1
|
Wang Q, He J, Lei T, Li X, Yue S, Liu C, Hu Q. New insights into cancer immune checkpoints landscape from single-cell RNA sequencing. Biochim Biophys Acta Rev Cancer 2025; 1880:189298. [PMID: 40088992 DOI: 10.1016/j.bbcan.2025.189298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Immune checkpoint blockade (ICB) therapy represents a pivotal advancement in tumor immunotherapy by restoring the cytotoxic lymphocytes' anti-tumor activity through the modulation of immune checkpoint functions. Nevertheless, many patients experience suboptimal therapeutic outcomes, likely due to the immunosuppressive tumor microenvironment, drug resistance, and other factors. Single-cell RNA sequencing has assisted to precisely investigate the immune infiltration patterns before and after ICB treatment, enabling a high-resolution depiction of previously unrecognized functional interaction among immune checkpoints. This review addresses the heterogeneity between tumor microenvironments that respond to or resist ICB therapy, highlighting critical factors underlying the variation in immunotherapy efficacy and elucidating treatment failure. Furthermore, a comprehensive examination is provided of how specific ICBs modulate immune and tumor cells to achieve anti-tumor effects and generate treatment resistance, alongside a summary of emerging immune checkpoints identified as promising targets for cancer immunotherapy through single-cell RNA sequencing applications.
Collapse
Affiliation(s)
- Qian Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiahui He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan 430090, China.
| |
Collapse
|
2
|
Zhang Y, Zhang C, Yang B, Peng C, Zhou J, Ren S, Hu Z. The effect of TIM1 + Breg cells in liver ischemia-reperfusion injury. Cell Death Dis 2025; 16:171. [PMID: 40075055 PMCID: PMC11903774 DOI: 10.1038/s41419-025-07446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Liver transplantation is the only effective method for end-stage liver disease; however, liver ischemia reperfusion injury (IRI) seriously affects donor liver function after liver transplantation. IRI is a pathophysiological process in which organ damage is aggravated after the blood flow and oxygen supply of ischemic organ tissues are restored. It combines the two stages of hypoxic cell stress triggered by ischemia and inflammation-mediated reperfusion injury. Herein, we studied the protective effect and mechanism of the anti-T cell Ig and mucin domain (TIM1) monoclonal antibody, RMT1-10, on hepatic cell injury induced by IRI. First, a liver IRI model was established in vivo. HE, TEM, and Tunel were used to detect liver tissue injury, changes in the liver ultrastructure and liver cell apoptosis, respectively. ELISA were performed to determine the levels of ALT, AST, MDA, GSH, and related inflammatory factors. We found that RMT1-10 could significantly reduce liver injury. Flow cytometry results showed that the number of TIM1+ regulatory B cells (Bregs) in the IRI liver increased briefly, while pretreatment with RMT1-10 could increase the number of TIM1+ Bregs and interleukin-10 (IL-10) secretion in liver IRI model mice, thus playing a protective role in liver reperfusion. When Anti-CD20 was used to remove B cells, RMT1-10 had a reduced effect on liver IRI. Previous data showed that the number of T helper 1 cells (Th1:CD4+; CD8+) increased significantly after IRI. RMT1-10 inhibited Th1 cells; however, it significantly activated regulatory T cells. Sequencing analysis showed that RMT1-10 could significantly downregulate the expression of nuclear factor-kappa B (NF-κB) pathway-related genes induced by IRI. These results suggested that RMT1-10 could promote the maturation of B cells through an atypical NF-κB pathway, thereby increasing the number of TIM1+ Bregs and associated IL-10 secretion to regulate the inflammatory response, thereby protecting against liver IRI.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China.
| |
Collapse
|
3
|
Huang W, Wang J, Liu C, Yang C, Chen Z, Ding J, Jiang W, Wang Y, Meng Y, Li L, Liu Y, Liu X, Li H, Sun B. Norepinephrine promotes activated B cells to identify and kill effector CD8 + T cells through FasL/Fas pathway in spleen mononuclear cells isolated from experimental autoimmune encephalomyelitis. Brain Behav Immun 2025; 125:294-307. [PMID: 39824471 DOI: 10.1016/j.bbi.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
It has been reported that the nervous system can regulate immune reactions through various mechanisms. However, the role of splenic sympathetic nerve activity in the autoimmune reactions during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) remained unclear. Here, we blocked the activity of the splenic sympathetic nerve and found that the number of adaptive immune cells, such as CD4+ T cells, CD8+ T cells and B cells, were upregulated. Additionally, there was an increase in the secretion of inflammatory cytokines in the spleen, and the neurological symptoms of EAE were exacerbated. In vitro experiments, we found that norepinephrine (NE), the neurotransmitter of the splenic sympathetic nerve, indirectly drove the death of effector CD8+ T cells. Furthermore, activated B cells, under the influence of NE, specifically recognized effector CD8+ T cells by upregulating MHC-I molecules and killed these cells via the FasL/Fas pathway. Our findings provide a new perspective on B cells killing effect in vitro, which was boosted by NE and demonstrate that the splenic sympathetic nerve controls the degree of autoimmune responses in EAE. This adds a new dimension to the diversity of NE's regulatory effects on adaptive immune cells and suggests a potential new therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Chao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Jianwen Ding
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Wenkang Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Lei Li
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China.
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
4
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
5
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Tao J, Shen X, Qian H, Ding Q, Wang L. TIM proteins and microRNAs: distinct impact and promising interactions on transplantation immunity. Front Immunol 2024; 15:1500228. [PMID: 39650660 PMCID: PMC11621082 DOI: 10.3389/fimmu.2024.1500228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Achieving sustained activity and tolerance in of allogeneic grafts after post-transplantation remains a substantial challenge. The response of the immune system to "non-self" MHC-antigenic peptides initiates a crucial phase, wherein blocking positive co-stimulatory signals becomes imperative to ensure graft survival and tolerance. MicroRNAs (miRNAs) inhibit mRNA translation or promote mRNA degradation by complementary binding of mRNA seed sequences, which ultimately affects protein synthesis. These miRNAs exhibit substantial promise as diagnostic, prognostic, and therapeutic candidates for within the realm of solid organ transplantations. Current research has highlighted three members of the T cell immunoglobulin and mucin domain (TIM) family as a novel therapeutic avenue in transplantation medicine and alloimmunization. The interplay between miRNAs and TIM proteins has been extensively explored in viral infections, inflammatory responses, and post-transplantation ischemia-reperfusion injuries. This review aims to elucidate the distinct roles of miRNAs and TIM in transplantation immunity and delineate their interdependent relationships in terms of targeted regulation. Specifically, this investigation sought seeks to uncover the potential of miRNA interaction with TIM, aiming to induce immune tolerance and bolster allograft survival after transplantation. This innovative strategy holds substantial promise in for the future of transplantation science and practice.
