1
|
Pavliuchenko N, Kuzmina M, Danek P, Spoutil F, Prochazka J, Skopcova T, Pokorna J, Sedlacek R, Alberich-Jorda M, Brdicka T. Genetic background affects neutrophil activity and determines the severity of autoinflammatory osteomyelitis in mice. J Leukoc Biol 2024; 117:qiae168. [PMID: 39120532 DOI: 10.1093/jleuko/qiae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
The knowledge about the contribution of the innate immune system to health and disease is expanding. However, to obtain reliable results, it is critical to select appropriate mouse models for in vivo studies. Data on genetic and phenotypic changes associated with different mouse strains can assist in this task. Such data can also facilitate our understanding of how specific polymorphisms and genetic alterations affect gene function, phenotypes, and disease outcomes. Extensive information is available on genetic changes in all major mouse strains. However, comparatively little is known about their impact on immune response and, in particular, on innate immunity. Here, we analyzed a mouse model of chronic multifocal osteomyelitis, an autoinflammatory disease driven exclusively by the innate immune system, which is caused by an inactivating mutation in the Pstpip2 gene. We investigated how the genetic background of BALB/c, C57BL/6J, and C57BL/6NCrl strains alters the molecular mechanisms controlling disease progression. While all mice developed the disease, symptoms were significantly milder in BALB/c and partially also in C57BL/6J when compared to C57BL/6NCrl. Disease severity correlated with the number of infiltrating neutrophils and monocytes and with the production of chemokines attracting these cells to the site of inflammation. It also correlated with increased expression of genes associated with autoinflammation, rheumatoid arthritis, neutrophil activation, and degranulation, resulting in altered neutrophil activation in vivo. Together, our data demonstrate striking effects of genetic background on multiple parameters of neutrophil function and activity influencing the onset and course of chronic multifocal osteomyelitis.
Collapse
Affiliation(s)
- Nataliia Pavliuchenko
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Maria Kuzmina
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Petr Danek
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Laboratory of Molecular Analysis of Growth Regulation in Animals, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 160 00 Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Meritxell Alberich-Jorda
- Laboratory of Haemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
2
|
Long MB, Howden AJM, Keir HR, Rollings CM, Giam YH, Pembridge T, Delgado L, Abo-Leyah H, Lloyd AF, Sollberger G, Hull R, Gilmour A, Hughes C, New BJM, Cassidy D, Shoemark A, Richardson H, Lamond AI, Cantrell DA, Chalmers JD, Brenes AJ. Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection. Eur Respir J 2024; 63:2300787. [PMID: 38097207 PMCID: PMC10918319 DOI: 10.1183/13993003.00787-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery. METHODS Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health Organization ordinal scale. RESULTS Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors. CONCLUSIONS SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Pembridge
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Lilia Delgado
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amy F Lloyd
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gabriel Sollberger
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rebecca Hull
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Chloe Hughes
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Benjamin J M New
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Diane Cassidy
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Angus I Lamond
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates joint senior authorship
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates joint senior authorship
| |
Collapse
|
3
|
Jiang X, Xiao X, Li H, Gong Y, Wang M, Yang H, Zhao L, Jiang Y, Wei Y, Zhao C, Li J, Chen Y, Feng S, Deng H, Ma S, Xu Y, Liu Y, Tsokos GC, Jiang M, Zhang X. Oxidized galectin-1 in SLE fails to bind the inhibitory receptor VSTM1 and increases reactive oxygen species levels in neutrophils. Cell Mol Immunol 2023; 20:1339-1351. [PMID: 37737309 PMCID: PMC10616122 DOI: 10.1038/s41423-023-01084-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Inhibitory immune receptors set thresholds for immune cell activation, and their deficiency predisposes a person to autoimmune responses. However, the agonists of inhibitory immune receptors remain largely unknown, representing untapped sources of treatments for autoimmune diseases. Here, we show that V-set and transmembrane domain-containing 1 (VSTM1) is an inhibitory receptor and that its binding by the competent ligand soluble galectin-1 (Gal1) is essential for maintaining neutrophil viability mediated by downregulated reactive oxygen species production. However, in patients with systemic lupus erythematosus (SLE), circulating Gal1 is oxidized and cannot be recognized by VSTM1, leading to increased intracellular reactive oxygen species levels and reduced neutrophil viability. Dysregulated neutrophil function or death contributes significantly to the pathogenesis of SLE by providing danger molecules and autoantigens that drive the production of inflammatory cytokines and the activation of autoreactive lymphocytes. Interestingly, serum levels of glutathione, an antioxidant able to convert oxidized Gal1 to its reduced form, were negatively correlated with SLE disease activity. Taken together, our findings reveal failed inhibitory Gal1/VSTM1 pathway activation in patients with SLE and provide important insights for the development of effective targeted therapies.
Collapse
Affiliation(s)
- Xu Jiang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyue Xiao
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yiyi Gong
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College; The Ministry of Education Key Laboratory, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College; The Ministry of Education Key Laboratory, Beijing, China
| | - Ying Jiang
- Department of Rheumatology, Xiangya Hospital, Central South University, Hunan, China
| | - Yanping Wei
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chongchong Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jin Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shiliang Ma
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Minghong Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang M, Yang J, Zhang J, Huang C, Liu H, Zhang P, Zhai Y, Liu L, Yang J. Research progress of B subfamily of leucocyte immunoglobulin-like receptors in inflammation. Int J Immunogenet 2023; 50:107-116. [PMID: 37038910 DOI: 10.1111/iji.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Leucocyte immunoglobulin-like receptors subfamily B (LILRB) belongs to the type I transmembrane glycoproteins, which is the immunosuppressive receptor. LILRBs are widely expressed in bone marrow cells, hematopoietic stem cells, nerve cells and other body cells. Studies have found that LILRBs receptor can bind to a variety of ligands and has a variety of biological functions such as regulating inflammatory response, immune tolerance and cell differentiation. Inflammatory reaction plays a vital role in resisting microorganisms. The function of inhibitory immune receptors can recognize the signs of infection and promote the function of anti-microbial effect. The inflammatory response must be strictly regulated to prevent excessive inflammation and tissue damage. Therefore, it is of general interest to understand the role of LILRBs in the inflammatory response. Because they can inhibit the anti-microbial response of neutrophils, some human pathogens use these receptors to escape immunity. This article reviews the biological role of LILRBs in the inflammatory response. We focus on the known ligands of LILRBs, their different roles after binding with ligands, and how these receptors help to form neutrophil responses during infection. Recent studies have shown that LILRBs recruit phosphatases through intracellular tyrosine-based immunoreceptor inhibitory motifs to negatively regulate immune activation, thereby transmitting inflammation-related signals, suggesting that LILRBs may be an ideal target for the treatment of inflammatory diseases. Here, we describe in detail the regulation of LILRBs on the inflammatory response, its signal transduction mode in inflammation, and the progress in the treatment of inflammatory diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
5
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
6
|
Hyun SW, Feng C, Liu A, Lillehoj EP, Trotta R, Kingsbury TJ, Passaniti A, Lugkey KN, Chauhan S, Cipollo JF, Luzina IG, Atamas SP, Cross AS, Goldblum SE. Altered sialidase expression in human myeloid cells undergoing apoptosis and differentiation. Sci Rep 2022; 12:14173. [PMID: 35986080 PMCID: PMC9390117 DOI: 10.1038/s41598-022-18448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.
