1
|
Wei W, Mansouri A, Zoutendijk SL, Langer S, Liagkouridis I, Hopf NB, Duca RC. Plasticizer sources and concentrations in indoor environments in Europe: A systematic review of existing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179080. [PMID: 40088787 DOI: 10.1016/j.scitotenv.2025.179080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
We conducted a literature review to gain insight into the European state-of-the-art of plasticizer research in indoor environments. This review focused on indoor plasticizer concentrations in the gas and sorbed phases and source material emissions. We found that indoor plasticizer exposure studies started in the year 2000. Residential and educational buildings were the most common locations for field studies, representing 65 % and 24 % of the total indoor samples, respectively. Settled dust, which accounted for 74 % of the indoor samples, was the most frequently studied matrix. Vinyl flooring and plastic products were the most studied source materials, representing 52 % and 20 % of the source samples, respectively. Studies conducted in other indoor environments or for other source materials were rare. Phthalates were the most studied plasticizers. Di-2-ethylhexyl phthalate (DEHP, 0.8-3214 μg/g), diisononyl phthalate (DiNP, 0.3-955 μg/g), and dibutyl phthalate (DnBP, 0.02-799 μg/g) had the highest median/mean concentrations in settled dust among all the studies. DnBP (42-2432 ng/m3), diethyl phthalate (DEP, 4-1300 ng/m3), dimethyl phthalate (DMP, 1-1221), and DEHP (4-916 ng/m3) had the highest median/mean concentrations in the air among all the studies. Regional and temporal variations were observed, with a decrease in concentration over time for certain phthalates, such as DEHP and DEP, and an increase in concentration for some non-phthalate plasticizers, such as bis(2-ethylhexyl) terephthalate (DEHT). This data inventory provides a base for future exposure assessments for the general population in the EU project Partnership for the Assessment of Risks from Chemicals (PARC).
Collapse
Affiliation(s)
- Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Environmental Quality Observatory (OQEI), 84 avenue Jean Jaurès, 77447 Marne la Vallée, France.
| | - Aya Mansouri
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Environmental Quality Observatory (OQEI), 84 avenue Jean Jaurès, 77447 Marne la Vallée, France.
| | - Sebastiaan L Zoutendijk
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, PO Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Sarka Langer
- IVL Swedish Environmental Research Institute, Environmental Chemistry, PO Box 530 21, Göteborg, Sweden.
| | - Ioannis Liagkouridis
- IVL Swedish Environmental Research Institute, Environmental Chemistry, PO Box 530 21, Göteborg, Sweden.
| | - Nancy B Hopf
- Unisanté, Center for Primary Care and Public Health, University of Lausanne, Switzerland.
| | - Radu Corneliu Duca
- Laboratoire National de Santé (LNS), Department of Health Protection, Unit Environmental Hygiene and Human Biological Monitoring, 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Chen Z, Tian E, Jiang Y, Mo J. Global perspectives on indoor phthalates and alternative plasticizers: Occurrence and key transport parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136506. [PMID: 39577293 DOI: 10.1016/j.jhazmat.2024.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Phthalates and emerging alternative plasticizers have garnered significant attention due to their ubiquitous presence indoors and potential adverse health effects. However, the occurrences and key transport parameters of indoor alternative plasticizers have not been sufficiently summarized and analyzed, complicating exposure evaluation and pollution control efforts. This study addresses the gap by providing a comprehensive overview of the occurrence and key transport parameters of the most reported plasticizers, including 10 phthalates and 14 alternative plasticizers. The plasticizer content in source materials was found to range up to 27.6 wt%. An empirical formula was developed to predict the surface-adjacent gaseous plasticizer concentration (y0) of source materials, with values ranging from 0.015 to 64.7 μg/m3. Variations in plasticizer concentrations across source, gas, particle, and dust phases were thoroughly analyzed over both temporal and spatial dimensions from a global perspective, indicating significant differences between continents over time. A detailed investigation of phthalate regulations across continents suggests that the earlier enactment of phthalate bans in Europe is likely a key factor contributing to the most significant decrease in indoor phthalate concentrations. Furthermore, after systematically reviewing mass-transfer and partitioning theories, we developed empirical formulas to predict mass-transfer coefficients (hm) and partition coefficients (K) for both phthalates and alternative plasticizers. Notably, the hm and K parameters of the plasticizers were thoroughly calculated for typical indoor interfaces, including airborne particles, settled dust, and impermeable and permeable materials. Overall, this study advances the understanding of indoor plasticizers, facilitating health-risk assessment and the development of suitable control and monitoring technologies.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jinhan Mo
- Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Wu Y, Li H, Fan Y, Cohen Hubal EA, Little JC, Eichler CMA, Bi C, Song Z, Qiu S, Xu Y. Quantifying EDC Emissions from Consumer Products: A Novel Rapid Method and Its Application for Systematic Evaluation of Health Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22700-22713. [PMID: 39628321 DOI: 10.1021/acs.est.4c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widely used in consumer products and have been associated with adverse public health outcomes and significant economic costs. We developed a rapid chamber method for measuring EDC emissions from consumer products, significantly reducing the time to reach steady state from weeks or months to minutes or hours. Using this method, we quantified EDC emissions from a wide range of products, determined the emission-control parameters, and established their relationship with the EDC content (Wf) and physicochemical properties. By incorporating Wf data from consumer product databases and applying stochastic models, we systematically estimated emissions for 400 EDC-product combinations and assessed the associated exposure and disease burden for the U.S. population. Our results suggest that more than 60% of these combinations could result in carcinogenic disability-adjusted life years (DALYs) above the acceptable threshold. The overall disease burden caused by EDCs in consumer products can be substantial, with DALYs exceeding those associated with other pollutants, such as particulate matter, in a worst-case scenario. This study provides a valuable tool for prioritizing hazardous EDCs in consumer products, evaluating safer alternatives, and formulating effective intervention strategies, thereby supporting policymakers and manufacturers in making informed, sustainable decisions.
