1
|
Li S, Li H, Zhou Z, Ye M, Wang Y, Li W, Guan Z, Guan Z, Zhang C, Zhang Y, Liu W, Peng K. A viral necrosome mediates direct RIPK3 activation to promote inflammatory necroptosis. Proc Natl Acad Sci U S A 2025; 122:e2420245122. [PMID: 40424123 DOI: 10.1073/pnas.2420245122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/31/2025] [Indexed: 05/29/2025] Open
Abstract
Necroptosis is an inflammatory programmed cell death pathway triggered by RIPK3 activation through one of the upstream RHIM-domain-containing proteins including RIPK1, TRIF, and ZBP1. Whether necroptosis can be activated independent of the upstream signaling pathways leading to inflammatory pathogenesis remains ambiguous. Here, we revealed a mechanism in which a viral protein mediates direct RIPK3 activation resulting in severe inflammatory pathogenesis in patients. The nonstructural protein NSs of a pathogenic hemorrhagic virus, SFTSV, interacts with the RIPK3 kinase domain and forms biocondensate to promote RIPK3 autophosphorylation and necroptosis activation in an RHIM-independent manner. In parallel, sequestration of RIPK3 within the NSs-RIPK3 condensate inhibited RIPK3-mediated apoptosis and promoted viral replication. Infection with an SFTSV NSs mutant virus not forming NSs condensate triggered pronounced apoptosis resulting in reduced viral replication and decreased fatality in vivo. Blocking SFTSV-triggered necroptosis through depletion of MLKL or treatment with a RIPK3-kinase inhibitor reduced viral inflammatory pathogenesis and fatality in vivo. In contrast, blocking SFTSV-triggered apoptosis through depletion of RIPK3 resulted in enhanced viral replication and increased fatality in vivo. The virus-triggered necroptosis correlated with severe inflammatory pathogenesis and lethality in virus-infected patients. The NSs-RIPK3 condensate may represent a necroptosis activation mechanism that promotes viral pathogenesis.
Collapse
Affiliation(s)
- Shufen Li
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, People's Republic of China
| | - Zhenxing Zhou
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Meidi Ye
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Yifei Wang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Wenqin Li
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zihan Guan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chongtao Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, People's Republic of China
| | - Ke Peng
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
2
|
Thakur B, Verma R, Bhatia A. Mutations in Necroptosis-Related Genes Reported in Breast Cancer: A Cosmic and Uniport Database-Based Study. Clin Breast Cancer 2025; 25:e341-e359. [PMID: 39794252 DOI: 10.1016/j.clbc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Breast cancer (BC) now holds the top position as the primary reason of cancer-related fatalities worldwide, overtaking lung cancer. BC is classified into diverse categories depending on histopathological type, hormone receptor status, and gene expression profile, with ongoing evolution in their classifications. Cancer initiates and advances when there is a disruption in cell death pathways. In BC, the primary cell death pathway, apoptosis, experiences dysregulation across multiple stages. Ongoing studies aim to discover therapeutic targets that enhance cancer cell susceptibility to apoptosis. However, resistance to this therapy remains a significant challenge in treating BC. If apoptosis is hindered, investigating alternative pathways for cell death that can effectively eradicate BC cells during treatment becomes a valuable endeavor. In this context, necroptosis is gaining considerable focus as an alternative cell death pathway. Necroptosis represents a programmed version of necrosis which shares its key regulators with apoptosis. When apoptosis is hampered, necroptosis serves as an alternative cell death pathway even in physiological conditions like formation of limbs during embryonic development. Additionally, it comes into play during bacterial and viral infections when the apoptosis machinery is hijacked and inhibited by proteins from these pathogens. Studies reveal that in BC, mutations significantly impact molecules in the apoptosis pathway, contributing to the onset, advancement, and multiplication of cancer cells. Although some studies do indicate that the functionality of necroptosis pathway may be compromised in malignancy the status of its key molecules remains largely unknown. In this article, we aim to gather the known mutations present in key molecules of necroptosis among various subtypes of BC, utilizing data from the Cosmic and UniProt databases. The same may help to enhance the development of therapeutic strategies to effectively induce necroptosis in apoptosis-resistant BCs.
Collapse
Affiliation(s)
- Banita Thakur
- Department of General Surgery, Stanford university, CA, USA
| | - Rohit Verma
- Department of Neurosurgery, Stanford University, CA, USA
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| |
Collapse
|
3
|
Fay EJ, Isterabadi K, Rezanka CM, Le J, Daugherty MD. Evolutionary and functional analyses reveal a role for the RHIM in tuning RIPK3 activity across vertebrates. eLife 2025; 13:RP102301. [PMID: 40434815 PMCID: PMC12119088 DOI: 10.7554/elife.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
Receptor interacting protein kinases (RIPK) RIPK1 and RIPK3 play important roles in diverse innate immune pathways. Despite this, some RIPK1/3-associated proteins are absent in specific vertebrate lineages, suggesting that some RIPK1/3 functions are conserved, while others are more evolutionarily labile. Here, we perform comparative evolutionary analyses of RIPK1-5 and associated proteins in vertebrates to identify lineage-specific rapid evolution of RIPK3 and RIPK1 and recurrent loss of RIPK3-associated proteins. Despite this, diverse vertebrate RIPK3 proteins are able to activate NF-κB and cell death in human cells. Additional analyses revealed a striking conservation of the RIP homotypic interaction motif (RHIM) in RIPK3, as well as other human RHIM-containing proteins. Interestingly, diversity in the RIPK3 RHIM can tune activation of NF-κB while retaining the ability to activate cell death. Altogether, these data suggest that NF-κB activation is a core, conserved function of RIPK3, and the RHIM can tailor RIPK3 function to specific needs within and between species.
Collapse
Affiliation(s)
- Elizabeth J Fay
- Department of Molecular Biology, School of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Kolya Isterabadi
- Department of Molecular Biology, School of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Charles M Rezanka
- Department of Molecular Biology, School of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Jessica Le
- Department of Molecular Biology, School of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
4
|
Ouyang X, Wang J, Qiu X, Hu D, Cui J. Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 2025; 66:26. [PMID: 39981901 DOI: 10.3892/ijo.2025.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant tumors are non-communicable diseases that impact human health and quality of life. Identifying and targeting the underlying genetic drivers is a challenge. Heme oxygenase-1 (HO-1), a stress-inducible enzyme also known as heat shock protein 32, plays a crucial role in maintaining cellular homeostasis. It mitigates oxidative stress-induced damage and exhibits anti-apoptotic properties. HO-1 is expressed in a wide range of malignancies and is associated with tumor growth. However, the precise role of HO-1 in tumor development remains controversial. Drugs, both naturally occurring and chemically synthesized, can inhibit tumor growth by modulating HO-1 expression in cancer cells. The present review aimed to discuss biological functions of HO-1 pharmacological therapies targeting HO-1.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cui
- Health Management Center, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
5
|
Alenad AMH, Khan MS, Al-Twaijry N, Alokail MS, Shano LB, Karthikeyan S, Naz H, Jali BR. Suppression of necroptosis-driven cell death and inflammation in hypoxic neuroblastoma (SH-SY5Y) cells by necrostatin-1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04023-z. [PMID: 40095052 DOI: 10.1007/s00210-025-04023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Neuroblastoma (NB) is the most typical malignant extracranial solid tumor in the pediatric population. The advent of drug resistance is an essential deterrent in treating high-risk NB patients despite a multi-modality remedy. Inflammation-induced early neuronal degeneration plays a leading part in the pathogenesis of NB via necroptosis; however, the mechanisms remained cryptic. Our current investigation determines the anti-inflammatory and neuroprotective effect of necroptosis inhibitor necrostatin-1 (Nec-1) in receptor-interacting proteins 1 and 3 (RIP1/3)-induced cell death pathway and inflammation caused by hypoxia mimetic agent cobalt chloride (CoCl2). Our biomolecular study illustrates that necroptosis marker RIP1/3 and mixed-lineage kinase domain-like pseudokinase (MLKL) protein expression was increased after treatment with CoCl2 in SH-SY5Y cells. Subsequently, elevated expression levels of RIP1/3 and MLKL further contributed to the inflammation by activating transcription factors extracellular signal-regulated protein kinase (ERK1/2), nuclear factor kappa-B (NF-κB), and releasing high levels of proinflammatory cytokines, such as vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1/CCL2). At the same time, Nec-1 treatment reduced the RIP1/3 and MLKL, phospho-ERK1/2, p65 subunit of NF-κB expression, and VEGF and MCP-1 levels. Molecular docking analysis of RIP1/3-necrostatin-1 complex highlights a significant interaction between necrostatin-1 and specific amino acid residues within the protein. Based on our promising results, necrostatin-1 could be exploited as a therapeutic agent during neuroblastoma's pathogenesis and its molecular therapy.
