1
|
Zhang Y, Zhang C, Yang B, Peng C, Zhou J, Ren S, Hu Z. The effect of TIM1 + Breg cells in liver ischemia-reperfusion injury. Cell Death Dis 2025; 16:171. [PMID: 40075055 PMCID: PMC11903774 DOI: 10.1038/s41419-025-07446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Liver transplantation is the only effective method for end-stage liver disease; however, liver ischemia reperfusion injury (IRI) seriously affects donor liver function after liver transplantation. IRI is a pathophysiological process in which organ damage is aggravated after the blood flow and oxygen supply of ischemic organ tissues are restored. It combines the two stages of hypoxic cell stress triggered by ischemia and inflammation-mediated reperfusion injury. Herein, we studied the protective effect and mechanism of the anti-T cell Ig and mucin domain (TIM1) monoclonal antibody, RMT1-10, on hepatic cell injury induced by IRI. First, a liver IRI model was established in vivo. HE, TEM, and Tunel were used to detect liver tissue injury, changes in the liver ultrastructure and liver cell apoptosis, respectively. ELISA were performed to determine the levels of ALT, AST, MDA, GSH, and related inflammatory factors. We found that RMT1-10 could significantly reduce liver injury. Flow cytometry results showed that the number of TIM1+ regulatory B cells (Bregs) in the IRI liver increased briefly, while pretreatment with RMT1-10 could increase the number of TIM1+ Bregs and interleukin-10 (IL-10) secretion in liver IRI model mice, thus playing a protective role in liver reperfusion. When Anti-CD20 was used to remove B cells, RMT1-10 had a reduced effect on liver IRI. Previous data showed that the number of T helper 1 cells (Th1:CD4+; CD8+) increased significantly after IRI. RMT1-10 inhibited Th1 cells; however, it significantly activated regulatory T cells. Sequencing analysis showed that RMT1-10 could significantly downregulate the expression of nuclear factor-kappa B (NF-κB) pathway-related genes induced by IRI. These results suggested that RMT1-10 could promote the maturation of B cells through an atypical NF-κB pathway, thereby increasing the number of TIM1+ Bregs and associated IL-10 secretion to regulate the inflammatory response, thereby protecting against liver IRI.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China.
| |
Collapse
|
2
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
3
|
Liu S, Zahorchak AF, Dobrowolski SF, Metes DM, Thomson AW, Abdelsamed HA. Epigenetic signature of human vitamin D3 and IL-10 conditioned regulatory DCs. Sci Rep 2024; 14:28748. [PMID: 39567586 PMCID: PMC11579388 DOI: 10.1038/s41598-024-79299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
During differentiation of precursor cells into their destination cell type, cell fate decisions are enforced by a broad array of epigenetic modifications, including DNA methylation, which is reflected by the transcriptome. Thus, regulatory dendritic cells (DCregs) acquire specific epigenetic programs and immunomodulatory functions during their differentiation from monocytes. To define the epigenetic signature of human DCregs generated in vitamin D3 (vitD3) and IL-10 compared to immune stimulatory DCs (sDCs), we measured levels of DNA methylation by whole genome bisulfite sequencing (WGBS). Distinct DNA methylation patterns were acquired by DCregs compared to sDCs. These patterns were located mainly in transcriptional regulatory regions. Associated genes were enriched in STAT3-signaling and valine catabolism in DCregs; conversely, pro-inflammatory pathways, e.g. pattern recognition receptor signaling, were enriched in sDCs. Further, DCreg differentially-methylated regions (DMRs) were enriched in binding motifs specific to the immunomodulatory transcription factor Krueppel-like factor 11 (KLF11), while activator protein-1 (AP-1) (Fos:Jun) transcription factor-binding motifs were enriched in sDC DMRs. Using publicly-available data-sets, we defined a common epigenetic signature shared between DCregs generated in vitD3 and IL-10, or dexamethasone or vitD3 alone. These insights may help pave the way for design of epigenetic-based approaches to enhance the production of DCregs as effective therapeutic agents.
Collapse
Affiliation(s)
- Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Alan F Zahorchak
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | | | - Diana M Metes
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Angus W Thomson
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Immunology Center of Georgia, Augusta University, Augusta, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA.
| |
Collapse
|
4
|
Cheng Y, Yang Y, Bai L, Cui J. Microplastics: an often-overlooked issue in the transition from chronic inflammation to cancer. J Transl Med 2024; 22:959. [PMID: 39438955 PMCID: PMC11494930 DOI: 10.1186/s12967-024-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of microplastics within the human body has raised significant concerns about their potential health implications. Numerous studies have supported the hypothesis that the accumulation of microplastics can trigger inflammatory responses, disrupt the microbiome, and provoke immune reactions due to their physicochemical properties. Chronic inflammation, characterized by tissue damage, angiogenesis, and fibrosis, plays a crucial role in cancer development. It influences cancer progression by altering the tumor microenvironment and impairing immune surveillance, thus promoting tumorigenesis and metastasis. This review explores the fundamental properties and bioaccumulation of microplastics, as well as their potential role in the transition from chronic inflammation to carcinogenesis. Additionally, it provides a comprehensive overview of the associated alterations in signaling pathways, microbiota disturbances, and immune responses. Despite this, the current understanding of the toxicity and biological impacts of microplastics remains limited. To mitigate their harmful effects on human health, there is an urgent need to improve the detection and removal methods for microplastics, necessitating further research and elucidation.