Collapse
|
7
|
Isaguliants MG, Trotsenko I, Buonaguro FM. An overview of "Chronic viral infection and cancer, openings for vaccines" virtual symposium of the TechVac Network - December 16-17, 2021. Infect Agent Cancer 2022; 17:28. [PMID: 35804391 PMCID: PMC9263434 DOI: 10.1186/s13027-022-00436-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
This is a report on the research activities currently ongoing in virology, oncology and virus-associated cancers and possibilities of their treatment and prevention by vaccines and immunotherapies as outlined at the symposium “Chronic viral infection and cancer, openings for vaccines” virtually held on December 16–17, 2021. Experts from the various disciplines involved in the study of the complex relationships between solid tumors and viruses met to discuss recent developments in the field and to report their personal contributions to the specified topics. Secondary end point was to sustain the TECHVAC Network established in 2016 as a multidisciplinary work group specifically devoted to development of vaccines and immunotherapies against chronic viral infections and associated cancers, with the aim to identify areas of common interest, promote research cooperation, establish collaborative cross-border programs and projects, and to coordinate clinical and research activities.
Collapse
Affiliation(s)
- Maria G Isaguliants
- Riga Stradins University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Ivan Trotsenko
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| |
Collapse
|
8
|
Neutrophils: Driving inflammation during the development of hepatocellular carcinoma. Cancer Lett 2021; 522:22-31. [PMID: 34517084 DOI: 10.1016/j.canlet.2021.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
The relationship between immune and inflammatory responses in hepatocellular carcinoma (HCC) has garnered significant interest. In the peripheral blood and tumour microenvironment (TME), neutrophils, which are innate immune cells, crucially respond to various inflammatory factors, leading to tumour progression. To some extent, they affect the clinical treatment strategy and survival among HCC patients. A high circulating neutrophil-to-lymphocyte ratio is a reliable factor that can be used to predict poor outcomes in HCC patients. However, the mechanisms underlying the protumoural effects of circulating neutrophils remain poorly understood. Besides, the distinct role and function of neutrophils at the site of HCC remain relatively unclear, which is partially attributed to their substantial heterogeneity compared with other immune cells. In this review, we firstly discuss the current information available, detailing distinct subsets, functional phenotypes, and the impact of circulating and tumour-infiltrating neutrophils on tumourigenesis in HCC. Furthermore, we describe recent pre-clinical and clinical studies concerning neutrophils for evaluating the feasibility of targeting diverse protumoural aspects to improve therapeutic efficacy, thus paving the way for neutrophil-based treatment, especially in combination with immunotherapy.
Collapse
|
9
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
10
|
CD47-SIRPα Checkpoint Inhibition Enhances Neutrophil-Mediated Killing of Dinutuximab-Opsonized Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13174261. [PMID: 34503071 PMCID: PMC8428220 DOI: 10.3390/cancers13174261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Current immunotherapy for high-risk neuroblastoma patients involves treatment with anti-GD2 antibody dinutuximab, which has significantly improved the survival rate. Still, approximately half of the patients succumb to the tumor; therefore, efforts to improve their prognosis are urgently needed. Since T cell targeting immune checkpoint inhibitors in neuroblastoma are limited due to the low immunogenicity of these tumors, alternative immunotherapeutic approaches should be studied. The therapeutic targeting of the innate immune checkpoint CD47-SIRPα has the ability to enhance antitumor effects of myeloid cells, especially in the presence of cancer-opsonizing antibodies. Given that neutrophil ADCC is a dominant effector mechanism leading to the eradication of dinutuximab-opsonized neuroblastoma cells, we have investigated the therapeutic potential of anti-GD2 antibody in combination with CD47-SIRPα inhibition. We demonstrate here that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is controlled by the CD47-SIRPα axis and its disruption promotes their cytotoxic potential even further, significantly improving dinutuximab responsiveness. Abstract High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRα, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPα has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPα axis and can be further enhanced by antagonizing CD47-SIRPα interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPα interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype.
Collapse
|
11
|
Paré G, Vitry J, Merchant ML, Vaillancourt M, Murru A, Shen Y, Elowe S, Lahoud MH, Naccache PH, McLeish KR, Fernandes MJ. The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Front Immunol 2021; 12:650808. [PMID: 34234773 PMCID: PMC8256872 DOI: 10.3389/fimmu.2021.650808] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.
Collapse
Affiliation(s)
- Guillaume Paré
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Julien Vitry
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Myriam Vaillancourt
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Andréa Murru
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Yunyun Shen
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada.,Reproduction, Mother and Youth Health Division, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul H Naccache
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Maria J Fernandes
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
12
|
Kleinstein SE, McCorrison J, Ahmed A, Hasturk H, Van Dyke TE, Freire M. Transcriptomics of type 2 diabetic and healthy human neutrophils. BMC Immunol 2021; 22:37. [PMID: 34134627 PMCID: PMC8207744 DOI: 10.1186/s12865-021-00428-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/06/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Chronic inflammatory diseases, including diabetes and cardiovascular disease, are heterogeneous and often co-morbid, with increasing global prevalence. Uncontrolled type 2 diabetes (T2D) can result in severe inflammatory complications. As neutrophils are essential to normal and aberrant inflammation, we conducted RNA-seq transcriptomic analyses to investigate the association between neutrophil gene expression and T2D phenotype. As specialized pro-resolving lipid mediators (SPM) act to resolve inflammation, we further surveyed the impact of neutrophil receptor binding SPM resolvin E1 (RvE1) on isolated diabetic and healthy neutrophils. METHODS Cell isolation and RNA-seq analysis of neutrophils from N = 11 T2D and N = 7 healthy individuals with available clinical data was conducted. Additionally, cultured neutrophils (N = 3 T2D, N = 3 healthy) were perturbed with increasing RvE1 doses (0 nM, 1 nM, 10 nM, or 100 nM) prior to RNA-seq. Data was evaluated through a bioinformatics pipeline including pathway analysis and post hoc false discovery rate (FDR)-correction. RESULTS We observed significant differential expression of 50 genes between T2D and healthy neutrophils (p < 0.05), including decreased T2D gene expression in inflammatory- and lipid-related genes SLC9A4, NECTIN2, and PLPP3 (p < 0.003). RvE1 treatment induced dose-dependent differential gene expression (uncorrected p < 0.05) across groups, including 59 healthy and 216 T2D neutrophil genes. Comparing T2D to healthy neutrophils, 1097 genes were differentially expressed across RvE1 doses, including two significant genes, LILRB5 and AKR1C1, involved in inflammation (p < 0.05). CONCLUSIONS The neutrophil transcriptomic database revealed novel chronic inflammatory- and lipid-related genes that were differentially expressed between T2D cells when compared to controls, and cells responded to RvE1 dose-dependently by gene expression changes. Unraveling the mechanisms regulating abnormalities in diabetic neutrophil responses could lead to better diagnostics and therapeutics targeting inflammation and inflammation resolution.
Collapse
Affiliation(s)
- Sarah E Kleinstein
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Jamison McCorrison
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Alaa Ahmed
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Cambridge, MA, USA
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Cambridge, MA, USA
| | - Thomas E Van Dyke
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Cambridge, MA, USA
| | - Marcelo Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Expression of the myeloid inhibitory receptor CLEC12A correlates with disease activity and cytokines in early rheumatoid arthritis. Sci Rep 2021; 11:11248. [PMID: 34045571 PMCID: PMC8160002 DOI: 10.1038/s41598-021-90631-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
The myeloid inhibitory receptor CLEC12A negatively regulates inflammation. Reduced CLEC12A expression enhances inflammation in CLEC12A knock-out mice with collagen antibody-induced arthritis. Moreover, CLEC12A internalisation augments human neutrophil activation. We thus postulated that CLEC12A expression on circulating myeloid cells of rheumatoid arthritis patients is associated with disease manifestations. Cell-surface, CLEC12A receptor expression was determined on circulating neutrophils and monocytes of eRA patients and of healthy donors. Generalized estimating equations model, Student’s t-test and Spearman’s correlations were performed to compare CLEC12A expression between groups and test its association with disease activity and clinical parameters. Plasma cytokines were measured by multiplex immunoassay. Patients with reduced neutrophil or monocyte CLEC12A expression at baseline and at 3 months have an increased simple disease activity index. Low baseline CLEC12A expression also correlates with a higher SDAI at 6 months. In contrast, positive correlations were observed between baseline CLEC12A expression and several cytokines. Moreover, neutrophil and monocyte CLEC12A expression is significantly higher in early rheumatoid arthritis patients at baseline than healthy controls. Circulating neutrophil and monocyte CLEC12A expression correlates with disease activity at baseline and is predictive of SDAI at later stages of the disease indicative of a regulatory role for CLEC12A in RA.
