates as compared to healthy term controls. HLA-C shows a similar profile in the EVT of PE pregnancies, but significantly decreases in the villous placenta. HLA-F protein levels are decreased in both EVT and villous placenta of severe early onset PE pregnancies both with and without SGA babies as compared to Term and PTB deliveries. HLA-E decreases in blood vessels in placentas from PE pregnancies as compared to Term and PTB deliveries. HLA-F and HLA-C are increased in the placenta of PTBs with chorioamnionitis as compared to idiopathic PTB. CONCLUSION Dysregulation of placental HLA expression at the maternal fetal interface may contribute to the compromised maternal tolerance in PTB with chorioamnionitis and excessive maternal systemic inflammation associated with severe early onset PE.
Collapse
Affiliation(s)
- Caroline E Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Experimental Therapeutics, Toronto General Hospital Research Institute, University Hospital Network, Toronto, Canada
| | - Matthew Bucher
- Department of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Heyam Hayder
- Department of Biology, York University, Toronto, Canada
| | | | - Stephen J Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Fred Hutchinson Cancer Research Center, Seattle, USA; Department of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Canada
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Rinat Hackmon
- Department of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, Oregon, USA.
| |
Collapse
|
33
|
NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. Int J Mol Sci 2022; 23:ijms23147859. [PMID: 35887206 PMCID: PMC9322916 DOI: 10.3390/ijms23147859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and leading causes of cancer-related deaths worldwide. Despite its complex pathogenesis and progression, CRC represents a well-fitting example of how the immune contexture can dictate the disease outcome. The presence of cytotoxic lymphocytes, both CD8+ T cells and natural killer (NK) cells, represents a relevant prognostic factor in CRC and is associated with a better overall survival. Together with NK cells, other innate lymphocytes, namely, innate lymphoid cells (ILCs), have been found both in biopsies of CRC patients and in murine models of intestinal cancer, playing both pro- and anti-tumor activities. In particular, several type 1 innate lymphoid cells (ILC1) with cytotoxic functions have been recently described, and evidence in mice shows a role for both NK cells and ILC1 in controlling CRC metastasis. In this review, we provide an overview of the features of NK cells and the expanding spectrum of innate lymphocytes with cytotoxic functions. We also comment on both the described and the potential roles these innate lymphocytes can play during the progression of intestinal cancer leading to metastasis. Finally, we discuss recent advances in the molecular mechanisms underlying the functional regulation of cytotoxic innate lymphocytes in CRC.
Collapse
|
34
|
Feng Q, Zhou M, Li S, Morimoto L, Hansen H, Myint SS, Wang R, Metayer C, Kang A, Fear AL, Pappas D, Erlich H, Hollenbach JA, Mancuso N, Trachtenberg E, de Smith AJ, Ma X, Wiemels JL. Interaction between maternal killer immunoglobulin-like receptors and offspring HLAs and susceptibility of childhood ALL. Blood Adv 2022; 6:3756-3766. [PMID: 35500222 PMCID: PMC9631572 DOI: 10.1182/bloodadvances.2021006821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) in children is associated with a distinct neonatal cytokine profile. The basis of this neonatal immune phenotype is unknown but potentially related to maternal-fetal immune receptor interactions. We conducted a case-control study of 226 case child-mother pairs and 404 control child-mother pairs to evaluate the role of interaction between HLA genotypes in the offspring and maternal killer immunoglobulin-like receptor (KIR) genotypes in the etiology of childhood ALL, while considering potential mediation by neonatal cytokines and the immune-modulating enzyme arginase-II (ARG-II). We observed different associations between offspring HLA-maternal KIR activating profiles and the risk of ALL in different predicted genetic ancestry groups. For instance, in Latino subjects who experience the highest risk of childhood leukemia, activating profiles were significantly associated with a lower risk of childhood ALL (odds ratio [OR] = 0.59; 95% confidence interval [CI], 0.49-0.71) and a higher level of ARG-II at birth (coefficient = 0.13; 95% CI, 0.04-0.22). HLA-KIR activating profiles were also associated with a lower risk of ALL in non-Latino Asians (OR = 0.63; 95% CI, 0.38-1.01), although they had a lower tumor necrosis factor-α level (coefficient = -0.27; 95% CI, -0.49 to -0.06). Among non-Latino White subjects, no significant association was observed between offspring HLA-maternal KIR interaction and ALL risk or cytokine levels. The current study reports the association between offspring HLA-maternal KIR interaction and the development of childhood ALL with variation by predicted genetic ancestry. We also observed some associations between activating profiles and immune factors related to cytokine control; however, cytokines did not demonstrate causal mediation of the activating profiles on ALL risk.