Collapse
Affiliation(s)
- Yili Wu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Hongwan Li
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Yujie Fan
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27709, United States
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chenyang Bi
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Zidong Song
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Shuolin Qiu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Guan H, Jia Q, Guo Z, Han X, Zhang H, Hao L, Wu C, Liu J. Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method. Molecules 2024; 29:4445. [PMID: 39339440 PMCID: PMC11434159 DOI: 10.3390/molecules29184445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present in large quantities in indoor environments. Understanding the emission of SVOCs from building materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality. In this study, a reference method employing custom-designed microchambers (630 mL) was optimized by improving the structure of the gas path and adding polytetrafluoroethylene inner coating to the chamber. After optimization, the recoveries of the microchamber method were significantly improved (75.4-96.7%), and the background in the microchamber was greatly reduced (<0.02 μg/h). By using the microchamber method, 33 SVOCs (including two alkanes, one aromatic, one nitrogen compound, and twenty-nine oxygenated compounds) and 32 SVOCs (including seven alkanes, eight aromatics, and seventeen oxygenated compounds) were detected in the emissions of the architectural coating and the PVC flooring samples, respectively. The area-specific emission rates (SERa) of total SVOCs emitted from architectural coatings and PVC floorings were in the range of 4.09-1309 μg/m2/h) (median: 10.3 μg/m2/h) and 0.508-345 μg/m2/h (median: 11.9 μg/m2/h), respectively. Propanoic acid had the highest SERa (3143 μg/m2/h) in architectural coatings, while methylbenzene (345 μg/m2/h), 2-methylnaphthalene (65.2 μg/m2/h), and naphthalene (60.3 μg/m2/h) were main SVOCs emitted from PVC floorings. Meanwhile, the average second-stage (adsorbed phase) emission mass of the total SVOCs accounts for 66.3% and 47.3% in architectural coatings and PVC floorings, respectively, suggesting that the SVOCs emitted from building materials have a strong tendency to be absorbed on the surface of the room, e.g., the interior wall, the desk or even the skin.
Collapse
Affiliation(s)
- Hongyan Guan
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Qi Jia
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Zhongbao Guo
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Xu Han
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Huiyu Zhang
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Liteng Hao
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
5
|
Eichler CMA, Chang NY, Cohen Hubal EA, Amparo DE, Zhou J, Surratt JD, Morrison GC, Turpin BJ. Cloth-Air Partitioning of Neutral Per- and Polyfluoroalkyl Substances (PFAS) in North Carolina Homes during the Indoor PFAS Assessment (IPA) Campaign. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15173-15183. [PMID: 37757488 PMCID: PMC11182342 DOI: 10.1021/acs.est.3c04770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Partitioning of per- and polyfluoroalkyl substances (PFAS) to indoor materials, including clothing, may prolong the residence time of PFAS indoors and contribute to exposure. During the Indoor PFAS Assessment (IPA) Campaign, we measured concentrations of nine neutral PFAS in air and cotton cloth in 11 homes in North Carolina, for up to 9 months. Fluorotelomer alcohols (i.e., 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) are the dominant target species in indoor air, with concentrations ranging from 1.8 to 49 ng m-3, 1.2 to 53 ng m-3, and 0.21 to 5.7 ng m-3, respectively. In cloth, perfluorooctane sulfonamidoethanols (i.e., MeFOSE and EtFOSE) accumulated most significantly over time, reaching concentrations of up to 0.26 ng cm-2 and 0.24 ng cm-2, respectively. From paired measurements of neutral PFAS in air and suspended cloth, we derived cloth-air partition coefficients (Kca) for 6:2, 8:2, and 10:2 FTOH; ethylperfluorooctane sulfonamide (EtFOSA); MeFOSE; and EtFOSE. Mean log(Kca) values range from 4.7 to 6.6 and are positively correlated with the octanol-air partition coefficient. We investigated the effect of the cloth storage method on PFAS accumulation and the influence of home characteristics on air concentrations. Temperature had the overall greatest effect. This study provides valuable insights into PFAS distribution, fate, and exposure indoors.
Collapse
Affiliation(s)
- Clara M A Eichler
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Naomi Y Chang
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Elaine A Cohen Hubal
- U.S. EPA, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27711, United States
| | - Daniel E Amparo
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Jiaqi Zhou
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Jason D Surratt
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
- University of North Carolina at Chapel Hill, College of Arts and Sciences, Department of Chemistry, Chapel Hill, North Carolina 27599-3290, United States
| | - Glenn C Morrison
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Barbara J Turpin
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| |
Collapse
|
6
|
Duc BV, Huong VT, Ly NH, Jeong J, Jang S, Vasseghian Y, Zoh KD, Joo SW. Polyaromatic hydrocarbon thin film layers on glass, dust, and polyurethane foam surfaces. CHEMOSPHERE 2023; 330:138668. [PMID: 37060959 DOI: 10.1016/j.chemosphere.2023.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
An investigation was conducted into the dynamic behavior of two polyaromatic hydrocarbon (PAH) semi-volatile organic compound (SVOC) naphthalene (NAP) and benzo [ghi]perylene (BghiP) in air and on various surfaces including glass, dust, and polyurethane foam (PUF) to understand their interaction with different media. A confocal fluorescence microscope and an infrared microscope were employed to detect and monitor the concentration-, time-, and temperature-dependent changes of the aromatic NAP and BghiP species on the surfaces. Infrared two-dimensional mapping of the vibrational characteristic peaks was used to track the two PAHs on the surfaces. Gas chromatography-mass spectrometry (GC-MS) was employed to measure the gaseous concentrations. The sorption of NAP and BghiP on the surfaces was estimated using Arizona desert sand fine (ISO 12103-1 A2) dust and organic contaminant household (SRM 2585) dust. The surface-to-air partition coefficients of NAP and BghiP were estimated on the different surfaces of glass, dust, and PUF. Molecular dynamic simulations were performed on dust surfaces based on the Hatcher model to understand the behavior of NAP and BghiP on dust surfaces. The Weschler-Nazaroff model was introduced to predictPAH film accumulation on the surfaces, providing a better understanding of PAH interaction with different environmental media. These findings could contribute to developing effective strategies to mitigate the adverse impact of PAHs on the environment and human health.
Collapse
Affiliation(s)
- Bui Van Duc
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea
| | - Vu Thi Huong
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jian Jeong
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea.
| | - Yasser Vasseghian
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan.
| | - Kyung-Duk Zoh
- Institute of Health & Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
7
|
Wang C, Eichler CMA, Bi C, Delmaar CJE, Xu Y, Little JC. A rapid micro chamber method to measure SVOC emission and transport model parameters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:818-831. [PMID: 36897109 DOI: 10.1039/d2em00507g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assessing exposure to semivolatile organic compounds (SVOCs) that are emitted from consumer products and building materials in indoor environments is critical for reducing the associated health risks. Many modeling approaches have been developed for SVOC exposure assessment indoors, including the DustEx webtool. However, the applicability of these tools depends on the availability of model parameters such as the gas-phase concentration at equilibrium with the source material surface, y0, and the surface-air partition coefficient, Ks, both of which are typically determined in chamber experiments. In this study, we compared two types of chamber design, a macro chamber, which downscaled the dimensions of a room to a smaller size with roughly the same surface-to-volume ratio, and a micro chamber, which minimized the sink-to-source surface area ratio to shorten the time required to reach steady state. The results show that the two chambers with different sink-to-source surface area ratios yield comparable steady-state gas- and surface-phase concentrations for a range of plasticizers, while the micro chamber required significantly shorter times to reach steady state. Using y0 and Ks measured with the micro chamber, we conducted indoor exposure assessments for di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP) and di(2-ethylhexyl) terephthalate (DEHT) with the updated DustEx webtool. The predicted concentration profiles correspond well with existing measurements and demonstrate the direct applicability of chamber data in exposure assessments.