Collapse
Affiliation(s)
- Yicong Cheng
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| | - Ling Bai
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| |
Collapse
|
5
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
6
|
Fouza A, Fylaktou A, Tagkouta A, Daoudaki M, Vagiotas L, Kasimatis E, Stangou M, Xochelli A, Nikolaidou V, Katsanos G, Tsoulfas G, Skoura L, Papagianni A, Antoniadis N. Evaluation of Regulatory B Cell Subpopulations CD24++CD38++, CD24++CD27+, Plasmablasts and Their Correlation with T Regs CD3+CD4+CD25+FOXP3+ in Dialysis Patients and Early Post-Transplant Rejection-Free Kidney Recipients. J Clin Med 2024; 13:3080. [PMID: 38892795 PMCID: PMC11173263 DOI: 10.3390/jcm13113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: B and T regulatory cells, also known as Bregs and Tregs, are involved in kidney transplantation. The purpose of this study is to monitor changes in the frequency and absolute numbers of Tregs (CD3+CD4+CD25+FoxP3+), transitional Bregs (tBregs) (CD24++CD38++), memory Bregs (mBregs) (CD24++CD27+), and plasmablasts before (T0) and six months (T6) after transplantation. Additionally, we aim to investigate any correlation between Tregs and tBregs, mBregs, or plasmablasts and their relationship with graft function. Methods: Flow cytometry was used to immunophenotype cells from 50 kidney recipients who did not experience rejection. Renal function was assessed using the estimated glomerular filtration rate (eGFR). Results: At T6, there was a significant decrease in the frequency of Tregs, plasmablasts, and tBregs, as well as in the absolute number of tBregs. The frequency of mBregs, however, remained unchanged. Graft function was found to have a positive correlation with the frequency of tBregs and plasmablasts. A significant correlation was observed between the frequency and absolute number of tBregs only when the eGFR was greater than 60 but not at lower values. At an eGFR greater than 60, there was a positive correlation between the absolute numbers of Tregs and mBregs but not between Tregs and tBregs. No correlation was observed for any cell population in dialysis patients. Conclusions: The data show a correlation between the frequency and absolute number of tBregs and the absolute number of Tregs and mBregs with good renal function in the early post-transplant period.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lampros Vagiotas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Efstratios Kasimatis
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Maria Stangou
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Aliki Xochelli
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Georgios Katsanos
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| |
Collapse
|
7
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Chen W, Ning X, Liu Y, Shen T, Liu M, Yin H, Ding Y, Zhou J, Yin R, Cai L, Wu Y, Qian L. Myeloid-derived suppressor cells from tumour-bearing mice induce the population expansion of CD19 hiFcγRIIb hi regulatory B cells via PD-L1. Immunology 2024; 172:127-143. [PMID: 38332630 DOI: 10.1111/imm.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood. Here, we report that either monocytic MDSCs or polymorphonuclear MDSCs can promote increases in interleukin (IL)-10-expressing CD19hiFcγRIIbhi regulatory B cells in vitro and in vivo. Splenic transitional-1, -2, and -3 cells and marginal zone B cells, but not follicular B cells, differentiate into IL-10-expressing CD19hiFcγRIIbhi regulatory B cells. The adoptive transfer of CD19hiFcγRIIbhi regulatory B cells via tail vein injection can promote subcutaneous 3LL tumour growth in mice. The expression of programmed death-ligand 1 on MDSCs was found to be strongly associated with CD19hiFcγRIIbhi regulatory B cell population expansion. Furthermore, the frequency of circulating CD19+FcγRIIhi regulatory B cells was significantly increased in advanced-stage lung cancer patients. Our results unveil a critical role of MDSCs in regulatory B-cell differentiation and population expansion in lung cancer patients.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomin Ning
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Mengru Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yue Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Rui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuhan Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| |
Collapse
|
10
|
Li Q, Yang C, Liu C, Zhang Y, An N, Ma X, Zheng Y, Cui X, Li Q. The circulating IL-35 + regulatory B cells are associated with thyroid associated opthalmopathy. Immun Inflamm Dis 2024; 12:e1304. [PMID: 38804861 PMCID: PMC11131934 DOI: 10.1002/iid3.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is the most common orbital disease in adults, potentially leading to disfigurement and visual impairment. However, the causes of TAO are not fully understood. IL-35+B cells are a newly identified regulatory B cells (Bregs) in maintaining immune balance in various autoimmune diseases. Yet, the influence of IL-35+Bregs in TAO remains unexplored. METHODS This study enrolled 36 healthy individuals and 14 TAO patients. We isolated peripheral blood mononuclear cells and stimulated them with IL-35 and CpG for 48 h. Flow cytometry was used to measure the percentages of IL-35+Bregs. RESULTS The percentage of circulating IL-35+Bregs was higher in TAO patients, and this increase correlated positively with disease activity. IL-35 significantly increased the generation of IL-35+Bregs in healthy individuals. However, B cells from TAO patients exhibited potential impairment in transitioning into IL-35+Breg phenotype under IL-35 stimulation. CONCLUSIONS Our results suggest a potential role of IL-35+Bregs in the development of TAO, opening new avenues for understanding disease mechanisms and developing therapeutic approaches.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cuixia Yang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cheng Liu
- Medical Science Research Institution of Ningxia Hui Autonomous RegionMedical Sci‐Tech Research Center of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yuehui Zhang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Ningyu An
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiumei Ma
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yang Zheng
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiaomin Cui
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| |
Collapse
|
11
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
12
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
13
|
Meng X, Layhadi JA, Keane ST, Cartwright NJ, Durham SR, Shamji MH. Immunological mechanisms of tolerance: Central, peripheral and the role of T and B cells. Asia Pac Allergy 2023; 13:175-186. [PMID: 38094089 PMCID: PMC10715743 DOI: 10.5415/apallergy.0000000000000128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2025] Open
Abstract
T and B cells are key components of the adaptive immune system. Through their immune properties and their interactions with other immune cells and cytokines around them, they build a complex network to achieve immune tolerance and maintain homeostasis of the body. This is achieved through mechanisms of central and peripheral tolerance, both of which are associated with advantages and disadvantages. For this reason, the immune system is tightly regulated and their dysregulation can result in the subsequent initiation of various diseases. In this review, we will summarize the roles played by T cells and B cells within immune tolerance with specific examples in the context of different diseases that include allergic disease. In addition, we will also provide an overview on their suitability as biomarkers of allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Xun Meng
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janice A. Layhadi
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sean T. Keane
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Natanya J.K. Cartwright
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R. Durham
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mohamed H. Shamji
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, Lin H, Yu Y, Peng A, Xu P, Bao K, He M. Elevated circulating CD19 +CD24 hiCD38 hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett 2023; 261:58-65. [PMID: 37553031 DOI: 10.1016/j.imlet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
CD19+CD24hiCD38hi regulatory B cells exert immunosuppressive functions by producing IL-10, but their role in idiopathic membranous nephropathy (IMN) remains elusive. Here, we investigated the frequency and functional changes of circulating CD19+CD24hiCD38hi B cells and evaluated the correlation of CD19+CD24hiCD38hi B cells with clinical features and T helper cell subsets in IMN patients. Compared with healthy controls (HCs), IMN patients showed an increased frequency of CD19+CD24hiCD38hi B cells, but a significant reduction in the percentage of CD19+CD24hiCD38hi B cells was observed 4 weeks after cyclophosphamide treatment. The frequency of CD19+CD24hiCD38hi B cells was positively correlated with the levels of 24h urinary protein, but negatively correlated with serum total protein and serum albumin, respectively. CD19+CD24hiCD38hi B cells in IMN patients displayed a skewed pro-inflammatory cytokine profile with a higher level of IL-6 and IL-12, but a lower concentration of IL-10 than their healthy counterparts. Accompanied by upregulation of Th2 and Th17 cells in IMN patients, the percentage of CD19+CD24hiCD38hi B cell subset was positively associated with Th17 cell frequency. In conclusion, CD19+CD24hiCD38hi B cells were expanded but functionally impaired in IMN patients. Their altered pro-inflammatory cytokine profile may contribute to the pathogenesis of IMN.