Collapse
Affiliation(s)
- Qianxi Feng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Mi Zhou
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Libby Morimoto
- School of Public Health, University of California, Berkeley, CA
| | - Helen Hansen
- Department of Neurosurgery, University of California, San Francisco, CA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT
| | | | - Alice Kang
- School of Public Health, University of California, Berkeley, CA
| | - Anna Lisa Fear
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Derek Pappas
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Henry Erlich
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | | | - Adam J. de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
35
|
Petroff MG, Nguyen SL, Ahn SH. Fetal‐placental
antigens and the maternal immune system: Reproductive immunology comes of age. Immunol Rev 2022; 308:25-39. [PMID: 35643905 PMCID: PMC9328203 DOI: 10.1111/imr.13090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Reproductive physiology and immunology as scientific disciplines each have rich, largely independent histories. The physicians and philosophers of ancient Greece made remarkable observations and inferences to explain regeneration as well as illness and immunity. The scientific enlightenment of the renaissance and the technological advances of the past century have led to the explosion of knowledge that we are experiencing today. Breakthroughs in transplantation, immunology, and reproduction eventually culminated with Medawar’s discovery of acquired immunological tolerance, which helped to explain the transplantation success and failure. Medawar’s musings also keenly pointed out that the fetus apparently breaks these newly discovered rules, and with this, the field of reproductive immunology was launched. As a result of having stemmed from transplantation immunology, scientist still analogizes the fetus to a successful allograft. Although we now know of the fundamental differences between the two, this analogy remains a useful tool to understand how the fetus thrives despite its immunological disparity with the mother. Here, we review the history of reproductive immunology, and how major and minor histocompatibility antigens, blood group antigens, and tissue‐specific “self” antigens from the fetus and transplanted organs parallel and differ.
Collapse
Affiliation(s)
- Margaret G. Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Departments of Microbiology and Molecular Genetics, College of Veterinary Medicine and College of Human Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Sean L. Nguyen
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Soo Hyun Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| |
Collapse
|
36
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
37
|
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, Ma Y, Cao B, Wang YL. The mystery of the life tree: the placenta. Biol Reprod 2022; 107:301-316. [PMID: 35552600 DOI: 10.1093/biolre/ioac095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta is the interface between the fetal and maternal environments during mammalian gestation, critically safeguarding the health of the developing fetus and the mother. Placental trophoblasts origin from embryonic trophectoderm that differentiates into various trophoblastic subtypes through villous and extravillous pathways. The trophoblasts actively interact with multiple decidual cells and immune cells at the maternal-fetal interface and thus construct fundamental functional units, which are responsible for blood perfusion, maternal-fetal material exchange, placental endocrine, immune tolerance, and adequate defense barrier against pathogen infection. Various pregnant complications are tightly associated with the defects in placental development and function maintenance. In this review, we summarize the current views and our recent progress on the mechanisms underlying the formation of placental functional units, the interactions among trophoblasts and various uterine cells, as well as the placental barrier against pathogen infections during pregnancy. The involvement of placental dysregulation in adverse pregnancy outcomes is discussed.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- Medical College, Shaoxing University, Shaoxing, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Falco M, Meazza R, Alicata C, Canevali P, Muntasell A, Bottino C, Moretta L, Pende D, Lopez-Botet M. Epitope characterization of a monoclonal antibody that selectively recognizes KIR2DL1 allotypes. HLA 2022; 100:107-118. [PMID: 35411634 PMCID: PMC9544867 DOI: 10.1111/tan.14630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Killer immunoglobulin‐like receptor (KIR) genes code for a family of inhibitory and activating receptors, finely tuning NK cell function. Numerous studies reported the relevance of KIR allelic polymorphism on KIR expression, ligand affinity, and strength in signal transduction. Although KIR variability, including gene copy number and allelic polymorphism, in combination with HLA class I polymorphism, impacts both KIR expression and NK cell education, only a precise phenotypic analysis can define the size of the different KIRpos NK cell subsets. In this context, reagents recognizing a limited number of KIRs is essential. In this study, we have characterized the specificity of an anti‐KIR mAb termed HP‐DM1. Testing its binding to HEK‐293T cells transfected with plasmids coding for different KIRs, we demonstrated that HP‐DM1 mAb exclusively reacts with KIR2DL1. Using site‐directed mutagenesis, we identified the four amino acids relevant for HP‐DM1 recognition: M44, S67, R68, and T70. HP‐DM1 mAb binds to a conformational epitope including M44, the residue crucial for HLA‐C K80 recognition by KIR2DL1. Based on the HP‐DM1 epitope characterization, we could extend its reactivity to all KIR2DL1 allotypes identified except for KIR2DL1*022 and, most likely, KIR2DL1*020, predicting that it does not recognize any other KIR with the only exception of KIR2DS1*013. Moreover, by identifying the residues relevant for HP‐DM1 binding, continuously updating of its reactivity will be facilitated.