Collapse
Affiliation(s)
- Chunyi Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chenyang Bi
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Christiaan J E Delmaar
- National Institute for Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Weng J, Yu H, Zhang H, Gao L, Qiao L, Ai Q, Liu Y, Liu Y, Xu M, Zhao B, Zheng M. Health Risks Posed by Dermal and Inhalation Exposure to High Concentrations of Chlorinated Paraffins Found in Soft Poly(vinyl chloride) Curtains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5580-5591. [PMID: 36976867 DOI: 10.1021/acs.est.2c07040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 μg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 μg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.
Collapse
Affiliation(s)
- Jiyuan Weng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoran Yu
- Dalian Institute of Chemical Physics, Chinese Academy Of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy Of Sciences, Dalian 116023, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Sohn S, Huong VT, Nguyen PD, Ly NH, Jang S, Lee H, Lee C, Lee JI, Vasseghian Y, Joo SW, Zoh KD. Equilibria of semi-volatile isothiazolinones between air and glass surfaces measured by gas chromatography and Raman spectroscopy. ENVIRONMENTAL RESEARCH 2023; 218:114908. [PMID: 36442521 DOI: 10.1016/j.envres.2022.114908] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Trace amounts of semi-volatile organic compounds (SVOCs) of the two isothiazolinones of 2-methylisothiazol-3(2H)-one (MIT) and 2-octyl-4-isothiazolin-3-one (OIT) were detected both in the air and on glass surfaces. Equilibria of SVOCs between air and glass were examined by solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Surface to air distribution ratios of Ksa for MIT and OIT were determined to be 5.10 m and 281.74 m, respectively, suggesting more abundant MIT in the gas phase by a factor of ∼55. In addition, a facile method of silver nanocube (AgNC)-assisted surface-enhanced Raman scattering (SERS) has been developed for the rapid and sensitive detection of MIT and OIT on glass surfaces. According to MIT and OIT concentration-correlated SERS intensities of Raman peaks at ∼1585 cm-1 and ∼1125 cm-1, respectively. Their calibration curves have been obtained in the concentration ranges between 10-3 to 10-10 M and 10-3 to 10-11 M with their linearity of 0.9986 and 0.9989 for MIT and OIT, respectively. The limits of detection (LODs) of the two isothiazolinones were estimated at 10-10 M, and 10-11 M for MIT and OIT, respectively. Our results indicate that AgNC-assisted SERS spectra are a rapid and high-ultrasensitive method for the quantification of MIT and OIT in practical applications. The development of analytical methods and determination of the Ksa value obtained in this study can be applied to the prediction of the exposure to MIT and OIT from various chemical products and dynamic behaviors to assess human health risks in indoor environments.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Phuong-Dong Nguyen
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Hyewon Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Kim MK, Kim T, Choi J, Joo YE, Park H, Lee H, Lee C, Jang S, Vasseghian Y, Joo SW, Lee JI, Zoh KD. Analysis of semi-volatile organic compounds in indoor dust and organic thin films by house type in South Korea. ENVIRONMENTAL RESEARCH 2022; 214:113782. [PMID: 35810805 DOI: 10.1016/j.envres.2022.113782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, semi-volatile organic compounds (SVOCs) in samples of indoor dust and organic thin films obtained from 100 residential houses in South Korea, were examined, based on both target analysis using gas chromatography-mass spectrometry (GC-MS) and non-target analysis by gas chromatography-quadrupole time-of flight mass spectrometry (GC-QTOF-MS) screening. In the targeted approach, phthalates and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dust and organic film samples, to find that both these classes of SVOCs were detected in dust and organic film samples, with the median concentrations of eight phthalates (Σ8 phthalate) and 16 PAHs (Σ16 PAH) being 1015.93 μg/g and 1824.97 ng/g in the dust samples, and 75.79 μg/m2 and 2252.78 ng/m2 in the organic film samples, respectively. Among the phthalates, in all house types. bis(2-ethylhexyl) phthalate (DEHP) was detected at the highest concentration, followed by dibutyl phthalate (DBP) and diisobuthyl phthalate (DiBP), with DEHP levels found to be highest in dwelling houses. DEHP levels were found to be significantly associated with building age and renovation status. Lower levels of DEHP were detected in houses less than 10 years old or that had undergone renovation in the previous 10 years. Among the assessed PAHs, a significant correlation was detected between benzo(a)pyrene in dust and building age (p < 0.05). These findings imply that the inhabitants of older houses are at a greater risk of exposure to SVOCs originating from indoor dust and organic films. Non-target screening of selected dust and organic film samples using GC-QTOF-MS data revealed the presence of numerous SVOC compounds, including triphenylphosphine oxide, (Z)-9-octadecenamide, and cyclosiloxanes, along with certain organophosphate flame retardants including tris(1-chloro-2-propyl) phosphate (TCPP) and tris(1,3-dichloroisopropyl) phosphate (TDCPP), and plasticizers. These compounds identified in the non-target screening are of emerging concern, and their presence in dust and organic films needs to be estimated.
Collapse
Affiliation(s)
- Moon-Kyung Kim
- Institute of Health & Environment, Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeyeon Kim
- Institute of Health & Environment, Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiseon Choi
- Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea
| | - Ye-Eun Joo
- Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea
| | - Heungjoo Park
- Institute of Health & Environment, Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea.
| | - Kyung-Duk Zoh
- Institute of Health & Environment, Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Wang H, Xiong J, Wei W. Measurement methods and impact factors for the key parameters of VOC/SVOC emissions from materials in indoor and vehicular environments: A review. ENVIRONMENT INTERNATIONAL 2022; 168:107451. [PMID: 35963058 DOI: 10.1016/j.envint.2022.107451] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The emissions of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from indoor building and vehicle cabin materials can adversely affect human health. Many mechanistic models to predict the VOC/SVOC emission characteristics have been proposed. Nowadays, the main obstacle to accurate model prediction is the availability and reliability of the physical parameters used in the model, such as the initial emittable concentration, the diffusion coefficient, the partition coefficient, and the gas-phase SVOC concentration adjacent to the material surface. The purpose of this work is to review the existing methods for measuring the key parameters of VOCs/SVOCs from materials in both indoor and vehicular environments. The pros and cons of these methods are analyzed, and the available datasets found in the literature are summarized. Some methods can determine one single key parameter, while other methods can determine two or three key parameters simultaneously. The impacts of multiple factors (temperature, relative humidity, loading ratio, and air change rate) on VOC/SVOC emission behaviors are discussed. The existing measurement methods span very large spatial and time scales: the spatial scale varies from micro to macro dimensions; and the time scale in chamber tests varies from several hours to one month for VOCs, and may even span years for SVOCs. Based on the key parameters, a pre-assessment approach for indoor and vehicular air quality is introduced in this review. The approach uses the key parameters for different material combinations to pre-assess the VOC/SVOC concentrations or human exposure levels during the design stage of buildings or vehicles, which can assist designers to select appropriate materials and achieve effective source control.