Collapse
Affiliation(s)
- Bishun Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Zhao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyi Yu
- Department of Laboratory Medicine, Kaiping Central Hospital, JiangMen, China
| | - Anping Peng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
15
|
Li Y, Zhang J, Liu L, Cui S, Sun H, Jiang H, Guo Y, Zhang J, Xie Z, Wang J. The imbalance between Bregs, Tfh, and Tregs in patients with anti-N-methyl-D-aspartate receptor encephalitis. Neurol Sci 2023; 44:2465-2474. [PMID: 36781561 PMCID: PMC10257618 DOI: 10.1007/s10072-023-06624-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE To detect the alteration of regulatory B cells (Bregs), follicular helper T cells (Tfh), and regulatory T cells (Tregs) frequencies in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Analyze their association with clinical severity and activity, and explore the effects of different immunotherapies on those immune cell subsets. METHODS We enrolled 21 patients with anti-NMDAR encephalitis, 22 patients with neuromyelitis optica spectrum disorder (NMOSD), 14 patients with idiopathic intracranial hypertension (IIH), and 20 healthy controls (HC) in our study. The frequencies of various immune cell subsets were determined using flow cytometry. RESULTS Compared to patients with IIH and HC, the frequencies of CD24hiCD38hi transitional B cells as well as Tregs were significantly lower while the frequency of Tfh was significantly higher in patients with anti-NMDAR encephalitis. The frequency of CD24hiCD38hi transitional B cells was significantly lower in the acute stage than in the recovery stage, and was negatively correlated with the modified Rankin scale (mRS) and the clinical assessment scale for autoimmune encephalitis (CASE). The frequency of CD24hiCD38hi transitional B cells at the last follow-up after rituximab (RTX) treatment was significantly higher than those treated with oral immunosuppressants or untreated. There was no clear difference between anti-NMDAR encephalitis and NMOSD in the above immune cell subsets. CONCLUSION We suggested that the frequencies of CD24hiCD38hi transitional B cells and Tregs were decreased while the frequency of Tfh was increased in patients with anti-NMDAR encephalitis. CD24hiCD38hi transitional B cells frequency may be a potential indicator to estimate the disease activity and severity.
Collapse
Affiliation(s)
- Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Clinical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shilei Cui
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Houliang Sun
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hanqiu Jiang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jingxiao Zhang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhuxiao Xie
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Xue J, Xu L, Zhong H, Bai M, Li X, Yao R, Wang Z, Zhao Z, Li H, Zhu H, Hu F, Su Y. Impaired regulatory function of granzyme B-producing B cells against T cell inflammatory responses in lupus mice. Lupus Sci Med 2023; 10:e000974. [PMID: 37500293 PMCID: PMC10387741 DOI: 10.1136/lupus-2023-000974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE Recently, a new subtype of granzyme B (GrB)-producing Breg cells has been identified, which was proven to be involved in autoimmune disease. Our recent report demonstrated that GrB-producing Breg cells were correlated with clinical and immunological features of SLE. However, the effect of GrB-producing Breg cells in lupus mice is unclear. METHODS GrB expression in naïve and lupus mouse B cells was analysed using flow cytometry, PCR, ELISA and ELISpot assays. To study the role of GrB-producing B cells in a lupus model, GrB knockout (KO) and wild-type (WT) mice were intraperitoneally injected with monoclonal cells from the mutant mouse strain B6.C-H-2bm12 (bm12) for 2 weeks. In addition, the function of GrB-producing Breg cells in naïve and lupus mice was further explored using in vitro B cells-CD4+CD25- T cell co-culture assays with GrB blockade/KO of B cells. RESULTS B cells from the spleens of WT C57BL/6 (B6) mice could express and secret GrB (p<0.001). GrB-producing Breg cells from WT mice showed their regulatory functions on CD4+CD25- T cell. While the frequency of GrB-producing Breg cells was significantly decreased (p=0.001) in lupus mice (p<0.001). Moreover, GrB-producing Breg cells in lupus mice failed to suppress T cell-mediated proinflammatory responses, partially due to the impaired capacity of downregulating the T cell receptor-zeta chain and inducing CD4+CD25- T cell apoptosis. CONCLUSION This study further revealed the function and mechanism of GrB-producing Breg cells in regulating T cell homeostasis in lupus mice and highlighted GrB-producing Breg cells as a therapeutic target in SLE.