Collapse
Affiliation(s)
| | | | | | | | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Bottino
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.,DIMES, University of Genoa, Genoa, Italy
| | | | - Daniela Pende
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Miguel Lopez-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
39
|
Yagel S, Cohen SM, Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array. Am J Obstet Gynecol 2022; 226:S963-S972. [PMID: 33712272 DOI: 10.1016/j.ajog.2020.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
Maternal tolerance of the semiallogenic fetus necessitates conciliation of competing interests. Viviparity evolved with a placenta to mediate the needs of the fetus and maternal adaptation to the demands of pregnancy and to ensure optimal survival for both entities. The maternal-fetal interface is imagined as a 2-dimensional porous barrier between the mother and fetus, when in fact it is an intricate multidimensional array of tissues and resident and circulating factors at play, encompassing the developing fetus, the growing placenta, the changing decidua, and the dynamic maternal cardiovascular system. Pregnancy triggers dramatic changes to maternal hemodynamics to meet the growing demands of the developing fetus. Nearly a century of extensive research into the development and function of the placenta has revealed the role of placental dysfunction in the great obstetrical syndromes, among them preeclampsia. Recently, a debate has arisen questioning the primacy of the placenta in the etiology of preeclampsia, asserting that the maternal cardiovascular system is the instigator of the disorder. It was the clinical observation of the high rate of preeclampsia in hydatidiform mole that initiated the focus on the placenta in the etiology of the disease. Over many years of research, shallow trophoblast invasion with deficient remodeling of the maternal spiral arteries into vessels of higher capacitance and lower resistance has been recognized as hallmarks of the preeclamptic milieu. The lack of the normal decrease in uterine artery resistance is likewise predictive of preeclampsia. In abdominal pregnancies, however, an extrauterine pregnancy develops without remodeling of the spiral arteries, yet there is reduced resistance in the uterine arteries and distant vessels, such as the maternal ophthalmic arteries. Proponents of the maternal cardiovascular model of preeclampsia point to the observed maternal hemodynamic adaptations to pregnancy and maladaptation in gestational hypertension and preeclampsia and how the latter resembles the changes associated with cardiac disease states. Recognition of the importance of the angiogenic-antiangiogenic balance between placental-derived growth factor and its receptor soluble fms-like tyrosine kinase-1 and disturbance in this balance by an excess of a circulating isoform, soluble fms-like tyrosine kinase-1, which competes for and disrupts the proangiogenic receptor binding of the vascular endothelial growth factor and placental-derived growth factor, opened new avenues of research into the pathways to normal adaptation of the maternal cardiovascular and other systems to pregnancy and maladaptation in preeclampsia. The significance of the "placenta vs heart" debate goes beyond the academic: understanding the mutuality of placental and maternal cardiac etiologies of preeclampsia has far-reaching clinical implications for designing prevention strategies, such as aspirin therapy, prediction and surveillance through maternal hemodynamic studies or serum placental-derived growth factor and soluble fms-like tyrosine kinase-1 testing, and possible treatments to attenuate the effects of insipient preeclampsia on women and their fetuses, such as RNAi therapy to counteract excess soluble fms-like tyrosine kinase-1 produced by the placenta. In this review, we will present an integrated model of the maternal-placental-fetal array that delineates the commensality among the constituent parts, showing how a disruption in any component or nexus may lead to the multifaceted syndrome of preeclampsia.