Collapse
Affiliation(s)
- Jialing Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiaoxuan Shen
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| |
Collapse
|
7
|
Abbasi A, Costafreda MI, Ballesteros A, Jacques J, Tami C, Manangeeswaran M, Casasnovas JM, Kaplan G. Molecular Basis for the Differential Function of HAVCR1 Mucin Variants. Biomedicines 2024; 12:2643. [PMID: 39595207 PMCID: PMC11592376 DOI: 10.3390/biomedicines12112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The hepatitis A virus (HAV) cellular receptor 1 (HAVCR1) is a type I integral membrane glycoprotein discovered in monkeys and humans as a HAV receptor. HAVCR1 contains an N-terminal immunoglobulin-like variable domain (IgV) followed by a mucin-like domain (Muc), a transmembrane domain, and a cytoplasmic tail with a canonical tyrosine kinase phosphorylation site. The IgV binds phosphatidylserine on apoptotic cells, extracellular vesicles, and enveloped viruses. Insertions/deletions at position 156 (156ins/del) of the Muc were associated in humans with susceptibility to atopic, autoimmune, and infectious diseases. However, the molecular basis for the differential function of the HAVCR1 variants is not understood. Methods: We used mutagenesis, apoptotic cell binding, and signal transduction analyses to study the role of the 156ins/del in the function of HAVCR1. Results: We found that the HAVCR1 variant without insertions at position 156 (156delPMTTTV, or short-HAVCR1) bound more apoptotic cells than that containing a six amino acid insertion (156insPMTTTV, or long-HAVCR1). Furthermore, short-HAVCR1 induced stronger cell signaling and phagocytosis than long-HAVCR1. Conclusions: Our data indicated that the 156ins/del determine how the IgV is presented at the cell surface and modulate HAVCR1 binding, signaling, and phagocytosis, suggesting that variant-specific targeting could be used as therapeutic interventions to treat immune and infectious diseases.
Collapse
Affiliation(s)
- Abdolrahim Abbasi
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Maria Isabel Costafreda
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Angela Ballesteros
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Jerome Jacques
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Cecilia Tami
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Mohanraj Manangeeswaran
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología and Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Cantoblanco, 28049 Madrid, Spain;
| | - Gerardo Kaplan
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| |
Collapse
|
8
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
9
|
Hua R, Yu P, Zheng W, Wu N, Yu W, Kong Q, He J, Qin L. Tim-1-mediated extracellular matrix promotes the development of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1761-1773. [PMID: 39444345 PMCID: PMC11693869 DOI: 10.3724/abbs.2024191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Tim-1 (T-cell immunoglobulin and mucin domain 1), also known as Kim-1 (kidney injury molecule 1) or hepatitis A virus cellular receptor 1 (HAVCR1), is a transmembrane protein expressed on various immune and epithelial cells. It plays a role in modulating inflammatory and immune responses. In this study, we find that Tim-1 is overexpressed in hepatocellular carcinoma (HCC) samples and that its expression is significantly correlated with postoperative survival. Bulk RNA sequencing reveals a general upregulation of extracellular matrix-related genes in HCC tissues with Tim-1 overexpression. The results of the cell and in vivo experiments reveal that Tim-1 in HCC not only affects biological processes such as the proliferation, migration, and invasion of HCC cells but also broadly promotes extracellular matrix processes by influencing cytokine secretion. Further studies demonstrate that Tim-1 mediates the activation of hepatic stellate cells and upregulates Th1 and Th2 cytokines, thereby promoting HCC progression. Thus, Tim-1 may represent a novel target for future interventions in HCC and liver fibrosis.
Collapse
Affiliation(s)
- Ruheng Hua
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Department of Gastrointestinal SurgeryAffiliated Hospital of Nantong UniversityNantong226001China
| | - Pengfei Yu
- Affiliated Huishan Hospital of Xinglin CollegeNantong UniversityWuxi Huishan District People’s HospitalWuxi214100China
| | - Wanting Zheng
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Research Institute of General SurgeryJinling HospitalNanjing University School of MedicineNanjing210095China
| | - Nuwa Wu
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wangjianfei Yu
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Qingyu Kong
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun He
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Lei Qin
- Department of General Surgerythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
10
|
Ding Q, Wu Y, Triglia ET, Gommerman JL, Subramanian A, Kuchroo VK, Rothstein DM. TIM-4 Identifies Effector B Cells Expressing a RORγt-Driven Proinflammatory Cytokine Module That Promotes Immune Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.22.558524. [PMID: 37790513 PMCID: PMC10542535 DOI: 10.1101/2023.09.22.558524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
B cells can express pro-inflammatory cytokines that promote a wide variety of immune responses. Here we show that B cells expressing the phosphatidylserine receptor TIM-4, preferentially express IL-17A, as well as IL-22, IL-6, IL-1β, and GM-CSF - a collection of cytokines reminiscent of pathogenic Th17 cells. Expression of this proinflammatory module requires IL-23R signaling and selective expression of RORγt and IL-17A by TIM-4+ B cells. TIM-4+ B cell-derived-IL-17A not only enhances the severity of experimental autoimmune encephalomyelitis (EAE) and promotes allograft rejection, but also acts in an autocrine manner to prevent their conversion into IL-10-expressing B cells with regulatory function. Thus, IL-17A acts as an inflammatory mediator and also enforces the proinflammatory activity of TIM-4+ B cells. Thus, TIM-4 serves as a broad marker for RORγt+ effector B cells (Beff) and allows further study of the signals regulating Beff differentiation and effector molecule expression.
Collapse
Affiliation(s)
- Qing Ding
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufan Wu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Elena Torlai Triglia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Vijay K. Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
12
|
Iesari S, Nava FL, Zais IE, Coubeau L, Ferraresso M, Favi E, Lerut J. Advancing immunosuppression in liver transplantation: A narrative review. Hepatobiliary Pancreat Dis Int 2024; 23:441-448. [PMID: 38523030 DOI: 10.1016/j.hbpd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation (LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solid-organ transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
Collapse
Affiliation(s)
- Samuele Iesari
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Francesca Laura Nava
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Ilaria Elena Zais
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Laurent Coubeau
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; Service de Chirurgie et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, 55 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Mariano Ferraresso
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy.
| | - Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
13
|
Huang CH, Chen WY, Chen RF, Ramachandran S, Liu KF, Kuo YR. Cell therapies and its derivatives as immunomodulators in vascularized composite allotransplantation. Asian J Surg 2024; 47:4251-4259. [PMID: 38704267 DOI: 10.1016/j.asjsur.2024.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
The adverse effects of traditional pharmaceutical immunosuppressive regimens have been a major obstacle to successful allograft survival in vascularized composite tissue allotransplantation (VCA) cases. Consequently, there is a pressing need to explore alternative approaches to reduce reliance on conventional immunotherapy. Cell therapy, encompassing immune-cell-based and stem-cell-based regimens, has emerged as a promising avenue of research. Immune cells can be categorized into two main systems: innate immunity and adaptive immunity. Innate immunity comprises tolerogenic dendritic cells, regulatory macrophages, and invariant natural killer T cells, while adaptive immunity includes T regulatory cells and B regulatory cells. Investigations are currently underway to assess the potential of these immune cell populations in inducing immune tolerance. Furthermore, mixed chimerism therapy, involving the transplantation of hematopoietic stem and progenitor cells and mesenchymal stem cells (MSC), shows promise in promoting allograft tolerance. Additionally, extracellular vesicles (EVs) derived from MSCs offer a novel avenue for extending allograft survival. This review provides a comprehensive summary of cutting-edge research on immune cell therapies, mixed chimerism therapies, and MSCs-derived EVs in the context of VCAs. Findings from preclinical and clinical studies demonstrate the tremendous potential of these alternative therapies in optimizing allograft survival in VCAs.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Wei Yu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Savitha Ramachandran
- Department of Plastic and Reconstructive Surgery, Singapore General Hospital, Singapore.