Collapse
Affiliation(s)
- Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Hua Zhong
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Hongchao Li
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| |
Collapse
|
17
|
Moreira H, Dobosz A, Cwynar-Zając Ł, Nowak P, Czyżewski M, Barg M, Reichert P, Królikowska A, Barg E. Unraveling the role of Breg cells in digestive tract cancer and infectious immunity. Front Immunol 2022; 13:981847. [PMID: 36618354 PMCID: PMC9816437 DOI: 10.3389/fimmu.2022.981847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Over the past two decades, regulatory B cells (Breg cells or Bregs) have emerged as an immunosuppressive subset of B lymphocytes playing a key role in inflammation, infection, allergy, transplantation, and cancer. However, the involvement of Bregs in various pathological conditions of the gastrointestinal tract is not fully understood and is the subject of much recent research. In this review, we aimed to summarize the current state of knowledge about the origin, phenotype, and suppressive mechanisms of Bregs. The relationship between the host gut microbiota and the function of Bregs in the context of the disturbance of mucosal immune homeostasis is also discussed. Moreover, we focused our attention on the role of Bregs in certain diseases and pathological conditions related to the digestive tract, especially Helicobacter pylori infection, parasitic diseases (leishmaniasis and schistosomiasis), and gastrointestinal neoplasms. Increasing evidence points to a relationship between the presence and number of Bregs and the severity and progression of these pathologies. As the number of cases is increasing year by year, also among young people, it is extremely important to understand the role of these cells in the digestive tract.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Agnieszka Dobosz
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Łucja Cwynar-Zając
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Nowak
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Czyżewski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Barg
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Reichert
- Department of Trauma Surgery, Clinical Department of Trauma and Hand Surgery, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Królikowska
- Ergonomics and Biomedical Monitoring Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H, Lu L. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute, Badalona, 08916, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center, East China Normal University, Shanghai, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
19
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
20
|
Yi Z, Ma T, Liu J, Tie W, Li Y, Bai J, Li L, Zhang L. The yin–yang effects of immunity: From monoclonal gammopathy of undetermined significance to multiple myeloma. Front Immunol 2022; 13:925266. [PMID: 35958625 PMCID: PMC9357873 DOI: 10.3389/fimmu.2022.925266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is the third most common malignant neoplasm of the hematological system. It often develops from monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) precursor states. In this process, the immune microenvironment interacts with the MM cells to exert yin and yang effects, promoting tumor progression on the one hand and inhibiting it on the other. Despite significant therapeutic advances, MM remains incurable, and the main reason for this may be related to the complex and variable immune microenvironment. Therefore, it is crucial to investigate the dynamic relationship between the immune microenvironment and tumors, to elucidate the molecular mechanisms of different factors in the microenvironment, and to develop novel therapeutic agents targeting the immune microenvironment of MM. In this paper, we review the latest research progress and describe the dual influences of the immune microenvironment on the development and progression of MM from the perspective of immune cells and molecules.
Collapse
Affiliation(s)
- Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pediatric Orthopedics and Pediatrics Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenting Tie
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
21
|
Kouyoumdjian A, Tchervenkov J, Paraskevas S. TFNR2 in Ischemia-Reperfusion Injury, Rejection, and Tolerance in Transplantation. Front Immunol 2022; 13:903913. [PMID: 35874723 PMCID: PMC9300818 DOI: 10.3389/fimmu.2022.903913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has been shown to play a crucial role in CD4+ T regulatory cells (CD4+Tregs) expansion and suppressive function. Increasing evidence has also demonstrated its role in a variety of immune regulatory cell subtypes such as CD8+ T regulatory cells (CD8+ Tregs), B regulatory cells (Bregs), and myeloid-derived suppressor cells (MDSCs). In solid organ transplantation, regulatory immune cells have been associated with decreased ischemia-reperfusion injury (IRI), improved graft survival, and improved overall outcomes. However, despite TNFR2 being studied in the context of autoimmune diseases, cancer, and hematopoietic stem cell transplantation, there remains paucity of data in the context of solid organ transplantation and islet cell transplantation. Interestingly, TNFR2 signaling has found a clinical application in islet transplantation which could guide its wider use. This article reviews the current literature on TNFR2 expression in immune modulatory cells as well as IRI, cell, and solid organ transplantation. Our results highlighted the positive impact of TNFR2 signaling especially in kidney and islet transplantation. However, further investigation of TNFR2 in all types of solid organ transplantation are required as well as dedicated studies on its therapeutic use during induction therapy or treatment of rejection.
Collapse
Affiliation(s)
- Araz Kouyoumdjian
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- *Correspondence: Araz Kouyoumdjian,
| | - Jean Tchervenkov
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Steven Paraskevas
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Jarduli-Maciel LR, de Azevedo JTC, Clave E, Costa TCDM, Arruda LCM, Fournier I, Palma PVB, Lima KC, Elias JB, Stracieri ABP, Pieroni F, Cunha R, Darrigo-Júnior LG, Grecco CES, Covas DT, Silva-Pinto AC, De Santis GC, Simões BP, Oliveira MC, Toubert A, Malmegrim KCR. Allogeneic haematopoietic stem cell transplantation resets T- and B-cell compartments in sickle cell disease patients. Clin Transl Immunology 2022; 11:e1389. [PMID: 35474905 PMCID: PMC9035210 DOI: 10.1002/cti2.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is the only currently available curative treatment for sickle cell disease (SCD). Here, we comprehensively evaluated the reconstitution of T- and B-cell compartments in 29 SCD patients treated with allo-HSCT and how it correlated with the development of acute graft-versus-host disease (aGvHD). Methods T-cell neogenesis was assessed by quantification of signal-joint and β-chain TCR excision circles. B-cell neogenesis was evaluated by quantification of signal-joint and coding-joint K-chain recombination excision circles. T- and B-cell peripheral subset numbers were assessed by flow cytometry. Results Before allo-HSCT (baseline), T-cell neogenesis was normal in SCD patients compared with age-, gender- and ethnicity-matched healthy controls. Following allo-HSCT, T-cell neogenesis declined but was fully restored to healthy control levels at one year post-transplantation. Peripheral T-cell subset counts were fully restored only at 24 months post-transplantation. Occurrence of acute graft-versus-host disease (aGvHD) transiently affected T- and B-cell neogenesis and overall reconstitution of T- and B-cell peripheral subsets. B-cell neogenesis was significantly higher in SCD patients at baseline than in healthy controls, remaining high throughout the follow-up after allo-HSCT. Notably, after transplantation SCD patients showed increased frequencies of IL-10-producing B-regulatory cells and IgM+ memory B-cell subsets compared with baseline levels and with healthy controls. Conclusion Our findings revealed that the T- and B-cell compartments were normally reconstituted in SCD patients after allo-HSCT. In addition, the increase of IL-10-producing B-regulatory cells may contribute to improve immune regulation and homeostasis after transplantation.