Collapse
Affiliation(s)
- Amal Majed H Alenad
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Leon Bernet Shano
- Division of Physics, School of Advanced Science, Vellore Institute of Technology (VIT) Chennai Campus, Vandalur- Kelambakkam Road, Chennai, Tamil Nadu, 600 127, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Vandalur- Kelambakkam Road, Vellore, Tamil Nadu, 600 127, India
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Mizzou, Columbia, MO, 65211, USA
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology Burla Sambalpur Odisha, Burla, 768018, India.
| |
Collapse
|
6
|
Fay EJ, Isterabadi K, Rezanka CM, Le J, Daugherty MD. Evolutionary and functional analyses reveal a role for the RHIM in tuning RIPK3 activity across vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.09.593370. [PMID: 39149247 PMCID: PMC11326134 DOI: 10.1101/2024.05.09.593370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Receptor interacting protein kinases (RIPK) RIPK1 and RIPK3 play important roles in diverse innate immune pathways. Despite this, some RIPK1/3-associated proteins are absent in specific vertebrate lineages, suggesting that some RIPK1/3 functions are conserved while others are more evolutionarily labile. Here, we perform comparative evolutionary analyses of RIPK1-5 and associated proteins in vertebrates to identify lineage-specific rapid evolution of RIPK3 and RIPK1 and recurrent loss of RIPK3-associated proteins. Despite this, diverse vertebrate RIPK3 proteins are able to activate NF-κB and cell death in human cells. Additional analyses revealed a striking conservation of the RIP homotypic interaction motif (RHIM) in RIPK3, as well as other human RHIM-containing proteins. Interestingly, diversity in the RIPK3 RHIM can tune activation of NF-κB while retaining the ability to activate cell death. Altogether, these data suggest that NF-κB activation is a core, conserved function of RIPK3, and the RHIM can tailor RIPK3 function to specific needs within and between species.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Kolya Isterabadi
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Charles M. Rezanka
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Jessica Le
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
7
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
8
|
Joseph AM, Ahmed A, Goc J, Horn V, Fiedler B, Garone D, Grigg JB, Uddin J, Teng F, Fritsch M, Vivier E, Sonnenberg GF. RIPK3 and caspase-8 interpret cytokine signals to regulate ILC3 survival in the gut. Mucosal Immunol 2024; 17:1212-1221. [PMID: 39137882 PMCID: PMC11637958 DOI: 10.1016/j.mucimm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are abundant in the developing or healthy intestine to critically support tissue homeostasis in response to microbial colonization. However, intestinal ILC3s are reduced during chronic infections, colorectal cancer, or inflammatory bowel disease (IBD), and the mechanisms driving these alterations remain poorly understood. Here we employed RNA sequencing of ILC3s from IBD patients and observed a significant upregulation of RIPK3, the central regulator of necroptosis, during intestinal inflammation. This was modeled in mice where we found that intestinal ILC3s express RIPK3, with conventional (c)ILC3s exhibiting high RIPK3 and low levels of pro-survival genes relative to lymphoid tissue inducer (LTi)-like ILC3s. ILC3-specific RIPK3 is promoted by gut microbiota, further upregulated following enteric infection, and dependent upon IL-23R and STAT3 signaling. However, lineage-specific deletion of RIPK3 revealed a redundant role in ILC3 survival, due to a blockade of RIPK3-mediated necroptosis by caspase 8, which was also activated in response to enteric infection. In contrast, lineage-specific deletion of caspase 8 resulted in loss of cILC3s from the healthy intestine and all ILC3 subsets during enteric infection, which increased pathogen burdens and gut inflammation. This function of caspase 8 required catalytic activity induced by TNF or TL1A and was dispensable if RIPK3 was simultaneously deleted. Caspase 8 activation and cell death were associated with increased Fas on ILC3s, and the Fas-FasL pathway was upregulated by cILC3s during enteric infection, which could restrain the abundance of intestinal ILC3s. Collectively, these data reveal that interpretation of key cytokine signals controls ILC3 survival following microbial challenge, and that an imbalance of these pathways, such as in IBD or across ILC3 subsets, provokes depletion of tissue-protective ILC3s from the inflamed intestine.
Collapse
Affiliation(s)
- Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Anees Ahmed
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Goc
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Veronika Horn
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Brooke Fiedler
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dario Garone
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John B Grigg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jazib Uddin
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fei Teng
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Melanie Fritsch
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, TRIO Research Center, University of Cologne, 50931 Cologne, Germany
| | - Eric Vivier
- Innate Pharma, Marseille, France; Aix-Marseille University, Centre of National Scientific Research (CNRS), National Insititute of Health and Medical Research (INSERM), Centre of Immunology at Marseille-Luminy (CIML), Marseille, France; APHM, Marseille-Immunopole, University Hospital of Timone, Marseille, France
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Liang W, Bai Y, Zhang H, Mo Y, Li X, Huang J, Lei Y, Gao F, Dong M, Li S, Liang J. Identification and Analysis of Potential Biomarkers Associated with Neutrophil Extracellular Traps in Cervicitis. Biochem Genet 2024:10.1007/s10528-024-10919-x. [PMID: 39419909 DOI: 10.1007/s10528-024-10919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024]
Abstract
Early diagnosis of cervicitis is important. Previous studies have found that neutrophil extracellular traps (NETs) play pro-inflammatory and anti-inflammatory roles in many diseases, suggesting that they may be involved in the inflammation of the uterine cervix and NETs-related genes may serve as biomarkers of cervicitis. However, what NETs-related genes are associated with cervicitis remains to be determined. Transcriptome analysis was performed using samples of exfoliated cervical cells from 15 patients with cervicitis and 15 patients without cervicitis as the control group. First, the intersection of differentially expressed genes (DEGs) and neutrophil extracellular trap-related genes (NETRGs) were taken to obtain genes, followed by functional enrichment analysis. We obtained hub genes through two machine learning algorithms. We then performed Artificial Neural Network (ANN) and nomogram construction, confusion matrix, receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Moreover, we constructed ceRNA network, mRNA-transcription factor (TF) network, and hub genes-drug network. We obtained 19 intersecting genes by intersecting 1398 DEGs and 136 NETRGs. 5 hub genes were obtained through 2 machine learning algorithms, namely PKM, ATG7, CTSG, RIPK3, and ENO1. Confusion matrix and ROC curve evaluation ANN model showed high accuracy and stability. A nomogram containing the 5 hub genes was established to assess the disease rate in patients. The correlation analysis revealed that the expression of ATG7 was synergistic with RIPK3. The GSEA showed that most of the hub genes were related to ECM receptor interactions. It was predicted that the ceRNA network contained 2 hub genes, 3 targeted miRNAs, and 27 targeted lnRNAs, and that 5 mRNAs were regulated by 28 TFs. In addition, 36 small molecule drugs that target hub genes may improve the treatment of cervicitis. In this study, five hub genes (PKM, ATG7, CTSG, RIPK3, ENO1) provided new directions for the diagnosis and treatment of patients with cervicitis.
Collapse
Affiliation(s)
- Wantao Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanyuan Bai
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Hua Zhang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yan Mo
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Xiufang Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Junming Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yangliu Lei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Fangping Gao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Mengmeng Dong
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Shan Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Juan Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
10
|
Wen W, Hu X, Liu J, Zeng F, Xu Y, Yuan Y, Gao C, Sun X, Cheng B, Wang J, Hu X, Xiao RP, Chen X, Zhang X. RIP3 regulates doxorubicin-induced intestinal mucositis via FUT2-mediated α-1,2-fucosylation. Inflamm Res 2024; 73:1781-1801. [PMID: 39180691 DOI: 10.1007/s00011-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE Intestinal mucositis is one of the common side effects of anti-cancer chemotherapy. However, the molecular mechanisms involved in mucositis development remain incompletely understood. In this study, we investigated the function of receptor-interacting protein kinase 3 (RIP3/RIPK3) in regulating doxorubicin-induced intestinal mucositis and its potential mechanisms. METHODS Intestinal mucositis animal models were induced in mice for in vivo studies. Rat intestinal cell line IEC-6 was used for in vitro studies. RNA‑seq was used to explore the transcriptomic changes in doxorubicin-induced intestinal mucositis. Intact glycopeptide characterization using mass spectrometry was applied to identify α-1,2-fucosylated proteins associated with mucositis. RESULTS Doxorubicin treatment increased RIP3 expression in the intestine and caused severe intestinal mucositis in the mice, depletion of RIP3 abolished doxorubicin-induced intestinal mucositis. RIP3-mediated doxorubicin-induced mucositis did not depend on mixed lineage kinase domain-like (MLKL) but on α-1,2-fucosyltransferase 2 (FUT2)-catalyzed α-1,2-fucosylation on inflammation-related proteins. Deficiency of MLKL did not affect intestinal mucositis, whereas inhibition of α-1,2-fucosylation by 2-deoxy-D-galactose (2dGal) profoundly attenuated doxorubicin-induced inflammation and mucositis. CONCLUSIONS RIP3-FUT2 pathway is a central node in doxorubicin-induced intestinal mucositis. Targeting intestinal RIP3 and/or FUT2-mediated α-1,2-fucosylation may provide potential targets for preventing chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Wei Wen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China
| | - Xiaomin Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Fanxin Zeng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, 635000, China
| | - Yihua Xu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Chunyan Gao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China.