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Perezpayá I, Garcia SG, Clos-Sansalvador M, Sanroque-Muñoz M, Font-Morón M, Rodríguez-Martínez P, Vila-Santandreu A, Bover J, Borràs FE, Cañas L, Franquesa M. Molecular screening of transitional B cells as a prognostic marker of improved graft outcome and reduced rejection risk in kidney transplant. Front Immunol 2024; 15:1433832. [PMID: 39192987 PMCID: PMC11348389 DOI: 10.3389/fimmu.2024.1433832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Understanding immune cell dynamics in kidney transplantation may provide insight into the mechanisms of rejection and improve patient management. B cells have gained interest with a special relevance of the "regulatory" subsets and their graft outcome prognostic value. In this study, we aimed to prove that the direct immunophenotyping and target gene expression analysis of kidney transplant patients' fresh whole blood will help to identify graft rejection risk and assist in the monitoring of kidney transplanted patients. Methods We employed flow cytometry and qPCR techniques to characterize B and T cell subsets within fresh whole blood samples, with particular emphasis on transitional B cells (TrB) identified as CD19+CD24hiCD38hi. TrB are a relevant population in the context of kidney transplantation and are closely associated with regulatory B cells (Bregs) in humans. Patients were monitored, tracking pertinent clinical parameters and kidney-related events, including alterations in graft function and episodes of biopsy proven rejection. Results Higher percentages of TrB cells at 3 months after transplantation were positively associated with better graft outcomes and lower biopsy-proven acute rejection risk. Furthermore, a novel panel of B cell regulatory associated genes was validated at 3 months post-transplantation by qPCR analysis of peripheral blood mononuclear cell (PBMC) mRNA, showing high predictive power of graft events and prognostic value. Discussion These findings suggest that monitoring TrB may provide interesting patient management information, improve transplant outcomes, and allow for personalized drug regimens to minimize clinical complications.
Collapse
Affiliation(s)
- Inés Perezpayá
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Sergio G. Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Paula Rodríguez-Martínez
- Pathology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Anna Vila-Santandreu
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Jordi Bover
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Cañas
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Liu J, Zhou Q, Meng K, Yang X, Ma B, Su C, Duan X. Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells. Int J Med Sci 2024; 21:1990-1999. [PMID: 39113892 PMCID: PMC11302567 DOI: 10.7150/ijms.98343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The T cell immunoglobulin and ITAM domain (TIGIT) is a recently discovered synergistic co-suppressor molecule that plays an important role in immune response and tumor immune escape in the context of cancer. Importantly, CD155 acts as a receptor for TIGIT, and CD155 signaling to immune cells is mediated through interactions with the co-stimulatory immune receptor CD226 (DNAM-1) and the inhibitory checkpoint receptors TIGIT and CD96. Aspirin (ASA) has been shown to reduce the growth and survival of colorectal cancer (CRC) cells, but the immunological mechanisms involved have not been sufficiently elucidated. In the present study the effects of aspirin on CRC in mice and on Jurkat cells were investigated. Aspirin may suppress the expression of TIGIT on T cells and Regulatory T cells (Tregs) and inhibit T cell viability, and therefore induce tumor cell apoptosis. TIGIT is expressed at higher levels on infiltrating lymphocytes within CRC tumor tissue than adjacent. Further, aspirin could inhibit Jurkat cell proliferation and induce apoptosis via downregulation of TIGIT expression and the anti-apoptosis B cell lymphoma 2 (BCL2) protein and upregulation of BCL2-associated X protein (BAX) expression. The present study suggests that aspirin can inhibit specific aspects of T cell function by reducing interleukin-10 and transforming growth factor-β1 secretion via the TIGIT-BCL2-BAX signaling pathway, resulting in improved effector T cell function that inhibits tumor progression.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Inspection, Ningxia Medical University, Yinchuan 750004, China
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Qiunan Zhou
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Kai Meng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
- Traditional Chinese Medicine Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaojuan Yang
- School of Inspection, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan 750004, China
| | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiangguo Duan
- School of Inspection, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
16
|
Xu X, Chen Y, Kong L, Li X, Chen D, Yang Z, Wang J. Potential biomarkers for immune monitoring after renal transplantation. Transpl Immunol 2024; 84:102046. [PMID: 38679337 DOI: 10.1016/j.trim.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Renal transplantation represents the foremost efficacious approach for ameliorating end-stage renal disease. Despite the current state of advanced renal transplantation techniques and the established postoperative immunosuppression strategy, a subset of patients continues to experience immune rejection during both the early and late postoperative phases, ultimately leading to graft loss. Consequently, the identification of immunobiomarkers capable of predicting the onset of immune rejection becomes imperative in order to facilitate early intervention strategies and enhance long-term prognoses. Upon reviewing the pertinent literature, we identified several indicators that could potentially serve as immune biomarkers to varying extents. These include the T1/T2 ratio, Treg/Th17 ratio, IL-10/TNF-α ratio, IL-33, IL-34, IL-6, IL-4, other cytokines, and NOX2/4.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yi Chen
- Shandong Medical College, Jinan, China
| | | | - Xianduo Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dongdong Chen
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Jianning Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
17
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Zhou G, Zhan Q, Huang L, Dou X, Cui J, Xiang L, Qi Y, Wu S, Liu L, Xiao Q, Chen J, Tang X, Zhang H, Wang X, Luo X, Ren G, Yang Z, Liu L, Yan X, Luo Q, Pei C, Dai Y, Zhu Y, Zhou H, Ren G, Wang L. The dynamics of B-cell reconstitution post allogeneic hematopoietic stem cell transplantation: A real-world study. J Intern Med 2024; 295:634-650. [PMID: 38439117 DOI: 10.1111/joim.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
BACKGROUND The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lingle Huang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xi Dou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jin Cui
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Xiang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yuhong Qi
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Sicen Wu
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lanxiang Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xinyu Yan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qin Luo
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Caixia Pei
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yulian Dai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guilin Ren
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
19