Collapse
Affiliation(s)
- Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Sarah M Cohen
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
40
|
de Brito Vargas L, Beltrame MH, Ho B, Marin WM, Dandekar R, Montero-Martín G, Fernández-Viña MA, Hurtado AM, Hill KR, Tsuneto LT, Hutz MH, Salzano FM, Petzl-Erler ML, Hollenbach JA, Augusto DG. Remarkably Low KIR and HLA Diversity in Amerindians Reveals Signatures of Strong Purifying Selection Shaping the Centromeric KIR Region. Mol Biol Evol 2022; 39:msab298. [PMID: 34633459 PMCID: PMC8763117 DOI: 10.1093/molbev/msab298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR-HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR-HLA interactions among all described worldwide populations, and that 83-97% of their KIR-HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR-HLA coevolution and its impact on human health and survival.
Collapse
Affiliation(s)
- Luciana de Brito Vargas
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcia H Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Brenda Ho
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - A Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Kim R Hill
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Luiza T Tsuneto
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Lucander ACK, Porrett PM. Uterus transplantation: the importance of uterine natural killer cells. Curr Opin Organ Transplant 2021; 26:654-659. [PMID: 34653086 DOI: 10.1097/mot.0000000000000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Murine studies have established that uterine natural killer (uNK) cells are critical regulators of normal placentation and fetal development in mammals. However, the biology of uNK cells in humans remains poorly understood. This ignorance represents a costly knowledge gap, as disordered placentation is thought to underpin a variety of pregnancy complications that impact maternal and neonatal health. In the context of uterus transplantation (UTx), uNK cells are anticipated to play a critical role within the allograft. Here, we review the current understanding of uNK cells in pregnancy biology and explore how this critically important cell population may contribute to pregnancy and graft outcomes in uterus transplant recipients. RECENT FINDINGS Recent studies have characterized differences in NK cell populations between anatomic compartments in humans. In the endometrium, at least five phenotypically and functionally distinct subpopulations of uNK cells have been identified, with research into mechanisms regulating their differentiation and function currently underway. SUMMARY Further elucidating uNK cell biology has the potential to influence the outcomes of pregnancy and UTx and benefit human health. UTx is a unique opportunity to study uNK cell biology and may shed light on mechanisms by which immunological tolerance is established at the maternal-fetal interface.
Collapse
Affiliation(s)
- Aaron C K Lucander
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
42
|
Zhuang B, Shang J, Yao Y. HLA-G: An Important Mediator of Maternal-Fetal Immune-Tolerance. Front Immunol 2021; 12:744324. [PMID: 34777357 PMCID: PMC8586502 DOI: 10.3389/fimmu.2021.744324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Maternal-fetal immune-tolerance occurs throughout the whole gestational trimester, thus a mother can accept a genetically distinct fetus without immunological aggressive behavior. HLA-G, one of the non-classical HLA class I molecules, is restricted-expression at extravillous trophoblast. It can concordantly interact with various kinds of receptors mounted on maternally immune cells residing in the uterus (e.g. CD4+ T cells, CD8+ T cells, natural killer cells, macrophages, and dendritic cells) for maintaining immune homeostasis of the maternal-fetus interface. HLA-G is widely regarded as the pivotal protective factor for successful pregnancies. In the past 20 years, researches associated with HLA-G have been continually published. Indeed, HLA-G plays a mysterious role in the mechanism of maternal-fetal immune-tolerance. It can also be ectopically expressed on tumor cells, infected sites and other pathologic microenvironments to confer a significant local tolerance. Understanding the characteristics of HLA-G in immunologic tolerance is not only beneficial for pathological pregnancy, but also helpful to the therapy of other immune-related diseases, such as organ transplant rejection, tumor migration, and autoimmune disease. In this review, we describe the biological properties of HLA-G, then summarize our understanding of the mechanisms of fetomaternal immunologic tolerance and the difference from transplant tolerance. Furthermore, we will discuss how HLA-G contributes to the tolerogenic microenvironment during pregnancy. Finally, we hope to find some new aspects of HLA-G in fundamental research or clinical application for the future.