Collapse
Affiliation(s)
- Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Observatory (OOAI), 77447 Champs-sur-Marne, France
| |
Collapse
|
12
|
Cao J, Xie S, Cheng Z, Li R, Xu Y, Huang H. Impacts of sampling-tube loss on quantitative analysis of gaseous semi-volatile organic compounds (SVOCs) using an SPME-based active sampler. CHEMOSPHERE 2022; 301:134780. [PMID: 35500633 DOI: 10.1016/j.chemosphere.2022.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Active samplers are widely used in the quantification of gaseous semi-volatile organic compounds (SVOCs). A sampling tube is often assembled upstream of the sampler, especially in the active samplers used for separating the particle-phase and gas-phase SVOCs and in the newly-designed active sampler based on solid-phase microextraction (SPME). However, gaseous SVOCs can be easily adsorbed by the sampling tube, which may induce significant errors to the quantitative results. Taking the SPME-based active sampler as an example, a mass-transfer model was developed to characterize the sampling-tube loss of gaseous SVOCs. Experiments involving six SVOCs were conducted. The model predictions (with a best-fit surface/air partition coefficient of SVOCs) were found to be consistent with the measurements. Both model predictions and experimental data indicated that the measured concentrations were significantly lower than the actual concentration (around 60% lower) due to the sampling-tube loss. The duration of sampling-tube loss (τe, minutes to days) varied with the volatility of SVOCs (vapor pressure, Vp), i.e., log τe linearly increased as increasing log Vp. The relationship could be helpful for determining the sampling strategies to eliminate (reduce) the effects of sampling-tube loss according to the volatility of SVOCs. The above conclusions may be also applicable for other active samplers of gaseous SVOCs. However, further studies are required to quantify the effects of sampling-tube loss for other active samplers due to the difference in the size and shape of the sampling tube between them and the SPME-based active sampler. The corresponding mass-transfer model and experimental procedure may require adjustment as appropriate.
Collapse
Affiliation(s)
- Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
| | - Siqi Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhibin Cheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Runze Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Wang J, Xu Z, Yao J, Hu M, Sun Y, Dong C, Bu Z. Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children's Exposure Assessments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138011. [PMID: 35805676 PMCID: PMC9265414 DOI: 10.3390/ijerph19138011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Phthalates are typical chemical pollutants in kindergarten classrooms since numerous artificial products (e.g., polyvinyl chloride (PVC) floorings, soft polymers and plastic toys) that might contain phthalates are widely distributed in kindergarten classrooms. Although Chinese preschool children spend a considerable amount of their waking hours (>8 h/day) in kindergartens, phthalate exposure in such indoor environment has not been given much attention. In this study, the mass fractions of six phthalates in twenty-six artificial products (fifteen flat decoration materials and eleven plastic toys) commonly found in Chinese kindergarten classrooms were measured. Di-2-ethylhexyl phthalate (DEHP) was the most predominant compound in all materials. The emission characteristics of the DEHP from these materials were further investigated. The measured emission characteristics were used for predicting multi-phase DEHP concentrations in kindergarten classrooms by applying a mass transfer model. The modeled concentrations were comparable with those measured in the real environment, indicating that these products might be the major sources of DEHP in Chinese kindergarten classrooms. Preschool children’s exposure to DEHP was found to be 0.42 μg/kg/day in kindergartens under baseline conditions, accounting for 18% of the total exposure to DEHP in Chinese indoor environments.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Urban Construction, Hangzhou Polytechnic, Hangzhou 311402, China;
| | - Zefei Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Jingyu Yao
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Yuewen Sun
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
- Correspondence:
| |
Collapse
|
14
|
Ghislain M, Reyrolle M, Sotiropoulos JM, Pigot T, Plaisance H, Le Bechec M. Study of the Chemical Ionization of Organophosphate Esters in Air Using Selected Ion Flow Tube-Mass Spectrometry for Direct Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:865-874. [PMID: 35416666 DOI: 10.1021/jasms.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organophosphate esters are an emerging environmental concern since they spread persistently across all environmental compartments (air, soil, water, etc.). Measurements of semivolatile organic compounds are important but not without challenges due to their physicochemical properties. Selected ion flow tube-mass spectrometry (SIFT-MS) can be relevant for their analysis in air because it is a direct analytical method without separation that requires little preparation and no external calibration. SIFT-MS is based on the chemical reactivity of analytes with reactant ions. For volatile and semivolatile organic compound analysis in the gas phase, knowledge of ion-molecule reactions and kinetic parameters is essential for the utilization of this technology. In the present work, we focused on organophosphate esters, semivolatile compounds that are now ubiquitous in the environment. The ion-molecule reactions of eight precursor ions that are available in SIFT-MS (H3O+, NO+, O2•+, OH-, O•-, O2•-, NO2-, and NO3-) with six organophosphate esters were investigated. The modeling of ion-molecule reaction pathways by calculations supported and complemented the experimental work. Organophosphate esters reacted with six of the eight precursor ions with characteristic reaction mechanisms, such as protonation with hydronium precursor ions and association with NO+ ions, while nucleophilic substitution occurred with OH-, O•-, and O2•-. No reaction was observed with NO2- and NO3- ions. This work shows that the direct analysis of semivolatile organic compounds is feasible using SIFT-MS with both positive and negative ionization modes.