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Du Q, An Q, Zhang J, Liu C, Hu Q. Unravelling immune microenvironment features underlying tumor progression in the single-cell era. Cancer Cell Int 2024; 24:143. [PMID: 38649887 PMCID: PMC11036673 DOI: 10.1186/s12935-024-03335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The relationship between the immune cell and tumor occurrence and progression remains unclear. Profiling alterations in the tumor immune microenvironment (TIME) at high resolution is crucial to identify factors influencing cancer progression and enhance the effectiveness of immunotherapy. However, traditional sequencing methods, including bulk RNA sequencing, exhibit varying degrees of masking the cellular heterogeneity and immunophenotypic changes observed in early and late-stage tumors. Single-cell RNA sequencing (scRNA-seq) has provided significant and precise TIME landscapes. Consequently, this review has highlighted TIME cellular and molecular changes in tumorigenesis and progression elucidated through recent scRNA-seq studies. Specifically, we have summarized the cellular heterogeneity of TIME at different stages, including early, late, and metastatic stages. Moreover, we have outlined the related variations that may promote tumor occurrence and metastasis in the single-cell era. The widespread applications of scRNA-seq in TIME will comprehensively redefine the understanding of tumor biology and furnish more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Qilian Du
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiajun Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
21
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
22
|
Guinn MT, Szuter ES, Yokose T, Ge J, Rosales IA, Chetal K, Sadreyev RI, Cuenca AG, Kreisel D, Sage PT, Russell PS, Madsen JC, Colvin RB, Alessandrini A. Intragraft B cell differentiation during the development of tolerance to kidney allografts is associated with a regulatory B cell signature revealed by single cell transcriptomics. Am J Transplant 2023; 23:1319-1330. [PMID: 37295719 PMCID: PMC11232115 DOI: 10.1016/j.ajt.2023.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward S Szuter
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takahiro Yokose
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifu Ge
- Boston's Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy A Rosales
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex G Cuenca
- Boston's Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S Russell
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B Colvin
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Zhang D, Liu Y, Ma J, Xu Z, Duan C, Wang Y, Li X, Han J, Zhuang R. Competitive binding of CD226/TIGIT with PVR regulates macrophage polarization and is involved in vascularized skin graft rejection. Am J Transplant 2023:S1600-6135(23)00404-5. [PMID: 37054890 DOI: 10.1016/j.ajt.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
End-stage organ failure often requires solid organ transplantation. Nevertheless, transplant rejection remains an unresolved issue. The induction of donor-specific tolerance is the ultimate goal in transplantation research. Here, an allograft vascularized skin rejection model using BALB/c-C57/BL6 mice was established to evaluate the regulation of the poliovirus receptor signaling pathway via CD226 knockout (KO) or TIGIT-Fc recombinant protein treatment. In the TIGIT-Fc-treated and CD226KO groups, graft survival time was significantly prolonged, with a Treg cell proportion increase and M2-type macrophage polarization. Donor-reactive recipient T cells became hyporesponsive while responding normally after a third-party antigen challenge. In both groups, serum IL-1β, IL-6, IL-12p70, IL-17A, TNF-α, IFN-γ, and monocyte chemoattractant protein-1 levels decreased, and the IL-10 level increased. In vitro, M2 markers, such as Arg1 and IL-10, were markedly increased by TIGIT-Fc, whereas iNOS, IL-1β, IL-6, IL-12p70, TNF-α, and IFN-γ levels decreased. CD226-Fc had the opposite effect. TIGIT suppressed Th1 and Th17 differentiation by inhibiting macrophage SHP-1 phosphorylation and enhanced ERK1/2-MSK1 phosphorylation and nuclear translocation of CREB. In conclusion, CD226 and TIGIT competitively bind to PVR with activating and inhibitory functions, respectively. Mechanistically, TIGIT promotes IL-10 transcription from macrophages by activating the ERK1/2-MSK1-CREB pathway and enhancing M2-type polarization. CD226/TIGIT-PVR are crucial regulatory molecules of allograft rejection.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
24
|
Cherukuri A, Abou-Daya KI, Chowdhury R, Mehta RB, Hariharan S, Randhawa P, Rothstein DM. Transitional B cell cytokines risk stratify early borderline rejection after renal transplantation. Kidney Int 2023; 103:749-761. [PMID: 36436679 PMCID: PMC10038876 DOI: 10.1016/j.kint.2022.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Borderline rejection (BL) in renal transplantation is associated with decreased allograft survival, yet many patients with BL maintain stable graft function. Identifying patients with early BL at risk for shortened allograft survival would allow for timely targeted therapeutic intervention aimed at improving outcomes. 851/1187 patients transplanted between 2013-18 underwent early biopsy (0-4 mos). 217/851 (25%) had BL and were compared to 387/851 without significant inflammation (NI). Serial surveillance and for-cause biopsies and seven-year follow-up were used to evaluate histological and clinical progression. To identify high-risk patients, we examined clinical/histological parameters using regression and non-linear dimensionality reduction (tSNE) and a biomarker based on peripheral blood transitional-1 B cell (T1B) IL-10/TNFα ratio. Compared to NI, early BL was associated with increased progression to late acute rejection (AR; 5-12 mos), premature interstitial fibrosis and tubular atrophy (IFTA) and decreased seven-year graft survival. However, decreased graft survival was limited to BL patients who progressed to late AR or IFTA, and was not influenced by treatment. Although tSNE clustered patients into groups based on clinical factors, the ability of these factors to risk stratify BL patients was modest. In contrast, a low T1B IL-10/TNFα ratio at 3 months identified BL patients at high risk for progression to AR (ROC AUC 0.87) and poor 7-yr graft survival (52% vs. 92%, p=0.003), while BL patients with a high ratio had similar graft survival to patients with NI (91%, p=NS). Thus, progressive early allograft inflammation manifested as BL that progresses to late AR in the first post-transplant year represents a high-risk clinical state for poor allograft outcomes. Such high-risk status can be predicted by the T1B IL-10/TNFα ratio before irreversible scarring sets in, thus allowing timely risk stratification.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raad Chowdhury
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rajil B Mehta
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
IL-10-producing memory B regulatory cells as a novel target for HLA-G to prolong human kidney allograft survival. Hum Immunol 2023:S0198-8859(23)00044-7. [PMID: 36934068 DOI: 10.1016/j.humimm.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Despite the growing interest in the role of regulatory B cells (Bregs) in autoimmunity, their distinct role and function in kidney transplant outcomes remain elusive. Here, we retrospectively analyzed the proportion of Bregs, transitional Bregs (tBregs) and memory Bregs (mBregs) and their capacity to produce IL-10 in non-rejected (NR) versus rejected (RJ) kidney transplant recipients. In the NR group, we observed a significant increase in the proportion of mBregs (CD19+CD24hiCD27+) but no difference in tBregs (CD19+CD24hiCD38+), as compared to the RJ group. We also observed a significant increase in IL-10-producing mBregs (CD19+CD24hiCD27+IL-10+) in the NR group. As our group and others have previously reported a potential role of the human leukocyte antigen G (HLA-G) in human renal allograft survival, notably through IL-10, we then investigated possible crosstalk between HLA-G and IL-10+ mBregs. Our ex vivo data suggest a role of HLA-G in enhancing IL-10+ mBreg expansion upon stimulation, which further decreased CD3+ T cell proliferation capability. Using RNA-sequencing (RNA-seq), we identified potential key signaling pathways involved in HLA-G-driven IL-10+ mBreg expansion, such as the MAPK, TNF and chemokine signaling pathways. Together, our study highlights a novel HLA-G-mediated IL-10-producing mBreg pathway that may serve as a therapeutic target to improve kidney allograft survival.