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, China.
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China.
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Xiao Y, Zhang Y, Xie K, Huang X, Liu X, Luo J, Tan S. Mitochondrial Dysfunction by FADDosome Promotes Gastric Mucosal Injury in Portal Hypertensive Gastropathy. Int J Biol Sci 2024; 20:2658-2685. [PMID: 38725851 PMCID: PMC11077381 DOI: 10.7150/ijbs.90835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.
Collapse
Affiliation(s)
- Yuelin Xiao
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Kaiduan Xie
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xiaoli Huang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xianzhi Liu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jinni Luo
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| |
Collapse
|
13
|
Yang CS, Coopersmith CM, Lyons JD. Cell death proteins in sepsis: key players and modern therapeutic approaches. Front Immunol 2024; 14:1347401. [PMID: 38274794 PMCID: PMC10808706 DOI: 10.3389/fimmu.2023.1347401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Cell death proteins play a central role in host immune signaling during sepsis. These interconnected mechanisms trigger cell demise via apoptosis, necroptosis, and pyroptosis while also driving inflammatory signaling. Targeting cell death mediators with novel therapies may correct the dysregulated inflammation seen during sepsis and improve outcomes for septic patients.
Collapse
Affiliation(s)
- Chloe S. Yang
- Department of Surgery, Emory University, Atlanta, GA, United States
| | - Craig M. Coopersmith
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Critical Care Center, Emory University, Atlanta, GA, United States
| | - John D. Lyons
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Critical Care Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Huang J, Wu Q, Geller DA, Yan Y. Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC). J Transl Med 2023; 21:815. [PMID: 37968714 PMCID: PMC10652641 DOI: 10.1186/s12967-023-04716-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
The pivotal role of the tumor microenvironment (TME) in the initiation and advancement of hepatocellular carcinoma (HCC) is widely acknowledged, as it fosters the proliferation and metastasis of HCC cells. Within the intricate TME of HCC, tumor-associated macrophages (TAMs) represent a significant constituent of non-malignant cells. TAMs engage in direct communication with cancer cells in HCC, while also exerting influence on other immune cells to adopt a tumor-supportive phenotype that facilitates tumor progression. Among the multifaceted mechanisms at play, the metabolic reprogramming of both tumor cells and macrophages leads to phenotypic alterations and functional modifications in macrophages. This comprehensive review elucidates the intricate interplay between cellular metabolism and macrophage phenotype/polarization, while also providing an overview of the associated signaling molecules and potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Jingquan Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - David A Geller
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
15
|
Kim N, Park CJ, Kim Y, Ryu S, Cho H, Nam Y, Han M, Shin JS, Sim T. Identification of Pyrido[3,4-d]pyrimidine derivatives as RIPK3-Mediated necroptosis inhibitors. Eur J Med Chem 2023; 259:115635. [PMID: 37494773 DOI: 10.1016/j.ejmech.2023.115635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan-Jung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
He XY, Wang F, Suo XG, Gu MZ, Wang JN, Xu CH, Dong YH, He Y, Zhang Y, Ji ML, Chen Y, Zhang MM, Fan YG, Wen JG, Jin J, Wang J, Li J, Zhuang CL, Liu MM, Meng XM. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis. Br J Pharmacol 2023; 180:2641-2660. [PMID: 37248964 DOI: 10.1111/bph.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Zhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
17
|
Zhang J, Qian J, Zhang W, Chen X. The pathophysiological role of receptor-interacting protein kinase 3 in cardiovascular disease. Biomed Pharmacother 2023; 165:114696. [PMID: 37329707 DOI: 10.1016/j.biopha.2023.114696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023] Open
Abstract
Recent studies have found that receptor interacting protein kinase 3 (RIPK3) can mediate CaMK Ⅱ phosphorylation and oxidation, open mitochondrial permeability transition pore (mPTP), and induce myocardial necroptosis. The increased expression or phosphorylation of RIPK3 is one of the important markers of necroptosis; Inhibition of CaMK Ⅱ phosphorylation or oxidation significantly reduces RIPK3 mediated myocardial necroptosis; Studies have shown that necroptosis plays an important role in the occurrence and development of cardiovascular diseases; Using the selective inhibitor GSK '872 of RIPK3 can effectively inhibit the occurrence and development of cardiovascular diseases, and can reverse cardiovascular and cardiac dysfunction caused by overexpression of RIPK3. In this review, we provide a brief overview of the current knowledge on RIPK3 in mediating necroptosis, inflammatory response, and oxidative stress, and discussed the role of RIPK3 in cardiovascular diseases such as atherosclerosis, myocardial ischaemia, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfen Chen
- Department of Pharmacy, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
18
|
Freund L, Oehrl S, Schwingen J, Haeberle S, Döbel T, Lee PDH, Meisel S, Mihalceanu S, Rußwurm M, Luft T, Schäkel K. IFNγ Causes Keratinocyte Necroptosis in Acute Graft-Versus-Host Disease. J Invest Dermatol 2023; 143:1746-1756.e9. [PMID: 36889661 DOI: 10.1016/j.jid.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
Epidermal keratinocytes form the first-line cellular barrier of the skin for protection against external injuries and maintenance of local tissue homeostasis. Expression of ZBP1 was shown to cause necroptotic keratinocyte cell death and skin inflammation in mice. We sought to characterize the relevance of ZBP1 and necroptosis in human keratinocytes and type 1-driven cutaneous acute graft-versus-host disease. in this study, we identify ZBP1 expression, necroptosis, and interface dermatitis as being the hallmarks of acute graft-versus-host disease. ZBP1 expression was dependent on leukocyte-derived IFNγ, and interference with IFNγ signaling by Jak inhibition prevented cell death. In predominantly IL-17-driven psoriasis, both ZBP1 expression and necroptosis could not be detected. Of note, in contrast to the signaling in mice, ZBP1 signaling in human keratinocytes was not affected by RIPK1's presence. These findings show that ZBP1 drives inflammation in IFNγ-dominant type 1 immune responses in human skin and may further point to a general role of ZBP1-mediated necroptosis.
Collapse
Affiliation(s)
- Lukas Freund
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Julius Schwingen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Haeberle
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul D H Lee
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Meisel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvia Mihalceanu
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Rußwurm
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
19
|
Prasad Panda S, Kesharwani A, Prasanna Mallick S, Prasanth D, Kumar Pasala P, Bharadwaj Tatipamula V. Viral-induced neuronal necroptosis: Detrimental to brain function and regulation by necroptosis inhibitors. Biochem Pharmacol 2023; 213:115591. [PMID: 37196683 DOI: 10.1016/j.bcp.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca2+ and Na+ ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | | | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
20
|
Liu Z, Garcia Reino EJ, Harschnitz O, Guo H, Chan YH, Khobrekar NV, Hasek ML, Dobbs K, Rinchai D, Materna M, Matuozzo D, Lee D, Bastard P, Chen J, Lee YS, Kim SK, Zhao S, Amin P, Lorenzo L, Seeleuthner Y, Chevalier R, Mazzola L, Gay C, Stephan JL, Milisavljevic B, Boucherit S, Rozenberg F, Perez de Diego R, Dix RD, Marr N, Béziat V, Cobat A, Aubart M, Abel L, Chabrier S, Smith GA, Notarangelo LD, Mocarski ES, Studer L, Casanova JL, Zhang SY. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol 2023; 8:eade2860. [PMID: 37083451 PMCID: PMC10337828 DOI: 10.1126/sciimmunol.ade2860] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-β and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.
Collapse
Affiliation(s)
- Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Eduardo J Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Human Technopole, Viale Rita Levi-Montalcini, Milan, Italy
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, GA, USA
- School of Medicine, Atlanta, GA, USA
- Louisiana State University Health Sciences Center at Shreveport (LSUHSC-S), Shreveport, LA, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Noopur V Khobrekar
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoon Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Param Amin
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Remi Chevalier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laure Mazzola
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | - Claire Gay
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | | | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- Institute of Translational Immunology, Brandenburg Medical School, Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Pediatric Neurology Department, Necker Hospital for Sick Children, APHP, Paris City University, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stephane Chabrier
- Department of Pediatrics, Hôpital Nord, Saint-Etienne, Paris, France
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, GA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris City University, Imagine Institute, Paris, France
| |
Collapse
|
21
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
22
|
Patton T, Zhao Z, Lim XY, Eddy E, Wang H, Nelson AG, Ennis B, Eckle SBG, Souter MNT, Pediongco TJ, Koay HF, Zhang JG, Djajawi TM, Louis C, Lalaoui N, Jacquelot N, Lew AM, Pellicci DG, McCluskey J, Zhan Y, Chen Z, Lawlor KE, Corbett AJ. RIPK3 controls MAIT cell accumulation during development but not during infection. Cell Death Dis 2023; 14:111. [PMID: 36774342 PMCID: PMC9922319 DOI: 10.1038/s41419-023-05619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/13/2023]
Abstract
Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.