Collapse
Affiliation(s)
- Mylène Ghislain
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Marine Reyrolle
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Jean-Marc Sotiropoulos
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Thierry Pigot
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Hervé Plaisance
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Mickael Le Bechec
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| |
Collapse
|
15
|
Gilliam MA, van Cura D, Garner G, Seeley A, Sekol R. Empirical correlations for diffusivity and the partition coefficient for phthalates in PVC materials and modelling emissions of automotive sealants. CHEMOSPHERE 2022; 294:133638. [PMID: 35085611 DOI: 10.1016/j.chemosphere.2022.133638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Polyvinylchloride (PVC) based sealants commonly contain phthalate plasticizers that are emitted into the air over time. The low volatility classifies them as Semi-Volatile Organic Compounds (SVOCs). Empirical relationships are determined for estimation of the diffusion and solid/air partition coefficients for phthalates in PVC materials using data compiled from studies of phthalates in other PVC materials, such as vinyl flooring. The relationships are functions of vapor pressure of the compounds, which are determined from a Clausius-Clapeyron equation. A test chamber was constructed to continuously sample the air and measure the air concentration based on a Solid Phase MicroExtraction (SPME) method. The partition coefficient was tested with dioctyl terephthalate (DOTP) in a PVC-based sealant, in which the results fell within the reasonable error of the value predicted from the empirical relationship. The model is applied to outdoor and manufacturing scenarios to evaluate the effect of temperature and mass transfer coefficient.
Collapse
Affiliation(s)
- Mary A Gilliam
- Kettering University, Flint, MI, USA; General Motors Research & Development, Warren, MI, USA.
| | | | | | | | - Ryan Sekol
- General Motors Research & Development, Warren, MI, USA
| |
Collapse
|
16
|
Quantitative Analysis of Indoor Gaseous Semi-Volatile Organic Compounds Using Solid-Phase Microextraction: Active Sampling and Calibration. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Semi-volatile organic compounds (SVOCs) are important pollutants in indoor environments. Quantification of gaseous SVOC concentrations is essential to assess the pollution levels. Solid-phase microextraction (SPME) is considered to be an attractive sampling technique with merits, including simplicity of use, rapid sampling, and solvent free. However, the applications of SPME for sampling gaseous SVOCs are often limited by the fluctuating velocity of indoor air (leading to an unstable sampling rate) and the uncertainties associated with the traditional calibration of SPME. Therefore, we established an SPME-based active sampler to ensure the stable sampling of SVOCs in fluctuating air and developed a two-step calibration method based on the sampling principle of SPME. The presented method and a traditional method (sorbent tubes packed with Tenax TA) were simultaneously used to measure SVOC concentrations in an airstream generated in experiments. Three typical indoor SVOCs, diisobutyl phthalate (DiBP), tris (1-chloro-2-propyl) phosphate (TCPP), and benzyl butyl phthalate (BBzP) were chosen as the analytes. Mean concentrations measured by SPME agreed well with the sorbent tubes (relative deviations < 12%), supporting the feasibility of the presented method. Further studies are expected to facilitate the application of the presented method (especially the problem associated with the sampling-tube loss of low volatile SVOCs).
Collapse
|
17
|
Kim T, Sohn S, Park H, Jang S, Lee C, Lee JI, Joo SW, Zoh KD. Surface-dependent gas equilibrium of semi-volatile organic compounds on glass, wood, and polyurethane foam using SPME-GC/MS. CHEMOSPHERE 2022; 291:132869. [PMID: 34774608 DOI: 10.1016/j.chemosphere.2021.132869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The surface-dependent evaporation behavior of phthalates as semi-volatile organic compounds (SVOCs) on glass, wood, and polyurethane foam (PUF) was investigated. Three phthalates of di-2-ethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBP), and dibutyl phthalate (DBP) were studied to compare the amount of gases vaporized from their surfaces. A 10 mL silicate glass vial was used to compare the gas equilibrium of the phthalates after 2 h. The gases accumulated in the air were transferred to a solid-phase microextraction (SPME) column and analyzed by gas chromatography-mass spectrometry (GC-MS). As correlated with the physicochemical properties of the phthalates, including molecular weights and vapor pressure, the surface-air partition coefficients (Ksa) were found to be in the range of 101-105 m, 106-107 m, and 107-109 m on glass, wood, and PUF, respectively, implying that a significant amount of phthalates are retained on wood and PUF surfaces as compared to glass, and only a trace amount of phthalates can be volatilized into the air, especially the less volatile DEHP. The three-dimensional (3D) morphologies of glass and wood were also examined using a white-light interferometric surface profile microscope and an atomic force microscope (AFM). In contrast to smooth glass surfaces within the sub-micrometer vertical range, the wood surfaces exhibited uneven irregular structures at a height of 5-30 μm. The rough wood surfaces were found to adsorb substantial amounts of gases to prevent the effective volatilization of phthalates into the air, especially the low molecular DBP. Our results imply that wood and PUF surfaces may be superior to glass surfaces in storage and reduction of phthalates in the air, especially DBP.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Heungjoo Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, 143-747, South Korea
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, South Korea
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, 13810, South Korea
| | - Sang-Woo Joo
- Department of Information Communication, Materials, Chemistry Convergence Technology, Soongsil University, Seoul, 06978, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Zhang X, Wang H, Xu B, Wang H, Wang Y, Yang T, Tan Y, Xiong J, Liu X. Predicting the emissions of VOCs/SVOCs in source and sink materials: Development of analytical model and determination of the key parameters. ENVIRONMENT INTERNATIONAL 2022; 160:107064. [PMID: 34968991 PMCID: PMC8951230 DOI: 10.1016/j.envint.2021.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
The emissions of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from indoor materials pose an adverse effect on people's health. In this study, a new analytical model was developed to simulate the emission behaviors for both VOCs and SVOCs under ventilated conditions. Based on this model, we further introduced a hybrid optimization method to accurately determine the key parameters in the model: the initial emittable concentration, the diffusion coefficient, the material/air partition coefficient, and the chamber surface/air partition coefficient (for SVOCs). Experiments for VOC emissions from solid wood furniture were performed to determine the key parameters. We also evaluated the hybrid optimization method with the data of flame retardant emissions from polyisocyanurate rigid foam and VOC emissions from a panel furniture in the literature. The correlation coefficients are high during the fitting process (R2 = 0.92-0.99), demonstrating effectiveness of this method. In addition, we observed that chemical properties could transfer from SVOC-type to VOC-type with the increase of temperature. The transition temperatures from SVOC-type to VOC-type for the emissions of tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCIPP) were determined to be about 45 ℃ and 35 ℃, respectively. The present study provides a unified modelling and methodology analysis for both VOCs and SVOCs, which should be very useful for source/sink characterization and control.