Collapse
|
26
|
Bailly C, Thuru X, Goossens L, Goossens JF. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol 2023; 209:115445. [PMID: 36739094 DOI: 10.1016/j.bcp.2023.115445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoints inhibition is a privileged approach to combat cancers and other human diseases. The TIM-3 (T cell immunoglobulin and mucin-domain containing-3) inhibitory checkpoint expressed on different types of immune cells is actively investigated as an anticancer target, with a dozen of monoclonal antibodies in (pre)clinical development. A soluble form sTIM-3 can be found in the plasma of patients with cancer and other diseases. This active circulating protein originates from the proteolytic cleavage by two ADAM metalloproteases of the membrane receptor shared by tumor and non-tumor cells, and extracellular vesicles. In most cancers but not all, overexpression of mTIM-3 at the cell surface leads to high level of sTIM-3. Similarly, elevated levels of sTIM-3 have been reported in chronic autoimmune diseases, inflammatory gastro-intestinal diseases, certain viral and parasitic diseases, but also in cases of organ transplantation and in pregnancy-related pathologies. We have analyzed the origin of sTIM-3, its methods of dosage in blood or plasma, its presence in multiple diseases and its potential role as a biomarker to follow disease progression and/or the treatment response. In contrast to sPD-L1 generated by different classes of proteases and by alternative splicing, sTIM-3 is uniquely produced upon ADAM-dependent shedding, providing a more homogenous molecular entity and a possibly more reliable molecular marker. However, the biological functionality of sTIM-3 remains insufficiently characterized. The review shed light on pathologies associated with an altered expression of sTIM-3 in human plasma and the possibility to use sTIM-3 as a diagnostic or therapeutic marker.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Laurence Goossens
- University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| |
Collapse
|
27
|
Rousse J, Royer PJ, Evanno G, Lheriteau E, Ciron C, Salama A, Shneiker F, Duchi R, Perota A, Galli C, Cozzi E, Blancho G, Duvaux O, Brouard S, Soulillou JP, Bach JM, Vanhove B. LIS1, a glyco-humanized swine polyclonal anti-lymphocyte globulin, as a novel induction treatment in solid organ transplantation. Front Immunol 2023; 14:1137629. [PMID: 36875084 PMCID: PMC9978386 DOI: 10.3389/fimmu.2023.1137629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Anti-thymocyte or anti-lymphocyte globulins (ATGs/ALGs) are immunosuppressive drugs used in induction therapies to prevent acute rejection in solid organ transplantation. Because animal-derived, ATGs/ALGs contain highly immunogenic carbohydrate xenoantigens eliciting antibodies that are associated with subclinical inflammatory events, possibly impacting long-term graft survival. Their strong and long-lasting lymphodepleting activity also increases the risk for infections. We investigated here the in vitro and in vivo activity of LIS1, a glyco-humanized ALG (GH-ALG) produced in pigs knocked out for the two major xeno-antigens αGal and Neu5Gc. It differs from other ATGs/ALGs by its mechanism of action excluding antibody-dependent cell-mediated cytotoxicity and being restricted to complement-mediated cytotoxicity, phagocyte-mediated cytotoxicity, apoptosis and antigen masking, resulting in profound inhibition of T-cell alloreactivity in mixed leucocyte reactions. Preclinical evaluation in non-human primates showed that GH-ALG dramatically reduced CD4+ (p=0.0005,***), CD8+ effector T cells (p=0.0002,***) or myeloid cells (p=0.0007,***) but not T-reg (p=0.65, ns) or B cells (p=0.65, ns). Compared with rabbit ATG, GH-ALG induced transient depletion (less than one week) of target T cells in the peripheral blood (<100 lymphocytes/L) but was equivalent in preventing allograft rejection in a skin allograft model. The novel therapeutic modality of GH-ALG might present advantages in induction treatment during organ transplantation by shortening the T-cell depletion period while maintaining adequate immunosuppression and reducing immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Carine Ciron
- Research and Development, Xenothera, Nantes, France
| | - Apolline Salama
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | | | - Roberto Duchi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Andrea Perota
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Cesare Galli
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Emmanuele Cozzi
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Gilles Blancho
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Odile Duvaux
- Research and Development, Xenothera, Nantes, France
| | - Sophie Brouard
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Jean-Paul Soulillou
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | | | | |
Collapse
|
28
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
29
|
Zheremyan EA, Ustiugova AS, Radko AI, Stasevich EM, Uvarova AN, Mitkin NA, Kuprash DV, Korneev KV. Novel Potential Mechanisms of Regulatory B Cell-Mediated Immunosuppression. BIOCHEMISTRY (MOSCOW) 2023; 88:13-21. [PMID: 37068869 DOI: 10.1134/s0006297923010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
B lymphocytes play an important role in the regulation of immune response in both normal and pathological conditions. Traditionally, the main functions of B cells were considered to be antibody production and antigen presentation, but in recent decades there have been discovered several subpopulations of regulatory B lymphocytes (Bregs), which maintain immunological tolerance and prevent overactivation of the immune system. Memory (mBregs, CD19+CD24hiCD27+) and transitional (tBregs, CD19+CD24hiCD38hi) subpopulations of Bregs are usually considered in the context of studying the role of these B cells in various human pathologies. However, the mechanisms by which these Breg subpopulations exert their immunosuppressive activity remain poorly understood. In this work, we used bioinformatic analysis of open-source RNA sequencing data to propose potential mechanisms of B cell-mediated immunosuppression. Analysis of differential gene expression before and after activation of these subpopulations allowed us to identify six candidate molecules that may determine the functionality of mBregs and tBregs. IL4I1-, SIRPA-, and SLAMF7-dependent mechanisms of immunosuppression may be characteristic of both Breg subsets, while NID1-, CST7-, and ADORA2B-dependent mechanisms may be predominantly characteristic of tBregs. In-depth understanding of the molecular mechanisms of anti-inflammatory immune response of B lymphocytes is an important task for both basic science and applied medicine and could facilitate the development of new approaches to the therapy of complex diseases.
Collapse
Affiliation(s)
- Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia I Radko
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- National Research Center for Hematology, Moscow, 125167, Russia
| |
Collapse
|
30
|
Wang Y, Deng W, Liu J, Yang Q, Chen Z, Su J, Xu J, Liang Q, Li T, Liu L, Li X. IKKβ increases neuropilin-2 and promotes the inhibitory function of CD9+ Bregs to control allergic diseases. Pharmacol Res 2022; 185:106517. [DOI: 10.1016/j.phrs.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 10/31/2022]
|
31
|
The Regulation between CD4+CXCR5+ Follicular Helper T (Tfh) Cells and CD19+CD24hiCD38hi Regulatory B (Breg) Cells in Gastric Cancer. J Immunol Res 2022; 2022:9003902. [PMID: 36339942 PMCID: PMC9629923 DOI: 10.1155/2022/9003902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose T follicular helper (Tfh) cells and regulatory B (Breg) cells are reported to play essential roles in humoral immunity, especially in inflammation, autoimmune diseases, and cancer. Hence, we sought to investigate the involvement of CXCR5+CD4+ Tfh cells and CD19+CD24hiCD38hi Breg cells in gastric cancer. Methods The blood samples were obtained from 36 gastric cancer patients and 18 healthy individuals. The percentage of Tfh cells (Tfh%) and Breg cells (Breg%) was detected via flow cytometry, while IL-21, IL-10, and CXCL13 levels were examined with ELISA. The association between them and clinical parameters of patients was also assessed. The in vitro Tfh-B cell coculture experiments were performed for six days, and then, Tfh%, Breg%, and cytokines were valued by flow cytometry and ELISA, respectively. Results Tfh%, Breg%, and CXCL13 level were significantly increased among gastric cancer patients. Moreover, higher Tfh% was associated with lymphatic metastasis, patients' worse outcomes and Breg%. Tfh differentiation and CXCL13 were upregulated by cocultured B cells in vitro, while Tfh cells seem to not participate in Breg cell differentiation from B cells. Conclusion Altogether, increased Tfh and Breg cells could be involved in immune suppression in gastric cancer. Moreover, B cell may be a potential regulator for Tfh differentiation, while Tfh cells had no significant effects on the regulation of Breg cells.