Collapse
|
14
|
Seery V, Raiden SC, Algieri SC, Grisolía NA, Filippo D, De Carli N, Di Lalla S, Cairoli H, Chiolo MJ, Meregalli CN, Gimenez LI, Gregorio G, Sarli M, Alcalde AL, Davenport C, Bruera MJ, Simaz N, Pérez MF, Nivela V, Bayle C, Tuccillo P, Agosta MT, Pérez H, Villa Nova S, Suárez P, Takata EM, García M, Lattner J, Rolón MJ, Coll P, Sananez I, Holgado MP, Ferrero F, Geffner J, Arruvito L. Blood neutrophils from children with COVID-19 exhibit both inflammatory and anti-inflammatory markers. EBioMedicine 2021; 67:103357. [PMID: 33979758 PMCID: PMC8153212 DOI: 10.1016/j.ebiom.2021.103357] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background Perhaps reflecting that children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic, little attention has been paid to explore the immune response in pediatric COVID-19. Here, we analyzed the phenotype and function of circulating neutrophils from children with COVID-19. Methods An observational study including 182 children with COVID-19, 21 children with multisystem inflammatory syndrome (MIS-C), and 40 healthy children was performed in Buenos Aires, Argentina. Neutrophil phenotype was analyzed by flow cytometry in blood samples. Cytokine production, plasma levels of IgG antibodies directed to the spike protein of SARS-CoV-2 and citrullinated histone H3 were measured by ELISA. Cell-free DNA was quantified by fluorometry. Findings Compared with healthy controls, neutrophils from children with COVID-19 showed a lower expression of CD11b, CD66b, and L-selectin but a higher expression of the activation markers HLA-DR, CD64 and PECAM-1 and the inhibitory receptors LAIR-1 and PD-L1. No differences in the production of cytokines and NETs were observed. Interestingly, the expression of CD64 in neutrophils and the serum concentration of IgG antibodies directed to the spike protein of SARS-CoV-2 distinguished asymptomatic from mild and moderate COVID-19. Interpretation Acute lung injury is a prominent feature of severe COVID-19 in adults. A low expression of adhesion molecules together with a high expression of inhibitory receptors in neutrophils from children with COVID-19 might prevent tissue infiltration by neutrophils preserving lung function.
Collapse
Affiliation(s)
- Vanesa Seery
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina. UBA-CONICET, Paraguay 2155, C1121ABG CABA, Argentina
| | - Silvina C Raiden
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde. Av. Montes de Oca 40, CABA C1270, Argentina
| | - Silvia C Algieri
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Nicolás A Grisolía
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde. Av. Montes de Oca 40, CABA C1270, Argentina
| | - Daniela Filippo
- Servicio de Pediatría, Hospital Municipal Diego Thompson. Avellaneda 33, Buenos Aires B1650, Argentina
| | - Norberto De Carli
- Servicio de Pediatría, Clínica del Niño de Quilmes, Av. Lamadrid 444, Buenos Aires B1878, Argentina
| | - Sandra Di Lalla
- Departamento de Consultorios Externos, Hospital General de Niños Pedro de Elizalde, Av. Montes de Oca 40, CABA C1270, Argentina
| | - Héctor Cairoli
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde. Av. Montes de Oca 40, CABA C1270, Argentina
| | - María J Chiolo
- Departamento de Cirugía, Hospital General de Niños Pedro de Elizalde, Av. Montes de Oca 40, CABA C1270, Argentina
| | - Claudia N Meregalli
- Unidad de Terapia Intensiva Pediátrica, Departamento de Urgencias, Hospital General de Niños Pedro de Elizalde. Av. Montes de Oca 40, CABA C1270, Argentina
| | - Lorena I Gimenez
- Servicio de Pediatría, Hospital Municipal Diego Thompson. Avellaneda 33, Buenos Aires B1650, Argentina
| | - Gabriela Gregorio
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Mariam Sarli
- Unidad de Terapia Intensiva Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Ana L Alcalde
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Carolina Davenport
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde. Av. Montes de Oca 40, CABA C1270, Argentina
| | - María J Bruera
- Unidad de Terapia Intensiva Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Nancy Simaz
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Mariela F Pérez
- Servicio de Pediatría, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Valeria Nivela
- Departamento de Emergencias Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Carola Bayle
- Departamento de Emergencias Pediátrica, Hospital Nacional Profesor Alejandro Posadas, Marconi Morón 386, Buenos Aires B1684, Argentina
| | - Patricia Tuccillo
- Servicio de Pediatría, Hospital Naval Cirujano Mayor Dr. Pedro Mallo, Av. Patricias Argentinas 351, CABA C1405, Argentina
| | - María T Agosta
- Servicio de Pediatría, Hospital Naval Cirujano Mayor Dr. Pedro Mallo, Av. Patricias Argentinas 351, CABA C1405, Argentina
| | - Hernán Pérez
- Servicio de Pediatría, Hospital Naval Cirujano Mayor Dr. Pedro Mallo, Av. Patricias Argentinas 351, CABA C1405, Argentina
| | - Susana Villa Nova
- Servicio de Pediatría, Hospital General de Agudos Dr. Juan A. Fernández, Av. Cerviño 3356, CABA C1425, Argentina
| | - Patricia Suárez
- Servicio de Pediatría, Hospital General de Agudos Dr. Juan A. Fernández, Av. Cerviño 3356, CABA C1425, Argentina
| | - Eugenia M Takata
- Servicio de Pediatría, Hospital General de Agudos Dr. Juan A. Fernández, Av. Cerviño 3356, CABA C1425, Argentina
| | - Mariela García
- Servicio de Pediatría, Hospital General de Agudos Dr. Juan A. Fernández, Av. Cerviño 3356, CABA C1425, Argentina
| | - Jorge Lattner
- Servicio de Infectología Pediátrica, Hospital Naval Cirujano Mayor Dr. Pedro Mallo, Av. Patricias Argentinas 351, CABA C1405, Argentina
| | - María J Rolón
- División Infectología, Hospital General de Agudos Dr. Juan A. Fernández, Av. Cerviño 3356, CABA C1425, Argentina
| | - Patricia Coll
- División Infectología, Hospital General de Agudos Dr. Juan A. Fernández, Av. Cerviño 3356, CABA C1425, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina. UBA-CONICET, Paraguay 2155, C1121ABG CABA, Argentina
| | - María P Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina. UBA-CONICET, Paraguay 2155, C1121ABG CABA, Argentina
| | - Fernando Ferrero
- Departamento de Medicina, Hospital General de Niños Pedro de Elizalde. Av. Montes de Oca 40, CABA C1270, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina. UBA-CONICET, Paraguay 2155, C1121ABG CABA, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina. UBA-CONICET, Paraguay 2155, C1121ABG CABA, Argentina.