Collapse
Affiliation(s)
- Timothy Patton
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Zhe Zhao
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xin Yi Lim
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Eleanor Eddy
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Huimeng Wang
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Adam G Nelson
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Bronte Ennis
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sidonia B G Eckle
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael N T Souter
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Troi J Pediongco
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hui-Fern Koay
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tirta M Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Cynthia Louis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Najoua Lalaoui
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel G Pellicci
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital Parkville, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Zhenjun Chen
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Alexandra J Corbett
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Lyons JD, Mandal P, Otani S, Chihade DB, Easley KF, Swift DA, Burd EM, Liang Z, Koval M, Mocarski ES, Coopersmith CM. The RIPK3 Scaffold Regulates Lung Inflammation During Pseudomonas Aeruginosa Pneumonia. Am J Respir Cell Mol Biol 2023; 68:150-160. [PMID: 36178467 PMCID: PMC9986559 DOI: 10.1165/rcmb.2021-0474oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/29/2022] [Indexed: 02/03/2023] Open
Abstract
RIPK3 (receptor-interacting protein kinase 3) activity triggers cell death via necroptosis, whereas scaffold function supports protein binding and cytokine production. To determine if RIPK3 kinase or scaffold domains mediate pathology during Pseudomonas aeruginosa infection, control mice and those with deletion or mutation of RIPK3 and associated signaling partners were subjected to Pseudomonas pneumonia and followed for survival or killed for biologic assays. Murine immune cells were studied in vitro for Pseudomonas-induced cytokine production and cell death, and RIPK3 binding interactions were blocked with the viral inhibitor M45. Human tissue effects were assayed by infecting airway epithelial cells with Pseudomonas and measuring cytokine production after siRNA inhibition of RIPK3. Deletion of RIPK3 reduced inflammation and decreased animal mortality after Pseudomonas pneumonia. RIPK3 kinase inactivation did neither. In cell culture, RIPK3 was dispensable for cell killing by Pseudomonas and instead drove cytokine production that required the RIPK3 scaffold domain but not kinase activity. Blocking the RIP homotypic interaction motif (RHIM) with M45 reduced the inflammatory response to infection in vitro. Similarly, siRNA knockdown of RIPK3 decreased infection-triggered inflammation in human airway epithelial cells. Thus, the RIPK3 scaffold drives deleterious pulmonary inflammation and mortality in a relevant clinical model of Pseudomonas pneumonia. This process is distinct from kinase-mediated necroptosis, requiring only the RIPK3 RHIM. Inhibition of RHIM signaling is a potential strategy to reduce lung inflammation during infection.
Collapse
Affiliation(s)
| | | | | | | | - Kristen F. Easley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine
| | | | | | - Zhe Liang
- Department of Surgery, Emory Critical Care Center
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | | | | |
Collapse
|
24
|
Cao X, He J, Chen A, Ran J, Li J, Chen D, Zhang H. Comprehensive Analysis of Necroptosis Landscape in Skin Cutaneous Melanoma for Appealing its Implications in Prognosis Estimation and Microenvironment Status. J Pers Med 2023; 13:jpm13020245. [PMID: 36836481 PMCID: PMC9962795 DOI: 10.3390/jpm13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Due to poor prognosis and immunotherapy failure of skin cutaneous melanoma (SKCM), this study sought to find necroptosis-related biomarkers to predict prognosis and improve the situation with predicted immunotherapy drugs. EXPERIMENTAL DESIGN The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression Program (GTEx) database were utilized to recognize the differential necroptosis-related genes (NRGs). Univariate Cox (uni-Cox) and least absolute shrinkage and selection operator (LASSO) Cox analysis were utilized for prognostic signature establishment. The signature was verified in the internal cohort. To assess the signature's prediction performance, the area under the curve (AUC) of receiver operating characteristic (ROC) curves, Kaplan-Meier (K-M) analyses, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were performed. The molecular and immunological aspects were also reviewed using single-sample gene set enrichment analysis (ssGSEA). Cluster analysis was performed to identify the different types of SKCM. Finally, the expression of the signature gene was verified by immunohistochemical staining. RESULTS On basis of the 67 NRGs, 4 necroptosis-related genes (FASLG, PLK1, EGFR, and TNFRSF21) were constructed to predict SKCM prognosis. The area's 1-, 3-, and 5-year OS under the AUC curve was 0.673, 0.649, and 0.677, respectively. High-risk individuals had significantly lower overall survival (OS) compared to low-risk patients. Immunological status and tumor cell infiltration in high-risk groups were significantly lower, indicating an immune system that was suppressed. In addition, hot and cold tumors could be obtained by cluster analysis, which is helpful for accurate treatment. Cluster 1 was considered a hot tumor and more susceptible to immunotherapy. Immunohistochemical results were consistent with positive and negative regulation of coefficients in signature. CONCLUSION The results of this finding supported that NRGs could predict prognosis and help make a distinction between the cold and hot tumors for improving personalized therapy for SKCM.
Collapse
Affiliation(s)
- Xiaoying Cao
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - An Chen
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical, Chongqing Medical University, Chongqing 400016, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Correspondence: (D.C.); (H.Z.)
| | - Hengshu Zhang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Correspondence: (D.C.); (H.Z.)
| |
Collapse
|
25
|
Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 2023; 14:1016053. [PMID: 36778591 PMCID: PMC9911465 DOI: 10.3389/fnagi.2022.1016053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.
Collapse
|
26
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Daniels BP, Oberst A. Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection. Curr Top Microbiol Immunol 2023; 442:155-174. [PMID: 32253569 PMCID: PMC7781604 DOI: 10.1007/82_2020_204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.
Collapse
Affiliation(s)
- Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
28
|
Li Y, Zhang X, Wang Z, Li B, Zhu H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front Pharmacol 2023; 14:1156538. [PMID: 37033606 PMCID: PMC10073466 DOI: 10.3389/fphar.2023.1156538] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer treatment is hampered by resistance to conventional therapeutic strategies, including chemotherapy, immunotherapy, and targeted therapy. Redox homeostasis manipulation is one of the most effective innovative treatment techniques for overcoming drug resistance. Reactive oxygen species (ROS), previously considered intracellular byproducts of aerobic metabolism, are now known to regulate multiple signaling pathways as second messengers. Cancer cells cope with elevated amounts of ROS during therapy by upregulating the antioxidant system, enabling tumor therapeutic resistance via a variety of mechanisms. In this review, we aim to shed light on redox modification and signaling pathways that may contribute to therapeutic resistance. We summarized the molecular mechanisms by which redox signaling-regulated drug resistance, including altered drug efflux, action targets and metabolism, enhanced DNA damage repair, maintained stemness, and reshaped tumor microenvironment. A comprehensive understanding of these interrelationships should improve treatment efficacy from a fundamental and clinical research point of view.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- *Correspondence: Huili Zhu,
| |
Collapse
|
29
|
Dan Sang, Duan X, Yu X, Zang J, Liu L, Wu G. PGAM5 regulates DRP1-mediated mitochondrial fission/mitophagy flux in lipid overload-induced renal tubular epithelial cell necroptosis. Toxicol Lett 2023; 372:14-24. [DOI: 10.1016/j.toxlet.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
|
30
|
Pinci F, Gaidt MM, Jung C, Nagl D, Kuut G, Hornung V. Tumor necrosis factor is a necroptosis-associated alarmin. Front Immunol 2022; 13:1074440. [PMID: 36578489 PMCID: PMC9791252 DOI: 10.3389/fimmu.2022.1074440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Necroptosis is a form of regulated cell death that can occur downstream of several immune pathways. While previous studies have shown that dysregulated necroptosis can lead to strong inflammatory responses, little is known about the identity of the endogenous molecules that trigger these responses. Using a reductionist in vitro model, we found that soluble TNF is strongly released in the context of necroptosis. On the one hand, necroptosis promotes TNF translation by inhibiting negative regulatory mechanisms acting at the post-transcriptional level. On the other hand, necroptosis markedly enhances TNF release by activating ADAM proteases. In studying TNF release at single-cell resolution, we found that TNF release triggered by necroptosis is activated in a switch-like manner that exceeds steady-state TNF processing in magnitude and speed. Although this shedding response precedes massive membrane damage, it is closely associated with lytic cell death. Further, we found that lytic cell death induction using a pore-forming toxin also triggers TNF shedding, indicating that the activation of ADAM proteases is not strictly related to the necroptotic pathway but likely associated with biophysical changes of the cell membrane upon lytic cell death. These results demonstrate that lytic cell death, particularly necroptosis, is a critical trigger for TNF release and thus qualify TNF as a necroptosis-associated alarmin.