Collapse
|
32
|
Cherukuri A, Rothstein DM. Regulatory and transitional B cells: potential biomarkers and therapeutic targets in organ transplantation. Curr Opin Organ Transplant 2022; 27:385-391. [PMID: 35950881 PMCID: PMC9474638 DOI: 10.1097/mot.0000000000001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Regulatory B cells (Bregs) play a prominent role in various disease settings. While progress has been hindered by the lack of a specific Breg marker, new findings highlight their role modulating the alloimmune response and promoting allograft survival. RECENT FINDINGS Herein, we focus on the recent advances in Breg biology and their role in transplantation. We review studies showing that T-cell immunoglobulin and mucin domain 1 (TIM-1) is an inclusive and functional Breg marker in mice that may have human relevance. We highlight the utility of the B cell interleukin-10/tumor necrosis factor-alpha (IL-10/TNFα) ratio in identifying underlying immunological reactivity and predicting clinical outcomes in kidney transplantation. This may identify patients requiring more immunosuppression and provide insight into potential therapeutic approaches that can modulate the Breg: B effector cell (Beff) balance. SUMMARY Emerging data support Bregs as potent modulators of immune responses in humans. Their ability to promote allograft survival must await development of approaches to expand Bregs in vitro/in vivo . The low IL-10/TNFα ratio reflecting decreased Breg/Beff balance, predicts acute rejection (AR) and poorer outcomes in renal transplantation. It remains to be determined whether this paradigm can be extended to other allografts and whether therapy aiming to correct the relative deficiency of Bregs will improve outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
| | - David M. Rothstein
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
33
|
Matsumura Y, Watanabe R, Fujimoto M. Suppressive mechanisms of regulatory B cells in mice and humans. Int Immunol 2022; 35:55-65. [PMID: 36153768 PMCID: PMC9918854 DOI: 10.1093/intimm/dxac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
B cells include immune-suppressive fractions, called regulatory B cells (Bregs), which regulate inflammation primarily through an interleukin 10 (IL-10)-mediated inhibitory mechanism. Several B-cell fractions have been reported as IL-10-producing Bregs in murine disease models and human inflammatory responses including autoimmune diseases, infectious diseases, cancer and organ-transplant rejection. Although the suppressive functions of Bregs have been explored through the hallmark molecule IL-10, inhibitory cytokines and membrane-binding molecules other than IL-10 have also been demonstrated to contribute to Breg activities. Transcription factors and surface antigens that are characteristically expressed in Bregs are also being elucidated. Nevertheless, defining Bregs is still challenging because their active periods and differentiation stages vary among disease models. The identity of the diverse Breg fractions is also under debate. In the first place, since regulatory functions of Bregs are mostly evaluated by ex vivo stimulation, the actual in vivo phenotypes and functions may not be reflected by the ex vivo observations. In this article, we provide a historical overview of studies that established the characteristics of Bregs and review the various suppressive mechanisms that have been reported to be used by Bregs in murine and human disease conditions. We are only part-way through but the common phenotypes and functions of Bregs are still emerging.
Collapse
Affiliation(s)
- Yutaka Matsumura
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Rei Watanabe
- Department of Dermatology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan,Department of Integrative Medicine for Allergic and Immunological Diseases, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, 565-0871, Japan
| | | |
Collapse
|
34
|
Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. Cell Rep Med 2022; 3:100744. [PMID: 36099917 PMCID: PMC9512696 DOI: 10.1016/j.xcrm.2022.100744] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Plasma cell responses are associated with anti-tumor immunity and favorable response to immunotherapy. B cells can amplify anti-tumor immune responses through antibody production; yet B cells in patients and tumor-bearing mice often fail to support this effector function. We identify dysregulated transcriptional program in B cells that disrupts differentiation of naive B cells into anti-tumor plasma cells. The signaling network contributing to this dysfunction is driven by interleukin (IL) 35 stimulation of a STAT3-PAX5 complex that upregulates the transcriptional regulator BCL6 in naive B cells. Transient inhibition of BCL6 in tumor-educated naive B cells is sufficient to reverse the dysfunction in B cell differentiation, stimulating the intra-tumoral accumulation of plasma cells and effector T cells and rendering pancreatic tumors sensitive to anti-programmed cell death protein 1 (PD-1) blockade. Our findings argue that B cell effector dysfunction in cancer can be due to an active systemic suppression program that can be targeted to synergize with T cell-directed immunotherapy. Balance between regulatory B cells and plasma cells shapes pancreatic tumor growth Cancer primes naive B cells toward regulatory B cell differentiation IL-35 drives B cell reprogramming via formation of a pSTAT3-Pax5 complex IL-35/BCL6 blockade in naive B cells enhances αPD1 efficacy
Collapse
|
35
|
Kumánovics A, Sadighi Akha AA. Flow cytometry for B-cell subset analysis in immunodeficiencies. J Immunol Methods 2022; 509:113327. [DOI: 10.1016/j.jim.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
|
36
|
Bou Saba J, Cherukuri A. Antigen-specific B cells in kidney transplantation. Kidney Int 2022; 102:233-235. [PMID: 35870812 DOI: 10.1016/j.kint.2022.04.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 10/17/2022]
Abstract
In this issue, Burton et al. describe a convincing method to identify and enumerate human leukocyte antigen-specific B cells and subsets using biotinylated human leukocyte antigen proteins. Importantly, they demonstrate that these antigen-specific B cells are found at a greater frequency in sensitized kidney transplant recipients when compared with healthy volunteers. Finally, using an indirect antigen-specific enzyme-linked immunosorbent spot assay, they uncover the complexity of B- and T-cell interactions and the influence of regulatory T cells on such interactions in vitro.
Collapse
Affiliation(s)
- Johnny Bou Saba
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aravind Cherukuri
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
37
|
Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, Papa S, Cope A, Karagiannis SN, Perucha E, Middleton GW. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun 2022; 13:3148. [PMID: 35672305 PMCID: PMC9174492 DOI: 10.1038/s41467-022-30863-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 05/22/2022] [Indexed: 12/20/2022] Open
Abstract
Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.