Collapse
Affiliation(s)
- Baimei Zhuang
- Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jin Shang
- Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
43
|
Gormley M, Oliverio O, Kapidzic M, Ona K, Hall S, Fisher SJ. RNA profiling of laser microdissected human trophoblast subtypes at mid-gestation reveals a role for cannabinoid signaling in invasion. Development 2021; 148:272518. [PMID: 34557907 PMCID: PMC8572005 DOI: 10.1242/dev.199626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Human placental architecture is complex. Its surface epithelium, specialized for transport, forms by fusion of cytotrophoblast progenitors into multinucleated syncytiotrophoblasts. Near the uterine surface, these progenitors assume a different fate, becoming cancer-like cells that invade its lining and blood vessels. The latter process physically connects the placenta to the mother and shunts uterine blood to the syncytiotrophoblasts. Isolation of trophoblast subtypes is technically challenging. Upon removal, syncytiotrophoblasts disintegrate and invasive cytotrophoblasts are admixed with uterine cells. We used laser capture to circumvent these obstacles. This enabled isolation of syncytiotrophoblasts and two subpopulations of invasive cytotrophoblasts from cell columns and the endovascular compartment of spiral arteries. Transcriptional profiling revealed numerous genes, the placental or trophoblast expression of which was not known, including neurotensin and C4ORF36. Using mass spectrometry, discovery of differentially expressed mRNAs was extended to the protein level. We also found that invasive cytotrophoblasts expressed cannabinoid receptor 1. Unexpectedly, screening agonists and antagonists showed that signals from this receptor promote invasion. Together, these results revealed previously unseen gene expression patterns that translate to the protein level. Our data also suggested that endogenous and exogenous cannabinoids can affect human placental development. Summary: Transcriptomic and proteomic profiling of laser captured human trophoblasts showed that placental cells lining uterine arteries express cannabinoid receptor 1. Functional analyses suggest that endogenous/exogenous cannabinoids could affect placentation.
Collapse
Affiliation(s)
- Matthew Gormley
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Oliver Oliverio
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Katherine Ona
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Steven Hall
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
44
|
Yang X, Meng T. Killer-cell immunoglobulin-like receptor/human leukocyte antigen-C combination and 'great obstetrical syndromes' (Review). Exp Ther Med 2021; 22:1178. [PMID: 34504623 PMCID: PMC8394021 DOI: 10.3892/etm.2021.10612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Recurrent pregnancy loss (RPL), pre-eclampsia (PE), fetal growth restriction (FGR), and preterm delivery are examples of 'great obstetrical syndromes' (GOS). Placental dysfunction is the most common pathogenesis of GOS. In human pregnancies, the effects of uterine natural killer cells involve angiogenesis, promoting the remodeling of uterine spiral artery, and improving the invasion of trophoblast cells. The uNK cells supply killer immunoglobulin-like receptors (KIRs), which come into contact with human leukocyte antigen-C (HLA-C) ligands expressed by extravillous trophoblast cells (EVTs). Numerous studies have investigated the association between GOS and KIR/HLA-C combination. However, the outcomes have not been conclusive. The present review aimed to reveal the association between GOS and KIR/HLA-C combination to screen out high-risk pregnancies, strengthen the treatment of pregnancy complications, and reduce the frequency of adverse maternal and fetal outcomes. It has been reported that a female with a KIR AA genotype and a neonate with a paternal HLA-C2 molecule is more prone to develop GOS and have a small fetus since less cytokines were secreted by uNK cells. Conversely, the combination of KIR BB haplotype (including the activating KIR2DS1) and HLA-C2 can induce the production of cytokines and increase trophoblast invasion, leading to the birth of a large fetus. KIR/HLA-C combinations may be applicable in selecting third-party gametes or surrogates. Detection of maternal KIR genes and HLA-C molecules from the couple could serve as useful markers for predicting and diagnosing GOS.
Collapse
Affiliation(s)
- Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
45
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
46
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
47
|
Hao F, Zhou X, Jin L. Natural killer cells: functional differences in recurrent spontaneous abortion†. Biol Reprod 2021; 102:524-531. [PMID: 31742319 DOI: 10.1093/biolre/ioz203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/13/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is one of the major pregnancy disorders and poses a serious risk to both the mother and the fetus. Although a number of research efforts have been conducted, therapeutic advances for treating RSA have not lived up to their expectations. Hence, other treatments should be explored. The important role of natural killer (NK) cells in immunotherapy is attracting increasing attention, both as a pharmaceutical target and for cell therapies. NK cells are abundant in the endometrium and play a role in implantation and placentation in normal pregnancy. As research progresses, NK cells are increasingly regarded as playing essential roles in the emergence and development of RSA. In this article, I review recent findings on the role of uterine NK cells in the pathophysiology of RSA. These cells may become therapeutic NK cell-related targets. In conclusion, although several issues regarding NK cells in RSA remain unresolved and require further investigation, extensive evidence is available for the treatment of RSA.