Collapse
Affiliation(s)
- Luciana Ribeiro Jarduli-Maciel
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Graduate Program in Basic and Applied Immunology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Thalita Cristina de Mello Costa
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Isabelle Fournier
- Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Keli Cristina Lima
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | | | | | - Fabiano Pieroni
- Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Renato Cunha
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | | | | | - Dimas Tadeu Covas
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Ana Cristina Silva-Pinto
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Gil Cunha De Santis
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Belinda Pinto Simões
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Antoine Toubert
- Université de Paris INSERM UMR 1160 IRSL Paris France.,Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Department of Clinical Analysis, Toxicology and Food Sciences School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
23
|
Ohm B, Jungraithmayr W. B Cell Immunity in Lung Transplant Rejection - Effector Mechanisms and Therapeutic Implications. Front Immunol 2022; 13:845867. [PMID: 35320934 PMCID: PMC8934882 DOI: 10.3389/fimmu.2022.845867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Allograft rejection remains the major hurdle in lung transplantation despite modern immunosuppressive treatment. As part of the alloreactive process, B cells are increasingly recognized as modulators of alloimmunity and initiators of a donor-specific humoral response. In chronically rejected lung allografts, B cells contribute to the formation of tertiary lymphoid structures and promote local alloimmune responses. However, B cells are functionally heterogeneous and some B cell subsets may promote alloimmune tolerance. In this review, we describe the current understanding of B-cell-dependent mechanisms in pulmonary allograft rejection and highlight promising future strategies that employ B cell-targeted therapies.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Louis K, Fadakar P, Macedo C, Yamada M, Lucas M, Gu X, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation. Kidney Int 2022; 101:1003-1016. [PMID: 35090879 PMCID: PMC9038633 DOI: 10.1016/j.kint.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Although considerable advances have been made in understanding the cellular effector mechanisms responsible for donor-specific antibody generation leading to antibody-mediated rejection (ABMR), the identification of cellular regulators of such immune responses is lacking. To clarify this, we used high dimensional flow cytometry to concomitantly profile and track the two major subsets of regulatory lymphocytes in blood: T regulatory (TREG) and transitional B cells in a cohort of 96 kidney transplant recipients. Additionally, we established co-culture assays to address their respective capacity to suppress antibody responses in vitro. TREG and transitional B cells were found to be potent suppressors of T follicular helper-mediated B-cell differentiation into plasmablast and antibody generation. TREG and transitional B cells were both durably expanded in patients who did not develop donor-specific antibody post-transplant. However, patients who manifested donor-specific antibody and progressed to ABMR displayed a marked and persistent numerical reduction in TREG and transitional B cells. Strikingly, specific cell clusters expressing the transcription factor T-bet were selectively depleted in both TREG and transitional B-cell compartments in patients with ABMR. Importantly, the coordinated loss of these T-bet+CXCR5+TREG and T-bet+CD21- transitional B-cell clusters was correlated with increased and inflammatory donor specific antibody responses, more extensive microvascular inflammation and a higher rate of kidney allograft loss. Thus, our study identified coordinated and persistent defects in regulatory T- and B-cell responses in patients undergoing ABMR, which may contribute to their loss of humoral immune regulation, and warrant timely therapeutic interventions to replenish and sustain TREG and transitional B cells in these patients.
Collapse
|
25
|
Immunosuppressive Drugs. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8987166 DOI: 10.1016/b978-0-12-818731-9.00068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunosuppressant is a class of medicines that inhibit or decrease the intensity of the immune response in the body. Most of these medications are used to allow the body less likely to resist a transplanted organ. In solid organ transplantation, immunosuppressive agents are needed for the activation of early-stage immunosuppression, the management of late-stage immunosuppression or for the maintenance of organ rejection. The emergence of novel agents and improvements in immunosuppression regimens after transplantation are significant factors leading to this progress. However, these drugs also increase the risk of infection, cancers and specific adverse side effects specific to each agent in patients particularly in pregnant women and fertility issues. Corona virus disease being hot topic of debate is has given positive outcome to immunosuppressive drugs however need more attention in future. Transplant centers across the world utilize multiple immunosuppression protocols; nevertheless, each patient can require an individually formulated immunosuppression regimen to manage the advantages and possible damage of treatment thus eliminating the likelihood of their primary disease recurrence.
Collapse
|
26
|
Mielle J, Morel J, ElHmioui J, Combe B, Macia L, Dardalhon V, Taylor N, Audo R, Daien C. Glutamine promotes the generation of B10 + cells via the mTOR/GSK3 pathway. Eur J Immunol 2021; 52:418-430. [PMID: 34961940 DOI: 10.1002/eji.202149387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
Alterations in cell metabolism can shift the differentiation of immune cells towards a regulatory or inflammatory phenotype, thus opening up new therapeutic opportunities for immune-related diseases. Indeed, growing knowledge on T cell metabolism has revealed differences in the metabolic programs of suppressive regulatory T cells (Tregs) as compared to inflammatory Th1 and Th17 cells. In addition to Tregs, IL-10-producing regulatory B cells are crucial for maintaining tolerance, inhibiting inflammation and autoimmunity. Yet, the metabolic networks regulating diverse B lymphocyte responses are not well known. Here, we show that glutaminase blockade decreased downstream mTOR activation and attenuated IL-10 secretion. Direct suppression of mTOR activity by rapamycin selectively impaired IL-10 production by B cells whereas secretion was restored upon GSK3 inhibition. Mechanistically, we found mTORC1 activation leads to GSK3 inhibition, identifying a key signalling pathway regulating IL-10 secretion by B lymphocytes. Thus, our results identify glutaminolysis and the mTOR/GSK3 signalling axis, as critical regulators of the generation of IL-10 producing B cells with regulatory functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julie Mielle
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Department of Rheumatology, CHU de Montpellier, Montpellier, France
| | - Jacques Morel
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Department of Rheumatology, CHU de Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS UMR, Montpellier, France
| | - Jamila ElHmioui
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Bernard Combe
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Department of Rheumatology, CHU de Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS UMR, Montpellier, France
| | - Laurence Macia
- Charles Perkins Centre, the University of Sydney, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rachel Audo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Department of Rheumatology, CHU de Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS UMR, Montpellier, France
| | - Claire Daien
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Department of Rheumatology, CHU de Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS UMR, Montpellier, France
| |
Collapse
|
27
|
Li M, Wang H, Ni Y, Li C, Xu X, Chang H, Xu Z, Hou M, Ji M. Helminth-induced CD9 + B-cell subset alleviates obesity-associated inflammation via IL-10 production. Int J Parasitol 2021; 52:111-123. [PMID: 34863801 DOI: 10.1016/j.ijpara.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10- cells (CD19+CD5-CD1d-) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production.