Collapse
|
31
|
UVA induces retinal photoreceptor cell death via receptor interacting protein 3 kinase mediated necroptosis. Cell Death Dis 2022; 8:489. [PMID: 36509771 PMCID: PMC9744841 DOI: 10.1038/s41420-022-01273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Ultraviolet light A (UVA) is the only UV light that reaches the retina and can cause indirect damage to DNA via absorption of photons by non-DNA chromophores. Previous studies demonstrate that UVA generates reactive oxygen species (ROS) and leads to programmed cell death. Programmed cell death (PCD) has been implicated in numerous ophthalmologic diseases. Here, we investigated receptor interacting protein 1 and 3 (RIPK1 and RIPK3) kinases, key signaling molecules of PCD, in UVA-induced photoreceptor injury using in vitro and ex vivo models. UVA irradiation activated RIPK3 but not RIPK1 and mediated necroptosis through MLKL that lie downstream of RIPK3 and induced apoptosis through increased oxidative stress. Moreover, RIPK3 but not RIPK1 inhibition suppresses UVA-induced cell death along with the downregulation of MLKL and attenuates the levels of oxidative stress and DNA fragmentation. In conclusion, these results identify RIPK3, not RIPK1, as a critical regulator of UVA-induced necroptosis cell death in photoreceptors and highlight RIPK3 potential as a neuroprotective target.
Collapse
|
32
|
Angel JP, Daniels BP. Paradoxical roles for programmed cell death signaling during viral infection of the central nervous system. Curr Opin Neurobiol 2022; 77:102629. [PMID: 36162201 PMCID: PMC10754211 DOI: 10.1016/j.conb.2022.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Programmed cell death (PCD) is an essential mechanism of antimicrobial defense. Recent work has revealed an unexpected diversity in the types of PCD elicited during infection, as well as defined unique roles for different PCD modalities in shaping the immune response. Here, we review recent work describing unique ways in which PCD signaling operates within the infected central nervous system (CNS). These studies reveal striking complexity in the regulation of PCD signaling by CNS cells, including both protective and pathological outcomes in the control of infection. Studies defining the specialized molecular mechanisms shaping PCD responses in the CNS promise to yield much needed new insights into the pathogenesis of neuroinvasive viral infection, informing future therapeutic development.
Collapse
Affiliation(s)
- Juan P Angel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA. https://twitter.com/JuanP_Angell
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
33
|
Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 2022; 54:1695-1704. [PMID: 36224345 PMCID: PMC9636380 DOI: 10.1038/s12276-022-00868-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3, or RIP3) is an essential protein in the "programmed" and "regulated" cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, and the findings of many reports have suggested that necroptosis is highly significant in health and human disease. This significance is largely because necroptosis is distinguished from other modes of cell death, especially apoptosis, in that it is highly proinflammatory given that cell membrane integrity is lost, triggering the activation of the immune system and inflammation. Here, we discuss the roles of RIPK3 in cell signaling, along with its role in necroptosis and various pathways that trigger RIPK3 activation and cell death. Lastly, we consider pathological situations in which RIPK3/necroptosis may play a role.
Collapse
|
34
|
DeRoo E, Khoury M, Zhou T, Yang H, Stranz A, Luke C, Henke P, Liu B. Investigating the role of receptor interacting protein kinase 3 in venous thrombosis. JVS Vasc Sci 2022; 3:365-378. [PMID: 36568281 PMCID: PMC9772854 DOI: 10.1016/j.jvssci.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Venous thromboembolism is a disease that encompasses both deep vein thrombosis and pulmonary embolism. Recent investigations have shown that receptor interacting protein kinase 3 (RIPK3), a protein known for its role in the programmed form of cell death necroptosis, may play a role in thrombosis. Specifically, RIPK3 has been shown to promote platelet activation in arterial thrombosis and mixed lineage kinase domain-like pseudokinase (MLKL), a protein downstream of RIPK3 in the necroptosis pathway, has been shown to promote neutrophil extracellular trap formation in deep vein thrombosis. This investigation sought to comprehensively investigate the role of RIPK3 in deep vein thrombogenesis. Methods The inferior vena cava ligation and stenosis models of deep vein thrombosis were used in C57BL/6J, RIPK3 wild-type (Ripk3 +/+ ) and RIPK3-deficient (Ripk3 -/- ) mice. Downstream tissue analyses included measurement of thrombus weight and histological and Western blot analysis of tissues for markers of necroptosis and cell death. A subset of C57BL/6J mice were treated with a RIPK3 inhibitor to determine the effect on venous thrombosis. Results C57BL/6J mice showed significant increases in thrombus weight from 6 to 48 hours. During the same time frame, RIPK3 progressively accumulated in the vein wall (a 35-fold increase from 0 to 48 hours). RIPK3 was present in the thrombus; however, it decreased with time. Although present in the thrombus, MLKL was nearly undetectable in the vein wall by Western blot at any timepoint. Immunostaining confirmed the high accumulation of RIPK3 in the vein wall, primarily colocalized to endothelial and smooth muscle cells. Phosphorylated MLKL, the active form of MLKL and executioner of necroptotic cell death, was detectable by immunostaining in the thrombus, but was present at low to undetectable levels in the vein wall. Propidium iodide and terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed a high burden of necrotic and apoptotic cells within the thrombus at 48 hours, but a relatively lower burden within the vein wall. Despite robust accumulation of RIPK3 within the vessel wall and the thrombus, knockout and inhibition of RIPK3 failed to impact thrombus incident or weight at 48 hours after inferior vena cava ligation. Neutrophil extracellular trap burden did not differ between Ripk3 +/+ and Ripk3 -/- mice. Conclusions In mice, the vein wall responded to deep vein thrombosis induction with elevation of RIPK3 without showing markers of necroptosis and apoptosis. Studies using genetic or pharmacological inhibition of RIPK3 suggest that this cell death mediator may not have a major role in the acute phase of venous thrombogenesis. Further investigation is needed to determine if RIPK3 plays a potentially non-necroptotic role within the vein wall during later stages of thrombus resolution and vein wall remodeling.
Collapse
Affiliation(s)
- Elise DeRoo
- Department of Surgery, and Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Mitri Khoury
- Department of Surgery, and Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Ting Zhou
- Department of Surgery, and Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Huan Yang
- Department of Surgery, and Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Amelia Stranz
- Department of Surgery, and Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Catherine Luke
- Department of Surgery, Division of Vascular Surgery, University of Michigan, Ann Arbor, MI
| | - Peter Henke
- Department of Surgery, Division of Vascular Surgery, University of Michigan, Ann Arbor, MI
| | - Bo Liu
- Department of Surgery, and Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI,Correspondence: Bo Liu, PhD, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5137, Madison, WI 53705
| |
Collapse
|
35
|
Larkin BP, Nguyen LT, Hou M, Glastras SJ, Chen H, Faiz A, Chen J, Wang R, Pollock CA, Saad S. Low-dose hydralazine reduces albuminuria and glomerulosclerosis in a mouse model of obesity-related chronic kidney disease. Diabetes Obes Metab 2022; 24:1939-1949. [PMID: 35635331 PMCID: PMC9544807 DOI: 10.1111/dom.14778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
AIM To determine, using a mouse model of obesity, whether low-dose hydralazine prevents obesity-related chronic kidney disease (CKD). METHODS From 8 weeks of age, male C57BL/6 mice received a high-fat diet (HFD) or chow, with or without low-dose hydralazine (25 mg/L) in drinking water, for 24 weeks. Biometric and metabolic variables, renal function and structural changes, renal global DNA methylation, DNA methylation profile and markers of renal fibrosis, injury, inflammation and oxidative stress were assessed. RESULTS The HFD-fed mice developed obesity, with glucose intolerance, hyperinsulinaemia and dyslipidaemia. Obesity increased albuminuria and glomerulosclerosis, which were significantly ameliorated by low-dose hydralazine in the absence of a blood pressure-lowering effect. Obesity increased renal global DNA methylation and this was attenuated by low-dose hydralazine. HFD-induced changes in methylation of individual loci were also significantly reversed by low-dose hydralazine. Obese mice demonstrated increased markers of kidney fibrosis, inflammation and oxidative stress, but these markers were not significantly improved by hydralazine. CONCLUSION Low-dose hydralazine ameliorated HFD-induced albuminuria and glomerulosclerosis, independent of alterations in biometric and metabolic variables or blood pressure regulation. Although the precise mechanism of renoprotection in obesity is unclear, an epigenetic basis may be implicated. These data support repurposing hydralazine as a novel therapy to prevent CKD progression in obese patients.