Collapse
Affiliation(s)
- Xuankai Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baoping Xu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanzheng Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanda Tan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
19
|
Plaisance H, Ghislain M, Desauziers V. Assessment of gas-phase concentrations of organophosphate flame retardants at the material surface using a midget emission cell coupled to solid-phase microextraction. Anal Chim Acta 2021; 1186:339100. [PMID: 34756255 DOI: 10.1016/j.aca.2021.339100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022]
Abstract
Actual methods for on-site measurement of gaseous concentrations of Semi-Volatile Organic Compounds (SVOCs) at the material surface (y0) are not yet sufficiently developed mainly due to sampling difficulties. These concentrations are the key data to improve knowledge about indoor sources and human exposure to SVOCs. To the end, a specific emission cell coupled to solid-phase microextraction (SPME) was developed. The main challenge with this method is calibration because of very low volatility of SVOCs and static sampling mode. In this study, a generating system of organophosphate flame retardants (OFRs) using polyurethane foam as source combined with an active sampling method with Tenax tubes was proposed as a novel calibration device for SPME-based method. The generating system delivered stable OFR concentrations after 190 h of operation with a variation not exceeding ±5%. It allowed to obtain robust calibrations for tris-(2-chloropropyl)-phosphate (TCPP) and tri-butyl-phosphate (TBP) measured with the emission cell coupled to SPME-based method, define the optimal sampling requirements and achieve reproducible and accurate measurements of y0 at μg.m-3 level. TCPP and TBP gas-phase concentrations at the polyurethane foam surface (y0) were followed up over more 228 days under controlled temperature conditions. A high stability of these concentrations was observed showing that polyurethane foam acts as a stable and continuous source of organophosphate flame retardants indoors. This novel method should be useful for assessing the dynamic of emissions from indoor sources and potential exposure to SVOCs in indoor environments.
Collapse
Affiliation(s)
- Herve Plaisance
- IPREM, IMT Mines Ales, Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Pau, France.
| | - Mylene Ghislain
- IPREM, IMT Mines Ales, Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Pau, France
| | - Valerie Desauziers
- IPREM, IMT Mines Ales, Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Pau, France
| |
Collapse
|
20
|
Bu Z, Hu M, Yuan F, Xu Y, Dong C, Zhang N, Mmereki D, Cao J, Zheng Y. Phthalates in Chinese vehicular environments: Source emissions, concentrations, and human exposure. INDOOR AIR 2021; 31:2118-2129. [PMID: 34288145 DOI: 10.1111/ina.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are typical air pollutants in vehicular environment since numerous synthetic materials that might contain phthalates are widely used to fabricate vehicle interiors (e.g., seat cushions, floor mats and dashboards). Hitherto, the importance of phthalate pollution in vehicular environment is not well-recognized because people spend only a small portion (around 8%) of their time in vehicles. In this study, the mass fractions of six phthalates in nine materials commonly used in Chinese vehicles (floor mats and seat cushions) were measured. Two phthalates, di-n-butyl phthalate (DnBP) and di-2-ethylhexyl phthalate (DEHP), were identified in most materials (the other phthalates were not detected). The emission characteristics of DnBP and DEHP from these materials were further investigated. The measured emission parameters were used as input for a mass-transfer model to estimate DnBP and DEHP concentrations in cabin air. Finally, the ratios between human exposures (via inhalation and dermal absorption from the gas phase) in vehicular environment and the total exposures in typical indoor environments (e.g., residences and offices) were estimated to be up to 110% and 20% for DnBP and DEHP, respectively. Based on these results, the vehicular environment might be a considerable site for human exposure to airborne phthalates.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fangzhou Yuan
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yousheng Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nan Zhang
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Daniel Mmereki
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Youqu Zheng
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
21
|
Yang T, Wang H, Zhang X, Xiong J, Huang S, Koutrakis P. Characterization of phthalates in sink and source materials: Measurement methods and the impact on exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122689. [PMID: 32361130 DOI: 10.1016/j.jhazmat.2020.122689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The fate and transport of semi-volatile organic compounds (SVOCs) in residential environments is significantly influenced by emission and sorption processes, which can be characterized by three key parameters: the gas-phase SVOC concentration adjacent to the material surface (y0); the diffusion coefficient (Dm); and the partition coefficient (K). Accurate determination of these three key parameters is critical for investigating SVOC mass transfer principles, and for assessing human health risks. Based on the mass transfer process of phthalates in a ventilated chamber, a novel method is developed to simultaneously measure Dm and K (key sorption parameters) in sink materials. The Dm and K of four target phthalates in a common T-shirt (sink material) are determined, and compared with those reported in literature. Results demonstrate that the measured parameters are in good agreement with those previously reported (relative deviation < 20 %), validating the effectiveness of proposed method. In addition, this method can be applied to determine y0, a key parameter from source materials. Results indicate that y0 determined with this method is consistent with that measured by literature method. Finally, dermal exposure analysis is performed, showing that dermal uptake of target phthalates is greatly affected by clothes.
Collapse
Affiliation(s)
- Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xuankai Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shaodan Huang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States
| |
Collapse
|
22
|
Addington CK, Phillips KA, Isaacs KK. Estimation of the Emission Characteristics of SVOCs from Household Articles Using Group Contribution Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:110-119. [PMID: 31822065 PMCID: PMC7346891 DOI: 10.1021/acs.est.9b06118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The risk to humans from chemicals in consumer products is a function of both hazard and exposure. There is an ongoing effort to quantify chemical exposure due to household articles such as furniture and building materials. Polymers and plastic materials make up a substantial portion of these articles, which may contain chemical additives such as plasticizers. When these additives are not bound to the polymer matrix, they are free to diffuse throughout it and leach or emit from the surface. We have implemented a methodology to predict plasticizer emission from polyvinyl chloride (PVC) products, based on group contribution methods that consider a free volume effect to estimate activity coefficients for chemicals in polymer-solvent solutions. Using the estimated activity coefficients, we calculate steady-state gas phase concentrations for plasticizers in equilibrium with the polymer surface (y0). The method uses only the structure of the chemical and polymer, the weight fraction, and physical-chemical properties, allowing rapid estimation of y0 at different weight fractions in PVC. Using the predicted y0 values and weight fraction data gleaned from public databases, we estimate plasticizer exposures associated with 72 PVC-containing articles using a high-throughput model. We also investigate potential exposures associated with plasticizer substitutions in these products.