Collapse
Affiliation(s)
- Fan Hao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Odendaal J, Quenby S. Immunological Testing in Assisted Reproductive Technology. Semin Reprod Med 2021; 39:13-23. [PMID: 34161996 DOI: 10.1055/s-0041-1730908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fetal implantation requires carefully orchestrated involvement of the maternal immune system. Aberrant function within implantation has been suggested as a cause of implantation failure. The emergence of immunological theories of miscarriage has led to immunological testing as an adjuvant treatment in assisted reproductive technology; however, it remains controversial, with mixed evidence both for immunological cause and the benefits of immunological testing. Literature on common methods of immunological testing within assisted reproductive technology is reviewed including those of peripheral and uterine natural killer cells, chronic endometritis, and T-helper cells cytokine ratio. There is little consensus in the evidence on immunological testing in the context of recurrent implantation failure. The field is limited by a lack of uniformity in approach to testing and heterogeneity of the pathophysiological cause. Nevertheless, the maternal immune system is heavily involved in implantation and the new era of personalized medicine ensures that a more defined approach to immunological testing will be achieved.
Collapse
Affiliation(s)
- Joshua Odendaal
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
49
|
Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update 2021; 27:720-746. [PMID: 33528013 DOI: 10.1093/humupd/dmaa062] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recurrent miscarriage and pre-eclampsia are common reproductive disorders, but their causes are often unknown. Recent evidence has provided new insight into immune system influences in reproductive disorders. A subset of lymphocytes of the innate immune system known as uterine natural killer (uNK) cells are now recognized as fundamental to achieving embryo implantation and successful pregnancy, but were initially attributed a bad reputation. Indeed, immune therapies have been developed to treat the 'exaggerated' immune response from uNK cells. These treatments have been based on studies of peripheral blood natural killer (pbNK) cells. However, uNK cells and pbNK cells have different phenotypic and functional characteristics. The functions of uNK cells are closely related to their interactions with the extravillous trophoblast cells (EVTs) and spiral arteries, which underlie an essential role in regulating vascular function, controlling trophoblast invasion and promoting placental development. EVTs express MHC molecules of class I HLA-C/E/G/F, while uNK cells express, among other receptors, killer cell immunoglobulin-like receptors (KIRs) that bind to HLA-C or CD94/NKG2A inhibitory receptors, and then bind HLA-E. Associations of certain KIR/HLA-C combinations with recurrent miscarriage, pre-eclampsia, and foetal growth restriction and the interactions between uNK cells, trophoblasts and vascular cells have led to the hypothesis that uNK cells may play a role in embryo implantation. OBJECTIVE AND RATIONALE Our objective was to review the evolution of our understanding of uNK cells, their functions, and their increasingly relevant role in reproduction. SEARCH METHODS Relevant literature through June 2020 was retrieved using Google Scholar and PubMed. Search terms comprised uNK cells, human pregnancy, reproductive failure, maternal KIR and HLA-C, HLA-E/G/F in EVT cells, angiogenic cytokines, CD56+ NK cells, spiral artery, oestrogen and progesterone receptors, KIR haplotype and paternal HLA-C2. OUTCOMES This review provides key insights into the evolving conceptualization of uNK cells, from their not-so-promising beginnings to now, when they are considered allies in reproduction. We synthesized current knowledge about uNK cells, their involvement in reproduction and their main functions in placental vascular remodeling and trophoblast invasion. One of the issues that this review presents is the enormous complexity involved in studying the immune system in reproduction. The complexity in the immunology of the maternal-foetal interface lies in the great variety of participating molecules, the processes and interactions that occur at different levels (molecular, cellular, tissue, etc.) and the great diversity of genetic combinations that are translated into different types of responses. WIDER IMPLICATIONS Insights into uNK cells could offer an important breakthrough for ART outcomes, since each patient could be assessed based on the combination of HLA and its receptors in their uNK cells, evaluating the critical interactions at the materno-foetal interface. However, owing to the technical challenges in studying uNK cells in vivo, there is still much knowledge to gain, particularly regarding their exact origin and functions. New studies using novel molecular and genetic approaches can facilitate the identification of mechanisms by which uNK cells interact with other cells at the materno-foetal interface, perhaps translating this knowledge into clinical applicability.
Collapse
Affiliation(s)
| | - Diana Alecsandru
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | - Juan Antonio García-Velasco
- Department of Immunology and Department of Reproductive Endocrinology and Infertility, Instituto Valenciano de Infertilidad-Madrid, Rey Juan Carlos University (IVI), Madrid 28023, Spain
| | | |
Collapse
|
50
|
Abstract
In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|