Collapse
Affiliation(s)
- Maining Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejun Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Iperi C, Bordron A, Dueymes M, Pers JO, Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front Immunol 2021; 12:735463. [PMID: 34650560 PMCID: PMC8505885 DOI: 10.3389/fimmu.2021.735463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic pathways have been studied for a while in eukaryotic cells. During glycolysis, glucose enters into the cells through the Glut1 transporter to be phosphorylated and metabolized generating ATP molecules. Immune cells can use additional pathways to adapt their energetic needs. The pentose phosphate pathway, the glutaminolysis, the fatty acid oxidation and the oxidative phosphorylation generate additional metabolites to respond to the physiological requirements. Specifically, in B lymphocytes, these pathways are activated to meet energetic demands in relation to their maturation status and their functional orientation (tolerance, effector or regulatory activities). These metabolic programs are differentially involved depending on the receptors and the co-activation molecules stimulated. Their induction may also vary according to the influence of the microenvironment, i.e. the presence of T cells, cytokines … promoting the expression of particular transcription factors that direct the energetic program and modulate the number of ATP molecule produced. The current review provides recent advances showing the underestimated influence of the metabolic pathways in the control of the B cell physiology, with a particular focus on the regulatory B cells, but also in the oncogenic and autoimmune evolution of the B cells.
Collapse
Affiliation(s)
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Maryvonne Dueymes
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| |
Collapse
|
29
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
30
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1224] [Impact Index Per Article: 306.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
31
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Pacaud M, Colas L, Brouard S. Microbiota and immunoregulation: A focus on regulatory B lymphocytes and transplantation. Am J Transplant 2021; 21:2341-2347. [PMID: 33559282 DOI: 10.1111/ajt.16522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/29/2020] [Indexed: 01/25/2023]
Abstract
The microbiota plays a major role in the regulation of the host immune functions thus establishing a symbiotic relationship that maintains immune homeostasis. Among immune cells, regulatory B cells (Bregs), which can inhibit effector T cell responses, may be involved in the intestinal homeostasis. Recent works suggest that the interaction between the microbiota and Bregs appears to be important to limit autoimmune diseases and help to maintain tolerance in transplantation. Short-chain fatty acids (SCFAs), recognized as major metabolites of the microbiota, seem to be involved in the generation of a pro-tolerogenic environment in the gut, particularly through the regulation of B cell differentiation, limiting mature B cells and promoting the function of Bregs. In this review, we show that this B cells-microbiota interaction may open a path toward new potential therapeutic applications not only for patients with autoimmune diseases but also in transplantation.
Collapse
Affiliation(s)
- Margaux Pacaud
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France
| | - Luc Colas
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France.,Plateforme Transversale d'Allergologie et d'Immunologie Clinique, Institut du Thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN, CHU Nantes, Nantes, France.,Laboratoire d'Immunologie, CHU Nantes, Nantes, France
| |
Collapse
|
33
|
Zhu L, Chen B, Su W. A Review of the Various Roles and Participation Levels of B-Cells in Non-Infectious Uveitis. Front Immunol 2021; 12:676046. [PMID: 34054864 PMCID: PMC8160461 DOI: 10.3389/fimmu.2021.676046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Non-infectious uveitis is an inflammatory disorder of the eye that accounts for severe visual loss without evident infectious agents. While T cells are supposed to dominate the induction of inflammation in non-infectious uveitis, the role of B cells in the pathogenesis of this disease is obscure. Therefore, this review aimed to discuss diverse B-cell participation in different non-infectious uveitides and their roles in the pathogenesis of this disease as well as the mechanism of action of rituximab. Increasing evidence from experimental models and human non-infectious uveitis has suggested the participation of B cells in non-infectious uveitis. The participation levels vary in different uveitides. Furthermore, B cells play multiple roles in the pathogenic mechanisms. B cells produce autoantibodies, regulate T cell responses via antibody-independent functions, and constitute ectopic lymphoid structures. Regulatory B cells perform pivotal anti-inflammatory functions in non-infectious uveitis. Rituximab may work by depleting pro-inflammatory B cells and restoring the quantity and function of regulatory B cells in this disease. Identifying the levels of B-cell participation and the associated roles is beneficial for optimizing therapy. Diversified experimental model choices and emerging tools and/or methods are conducive for future studies on this topic.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
36
|
Lan HR, Du WL, Liu Y, Mao CS, Jin KT, Yang X. Role of immune regulatory cells in breast cancer: Foe or friend? Int Immunopharmacol 2021; 96:107627. [PMID: 33862552 DOI: 10.1016/j.intimp.2021.107627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is the most common cancer among women between the ages of 20 and 50, affecting more than 2.1 million people and causing the annual death of more than 627,000 women worldwide. Based on the available knowledge, the immune system and its components are involved in the pathogenesis of several malignancies, including BC. Cancer immunobiology suggests that immune cells can play a dual role and induce anti-tumor or immunosuppressive responses, depending on the tumor microenvironment (TME) signals. The most important effector immune cells with anti-tumor properties are natural killer (NK) cells, B, and T lymphocytes. On the other hand, immune and non-immune cells with regulatory/inhibitory phenotype, including regulatory T cells (Tregs), regulatory B cells (Bregs), tolerogenic dendritic cells (tDCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), and regulatory natural killer cells (NKregs), can promote the growth and development of tumor cells by inhibiting anti-tumor responses, inducing angiogenesis and metastasis, as well as the expression of inhibitory molecules and suppressor mediators of the immune system. However, due to the complexity of the interaction and the modification in the immune cells' phenotype and the networking of the immune responses, the exact mechanism of action of the immunosuppressive and regulatory cells is not yet fully understood. This review article reviews the immune responses involved in BC as well as the role of regulatory and inhibitory cells in the pathogenesis of the disease. Finally, therapeutic approaches based on inhibition of immunosuppressive responses derived from regulatory cells are discussed.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
37
|
Jing Y, Xu F, Liang W, Liu J, Zhang L. Role of regulatory B cells in gastric cancer: Latest evidence and therapeutics strategies. Int Immunopharmacol 2021; 96:107581. [PMID: 33812259 DOI: 10.1016/j.intimp.2021.107581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is the second most common cancer globally and kills about 700,000 people annually. Today's knowledge clearly shows a close and complicated relationship between the tumor microenvironment (TME) and the immune system. The immune system components can both stimulate tumor growth and inhibit tumor cells. However, numerous of these mechanisms are not yet fully understood. As an essential immune cell in humoral immunity, B lymphocytes can play a dual role during various pathologic states, including infections, autoimmune diseases, and cancer, depending on their phenotype and environmental signals. Inherently, B cells can inhibit tumor growth by producing antibodies as well as the presentation of tumor antigens. However, evidence suggests that a subset of these cells termed regulatory B cells (Bregs) with an inhibitory phenotype can suppress anti-tumor responses and support the tumor growth by producing anti-inflammatory cytokines and the expression of inhibitory molecules. Therefore, in this review, the role of Bregs in the microenvironment of GC and treatment strategies based on targeting this subset of B cells have been investigated.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, PR China.