Collapse
Affiliation(s)
- Cody K. Addington
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Katherine A. Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Kristin K. Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
- Corresponding Author: 109 T.W Alexander Dr., NC 27711, USA, , Phone: (919) 541-2785
| |
Collapse
|
23
|
Shinohara N, Mizukoshi A, Uchiyama M, Tanaka H. Emission characteristics of diethylhexyl phthalate (DEHP) from building materials determined using a passive flux sampler and micro-chamber. PLoS One 2019; 14:e0222557. [PMID: 31539387 PMCID: PMC6754160 DOI: 10.1371/journal.pone.0222557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
Emission rates of diethylhexyl phthalate (DEHP) from building materials, such as vinyl floorings and wall paper, determined using a passive flux sampler (PFS) were constant over the week-long measurement period. Emission rates for vinyl floorings and wallpaper were linearly correlated to the inverse of diffusion distance, which corresponds to the internal depth of the PFS. Surface-air DEHP concentrations (y0) were estimated as 1.3-2.3 μg/m3 for materials having a boundary layer molecular diffusion rate-limiting step. The partition coefficient (Kmaterial-air) was estimated as 3.3-7.5 × 1010 for these materials. Additionally, emission rates of DEHP from same building materials determined using a micro-chamber were 4.5-6.1 μg/m2/h. Mass transfer coefficients in the micro-chamber (hm) were estimated by comparing the results using the PFS and micro-chamber, and these were 1.1-1.2 × 10-3 and 8.1 × 10-4 m/s for vinyl floorings (smooth surface) and wallpaper (rough surface), respectively. The thickness of boundary layer on the surface of building materials in the micro-chamber were estimated to be 2.5-2.6 and 3.7 mm for vinyl floorings and wallpaper, respectively.
Collapse
Affiliation(s)
- Naohide Shinohara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Atsushi Mizukoshi
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mayumi Uchiyama
- MC Evolve Technologies Corporation, Inashiki, Ibaraki, Japan
| | - Hirofumi Tanaka
- MC Evolve Technologies Corporation, Inashiki, Ibaraki, Japan
| |
Collapse
|
24
|
Yang T, He Z, Zhang S, Tong L, Cao J, Xiong J. Emissions of DEHP from vehicle cabin materials: parameter determination, impact factors and exposure analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1323-1333. [PMID: 31289797 DOI: 10.1039/c9em00200f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are widely used in materials employed in vehicle interiors, causing poor in-cabin air quality. The emission characteristics of SVOCs from vehicle cabin materials can be characterized by two key parameters: the gas-phase SVOC concentration adjacent to the material surface (y0) and the convective mass transfer coefficient across the material surface (hm). Accurate determination of y0 and hm is fundamental in investigating SVOC emission principles and health risks. Considering that the steady state SVOC concentration (y) in a ventilated chamber changes with the ventilation rate (Q), we developed a varied ventilation rate (VVR) method to simultaneously measure y0 and hm for typical vehicle cabin materials. Experimental results for di(2-ethylhexyl)phthalate (DEHP) emissions from test materials indicated that the VVR method has the merits of simple operation, short testing time, and high accuracy. We also examined the influence of temperature (T) on y0 and hm, and found that both y0 and hm increase with increasing temperature. A theoretical correlation between y0 and T was then derived, indicating that the logarithm of y0T is linearly related to 1/T. Analysis based on the data from this study and from the literature validates the effectiveness of the derived correlation. Moreover, preliminary exposure analysis was performed to assess the health risk of DEHP in a vehicular environment.
Collapse
Affiliation(s)
- Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
25
|
Eichler CMA, Cao J, Isaacman-VanWertz G, Little JC. Modeling the formation and growth of organic films on indoor surfaces. INDOOR AIR 2019; 29:17-29. [PMID: 30387208 DOI: 10.1111/ina.12518] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 05/27/2023]
Abstract
Emission, transport, and fate of semi-volatile organic compounds (SVOCs), which include plasticizers, flame retardants, pesticides, biocides, and oxidation products of volatile organic compounds, are influenced in part by their tendency to sorb to indoor surfaces. A thin organic film enhances this effect, because it acts as both an SVOC sink and a source, thus potentially prolonging human exposure. Unfortunately, our ability to describe the initial formation and subsequent growth of organic films on indoor surfaces is limited. To overcome this gap, we propose a mass transfer model accounting for adsorption, condensation, and absorption of multiple gas-phase SVOCs on impervious, vertical indoor surfaces. Further model development and experimental research are needed including more realistic scenarios accounting for surface heterogeneity, non-ideal organic mixtures, and particle deposition.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Jianping Cao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | | | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
26
|
Shi S, Cao J, Zhang Y, Zhao B. Emissions of Phthalates from Indoor Flat Materials in Chinese Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13166-13173. [PMID: 30372054 DOI: 10.1021/acs.est.8b03580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phthalates are ubiquitous pollutants in residential environments. Indoor airborne phthalate concentrations in Chinese residences are comparable to, or even higher than, those of western countries. However, the major sources of phthalates in Chinese residences are not well-known. In this study, we measured the phthalates emission features of 23 flat materials used in Chinese residences in the laboratory environment, including the mass fraction (wt) and the concentration in the air adjacent to the material surface ( y0). The measured wt of seven phthalates ranged from below the limit of quantitation (LOQ) to 17%, and y0 ranged from LOQ to 2 μg/m3. To evaluate the potential contributions of the studied materials to phthalates in residential air, concentrations of di-2-ethylhexyl phthalate (DEHP, a typical indoor phthalate) in air due to the emissions from selected materials in typical Chinese residential scenarios were modeled and compared with measured concentrations from the literature. The modeled gas-phase, particle-phase, and airborne concentrations of DEHP in residential air due to emissions from the selected materials were 2-65 times lower than the mean values of measured concentrations. To formulate appropriate control strategies, further efforts are needed to identify the dominant sources of phthalates in Chinese residences.
Collapse
Affiliation(s)
- Shanshan Shi
- School of Architecture and Urban Planning , Nanjing University , 210093 Nanjing , China
- Nicholas School of the Environment , Duke University , 27708 Durham , North Carolina , United States
| | - Jianping Cao
- School of Environmental Science and Engineering , Sun Yat-sen University , 510006 Guangzhou , China
- Department of Civil and Environmental Engineering , Virginia Tech , 24061 Blacksburg , Virginia , United States
| | - Yinping Zhang
- Department of Building Science, School of Architecture , Tsinghua University , 100084 Beijing , China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Tsinghua University , 100084 Beijing , China
| | - Bin Zhao
- Department of Building Science, School of Architecture , Tsinghua University , 100084 Beijing , China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Tsinghua University , 100084 Beijing , China
| |
Collapse
|
27
|
Pei J, Sun Y, Yin Y. The effect of air change rate and temperature on phthalate concentration in house dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:760-768. [PMID: 29803046 DOI: 10.1016/j.scitotenv.2018.05.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are one of the main indoor pollutant categories. Six phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di(isobutyl) phthalate (DiBP), di(nbutyl) phthalate (DnBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP)) in house dust samples were measured in forty residential apartments in Tianjin and Urumqi in four seasons throughout a year. The measured DEHP dust-phase concentration is in the range: 11.9-699.9 μg/g; and showed obvious differences in different seasons, and the maximum can be 2 times higher than minimum. The DiBP and DnBP showed similar phenomenon. The corresponding gas-phase concentration is estimated considering the influencing factors of indoor temperature, air change rate, particle concentration. Then the dust-gas partition coefficient Kd under different season was obtained through the measured dust-phase concentration and estimated gas-phase concentration. From winter to summer, because the increased temperature leads to higher emission rate, the gas-phase concentration is obviously high in spite of the higher air change rate in summer. The estimated DEHP gas-phase concentration showed obvious differences in different seasons, and the maximum can be about 2 times higher than minimum. The DiBP and DnBP showed similar phenomenon. The lower dust-phase concentration in summer is observed due to the temperature-dependency of the dust-gas partition coefficient. Therefore temperature has the greatest impact on the dust concentration, not influence via emission rate, but influences the partition coefficient Kd.