| | | |
Collapse
|
15
|
Wang M, Liu M, Jia J, Shi H, Teng J, Liu H, Sun Y, Cheng X, Ye J, Su Y, Chi H, Liu T, Wang Z, Wan L, Meng J, Ma Y, Yang C, Hu Q. Association of the Leukocyte Immunoglobulin-like Receptor A3 Gene With Neutrophil Activation and Disease Susceptibility in Adult-Onset Still's Disease. Arthritis Rheumatol 2021; 73:1033-1043. [PMID: 33381895 PMCID: PMC8252061 DOI: 10.1002/art.41635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Objective Adult‐onset Still’s disease (AOSD) is a severe autoinflammatory disease. Neutrophil activation with enhanced neutrophil extracellular trap (NET) formation is involved in the pathogenesis of AOSD. Functional leukocyte immunoglobulin‐like receptor A3 (LIR‐A3; gene name LILRA3) has been reported to be associated with many autoimmune diseases. We aimed to investigate the association of LILRA3 with disease susceptibility and neutrophil activation in AOSD. Methods The LILRA3 deletion polymorphism and its tagging single‐nucleotide polymorphism rs103294 were genotyped in 164 patients with AOSD and 305 healthy controls. The impact of LILRA3 on clinical features and messenger RNA expression was evaluated. Plasma levels of LIR‐A3 were detected using enzyme‐linked immunosorbent assay (ELISA), and the correlation between LIR‐A3 plasma levels and disease activity and levels of circulating NET‐DNA was investigated. LIR‐A3–induced NETs were determined using PicoGreen double‐stranded DNA dye and immunofluorescence analysis in human neutrophils and a neutrophil‐like differentiated NB4 cell line transfected with LIR‐B2 small interfering RNA. Results The findings from genotyping demonstrated that functional LILRA3 was a risk factor for AOSD (11% in AOSD patients versus 5.6% in healthy controls; odds ratio 2.089 [95% confidence interval 1.030–4.291], P = 0.034), and associated with leukocytosis (P = 0.039) and increased levels of circulating neutrophils (P = 0.027). Functional LILRA3 messenger RNA expression was higher in the peripheral blood mononuclear cells (P < 0.0001) and neutrophils (P < 0.001) of LILRA3+/+ patients. Plasma levels of LIR‐A3 were elevated in patients with AOSD (P < 0.0001) and correlated with disease activity indicators and levels of circulating NET–DNA complexes. Finally, enhanced NET formation was identified in neutrophils from healthy controls and patients with inactive AOSD after stimulation of the neutrophils with LIR‐A3. Moreover, NET formation was impaired in NB4 cells after knockdown of LILRB2 gene expression. Conclusion Our study provides the first evidence that functional LILRA3 is a novel genetic risk factor for the development of AOSD and that functional LIR‐A3 may play a pathogenic role by inducing formation of NETs.
Collapse
Affiliation(s)
- Mengyan Wang
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengru Liu
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Chi
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Liu
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Wang
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyan Wan
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfen Meng
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuning Ma
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Ruijin Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Okubo K, Brenner MD, Cullere X, Saggu G, Patchen ML, Bose N, Mihori S, Yuan Z, Lowell CA, Zhu C, Mayadas TN. Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep 2021; 35:109142. [PMID: 34010642 PMCID: PMC8218468 DOI: 10.1016/j.celrep.2021.109142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. β-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, β-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by β-glucan, a previously described activator of innate immunity. Okubo et al. demonstrate that β-glucan binding to the glycosphingolipid lactosylceramide engages a Lyn kinase to SHP-1 phosphatase pathway that reduces FcγRIIA binding propensity for IgG, which suggests FcγRIIA affinity regulation by “inside-out” signaling. The β-glucan-lactosylceramide-Lyn axis prevents FcγRIIA-dependent neutrophil recruitment in vitro and to intravascular IgG deposits following glomerulonephritis.
Collapse
Affiliation(s)
- Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Brenner
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Gurpanna Saggu
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | | | - Nandita Bose
- Biothera Pharmaceuticals, Inc., Eagan, Minnesota, MN 55121, USA
| | - Saki Mihori
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Zhou Yuan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Cheng Zhu
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Watanabe R, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. Front Immunol 2020; 11:587089. [PMID: 33072134 PMCID: PMC7544845 DOI: 10.3389/fimmu.2020.587089] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune and autoinflammatory diseases of the medium and large arteries, including the aorta, cause life-threatening complications due to vessel wall destruction but also by wall remodeling, such as the formation of wall-penetrating microvessels and lumen-stenosing neointima. The two most frequent large vessel vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are HLA-associated diseases, strongly suggestive for a critical role of T cells and antigen recognition in disease pathogenesis. Recent studies have revealed a growing spectrum of effector functions through which T cells participate in the immunopathology of GCA and TAK; causing the disease-specific patterning of pathology and clinical outcome. Core pathogenic features of disease-relevant T cells rely on the interaction with endothelial cells, dendritic cells and macrophages and lead to vessel wall invasion, formation of tissue-damaging granulomatous infiltrates and induction of the name-giving multinucleated giant cells. Besides antigen, pathogenic T cells encounter danger signals in their immediate microenvironment that they translate into disease-relevant effector functions. Decisive signaling pathways, such as the AKT pathway, the NOTCH pathway, and the JAK/STAT pathway modify antigen-induced T cell activation and emerge as promising therapeutic targets to halt disease progression and, eventually, reset the immune system to reestablish the immune privilege of the arterial wall.
Collapse
Affiliation(s)
- Ryu Watanabe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Kang EA, Soh H, Park S, Lee HJ, Im JP, Kim JS. Soluble Siglec-9 alleviates intestinal inflammation through inhibition of the NF-κB pathway. Int Immunopharmacol 2020; 86:106695. [PMID: 32570035 DOI: 10.1016/j.intimp.2020.106695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a superfamily of immunoreceptors recognizing sialic acid. Siglec-9 has been shown to mediate inhibitory immune responses. The aim of this study was to evaluate the effect of a soluble form of Siglec-9 (sSiglec-9) on inflamed intestinal epithelial cells (IECs), murine macrophages, and experimental murine colitis models. METHODS COLO 205 human IECs and RAW 264.7 murine macrophages were pretreated with sSiglec-9 and then stimulated with TNF-α or lipopolysaccharides, respectively. The expression of proinflammatory cytokines such as IL-8 and TNF-α was measured using real-time RT-PCR and ELISA. To demonstrate the inhibitory effects of sSiglec-9 on the NF-κB pathway, IκBα phosphorylation/degradation was determined using western blotting and the DNA binding activity of NF-κB was evaluated using an electrophoretic mobility shift assay. Further, mouse models with dextran sulfate sodium-induced acute colitis and piroxicam-induced IL-10-/- chronic colitis were generated. Intraperitoneal injections of sSiglec-9 were performed, and body weight, colon length, and histopathologic findings were examined. RESULTS sSiglec-9 suppressed IL-8 and TNF-α gene expression in stimulated COLO 205 and RAW 264.7 cells. sSiglec-9 inhibited IκBα phosphorylation/degradation and the DNA binding activity of NF-κB. sSiglec-9 injections significantly ameliorated weight loss, colon shortening, and the severity of intestinal inflammation in acute and chronic colitis mouse models. CONCLUSION sSiglec-9 may inhibit NF-κB activation in IECs and macrophages and alleviate experimental colitis in mice, suggesting that sSiglec-9 is a potential therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Eun Ae Kang
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hosim Soh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seona Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Gastroenterology, Mediplex Sejong Hospital, Incheon 21080, Republic of Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
20
|
Gao S, Wake H, Sakaguchi M, Wang D, Takahashi Y, Teshigawara K, Zhong H, Mori S, Liu K, Takahashi H, Nishibori M. Histidine-Rich Glycoprotein Inhibits High-Mobility Group Box-1-Mediated Pathways in Vascular Endothelial Cells through CLEC-1A. iScience 2020; 23:101180. [PMID: 32498020 PMCID: PMC7267745 DOI: 10.1016/j.isci.2020.101180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 02/09/2023] Open
Abstract
High-mobility group box-1 (HMGB1) protein has been postulated to play a pathogenic role in severe sepsis. Histidine-rich glycoprotein (HRG), a 75 kDa plasma protein, was demonstrated to improve the survival rate of septic mice through the regulation of neutrophils and endothelium barrier function. As the relationship of HRG and HMGB1 remains poorly understood, we investigated the effects of HRG on HMGB1-mediated pathway in endothelial cells, focusing on the involvement of specific receptors for HRG. HRG potently inhibited the HMGB1 mobilization and effectively suppressed rHMGB1-induced inflammatory responses and expression of all three HMGB1 receptors in endothelial cells. Moreover, we first clarified that these protective effects of HRG on endothelial cells were mediated through C-type lectin domain family 1 member A (CLEC-1A) receptor. Thus, current study elucidates protective effects of HRG on vascular endothelial cells through inhibition of HMGB1-mediated pathways may contribute to the therapeutic effects of HRG on severe sepsis. HRG inhibited LPS-induced HMGB1 translocation and release from endothelial cells HRG reduced inflammatory responses in endothelial cells caused by released HMGB1 CLEC-1A was identified as the receptor for the function of HRG on endothelial cells
Collapse
Affiliation(s)
- Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Youhei Takahashi
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hui Zhong
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama 703-8516, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
21
|
Lewis Marffy AL, McCarthy AJ. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 2020; 11:857. [PMID: 32477348 PMCID: PMC7237751 DOI: 10.3389/fimmu.2020.00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.