Collapse
Affiliation(s)
- Akshay J Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, SE1 9RT, UK
- Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Andrew Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - Esperanza Perucha
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, SE1 1UL, UK
- Centre for Rheumatic Diseases, King's College London, SE1 1UL, London, UK
| | - Gary W Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
38
|
Yue C, Gao S, Li S, Xing Z, Qian H, Hu Y, Wang W, Hua C. TIGIT as a Promising Therapeutic Target in Autoimmune Diseases. Front Immunol 2022; 13:911919. [PMID: 35720417 PMCID: PMC9203892 DOI: 10.3389/fimmu.2022.911919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
Co-inhibitory receptors (IRs) are molecules that protect host against autoimmune reactions and maintain peripheral self-tolerance, playing an essential role in maintaining immune homeostasis. In view of the substantial clinical progresses of negative immune checkpoint blockade in cancer treatment, the role of IRs in autoimmune diseases is also obvious. Several advances highlighted the substantial impacts of T cell immunoglobulin and ITIM domain (TIGIT), a novel IR, in autoimmunity. Blockade of TIGIT pathway exacerbates multiple autoimmune diseases, whereas enhancement of TIGIT function has been shown to alleviate autoimmune settings in mice. These data suggested that TIGIT pathway can be manipulated to achieve durable tolerance to treat autoimmune disorders. In this review, we provide an overview of characteristics of TIGIT and its role in autoimmunity. We then discuss recent approaches and future directions to leverage our knowledge of TIGIT as therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hengrong Qian
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Hu
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Humoral immunity at the brain borders in homeostasis. Curr Opin Immunol 2022; 76:102188. [DOI: 10.1016/j.coi.2022.102188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022]
|
40
|
An Update on the Evolutionary History of Bregs. Genes (Basel) 2022; 13:genes13050890. [PMID: 35627275 PMCID: PMC9141580 DOI: 10.3390/genes13050890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
The relationship between the evolutionary history and the differentiation of Bregs is still not clear. Bregs were demonstrated to possess a regulatory effect on B cells. Various subsets of Bregs have been identified including T2-MZP, MZ, B10, IL10-producing plasma cells, IL10 producing plasmablasts, immature IL10 producing B cells, TIM1, and Br1. It is known that B cells have evolved during fish emergence. However, the origin of Bregs is still not known. Three main models have been previously proposed to describe the origin of Bregs, the first known as single–single (SS) suggests that each type of Bregs subpopulation has emerged from a single pre-Breg type. The second model (single–multi) (SM) assumes that a single Bregs gave rise to multiple types of Bregs that in turn differentiated to other Breg subpopulations. In the third model (multi–multi) (MM), it is hypothesized that Bregs arise from the nearest B cell phenotype. The link between the differentiation of cells and the evolution of novel types of cells is known to follow one of three evolutionary patterns (i.e., homology, convergence, or concerted evolution). Another aspect that controls differentiation and evolution processes is the principle of optimization of energy, which suggests that an organism will always use the choice that requires less energy expenditure for survival. In this review, we investigate the evolution of Breg subsets. We studied the feasibility of Breg origination models based on evolution and energy constraints. In conclusion, our review indicates that Bregs are likely to have evolved under a combination of SM–MM models. This combination ensured successful survival in harsh conditions by following the least costly differentiation pathway, as well as adapting to changing environmental conditions.
Collapse
|
41
|
Song Z, Yuan W, Zheng L, Wang X, Kuchroo VK, Mohib K, Rothstein DM. B Cell IL-4 Drives Th2 Responses In Vivo, Ameliorates Allograft Rejection, and Promotes Allergic Airway Disease. Front Immunol 2022; 13:762390. [PMID: 35359977 PMCID: PMC8963939 DOI: 10.3389/fimmu.2022.762390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
B cells can be polarized to express various cytokines. The roles of IFNγ and IL-10, expressed respectively by B effector 1 (Be1) and Bregs, have been established in pathogen clearance, tumor growth, autoimmunity and allograft rejection. However, the in vivo role of B cell IL-4, produced by Be2 cells, remains to be established. We developed B-IL-4/13 iKO mice carrying a tamoxifen-inducible B cell-specific deletion of IL-4 and IL-13. After alloimmunization, B-IL-4/13 iKO mice exhibited decreased IL-4+ Th2 cells and IL-10+ Bregs without impact on Th1, Tregs, or CD8 T cell responses. B-IL-4/13 iKO mice rejected islet allografts more rapidly, even when treated with tolerogenic anti-TIM-1 mAb. In ovalbumin-induced allergic airway disease (AAD), B-IL-4/13 iKO mice had reduced inflammatory cells in BAL, and preserved lung histology with markedly decreased infiltration by IL-4+ and IL-5+ CD4+ T cells. Hence, B cell IL-4 is a major driver of Th2 responses in vivo which promotes allograft survival, and conversely, worsens AAD.
Collapse
Affiliation(s)
- Zhixing Song
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,School of Medicine, Tsinghua University, Beijing, China
| | - Wenjia Yuan
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Kidney Transplantation and Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Rheumatology and Clinical Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xingan Wang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: David M. Rothstein, ; orcid.org/0000-0002-9455-7971
| |
Collapse
|
42
|
Louis K, Fadakar P, Macedo C, Yamada M, Lucas M, Gu X, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation. Kidney Int 2022; 101:1003-1016. [PMID: 35090879 PMCID: PMC9038633 DOI: 10.1016/j.kint.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Although considerable advances have been made in understanding the cellular effector mechanisms responsible for donor-specific antibody generation leading to antibody-mediated rejection (ABMR), the identification of cellular regulators of such immune responses is lacking. To clarify this, we used high dimensional flow cytometry to concomitantly profile and track the two major subsets of regulatory lymphocytes in blood: T regulatory (TREG) and transitional B cells in a cohort of 96 kidney transplant recipients. Additionally, we established co-culture assays to address their respective capacity to suppress antibody responses in vitro. TREG and transitional B cells were found to be potent suppressors of T follicular helper-mediated B-cell differentiation into plasmablast and antibody generation. TREG and transitional B cells were both durably expanded in patients who did not develop donor-specific antibody post-transplant. However, patients who manifested donor-specific antibody and progressed to ABMR displayed a marked and persistent numerical reduction in TREG and transitional B cells. Strikingly, specific cell clusters expressing the transcription factor T-bet were selectively depleted in both TREG and transitional B-cell compartments in patients with ABMR. Importantly, the coordinated loss of these T-bet+CXCR5+TREG and T-bet+CD21- transitional B-cell clusters was correlated with increased and inflammatory donor specific antibody responses, more extensive microvascular inflammation and a higher rate of kidney allograft loss. Thus, our study identified coordinated and persistent defects in regulatory T- and B-cell responses in patients undergoing ABMR, which may contribute to their loss of humoral immune regulation, and warrant timely therapeutic interventions to replenish and sustain TREG and transitional B cells in these patients.