Collapse
Affiliation(s)
- Benjamin P. Larkin
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Long T. Nguyen
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Miao Hou
- Department of CardiologyChildren′s Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
- Department of DiabetesEndocrinology and Metabolism, Royal North Shore HospitalSydneyAustralia
| | - Hui Chen
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyAustralia
| | - Alen Faiz
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyAustralia
| | - Jason Chen
- Department of Anatomical PathologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Rosy Wang
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical ResearchUniversity of SydneySydneyAustralia
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyAustralia
| |
Collapse
|
36
|
Magusto J, Beaupère C, Afonso MB, Auclair M, Delaunay JL, Soret PA, Courtois G, Aït-Slimane T, Housset C, Jéru I, Fève B, Ratziu V, Rodrigues CM, Gautheron J. The necroptosis-inducing pseudokinase mixed lineage kinase domain-like regulates the adipogenic differentiation of pre-adipocytes. iScience 2022; 25:105166. [PMID: 36204273 PMCID: PMC9530846 DOI: 10.1016/j.isci.2022.105166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins are key regulators of necroptosis, a highly pro-inflammatory mode of cell death, which has been involved in various human diseases. Necroptotic-independent functions of RIPK3 and MLKL also exist, notably in the adipose tissue but remain poorly defined. Using knock-out (KO) cell models, we investigated the role of RIPK3 and MLKL in adipocyte differentiation. Mlkl-KO abolished white adipocyte differentiation via a strong expression of Wnt10b, a ligand of the Wnt/β-catenin pathway, and a downregulation of genes involved in lipid metabolism. This effect was not recapitulated by the ablation of Ripk3. Conversely, Mlkl and Ripk3 deficiencies did not block beige adipocyte differentiation. These findings indicate that RIPK3 and MLKL have distinct roles in adipogenesis. The absence of MLKL blocks the differentiation of white, but not beige, adipocytes highlighting the therapeutic potential of MLKL inhibition in obesity. Mlkl deficiency inhibits white, but not beige, adipocyte differentiation MLKL deficiency suppresses the expression of master regulators of adipogenesis Mlkl deficiency up-regulates Wnt10b expression Ripk3 deficiency does not alter white and beige adipocyte differentiation
Collapse
|
37
|
Zhang L, Liu J, Dai Z, Wang J, Wu M, Su R, Zhang D. Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Front Nutr 2022; 9:1003340. [PMID: 36211509 PMCID: PMC9543034 DOI: 10.3389/fnut.2022.1003340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The discovery of regulated necrosis revitalizes the understanding of necrosis from a passive and accidental cell death to a highly coordinated and genetically regulated cell death routine. Since the emergence of RIPK1 (receptor-interacting protein kinase 1)-RIPK3-MLKL (mixed lineage kinase domain-like) axis-mediated necroptosis, various other forms of regulated necrosis, including ferroptosis and pyroptosis, have been described, which enrich the understanding of pathophysiological nature of diseases and provide novel therapeutics. Micronutrients, vitamins, and minerals, position centrally in metabolism, which are required to maintain cellular homeostasis and functions. A steady supply of micronutrients benefits health, whereas either deficiency or excessive amounts of micronutrients are considered harmful and clinically associated with certain diseases, such as cardiovascular disease and neurodegenerative disease. Recent advance reveals that micronutrients are actively involved in the signaling pathways of regulated necrosis. For example, iron-mediated oxidative stress leads to lipid peroxidation, which triggers ferroptotic cell death in cancer cells. In this review, we illustrate the crosstalk between micronutrients and regulated necrosis, and unravel the important roles of micronutrients in the process of regulated necrosis. Meanwhile, we analyze the perspective mechanism of each micronutrient in regulated necrosis, with a particular focus on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jinting Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ziyan Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Zhang,
| |
Collapse
|
38
|
Maeda K, Nakayama J, Taki S, Sanjo H. TAK1 Limits Death Receptor Fas-Induced Proinflammatory Cell Death in Macrophages. THE JOURNAL OF IMMUNOLOGY 2022; 209:1173-1179. [DOI: 10.4049/jimmunol.2200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Fas, a member of the death receptor family, plays a central role in initiating cell death, a biological process crucial for immune homeostasis. However, the immunological and pathophysiological impacts to which enhanced Fas signaling gives rise remain to be fully understood. Here we demonstrate that TGF-β–activated kinase 1 (TAK1) works as a negative regulator of Fas signaling in macrophages. Upon Fas engagement with high concentrations of FasL, mouse primary macrophages underwent cell death, and, surprisingly, Fas stimulation led to proteolytic cleavage of gasdermin (GSDM) family members GSDMD and GSDME, a hallmark of pyroptosis, in a manner dependent on caspase enzymatic activity. Remarkably, TAK1-deficient macrophages were highly sensitive to even low concentrations of FasL. Mechanistically, TAK1 negatively modulated RIPK1 kinase activity to protect macrophages from excessive cell death. Intriguingly, mice deficient for TAK1 in macrophages (TAK1mKO mice) spontaneously developed tissue inflammation, and, more important, the emergence of inflammatory disease symptoms was markedly diminished in TAK1mKO mice harboring a catalytically inactive RIPK1. Taken together, these findings not only revealed an unappreciated role of TAK1 in Fas-induced macrophage death but provided insight into the possibility of perturbation of immune homeostasis driven by aberrant cell death.
Collapse
Affiliation(s)
- Kengo Maeda
- *Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; and
| | - Jun Nakayama
- †Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shinsuke Taki
- *Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; and
| | - Hideki Sanjo
- *Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; and
| |
Collapse
|
39
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
40
|
Zhan Y, Xu D, Tian Y, Qu X, Sheng M, Lin Y, Ke M, Jiang L, Xia Q, Kaldas FM, Farmer DG, Ke B. Novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death. JHEP Rep 2022; 4:100532. [PMID: 36035360 PMCID: PMC9404660 DOI: 10.1016/j.jhepr.2022.100532] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background & Aims The stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway is vital in mediating innate immune and inflammatory responses during oxidative/endoplasmic reticulum (ER) stress. However, it remains unknown whether macrophage thioredoxin-interacting protein (TXNIP) may regulate TBK1 function and cell death pathways during oxidative/ER stress. Methods A mouse model of hepatic ischaemia/reperfusion injury (IRI), the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific TXNIP knockout (TXNIPM-KO) and TXNIP-proficient (TXNIPFL/FL) mice. Results The TXNIPM-KO mice were resistant to ischaemia/reperfusion (IR) stress-induced liver damage with reduced serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the TXNIPFL/FL controls. IR stress increased TXNIP, p-STING, and p-TBK1 expression in ischaemic livers. However, TXNIPM-KO inhibited STING, TBK1, interferon regulatory factor 3 (IRF3), and NF-κB activation with interferon-β (IFN-β) expression. Interestingly, TXNIPM-KO augmented nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity, increased antioxidant gene expression, and reduced macrophage reactive oxygen species (ROS) production and hepatic apoptosis/necroptosis in IR-stressed livers. Mechanistically, macrophage TXNIP deficiency promoted cylindromatosis (CYLD), which colocalised and interacted with NADPH oxidase 4 (NOX4) to enhance NRF2 activity by deubiquitinating NOX4. Disruption of macrophage NRF2 or its target gene 2',5' oligoadenylate synthetase-like 1 (OASL1) enhanced Ras GTPase-activating protein-binding protein 1 (G3BP1) and TBK1-mediated inflammatory response. Notably, macrophage OASL1 deficiency induced hepatocyte apoptotic peptidase activating factor 1 (APAF1), cytochrome c, and caspase-9 activation, leading to increased caspase-3-initiated apoptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated necroptosis. Conclusions Macrophage TXNIP deficiency enhances CYLD activity and activates the NRF2-OASL1 signalling, controlling IR stress-induced liver injury. The target gene OASL1 regulated by NRF2 is crucial for modulating STING-mediated TBK1 activation and Apaf1/cytochrome c/caspase-9-triggered apoptotic/necroptotic cell death pathway. Our findings underscore a novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases. Lay summary Liver inflammation and injury induced by ischaemia and reperfusion (the absence of blood flow to the liver tissue followed by the resupply of blood) is a significant cause of hepatic dysfunction and failure following liver transplantation, resection, and haemorrhagic shock. Herein, we uncover an underlying mechanism that contributes to liver inflammation and cell death in this setting and could be a therapeutic target in stress-induced liver inflammatory injury.