Collapse
Affiliation(s)
- Alexander L Lewis Marffy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Tokplonou L, Nouatin O, Sonon P, M'po G, Glitho S, Agniwo P, Gonzalez-Ortiz D, Tchégninougbo T, Ayitchédji A, Favier B, Donadi EA, Milet J, Luty AJF, Massougbodji A, Garcia A, Ibikounlé M, Courtin D. Schistosoma haematobium infection modulates Plasmodium falciparum parasite density and antimalarial antibody responses. Parasite Immunol 2020; 42:e12702. [PMID: 32020650 DOI: 10.1111/pim.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
AIMS Schistosomiasis and malaria are endemic in sub-Saharan Africa where Schistosoma haematobium (Sh) and Plasmodium falciparum (Pf) coinfections are thus frequent. We explored the effect of Sh infection on antibody responses directed to Pf merozoite antigens and on malaria susceptibility in Beninese children. METHODS AND RESULTS A total of 268 children were followed during a malaria transmission season. Detection of Pf infection was performed by microscopy and rapid diagnostic tests. Sh infection was determined in urine by microscopy. Antimalarial antibody, cytokine and HLA-G concentrations were quantified by ELISA. The expression of HLA-G receptors by immune cells was assessed by flow cytometry. Children infected by Sh had higher concentrations of IgG1 directed to MSP3 and GLURPR0 , IgG2 directed to GLURPR0 and IgG3 directed to MSP3, GLURPR0 and GLURPR2 and have lower Pf densities than those uninfected by Sh. No difference in cytokine and HLA-G concentrations was observed between Sh egg carriers and non-carriers. CONCLUSION Schistosoma haematobium modulates host immune responses directed to Pf antigens. The absence of immune downregulation usually observed during helminth infections is surprising in our study. We hypothesize that the stage of Sh development could partly explain the immune pathways leading to increased antibody levels that favour better control of Pf parasitemia.
Collapse
Affiliation(s)
- Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Odilon Nouatin
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - Paulin Sonon
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - Grace M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Sonya Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Daniel Gonzalez-Ortiz
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | | | | | - Benoit Favier
- CEA-Université Paris Sud INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Eduardo A Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Milet
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Adrian J F Luty
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - André Garcia
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Moudachirou Ibikounlé
- Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - David Courtin
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| |
Collapse
|
23
|
Zhao Y, van Woudenbergh E, Zhu J, Heck AJR, van Kessel KPM, de Haas CJC, Aerts PC, van Strijp JAG, McCarthy AJ. The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:954-966. [PMID: 31915259 PMCID: PMC7617070 DOI: 10.4049/jimmunol.1900852] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Neutrophils are critical to the generation of effective immune responses and for killing invading microbes. Paired immune receptors provide important mechanisms to modulate neutrophil activation thresholds and effector functions. Expression of the leukocyte Ig-like receptor (LILR)A6 (ILT8/CD85b) and LILRB3 (ILT5/CD85a) paired-receptor system on human neutrophils has remained unclear because of the lack of specific molecular tools. Additionally, there is little known of their possible functions in neutrophil biology. The objective of this study was to characterize expression of LILRA6/LILRB3 receptors during human neutrophil differentiation and activation, and to assess their roles in modulating Fc receptor-mediated effector functions. LILRB3, but not LILRA6, was detected in human neutrophil lysates following immunoprecipitation by mass spectrometry. We demonstrate high LILRB3 expression on the surface of resting neutrophils and release from the surface following neutrophil activation. Surface expression was recapitulated in a human PLB-985 cell model of neutrophil-like differentiation. Continuous ligation of LILRB3 inhibited key IgA-mediated effector functions, including production of reactive oxygen species, phagocytic uptake, and microbial killing. This suggests that LILRB3 provides an important checkpoint to control human neutrophil activation and their antimicrobial effector functions during resting and early-activation stages of the neutrophil life cycle.
Collapse
Affiliation(s)
- Yuxi Zhao
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Esther van Woudenbergh
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CX Utrecht, the Netherlands; and
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CX Utrecht, the Netherlands; and
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Alex J McCarthy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands;
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Khan N, Kim SK, Gagneux P, Dugan L, Varki A. Maximum reproductive lifespan correlates with CD33rSIGLEC gene number: Implications for NADPH oxidase-derived reactive oxygen species in aging. FASEB J 2020; 34:1928-1938. [PMID: 31907986 PMCID: PMC7018541 DOI: 10.1096/fj.201902116r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
Humans and orcas are among the very rare species that have a prolonged post-reproductive lifespan (PRLS), during which the aging process continues. Reactive oxygen species (ROS) derived from mitochondria and from the NADPH oxidase (NOX) enzymes of innate immune cells are known to contribute to aging, with the former thought to be dominant. CD33-related-Siglecs are immune receptors that recognize self-associated-molecular-patterns and modulate NOX-derived-ROS. We herewith demonstrate a strong correlation of lifespan with CD33rSIGLEC gene number in 26 species, independent of body weight or phylogeny. The correlation is stronger when considering total CD33rSIGLEC gene number rather than those encoding inhibitory and activating subsets, suggesting that lifetime balancing of ROS is important. Combining independent lines of evidence including the short half-life and spontaneous activation of neutrophils, we calculate that even without inter-current inflammation, a major source of lifetime ROS exposure may actually be neutrophil NOX-derived. However, genomes of human supercentenarians (>110 years) do not harbor a significantly higher number of functional CD33rSIGLEC genes. Instead, lifespan correlation with CD33rSIGLEC gene number was markedly strengthened by excluding the post-reproductive lifespan of humans and orcas (R2 = 0.83; P < .0001). Thus, CD33rSIGLEC modulation of ROS likely contributes to maximum reproductive lifespan, but other unknown mechanisms could be important to PRLS.