Collapse
|
43
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
44
|
Wu D, Poholek CH, Majumder S, Liu Q, Revu SK, Mohib K, Rothstein DM, McGeachy MJ. IL-17-dependent fibroblastic reticular cell training boosts tissue protective mucosal immunity through IL-10-producing B cells. Sci Immunol 2021; 6:eaao3669. [PMID: 34919443 PMCID: PMC8818277 DOI: 10.1126/sciimmunol.aao3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prior experience of pathogen-associated stimuli reduces morbidity and mortality to newly encountered infections through innate immune training, which can be enhanced by childhood vaccination. Fibroblastic reticular cells (FRCs) are stromal cells in lymphoid organs that support lymphocyte localization and survival and modulate adaptive immune responses. IL-17 signaling is important for FRC metabolism and proliferation during inflammatory responses. Here, we show that FRC-intrinsic IL-17 signaling was required for protective antibody-mediated immunity to the gut bacterial pathogen Citrobacter rodentium. We asked whether prior activation of FRC through nonspecific inflammatory “training” of the gut would alter subsequent immune response to C. rodentium. Inflammatory training increased the number of activated FRC in mesenteric LN (MLN) and enhanced the antibody response to C. rodentium in an IL-17–dependent manner. FRC demonstrated cardinal features of innate immune training, including increased epigenetic markers of activation and increased metabolic response to infection. Enhanced responses were still evident 6 weeks after training. The kinetics of bacterial infection were not changed by inflammatory training, but colon inflammation was paradoxically reduced. Mechanistically, IL-10 production by activated B cells was required for colon protective effects of inflammatory training. Enhancing tissue protective B cell responses thus led to increased production of antibody and IL-10, allowing clearance of infection with reduced tissue inflammation. These data identify a new mode of immune training through FRC to modulate future adaptive responses and better preserve host health.
Collapse
Affiliation(s)
- Dongwen Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Catherine H Poholek
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh PA, USA
| | - Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Qixing Liu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- School of Medicine, Tsinghua University Beijing, China
| | - Shankar K Revu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
45
|
Gołębiewska JE, Wardowska A, Pietrowska M, Wojakowska A, Dębska-Ślizień A. Small Extracellular Vesicles in Transplant Rejection. Cells 2021; 10:2989. [PMID: 34831212 PMCID: PMC8616261 DOI: 10.3390/cells10112989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Small extracellular vesicles (sEV), which are released to body fluids (e.g., serum, urine) by all types of human cells, may stimulate or inhibit the innate and adaptive immune response through multiple mechanisms. Exosomes or sEV have on their surface many key receptors of immune response, including major histocompatibility complex (MHC) components, identical to their cellular origin. They also exhibit an ability to carry antigen and target leukocytes either via interaction with cell surface receptors or intracellular delivery of inflammatory mediators, receptors, enzymes, mRNAs, and noncoding RNAs. By the transfer of donor MHC antigens to recipient antigen presenting cells sEV may also contribute to T cell allorecognition and alloresponse. Here, we review the influence of sEV on the development of rejection or tolerance in the setting of solid organ and tissue allotransplantation. We also summarize and discuss potential applications of plasma and urinary sEV as biomarkers in the context of transplantation. We focus on the attempts to use sEV as a noninvasive approach to detecting allograft rejection. Preliminary studies show that both sEV total levels and a set of specific molecules included in their cargo may be an evidence of ongoing allograft rejection.
Collapse
Affiliation(s)
- Justyna E. Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Anna Wardowska
- Department of Physiopathology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Centre for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznań, Poland;
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
46
|
Gu S, Qian L, Zhang Y, Chen K, Li Y, Wang J, Wang P. Significance of intratumoral infiltration of B cells in cancer immunotherapy: From a single cell perspective. Biochim Biophys Acta Rev Cancer 2021; 1876:188632. [PMID: 34626740 DOI: 10.1016/j.bbcan.2021.188632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy for cancer has provided new treatment approaches for malignant tumors, but there are low rates of response and high rates of resistance. The most recent sequencing method which is called single-cell RNA sequencing(scRNA-seq) determines the transcriptome at the single cell level, which allows high-resolution dynamic monitoring of the tumor microenvironment (TME) during immunotherapy. As an important part of humoral immunity, tumor-infiltrated B cells have been reported to have distinct functions in anti-tumor immunity, which are characterized by their RNA transcriptome, membrane surface receptors, and immunoglobulin secretion, suggesting great immunotherapeutic effects. On the basis of the important roles of B cells in immunotherapy reported in recent publications, we discuss the tumor-infiltrated B cells' subpopulations, differentiation trajectory, and interactions with other cells in the TME in this review, hoping to illustrate its significance in potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sijia Gu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
47
|
Moreau JM, Lowe MM. B Home or You Are In Trouble: B Cell Integrin-Mediated Recruitment Attenuates Skin Inflammation. J Invest Dermatol 2021; 141:1885-1887. [PMID: 34303469 DOI: 10.1016/j.jid.2021.02.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/20/2022]
Abstract
B cells were long presumed to be a minor and functionally unimportant component of cutaneous immunobiology. However, it is now clear that these lymphocytes are present in healthy skin and accumulate during inflammatory disease. Aira and Debes (2021) identify ⍺4ꞵ1 integrin-mediated recruitment of IL-10+ B cells as a key pathway in attenuating skin inflammation. Their work provides valuable insight into the potential for B cells to regulate skin pathology.
Collapse
Affiliation(s)
- Joshua M Moreau
- Department of Dermatology, University of California, San Francisco, California, USA.
| | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
48
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
49
|
Cherukuri A, Salama AD, Mehta R, Mohib K, Zheng L, Magee C, Harber M, Stauss H, Baker RJ, Tevar A, Landsittel D, Lakkis FG, Hariharan S, Rothstein DM. Transitional B cell cytokines predict renal allograft outcomes. Sci Transl Med 2021; 13:13/582/eabe4929. [PMID: 33627487 DOI: 10.1126/scitranslmed.abe4929] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Early immunological biomarkers that predict rejection and chronic allograft loss are needed to inform preemptive therapy and improve long-term outcomes. Here, we prospectively examined the ratio of interleukin-10 (IL-10) to tumor necrosis factor-α (TNFα) produced by transitional-1 B cells (T1B) 3 months after transplantation as a predictive biomarker for clinical and subclinical renal allograft rejection and subsequent clinical course. In both Training (n = 162) and Internal Validation (n = 82) Sets, the T1B IL-10/TNFα ratio 3 months after transplantation predicted both clinical and subclinical rejection anytime in the first year. The biomarker also predicted subsequent late rejection with a lead time averaging 8 months. Among biomarker high-risk patients, 60% had early rejection, of which 48% recurred later in the first posttransplant year. Among high-risk patients without early rejection, 74% developed rejection later in the first year. In contrast, only 5% of low-risk patients had early and 5% late rejection. The biomarker also predicted rejection in an External Validation Set (n = 95) and in key patient subgroups, confirming generalizability. Biomarker high-risk patients exhibited progressively worse renal function and decreased 5-year graft survival compared to low-risk patients. Treatment of B cells with anti-TNFα in vitro augmented the IL-10/TNFα ratio, restored regulatory activity, and inhibited plasmablast differentiation. To conclude, the T1B IL-10/TNFα ratio was validated as a strong predictive biomarker of renal allograft outcomes and provides a rationale for preemptive therapeutic intervention with TNF blockade.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan D Salama
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Rajil Mehta
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ciara Magee
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Mark Harber
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Hans Stauss
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London NW3 2QG, UK
| | - Richard J Baker
- Renal Unit, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Amit Tevar
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas Landsittel
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA. .,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
50
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|