Collapse
Key Words
- ALT, alanine aminotransferase
- APAF1, apoptotic peptidase activating factor 1
- ASK1, apoptosis signal-regulating kinase 1
- AST, aspartate aminotransferase
- Apoptosis
- BMM, bone marrow-derived macrophage
- CXCL-10, C-X-C motif chemokine ligand 10
- CYLD, cyclindromatosis
- ChIP, chromatin immunoprecipitation
- DAMP, damage-associated molecular pattern
- DUB, deubiquitinating enzyme
- ER, endoplasmic reticulum
- ES, embryonic stem
- G3BP1
- G3BP1, Ras GTPase-activating protein-binding protein 1
- GCLC, glutamate-cysteine ligase catalytic subunit
- GCLM, glutamate-cysteine ligase regulatory subunit
- IHC, immunohistochemistry
- INF-β, interferon-β
- IR, ischaemia/reperfusion
- IRF3
- IRF3, interferon regulatory factor 3
- IRF7, IFN-regulating transcription factor 7
- IRI, ischaemia/reperfusion injury
- Innate immunity
- KO, knockout
- LPS, lipopolysaccharide
- Liver inflammation
- Lyz2, Lysozyme 2
- MCP-1, monocyte chemoattractant protein 1
- NOX2, NADPH oxidase 2
- NOX4, NADPH oxidase 4
- NQO1, NAD(P)H quinone dehydrogenase 1
- NRF2, nuclear factor (erythroid-derived 2)-like 2
- NS, non-specific
- Necroptosis
- OASL1, 2′,5′oligoadenylate synthetase-like 1
- PAMP, pathogen-derived molecular pattern
- RIPK3, receptor-interacting serine/threonine-protein kinase 3
- ROS, reactive oxygen species
- STING
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TLR4, Toll-like receptor 4
- TNF-α, tumour necrosis factor-alpha
- TRX, thioredoxin
- TSS, transcription start sites
- TXNIP, thioredoxin-interacting protein
- TXNIPFL/FL, floxed TXNIP
- TXNIPM-KO, myeloid-specific TXNIP KO
- UTR, untranslated region
- sALT, serum ALT
- sAST, serum AST
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Yongqiang Zhan
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fady M. Kaldas
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
41
|
Qu XQ, Chen QF, Shi QQ, Luo QQ, Zheng SY, Li YH, Bai LY, Gan S, Zhou XY. Hepatocyte-Conditional Knockout of Phosphatidylethanolamine Binding Protein 4 Aggravated LPS/D-GalN-Induced Acute Liver Injury via the TLR4/NF-κB Pathway. Front Immunol 2022; 13:901566. [PMID: 35874667 PMCID: PMC9304715 DOI: 10.3389/fimmu.2022.901566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Acute liver injury (ALI) is a disease that seriously threatens human health and life, and a dysregulated inflammation response is one of the main mechanisms of ALI induced by various factors. Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein with multiple biological functions. At present, studies on PEBP4 exist mainly in the field of tumors and rarely in inflammation. This study aimed to explore the potential roles and mechanisms of PEBP4 on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALI. PEBP4 was downregulated after treatment with LPS/D-GalN in wild-type mice. PEBP4 hepatocyte-conditional knockout (CKO) aggravated liver damage and repressed liver functions, including hepatocellular edema, red blood cell infiltration, and increased aspartate aminotransferase (AST)/alanine aminotrans-ferase (ALT) activities. The inflammatory response was promoted through increased neutrophil infiltration, myeloperoxidase (MPO) activities, and cytokine secretions (interleukin-1β, IL-1β; tumor necrosis factor alpha, TNF-α; and cyclooxygenase-2, COX-2) in PEBP4 CKO mice. PEBP4 CKO also induced an apoptotic effect, including increasing the degree of apoptotic hepatocytes, the expressions and activities of caspases, and pro-apoptotic factor Bax while decreasing anti-apoptotic factor Bcl-2. Furthermore, the data demonstrated the levels of Toll-like receptor 4 (TLR4), phosphorylation-inhibitor of nuclear factor kappaB Alpha (p-IκB-α), and nuclear factor kappaB (NF-κB) p65 were upregulated, while the expressions of cytoplasmic IκB-α and NF-κB p65 were downregulated after PEBP4 CKO. More importantly, both the NF-κB inhibitor (Ammonium pyrrolidinedithiocarbamate, PDTC) and a small-molecule inhibitor of TLR4 (TAK-242) could inhibit TLR4/NF-κB signaling activation and reverse the effects of PEBP4 CKO. In summary, the data suggested that hepatocyte-conditional knockout of PEBP4 aggravated LPS/D-GalN-induced ALI, and the effect is partly mediated by activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-qin Qu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Qiong-feng Chen
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Department of Pathology, Medical College of Nanchang University, Nanchang, China
| | - Qiao-qing Shi
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Qian-qian Luo
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Shuang-yan Zheng
- The Center of Laboratory Animal Science, Nanchang University, Nanchang, China
| | - Yan-hong Li
- Department of Forensic Medicine, Medical College of Nanchang University, Nanchang, China
| | - Liang-yu Bai
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Shuai Gan
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Xiao-yan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Frank D, Garnish SE, Sandow JJ, Weir A, Liu L, Clayer E, Meza L, Rashidi M, Cobbold SA, Scutts SR, Doerflinger M, Anderton H, Lawlor KE, Lalaoui N, Kueh AJ, Eng VV, Ambrose RL, Herold MJ, Samson AL, Feltham R, Murphy JM, Ebert G, Pearson JS, Vince JE. Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. iScience 2022; 25:104632. [PMID: 35800780 PMCID: PMC9254354 DOI: 10.1016/j.isci.2022.104632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Pathogen recognition and TNF receptors signal via receptor interacting serine/threonine kinase-3 (RIPK3) to cause cell death, including MLKL-mediated necroptosis and caspase-8-dependent apoptosis. However, the post-translational control of RIPK3 is not fully understood. Using mass-spectrometry, we identified that RIPK3 is ubiquitylated on K469. The expression of mutant RIPK3 K469R demonstrated that RIPK3 ubiquitylation can limit both RIPK3-mediated apoptosis and necroptosis. The enhanced cell death of overexpressed RIPK3 K469R and activated endogenous RIPK3 correlated with an overall increase in RIPK3 ubiquitylation. Ripk3K469R/K469R mice challenged with Salmonella displayed enhanced bacterial loads and reduced serum IFNγ. However, Ripk3K469R/K469R macrophages and dermal fibroblasts were not sensitized to RIPK3-mediated apoptotic or necroptotic signaling suggesting that, in these cells, there is functional redundancy with alternate RIPK3 ubiquitin-modified sites. Consistent with this idea, the mutation of other ubiquitylated RIPK3 residues also increased RIPK3 hyper-ubiquitylation and cell death. Therefore, the targeted ubiquitylation of RIPK3 may act as either a brake or accelerator of RIPK3-dependent killing. RIPK3 can be ubiquitylated on K469 to limit RIPK3-induced necroptosis and apoptosis Ripk3K469R/K469R mice are more susceptible to Salmonella infection Several ubiquitylated or surface exposed lysines can limit RIPK3-induced cell death Hyper-ubiquitylated RIPK3 correlates with RIPK3 signaling and cell death
Collapse
|
43
|
Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z. Targeting Necroptosis as a Promising Therapy for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:1697-1713. [PMID: 35607807 DOI: 10.1021/acschemneuro.2c00172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder featured by memory loss and cognitive default. However, there has been no effective therapeutic approach to prevent the development of AD and the available therapies are only to alleviate some symptoms with limited efficacy and severe side effects. Necroptosis is a new kind of cell death, being regarded as a genetically programmed and regulated pattern of necrosis. Increasing evidence reveals that necroptosis is tightly related to the occurrence and development of AD. This review aims to summarize the potential role of necroptosis in AD progression and the therapeutic capacity of targeting necroptosis for AD patients.
Collapse
Affiliation(s)
- Wenli Zhao
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Zhenyu Cai
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
44
|
Lukenaite B, Griciune E, Leber B, Strupas K, Stiegler P, Schemmer P. Necroptosis in Solid Organ Transplantation: A Literature Overview. Int J Mol Sci 2022; 23:3677. [PMID: 35409037 PMCID: PMC8998671 DOI: 10.3390/ijms23073677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is encountered in various stages during solid organ transplantation (SOT). IRI is known to be a multifactorial inflammatory condition involving hypoxia, metabolic stress, leukocyte extravasation, cellular death (including apoptosis, necrosis and necroptosis) and an activation of immune response. Although the cycle of sterile inflammation during IRI is consistent among different organs, the underlying mechanisms are poorly understood. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be crucial in the implementation of necroptosis. Moreover, apart from "silent" apoptotic death, necrosis also causes sterile inflammation-necroinflammation, which is triggered by various damage-associated molecular patterns (DAMPs). Those DAMPs activate the innate immune system, causing local and systemic inflammatory responses, which can result in graft failure. In this overview we summarize knowledge on mechanisms of sterile inflammation processes during SOT with special focus on necroptosis and IRI and discuss protective strategies.
Collapse
Affiliation(s)
- Beatrice Lukenaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Erika Griciune
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (B.L.); (E.G.); (B.L.); (P.S.)
| |
Collapse
|
45
|
Reduced protection of RIPK3-deficient mice against influenza by matrix protein 2 ectodomain targeted active and passive vaccination strategies. Cell Death Dis 2022; 13:280. [PMID: 35351865 PMCID: PMC8961492 DOI: 10.1038/s41419-022-04710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
AbstractRIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3−/− mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3−/− mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3−/− vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3−/− mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3−/− mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3−/− mice. Likewise following IAV infection of Ripk3−/− mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3−/− mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3−/− mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.