Collapse
Affiliation(s)
- Naazneen Khan
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, 94305, United States
| | - Pascal Gagneux
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Laura Dugan
- VA Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| |
Collapse
|
25
|
Besteman SB, Callaghan A, Hennus MP, Westerlaken GH, Meyaard L, Bont LL. Signal inhibitory receptor on leukocytes (SIRL)-1 and leukocyte- associated immunoglobulin-like receptor (LAIR)-1 regulate neutrophil function in infants. Clin Immunol 2020; 211:108324. [DOI: 10.1016/j.clim.2019.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
26
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
27
|
Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, Lecuroux C, Bruhns P, Le Grand R, Beignon AS, Lambotte O, Favier B. Mass Cytometry Analysis Reveals Complex Cell-State Modifications of Blood Myeloid Cells During HIV Infection. Front Immunol 2019; 10:2677. [PMID: 31824485 PMCID: PMC6882910 DOI: 10.3389/fimmu.2019.02677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Dendritic cells (DC), which are involved in orchestrating early immune responses against pathogens, are dysregulated in their function by HIV infection. This dysregulation likely contributes to tip the balance toward viral persistence. Different DC subpopulations, including classical (cDCs) and plasmacytoid (pDCs) dendritic cells, are subjected to concomitant inflammatory and immunoregulatory events during HIV infection, which hampers the precise characterization of their regulation through classical approaches. Here, we carried out mass cytometry analysis of blood samples from early HIV-infected patients that were longitudinally collected before and after 1 year of effective combination antiretroviral therapy (cART). Blood samples from HIV controller patients who naturally control the infection were also included. Our data revealed that plasma HIV RNA level was positively associated with a loss of cDC and pDC subpopulations that display high expression of LILR immunomodulatory receptors. Conversely, specific monocyte populations co-expressing high levels of HLA-I, 3 immunomodulatory receptors, CD64, LILRA2, and LILRB4, and the restriction factor CD317 (also known as BST2/Tetherin), were more abundant in early HIV-infection. Finally, our analysis revealed that the blood of HIV controller patients contained in a higher abundance a particular subtype of CD1c+ cDCs, characterized by elevated co-expression of CD32b inhibitory receptor and HLA-DR antigen-presentation molecules. Overall, this study unravels the modifications induced in DC and monocyte subpopulations in different HIV+ conditions, and provides a better comprehension of the immune regulation/dysregulation mechanisms induced during this viral infection.
Collapse
Affiliation(s)
- Sixtine Coindre
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Lamine Alaoui
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Service de médecine interne et d'immunologie clinique, Hôpital Bicêtre, APHP, Le Kremlin Bicêtre, France.,INSERM U1018-Université Paris Sud, CESP (Centre for Research in Epidemiology and Population Health), Le Kremlin Bicêtre, France
| | - Camille Lecuroux
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.,Service de médecine interne et d'immunologie clinique, Hôpital Bicêtre, APHP, Le Kremlin Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud-INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| |
Collapse
|
28
|
Fernandes MJ, Naccache PH. The Role of Inhibitory Receptors in Monosodium Urate Crystal-Induced Inflammation. Front Immunol 2018; 9:1883. [PMID: 30177932 PMCID: PMC6109781 DOI: 10.3389/fimmu.2018.01883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Inhibitory receptors are key regulators of immune responses. Aberrant inhibitory receptor function can either lead to an exacerbated or defective immune response. Several regulatory mechanisms involved in the inflammatory reaction induced by monosodium urate crystals (MSU) during acute gout have been identified. One of these mechanisms involves inhibitory receptors. The engagement of the inhibitory receptors Clec12A and SIRL-1 has opposing effects on the responses of neutrophils to MSU. We review the general concepts of inhibitory receptor biology and apply them to understand and compare the modulation of MSU-induced inflammation by Clec12A and SIRL-1. We also discuss gaps in our knowledge of the contribution of inhibitory receptors to the pathogenesis of gout and propose future avenues of research.
Collapse
Affiliation(s)
- Maria J Fernandes
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Paul H Naccache
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
29
|
El-Mokhtar MA, Bauer A, Madela J, Voigt S. Cellular distribution of CD200 receptor in rats and its interaction with cytomegalovirus e127 protein. Med Microbiol Immunol 2018; 207:307-318. [PMID: 30032349 DOI: 10.1007/s00430-018-0552-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
CD200 is a membrane protein that interacts with CD200R on the surface of immune cells and delivers an inhibitory signal. In this study, we characterized the distribution of inhibitory CD200R in rats. In addition, we investigated if e127, a homologue of rat CD200 expressed by rat cytomegalovirus (RCMV), can suppress immune functions in vitro. RT-PCR analysis was carried out to test the expression of CD200R in different rat tissues and flow cytometry was performed to characterize CD200R at the cellular level. To test the inhibitory functions of e127, a co-culture system was utilized in which immune cells were incubated with e127-expressing cells. The strongest CD200R expression was detected in lymphoid organs such as bone marrow and spleen. Flow cytometry analyses showed that CD200R+ cells were mainly CD4- dendritic cells (DC) and CD4+ T cells in the spleen. In blood, nearly all monocytes and granulocytes expressed CD200R and in bone marrow the NKRP1low subset of natural killer cells highly expressed CD200R. In addition, both peritoneal macrophages and the NR8383 macrophage cell line carried CD200R. At the functional level, viral e127 conferred an inhibitory signal on TNFα and IL6 cytokine release from IFNγ-stimulated macrophages. However, e127 did not affect the cytotoxic activity of DC. CD200R in the rat is mainly expressed on myeloid cells but also on non-myeloid cell subsets, and RCMV e127 can deliver inhibitory signals to immune cells by engaging CD200R. The RCMV model provides a useful tool to study potential immune evasion mechanisms of the herpesviridae and opens new avenues for understanding and controlling herpesvirus infections.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Julia Madela
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany. .,Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
30
|
Osthole Protects against Acute Lung Injury by Suppressing NF- κB-Dependent Inflammation. Mediators Inflamm 2018; 2018:4934592. [PMID: 30057486 PMCID: PMC6051001 DOI: 10.1155/2018/4934592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.
Collapse
|
31
|
Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, Avettand-Fenoel V, Lecuroux C, Bruhns P, Le Grand R, Beignon AS, Lambotte O, Favier B. Mass Cytometry Analysis Reveals the Landscape and Dynamics of CD32a + CD4 + T Cells From Early HIV Infection to Effective cART. Front Immunol 2018; 9:1217. [PMID: 29915583 PMCID: PMC5995043 DOI: 10.3389/fimmu.2018.01217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
CD32a has been proposed as a specific marker of latently HIV-infected CD4+ T cells. However, CD32a was recently found to be expressed on CD4+ T cells of healthy donors, leading to controversy on the relevance of this marker in HIV persistence. Here, we used mass cytometry to characterize the landscape and variation in the abundance of CD32a+ CD4+ T cells during HIV infection. To this end, we analyzed CD32a+ CD4+ T cells in primary HIV infection before and after effective combination antiretroviral therapy (cART) and in healthy donors. We found that CD32a+ CD4+ T cells include heterogeneous subsets that are differentially affected by HIV infection. Our analysis revealed that naive (N), central memory (CM), and effector/memory (Eff/Mem) CD32a+ CD4+ T-cell clusters that co-express LILRA2- and CD64-activating receptors were more abundant in primary HIV infection and cART stages. Conversely, LILRA2− CD32a+ CD4+ T-cell clusters of either the TN, TCM, or TEff/Mem phenotype were more abundant in healthy individuals. Finally, an activated CD32a+ CD4+ TEff/Mem cell cluster co-expressing LILRA2, CD57, and NKG2C was more abundant in all HIV stages, particularly during primary HIV infection. Overall, our data show that multiple abundance modifications of CD32a+ CD4+ T-cell subsets occur in the early phase of HIV infection, and some of which are conserved after effective cART. Our study brings a better comprehension of the relationship between CD32a expression and CD4+ T cells during HIV infection.