| | - Fangming Xu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, PR China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, PR China
| | - Jian Liu
- Department of Hepatobiliary Surgery, Shanghai Oriental Hepatobiliary Hospital, Shanghai 200438, PR China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, PR China.
| |
Collapse
|
38
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
39
|
Abstract
The majority of cells comprising the inflammatory infiltrates in kidney allografts undergoing acute and/or chronic rejection are typically T cells and monocyte/macrophages with B cells, plasma cells, and eosinophils accounting for <5%. In a significant minority of biopsies, B lineage cells (B cells and/or plasma cells) may be found more abundantly. Although plasma cell infiltrates tend to be more diffuse, B cells tend to aggregate into nodules that may mature into tertiary lymphoid organs. Given the ability to target B cells with anti-CD20 monoclonal antibodies and plasma cells with proteasome inhibitors and anti-CD38 monoclonal antibodies, it is increasingly important to determine the significance of such infiltrates. Both cell types are potential effectors of rejection, but both also have a tolerizing potential. B cell infiltrates have been associated with steroid resistance and reduced graft survival in some studies but not in others, and their presence should not prompt automatic depletional therapy. Plasma cell-rich infiltrates tend to occur later, may be associated with cell-mediated and/or antibody-mediated rejection, and portend an adverse outcome. Viral infection and malignancy must be ruled out. Randomized controlled trials are needed to determine the appropriateness of specific therapy when B cells and/or plasma cells are found. No strong therapeutic recommendations can be made at this time.
Collapse
|
40
|
Zhang F, Zhang J, Cao P, Sun Z, Wang W. The characteristics of regulatory macrophages and their roles in transplantation. Int Immunopharmacol 2021; 91:107322. [PMID: 33418238 DOI: 10.1016/j.intimp.2020.107322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Regulatory macrophages (Mregs) are a subtype of macrophages that are involved in regulating immune responses and inhibiting activated T lymphocyte proliferation. With advances in our basic understanding of Mregs and the revelation of their biological characteristics, Mregs have become a focus of research. In addition to promoting malignant tumor progression, Mregs also play an immunosuppressive role in inflammatory diseases and transplantation. Recent studies have shown that Mregs are closely associated with the induction of transplantation immune tolerance. Immune regulatory cell treatment as an adjunct immunosuppressive therapy offers new insights into the mechanism by which transplantation immune tolerance is established. The application of Mreg-based cellular immunotherapy has shown promise in clinical solid organ transplantation. Here, we provide a comprehensive overview of Mreg morphology, phenotype, induction and negative immunoregulatory function and discuss the role of Mregs in different transplantation models as well as their potential application value in clinical organ transplantation.
Collapse
Affiliation(s)
- Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
41
|
Mohib K, Rothstein DM, Ding Q. Characterization and Activity of TIM-1 and IL-10-Reporter Expressing Regulatory B Cells. Methods Mol Biol 2021; 2270:179-202. [PMID: 33479899 DOI: 10.1007/978-1-0716-1237-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In addition to their role in humoral immunity, B cells can exhibit regulatory activity. Such B cells have been termed regulatory B cells (Bregs). Bregs have been shown to inhibit inflammatory immune responses in a variety of autoimmune, alloimmune, and infectious settings. Breg activity is frequently IL-10-dependent, although a number of other mechanisms have been identified. However, our understanding of Bregs has been hampered by their rarity, lack of a specific phenotypic marker, and poor insight into their induction and maintenance. A variety of B-cell subsets enriched for IL-10+ Bregs have been identified in multiple murine disease models that can adoptively transfer Breg activity. However, most of these B-cell subsets actually contain only a minority of all IL-10+ B cells. In contrast, TIM-1 identifies over 70% of IL-10-producing B cells, irrespective of other markers. Thus, TIM-1 can be considered a broad marker for IL-10-expressing Bregs. Moreover, TIM-1 signaling plays a direct role in both the maintenance and induction of Bregs under physiological conditions, in response to both TIM-1 ligation and to apoptotic cells. TIM-1 expression has also been reported on IL-10+ human B cells. Together, these findings suggest that TIM-1 may represent a novel therapeutic target for modulating the immune response and provide insight into the signals involved in the generation and induction of Bregs. Here, we provide the methods to analyze and purify the murine TIM-1+ B-cell subset for further in vitro and in vivo experiments. We also provide methods for in vitro analysis and in vivo tracking of Bregs using IL-10-reporter mice.