Collapse
|
46
|
Torquato HFV, Junior MTR, Lima CS, Júnior RTDA, Talhati F, Dias DA, Justo GZ, Ferreira AT, Pilli RA, Paredes-Gamero EJ. A canthin-6-one derivative induces cell death by apoptosis/necroptosis-like with DNA damage in acute myeloid cells. Biomed Pharmacother 2022; 145:112439. [PMID: 34808555 DOI: 10.1016/j.biopha.2021.112439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products have long been considered a relevant source of new antitumor agents. Despite advances in the treatment of younger patients with acute myeloid leukemia (AML), the prognosis of elderly patients remains poor, with a high frequency of relapse. The cytotoxicity of canthin-6-one alkaloids has been extensively studied in different cell types, including leukemic strains. Among the canthin-6-one analogs tested, 10-methoxycanthin-6-one (Mtx-C) showed the highest cytotoxicity in the malignant AML cells Kasumi-1 and KG-1. Thus, we evaluated the cytotoxicity and cell death mechanisms related to Mtx-C using the EC50 (80 µM for Kasumi-1 and 36 µM for KG-1) treatment for 24 h. Our results identify reactive oxygen species production, mitochondrial depolarization, annexin V-FITC/7-AAD double staining, caspase cleave and upregulation of mitochondria-dependent apoptosis proteins (Bax, Bim, Bik, Puma and phosphorylation of p53) for both cell lineages. However, downregulation of Bcl-2 and the simultaneous execution of the apoptotic and necroptotic programs associated with the phosphorylation of the proteins receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like pseudokinase occurred only in Kasumi-1 cells. About the lasted events, Kasumi-1 cell death was inhibited by pharmacological agents such as Zvad-FMK and necrostatin-1. The underlying molecular mechanisms of Mtx-C still include participation in the DNA damage and stress-signaling pathways involving p38 and c-Jun N-terminal mitogen-activated protein kinases and interaction with DNA. Thus, Mtx-C represents a promising tool for the development of new antileukemic molecules.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | | | - Cauê Santos Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Roberto Theodoro de Araujo Júnior
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Fernanda Talhati
- Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Dhebora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Ronaldo Aloise Pilli
- Instituto de Química, Universidade Estadual de Campinas, 13084-971 Campinas, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.
| |
Collapse
|
47
|
Guerrero-Peña L, Suarez-Bregua P, Méndez-Martínez L, García-Fernández P, Tur R, Rubiolo JA, Tena JJ, Rotllant J. Brains in Metamorphosis: Temporal Transcriptome Dynamics in Hatchery-Reared Flatfishes. BIOLOGY 2021; 10:biology10121256. [PMID: 34943172 PMCID: PMC8698573 DOI: 10.3390/biology10121256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 04/12/2023]
Abstract
Metamorphosis is a captivating process of change during which the morphology of the larva is completely reshaped to face the new challenges of adult life. In the case of fish, this process initiated in the brain has traditionally been considered to be a critical rearing point and despite the pioneering molecular work carried out in other flatfishes, the underlying molecular basis is still relatively poorly characterized. Turbot brain transcriptome of three developmental stages (pre-metamorphic, climax of metamorphosis and post-metamorphic) were analyzed to study the gene expression dynamics throughout the metamorphic process. A total of 1570 genes were differentially expressed in the three developmental stages and we found a specific pattern of gene expression at each stage. Unexpectedly, at the climax stage of metamorphosis, we found highly expressed genes related to the immune response, while the biological pathway enrichment analysis in pre-metamorphic and post-metamorphic were related to cell differentiation and oxygen carrier activity, respectively. In addition, our results confirm the importance of thyroid stimulating hormone, increasing its expression during metamorphosis. Based on our findings, we assume that immune system activation during the climax of metamorphosis stage could be related to processes of larval tissue inflammation, resorption and replacement, as occurs in other vertebrates.
Collapse
Affiliation(s)
- Laura Guerrero-Peña
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
| | - Paula Suarez-Bregua
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
- Correspondence: (P.S.-B.); (J.R.)
| | - Luis Méndez-Martínez
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
| | | | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., 36980 O Grove, Spain; (P.G.-F.); (R.T.)
| | - Juan A. Rubiolo
- Facultad de Ciencias Bioquímicas y Farmacéuticas-Centro Científico y Tecnológico Acuario del Río Paraná, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina;
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Josep Rotllant
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208 Vigo, Spain; (L.G.-P.); (L.M.-M.)
- Correspondence: (P.S.-B.); (J.R.)
| |
Collapse
|
48
|
Yu Z, Efstathiou NE, Correa VSMC, Chen X, Ishihara K, Iesato Y, Narimatsu T, Ntentakis D, Chen Y, Vavvas DG. Receptor interacting protein 3 kinase, not 1 kinase, through MLKL-mediated necroptosis is involved in UVA-induced corneal endothelium cell death. Cell Death Dis 2021; 7:366. [PMID: 34815387 PMCID: PMC8611008 DOI: 10.1038/s41420-021-00757-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) is one of the most energetic radiations in the solar spectrum that can result in various tissue injury disorders. Previous studies demonstrated that UVA, which represents 95% of incident photovoltaic radiation, induces corneal endothelial cells (CECs) death. Programmed cell death (PCD) has been implicated in numerous ophthalmologic diseases. Here, we investigated receptor-interacting protein 3 kinase (RIPK3), a key signaling molecule of PCD, in UVA-induced injury using a short-term corneal endothelium (CE) culture model. UVA irradiation activated RIPK3 and mediated necroptosis both in mouse CE and primary human CECs (pHCECs). UVA irradiation was associated with upregulation of key necroptotic molecules (DAI, TRIF, and MLKL) that lie downstream of RIPK3. Moreover, RIPK3 inhibition or silencing in primary corneal endothelial cells suppresses UVA-induced cell death, along with downregulation of MLKL in pHCECs. In addition, genetic inhibition or knockout of RIPK3 in mice (RIPK3K51A and RIPK3-/- mice) similarly attenuates cell death and the levels of necroptosis in ex vivo UVA irradiation experiments. In conclusion, these results identify RIPK3, not RIPK1, as a critical regulator of UVA-induced cell death in CE and indicate its potential as a future protective target.
Collapse
Affiliation(s)
- Zhen Yu
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA ,grid.258164.c0000 0004 1790 3548Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, Jinan University, 518040 Shenzhen, China
| | - Nikolaos E. Efstathiou
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Victor S. M. C. Correa
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Xiaohong Chen
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Kenji Ishihara
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Yasuhiro Iesato
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Toshio Narimatsu
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Dimitrios Ntentakis
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Yanyun Chen
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Demetrios G. Vavvas
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Retina Service, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
49
|
Wang Y, Karki R, Zheng M, Kancharana B, Lee S, Kesavardhana S, Hansen BS, Pruett-Miller SM, Kanneganti TD. Cutting Edge: Caspase-8 Is a Linchpin in Caspase-3 and Gasdermin D Activation to Control Cell Death, Cytokine Release, and Host Defense during Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2411-2416. [PMID: 34663620 DOI: 10.4049/jimmunol.2100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022]
Abstract
Programmed cell death (PCD) is essential for the innate immune response, which serves as the first line of defense against pathogens. Caspases regulate PCD, immune responses, and homeostasis. Caspase-8 specifically plays multifaceted roles in PCD pathways including pyroptosis, apoptosis, and necroptosis. However, because caspase-8-deficient mice are embryonically lethal, little is known about how caspase-8 coordinates different PCD pathways under physiological conditions. Here, we report an anti-inflammatory role of caspase-8 during influenza A virus infection. We generated viable mice carrying an uncleavable version of caspase-8 (Casp8 DA/DA). We demonstrated that caspase-8 autoprocessing was responsible for activating caspase-3, thereby suppressing gasdermin D-mediated pyroptosis and inflammatory cytokine release. We also found that apoptotic and pyroptotic pathways were activated at the same time during influenza A virus infection, which enabled the cell-intrinsic anti-inflammatory function of the caspase-8-caspase-3 axis. Our findings provide new insight into the immunological consequences of caspase-8-coordinated PCD cross-talk under physiological conditions.
Collapse
Affiliation(s)
- Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN; and
| | | | - SangJoon Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN
| | | | | |
Collapse
|
50
|
Muscolino E, Castiglioni C, Brixel R, Frascaroli G, Brune W. Species-Specific Inhibition of Necroptosis by HCMV UL36. Viruses 2021; 13:v13112134. [PMID: 34834942 PMCID: PMC8621378 DOI: 10.3390/v13112134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Viral infection activates cellular antiviral defenses including programmed cell death (PCD). Many viruses, particularly those of the Herpesviridae family, encode cell death inhibitors that antagonize different forms of PCD. While some viral inhibitors are broadly active in cells of different species, others have species-specific functions, probably reflecting the co-evolution of the herpesviruses with their respective hosts. Human cytomegalovirus (HCMV) protein UL36 is a dual cell death pathway inhibitor. It blocks death receptor-dependent apoptosis by inhibiting caspase-8 activation, and necroptosis by binding to the mixed lineage kinase domain-like (MLKL) protein and inducing its degradation. While UL36 has been shown to inhibit apoptosis in human and murine cells, the specificity of its necroptosis-inhibiting function has not been investigated. Here we show that UL36 interacts with both human and murine MLKL, but has a higher affinity for human MLKL. When expressed by a recombinant mouse cytomegalovirus (MCMV), UL36 caused a modest reduction of murine MLKL levels but did not inhibit necroptosis in murine cells. These data suggest that UL36 inhibits necroptosis, but not apoptosis, in a species-specific manner, similar to ICP6 of herpes simplex virus type 1 and MC159 of molluscum contagiosum virus. Species-specific necroptosis inhibition might contribute to the narrow host range of these viruses.
Collapse
Affiliation(s)
- Elena Muscolino
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Claudia Castiglioni
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
| | - Renke Brixel
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (E.M.); (C.C.); (R.B.); (G.F.)
- Correspondence: ; Tel.: +49-40-48051351
| |
Collapse
|