Collapse
Affiliation(s)
- Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Veronique Avettand-Fenoel
- Paris Descartes University, EA 7327, Sorbonne Paris Cité, APHP, Necker Hospital, Virology Department, Paris, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U1222, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | | |
Collapse
|
32
|
Alaoui L, Palomino G, Zurawski S, Zurawski G, Coindre S, Dereuddre-Bosquet N, Lecuroux C, Goujard C, Vaslin B, Bourgeois C, Roques P, Le Grand R, Lambotte O, Favier B. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 2018; 75:1871-1887. [PMID: 29134249 PMCID: PMC11105587 DOI: 10.1007/s00018-017-2712-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.
Collapse
Affiliation(s)
- Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Gustavo Palomino
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Sandy Zurawski
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | | | - Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Pierre Roques
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, France.
| |
Collapse
|
33
|
Margraf A, Volmering S, Skupski J, Van Marck V, Makrigiannis AP, Block H, Zarbock A. The ITIM Domain-Containing NK Receptor Ly49Q Impacts Pulmonary Infection by Mediating Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2018; 200:4085-4093. [PMID: 29712775 DOI: 10.4049/jimmunol.1701084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/02/2018] [Indexed: 01/13/2023]
Abstract
Pulmonary infection is a frequent pathology associated with excessive neutrophil infiltration. Ly49Q, an ITIM domain-bearing receptor expressed on different leukocytes, has been recently reported to impact neutrophil migration and polarization. Utilizing a murine model of Klebsiella pneumoniae-induced pulmonary infection in combination with additional in vivo and in vitro assays, we show that Ly49Q is critically involved in different steps of the leukocyte adhesion cascade. Ly49Q deficiency is associated with a reduced rolling velocity, impaired crawling capacity, and diminished transmigration. We show that overactivation of the neutrophil β2 integrins Mac-1 and LFA-1 is responsible for increased adhesion and reduced neutrophil transmigration, resulting in a strongly impaired immune defense against pulmonary infection. Structure function analysis in vitro and in vivo demonstrated that different domains of Ly49Q are important for its function. In summary, Ly49Q regulates integrin activation and neutrophil recruitment and is required for an adequate immune response in pulmonary infection.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Stephanie Volmering
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Jennifer Skupski
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Veerle Van Marck
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, University of Muenster, Muenster 48149, Germany; and
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany;
| |
Collapse
|
34
|
Azcutia V, Parkos CA, Brazil JC. Role of negative regulation of immune signaling pathways in neutrophil function. J Leukoc Biol 2017; 103:10.1002/JLB.3MIR0917-374R. [PMID: 29345376 PMCID: PMC6203665 DOI: 10.1002/jlb.3mir0917-374r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/26/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in host defense against infection and in the resolution of inflammation. However, immune responses mediated by PMN must be tightly regulated to facilitate elimination of invading pathogens without inducing detrimental inflammation and host tissue damage. Specific engagement of cell surface immunoreceptors by a diverse range of extracellular signals regulates PMN effector functions through differential activation of intracellular signaling cascades. Although mechanisms of PMN activation mediated via cell signaling pathways have been well described, less is known about negative regulation of PMN function by immune signaling cascades. Here, we provide an overview of immunoreceptor-mediated negative regulation of key PMN effector functions including maturation, migration, phagocytosis, reactive oxygen species release, degranulation, apoptosis, and NET formation. Increased understanding of mechanisms of suppression of PMN effector functions may point to possible future therapeutic targets for the amelioration of PMN-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
35
|
Takeda K, Nakamura A. Regulation of immune and neural function via leukocyte Ig-like receptors. J Biochem 2017; 162:73-80. [PMID: 28898976 DOI: 10.1093/jb/mvx036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Leukocyte Ig-like receptors (LILRs)/Ig-like transcripts (ILTs) are expressed on innate and adaptive immune cells and maintain immune homeostasis. LILRs consist of activating and inhibitory-type receptors that regulate adequate cellular functions. LILRs were firstly identified as MHC class I receptors, therefore expression and/or polymorphisms of LILRs are reported to associate with autoimmune disorders and transplant rejection; however, recent accumulating evidences have revealed that LILRs recognize with diverse ligands including bacteria and virus. In addition, inhibitory LILRB2 (ILT4) and murine relative paired Ig-like receptor (PIR)-B are expressed on neuron and is involved in the dysregulation of central nervous system via interaction with neuronal ligands including amyloid β-protein. In this review, we summarize recent discoveries on the functions of inhibitory MHC class I receptors, and discuss their regulatory roles in immune responses and neural functions.
Collapse
Affiliation(s)
- Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
36
|
Dos Santos JC, Grund LZ, Seibert CS, Marques EE, Soares AB, Quesniaux VF, Ryffel B, Lopes-Ferreira M, Lima C. Stingray venom activates IL-33 producing cardiomyocytes, but not mast cell, to promote acute neutrophil-mediated injury. Sci Rep 2017; 7:7912. [PMID: 28801624 PMCID: PMC5554156 DOI: 10.1038/s41598-017-08395-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022] Open
Abstract
One of the hallmarks of acute inflammation is neutrophil infiltration of tissues. We investigated molecular mechanisms implicated in acute neutrophilic inflammation induced by the venom of a freshwater stingray (Potamotrygon cf. henlei) in mice. Ray venom induced early mobilization of neutrophil in the microvasculature of cremaster mice and infiltration of the peritoneal cavity 2 hours after injury, in a dose-response manner. IL-1β, IL-6, TNF-α, and KC were produced. The neutrophilic infiltration did not occur in mice with ST2 receptor and MyD88 adapters neutralized, or in those with PI3K and p38 MAPK signaling blocked. Drastic reduction of neutrophil infiltration to peritoneal cavities was observed in ST2−/−, TLR2/TLR4−/−, MyD88−/−, TRIF−/− and IL-17A−/− mice, and a partial reduction was observed in IL-18R−/− mice. Mast cell Kit W(sh)/W(sh)-, AHR-, NLRP3-, ICE-, IL-1β-, P2RX7-, CD39-, IL-17RA-, and TBX21 KO mice retain the ability to induce neutrophilia in peritoneal cavity after ray venom injection. IL-6 and TNF-α alone were insufficient for promote neutrophilia in the absence of ST2 signaling. Finally, abundant production of IL-33 by cardiomyocytes was observed. These results refine our understanding of the importance of the IL-33/ST2 axis and IL-33-producing cardiomyocytes in the early acute neutrophilia induced by freshwater stingray venoms.