Collapse
Affiliation(s)
- Kanishka Mohib
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, Zhou X, Du J, Huang G, Tian X, Liu B. The Potential Role of Regulatory B Cells in Idiopathic Membranous Nephropathy. J Immunol Res 2020; 2020:7638365. [PMID: 33426094 PMCID: PMC7772048 DOI: 10.1155/2020/7638365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory B cells (Breg) are widely regarded as immunomodulatory cells which play an immunosuppressive role. Breg inhibits pathological autoimmune response by secreting interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and adenosine and through other ways to prevent T cells and other immune cells from expanding. Recent studies have shown that different inflammatory environments induce different types of Breg cells, and these different Breg cells have different functions. For example, Br1 cells can secrete IgG4 to block autoantigens. Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the humoral immune response is dominant and the cellular immune response is impaired. However, only a handful of studies have been done on the role of Bregs in this regard. In this review, we provide a brief overview of the types and functions of Breg found in human body, as well as the abnormal pathological and immunological phenomena in IMN, and propose the hypothesis that Breg is activated in IMN patients and the proportion of Br1 can be increased. Our review aims at highlighting the correlation between Breg and IMN and proposes potential mechanisms, which can provide a new direction for the discovery of the pathogenesis of IMN, thus providing a new strategy for the prevention and early treatment of IMN.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhiyuan Liu
- Shandong First Medical University, No. 619 Changcheng Road, Tai'an City, Shandong 271016, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Fei Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xiaoshan Zhou
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Jieli Du
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guangrui Huang
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
43
|
Habener A, Happle C, Grychtol R, Skuljec J, Busse M, Dalüge K, Obernolte H, Sewald K, Braun A, Meyer-Bahlburg A, Hansen G. Regulatory B cells control airway hyperreactivity and lung remodeling in a murine asthma model. J Allergy Clin Immunol 2020; 147:2281-2294.e7. [PMID: 33249168 DOI: 10.1016/j.jaci.2020.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is a widespread, multifactorial chronic airway disease. The influence of regulatory B cells on airway hyperreactivity (AHR) and remodeling in asthma is poorly understood. OBJECTIVE Our aim was to analyze the role of B cells in a house dust mite (HDM)-based murine asthma model. METHODS The influence of B cells on lung function, tissue remodeling, and the immune response were analyzed by using wild-type and B-cell-deficient (μMT) mice and transfer of IL-10-proficient and IL-10-deficient B cells to μMT mice. RESULTS After HDM-sensitization, both wild-type and μMT mice developed AHR, but the AHR was significantly stronger in μMT mice, as confirmed by 2 independent techniques: invasive lung function measurement in vivo and examination of precision-cut lung slices ex vivo. Moreover, airway remodeling was significantly increased in allergic μMT mice, as shown by enhanced collagen deposition in the airways, whereas the numbers of FoxP3+ and FoxP3- IL-10-secreting regulatory T cells were reduced. Adoptive transfer of IL-10-proficient but not IL-10-deficient B cells into μMT mice before HDM-sensitization attenuated AHR and lung remodeling. In contrast, FoxP3+ regulatory T cells were equally upregulated by transfer of IL-10-proficient and IL-10-deficient B cells. CONCLUSION Our data in a murine asthma model illustrate a central role of regulatory B cells in the control of lung function and airway remodeling and may support future concepts for B-cell-targeted prevention and treatment strategies for allergic asthma.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Christine Happle
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Department of Neurology, University Medicine Essen, Essen, Germany
| | - Mandy Busse
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathleen Dalüge
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Helena Obernolte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katherina Sewald
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
44
|
Xu Y, Wu K, Han S, Ding S, Lu G, Lin Z, Zhang Y, Xiao W, Gong W, Ding Y, Deng B. Astilbin combined with lipopolysaccharide induces IL-10-producing regulatory B cells via the STAT3 signalling pathway. Biomed Pharmacother 2020; 129:110450. [PMID: 32768945 DOI: 10.1016/j.biopha.2020.110450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Astilbin exerts immunoregulatory activities and plays anti-inflammatory effects in inflammation-associated diseases. IL-10-producing B cells are the major subset of regulatory B cells (Bregs) and inhibit inflammation and autoimmune diseases. This study aimed to analyse the inducing effect of astilbin on Bregs and investigate the involved molecular mechanisms. METHODS The frequencies and activities of IL-10-producing Bregs were observed using the co-treatment of astilbin and lipopolysaccharide (LPS) ex vivo. The protective effect of astilbin/LPS-induced Bregs on dextran sulphate sodium (DSS)-induced colitis was confirmed in vivo. The molecular signalling events of Breg induction were checked via Western blot. CD40-/- and toll-like receptor (TLR) 4-/- B cells were treated with astilbin/LPS to determine the modulatory role of CD40 or TLR4 on astilbin/LPS-induced Bregs. RESULTS Although astilbin alone could not affect Bregs, the co-treatment of astilbin and LPS remarkably induced CD19+ CD1dhi and CD19+ TIM-1+ cells which produced IL-10 ex vivo. Colonic CD19+ CD1dhi and CD19+ TIM-1+ cells were also increased in astilbin-treated mice with DSS-induced colitis. The adoptive transfer of CD19+ TIM-1+ cells pre-induced by astilbin/LPS directly suppressed the progression of DSS-induced colitis. Combined astilbin and LPS stimulated the STAT3 activation of CD19+ TIM-1+ cells but had no effects on SOCS3, AKT, NF-κB, Erk, JNK nor P38. Inhibiting the STAT3 phosphorylation of CD19+ TIM-1+ cells abolished Breg induction by astilbin/LPS. Furthermore, Breg induction was weakened in CD40-/- B cells with the decrease in STAT3 activation, but had disappeared in TLR4-/- B cells with no STAT3 activation, thereby confirming the indispensable role of TLR4 signalling in the induction of IL-10-producing Bregs. CONCLUSIONS This study reports the new immunoregulatory role of astilbin for promoting IL-10-producing B cells and suggests the possible use of astilbin in the therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Yemin Xu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China
| | - Keyan Wu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China
| | - Sen Han
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Shizhen Ding
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou 225001, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou 225001, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China
| | - Weijuan Gong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou 225001, PR China; Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; School of Nursing, Yangzhou University, Yangzhou, 225001, PR China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
45
|
Tanimine N, Ohira M, Tahara H, Ide K, Tanaka Y, Onoe T, Ohdan H. Strategies for Deliberate Induction of Immune Tolerance in Liver Transplantation: From Preclinical Models to Clinical Application. Front Immunol 2020; 11:1615. [PMID: 32849546 PMCID: PMC7412931 DOI: 10.3389/fimmu.2020.01615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver exhibits intrinsic immune regulatory properties that maintain tolerance to endogenous and exogenous antigens, and provide protection against pathogens. Such an immune privilege contributes to susceptibility to spontaneous acceptance despite major histocompatibility complex mismatch when transplanted in animal models. Furthermore, the presence of a liver allograft can suppress the rejection of other solid tissue/organ grafts from the same donor. Despite this immune privilege of the livers, to control the undesired alloimmune responses in humans, most liver transplant recipients require long-term treatment with immune-suppressive drugs that predispose to cardiometabolic side effects and renal insufficiency. Understanding the mechanism of liver transplant tolerance and crosstalk between a variety of hepatic immune cells, such as dendritic cells, Kupffer cells, liver sinusoidas endothelial cells, hepatic stellate cells and so on, and alloreactive T cells would lead to the development of strategies for deliberate induction of more specific immune tolerance in a clinical setting. In this review article, we focus on results derived from basic studies that have attempted to elucidate the immune modulatory mechanisms of liver constituent cells and clinical trials that induced immune tolerance after liver transplantation by utilizing the immune-privilege potential of the liver.
Collapse
Affiliation(s)
- Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Onoe
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
46
|
Chong AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:23-32. [PMID: 32538534 PMCID: PMC7482418 DOI: 10.1111/ajt.15844] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|