Collapse
Affiliation(s)
| | - Lidiane Zito Grund
- Immunoregulation Unit of the Special Laboratory of Applied Toxinology(CEPID/FAPESP), Butantan Institute, São Paulo, Brazil
| | | | | | | | - Valerie F Quesniaux
- Allergy and Lung Inflammation Unit of the Molecular and Experimental Immunology and Neurogenetics (CNRS), Orléans, France
| | - Bernhard Ryffel
- Allergy and Lung Inflammation Unit of the Molecular and Experimental Immunology and Neurogenetics (CNRS), Orléans, France
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Special Laboratory of Applied Toxinology(CEPID/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Special Laboratory of Applied Toxinology(CEPID/FAPESP), Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
37
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
38
|
Li S, Ma L, Ou M, Feng J, Liao Y, Wang G, Tang L. A novel inducible lentiviral system for multi-gene expression with human HSP70 promoter and tetracycline-induced promoter. Appl Microbiol Biotechnol 2017; 101:3689-3702. [PMID: 28160047 DOI: 10.1007/s00253-017-8132-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/04/2023]
Abstract
Despite lentiviral system's predominance, its ultimate potential for gene therapy has not been fully exploited. Currently, most lentivirus vectors are non-inducible expression system or single-gene-induced system, which limits the extensive application in gene therapy. In this study, we designed a novel lentiviral vector containing HSP70 promoter and TRE promoter. Compared to traditional lentiviral vectors and inducible vectors, our controllable system has many advantages. Firstly, it contains multiple gene or shRNA targets. Secondly, genes expression is on/off in response to heat shock and DOX induction in time of need respectively with high effectivity and sensitivity. Thirdly, TRE promoter and HSP70 promoter can work with no interference from each other in the same inducible lentiviral vector. In addition, our study also shows that our novel vector has a higher downstream gene expression efficiency than co-transfection method and can co-position multi-genes in single cell effectively. Finally, we propose four derived models based on our vector at the end, which may be useful in biological research and clinical research in the future. Therefore, we believe that this novel lentiviral system could be promising in gene therapy for tumor.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Mengting Ou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yi Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China.
| |
Collapse
|
39
|
Pelá FP, Rustiguel JK, Rodrigues LC, Mendonça JN, Andrade CDC, Lopes NP, Rosa JC, Nonato MC, Favier B, Donadi EA, Dias-Baruffi M. A soluble recombinant form of human leucocyte antigen-G 6 (srHLA-G6). Biochem Biophys Res Commun 2017; 487:28-33. [PMID: 28365155 DOI: 10.1016/j.bbrc.2017.03.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Human Leucocyte Antigen-G (HLA-G) is a non classical major histocompatibility complex (MHC) molecule that through RNA splicing can encode seven isoforms which are membrane bound (-G1, -G2, -G3 and -G4) and soluble (-G5, -G6 and -G7). HLA-G is described as important immune suppressor endogenous molecule to favor maternal-fetal tolerance, transplant survival and tumor immune scape. HLA-G shows low protein variability and a unique structural complexity that is related with the expression of different isoforms followed by biochemical processes, such as, proteolytic cleavage, molecular interactions, and protein ubiquitination. Studies with HLA-G have shown difficult to assess the role of the individual isoforms. Thus, the aim of this work was to obtain a HLA-G6 recombinant form. The results indicated the production of high homogeneous preparations of soluble recombinant HLA-G6 (srHLA-G6) with molecular mass 23,603.76 Da, determined by MALD-TOF/TOF. In addition, native and denatured srHLA-G6 were detected by ELISA, using commercial monoclonal antibodies. Finally, we developed a suitable methodology to express srHLA-G6 that could contribute in structural and functional studies involving specific isoforms.
Collapse
Affiliation(s)
- Flávia Porto Pelá
- Laboratório de Glicoimunologia, Universidade de São Paulo, Av. Café, s/n 14040-903, Ribeirão Preto, SP, Brazil
| | - Joane Kathelen Rustiguel
- Laboratório de Cristalografia de Proteínas, Universidade de São Paulo, Av. Café, s/n 14040-903, Ribeirão Preto, SP, Brazil
| | - Lilian Cataldi Rodrigues
- Laboratório de Glicoimunologia, Universidade de São Paulo, Av. Café, s/n 14040-903, Ribeirão Preto, SP, Brazil
| | - Jacqueline Nakau Mendonça
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Camillo Del Cistia Andrade
- Laboratório de Glicoimunologia, Universidade de São Paulo, Av. Café, s/n 14040-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - José Cesar Rosa
- Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo, 2501, 14051-140, Ribeirão Preto, SP, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Universidade de São Paulo, Av. Café, s/n 14040-903, Ribeirão Preto, SP, Brazil
| | - Benoit Favier
- CEA/DRF/IDMIT-Université Paris Sud-INSERM U1184/IMVA, 92265, Fontenay-aux-Roses, France
| | - Eduardo Antônio Donadi
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900, Ribeirão Preto, SP, Brazil
| | - Marcelo Dias-Baruffi
- Laboratório de Glicoimunologia, Universidade de São Paulo, Av. Café, s/n 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
40
|
d’Almeida TC, Sadissou I, Milet J, Cottrell G, Mondière A, Avokpaho E, Gineau L, Sabbagh A, Massougbodji A, Moutairou K, Donadi EA, Favier B, Carosella E, Moreau P, Rouas-Freiss N, Courtin D, Garcia A. Soluble human leukocyte antigen -G during pregnancy and infancy in Benin: Mother/child resemblance and association with the risk of malaria infection and low birth weight. PLoS One 2017; 12:e0171117. [PMID: 28166246 PMCID: PMC5293225 DOI: 10.1371/journal.pone.0171117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Human leukocyte antigen (HLA) G is a tolerogenic molecule involved in the maternal-fetal immune tolerance phenomenon. Its expression during some infectious diseases leading to immune evasion has been established. A first study conducted in Benin has shown that the production of soluble HLA-G (sHLA-G) during the first months of life is strongly correlated with the maternal level at delivery and associated with low birth weight and malaria. However sHLA-G measurements during pregnancy were not available for mothers and furthermore, to date the evolution of sHLA-G in pregnancy is not documented in African populations. To extend these previous findings, between January 2010 and June 2013, 400 pregnant women of a malaria preventive trial and their newborns were followed up in Benin until the age of 2 years. Soluble HLA-G was measured 3 times during pregnancy and repeatedly during the 2 years follow-up to explore how sHLA-G evolved and the factors associated. During pregnancy, plasma levels of sHLA-G remained stable and increased significantly at delivery (p<0.001). Multigravid women seemed to have the highest levels (p = 0.039). In infants, the level was highest in cord blood and decreased before stabilizing after 18 months (p<0.001). For children, a high level of sHLA-G was associated with malaria infection during the follow-up (p = 0.02) and low birth weight (p = 0.06). The mean level of sHLA-G during infancy was strongly correlated with the mother’s level during pregnancy (<0.001), and not only at delivery. Moreover, mothers with placental malaria infection had a higher probability of giving birth to a child with a high level of sHLA-g (p = 0.006). High sHLA-G levels during pregnancy might be associated with immune tolerance related to placental malaria. Further studies are needed but this study provides a first insight concerning the potential role of sHLA-G as a biomarker of weakness for newborns and infants.
Collapse
Affiliation(s)
- Tania C. d’Almeida
- Université Pierre et Marie Curie, Paris, France
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- * E-mail:
| | - Ibrahim Sadissou
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
- Université d’Abomey-Calavi, Cotonou, Bénin
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Jacqueline Milet
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gilles Cottrell
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Amandine Mondière
- UMR 216-MERIT, Institut de Recherche pour le Développement, Campus de la Faculté des Sciences de la Santé (FSS) et de l’Institut des Sciences Biomédicales Appliquées (ISBA), Cotonou, Bénin
| | | | - Laure Gineau
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Audrey Sabbagh
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
- Université d’Abomey-Calavi, Cotonou, Bénin
| | | | - Eduardo A. Donadi
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Benoit Favier
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - Edgardo Carosella
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - Philippe Moreau
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - Nathalie Rouas-Freiss
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Service de Recherches en Hémato-Immunologie (SRHI), Hôpital Saint-Louis, IUH, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hôpital Saint-Louis, UMR_E5, IUH, Paris, France
| | - David Courtin
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - André Garcia
- Université Pierre et Marie Curie, Paris, France
- UMR 216-MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie - Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| |
Collapse
|
41
|
Affiliation(s)
- William M Nauseef
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Veterans Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|