Collapse
Affiliation(s)
- Jingjing Pei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yahong Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yihui Yin
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tunga Salthammer
- Fachbereich Materialanalytik und Innenluftchemie; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Deutschland
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung (IPA); Institut der Ruhr-Universität Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Deutschland
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
29
|
Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201711023] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry; Fraunhofer WKI; 38108 Braunschweig Bienroder Weg 54E Germany
| | - Yinping Zhang
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Jinhan Mo
- Department of Building Science; Tsinghua University; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control; Beijing 100084 PR China
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Institute of the Ruhr-University Bochum; 44789 Bochum Bürkle-de-la-Camp Platz 1 Germany
| | - Charles J. Weschler
- Environmental and Occupational Health Sciences Institute (EOHSI); Rutgers University; 170 Frelinghuysen Road Piscataway NJ 08854 USA
| |
Collapse
|
30
|
Jo SH, Lee MH, Kim KH, Kumar P. Characterization and flux assessment of airborne phthalates released from polyvinyl chloride consumer goods. ENVIRONMENTAL RESEARCH 2018; 165:81-90. [PMID: 29684738 DOI: 10.1016/j.envres.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 05/23/2023]
Abstract
The concentrations and fluxes of airborne phthalates were measured from five types of polyvinyl chloride (PVC) consumer products (vinyl flooring, wallcovering, child's toy, yoga mat, and edge protector) using a small chamber (impinger) system. Airborne phthalates released from each of those PVC samples were collected using sorbent (Tenax TA) tubes at three temperature control intervals (0, 3, and 6 h) under varying temperature conditions (25, 40, and 90 °C). A total of 11 phthalate compounds were quantified in the five PVC products examined in this study. To facilitate the comparison of phthalate emissions among PVC samples, their flux values were defined for total phthalates by summing the average fluxes of all 11 phthalates generated during the control period of 6 h. The highest flux values were seen in the edge protector sample at all temperatures (0.40 (25 °C), 9.65 (40 °C), and 75.7 μg m-2 h-1 (90 °C)) of which emission was dominated by dibutyl isophthalate. In contrast, the lowest fluxes were found in wallcovering (0.01 (25 °C) and 0.05 μg m-2 h-1 (40 °C)) and child's toy (0.23 μg m-2 h-1 (90 °C)) at each temperature level. The information regarding phthalate composition and emission patterns varied dynamically with type of PVC sample, controlled temperature, and duration of control.
Collapse
Affiliation(s)
- Sang-Hee Jo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea
| | - Min-Hee Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, South Korea.
| | - Pawan Kumar
- Department of Nano Sciences and Materials, Central University of Jammu, Jammu 181143, J & K, India
| |
Collapse
|
31
|
A high throughput method for measuring cloth-air equilibrium distribution ratios for SVOCs present in indoor environments. Talanta 2018; 183:250-257. [DOI: 10.1016/j.talanta.2018.02.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 11/17/2022]
|
32
|
Liang Y, Liu X, Allen MR. Measurements of Parameters Controlling the Emissions of Organophosphate Flame Retardants in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5821-5829. [PMID: 29671311 PMCID: PMC6190673 DOI: 10.1021/acs.est.8b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Emission of semivolatile organic compounds (SVOCs) from source materials usually occurs very slowly in indoor environments due to their low volatility. When the SVOC emission process is controlled by external mass transfer, the gas-phase concentration in equilibrium with the material ( y0) is used as a key parameter to simplify the source models that are based on solid-phase diffusion. A material-air-material (M-A-M) configured microchamber method was developed to rapidly measure y0 for a polyisocyanurate rigid foam material containing organophosphate flame retardants (OPRFs). The emission test was conducted in 44 mL microchambers for target OPFRs, including tris(2-chloroethyl) phosphate (CASRN: 115-96-8), tris(1-chloro-2-propyl) phosphate (CASRN: 13674-84-5), and tris(1,3-dichloro-2-propyl) phosphate (CASRN: 13674-87-8). In addition to the microchamber emission test, two other types of tests were conducted to determine y0 for the same foam material: OPFR diffusive tube sampling tests from the OPFR source foam using stainless-steel thermal desorption tubes and sorption tests of OPFR on an OPFR-free foam in a 53 L small chamber. Comparison of parameters obtained from the three methods suggests that the discrepancy could be caused by a combination of theoretical, experimental, and computational differences. Based on the y0 measurements, a linear relationship between the ratio of y0 to saturated vapor pressure concentration and material-phase mass fractions has been found for phthalates and OPFRs.
Collapse
Affiliation(s)
- Yirui Liang
- Oak Ridge Institute for Science and Education participant at U.S. Environmental Protection Agency, 1299 Bethel Valley Road, Oak Ridge, TN 37830, United States
| | - Xiaoyu Liu
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
- Corresponding Author:Phone: 1-919-541-2459; Fax: 1-919-541-0359;
| | - Matthew R. Allen
- Jacobs Technology, Inc. 600 William Northern Boulevard, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
33
|
Eichler CMA, Wu Y, Cao J, Shi S, Little JC. Equilibrium Relationship between SVOCs in PVC Products and the Air in Contact with the Product. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2918-2925. [PMID: 29420885 DOI: 10.1021/acs.est.7b06253] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phthalates and phthalate alternatives are semivolatile organic compounds (SVOCs) present in many PVC products as plasticizers to enhance product performance. Knowledge of the mass-transfer parameters, including the equilibrium concentration in the air in contact with the product surface ( y0), will greatly improve the ability to estimate the emission rate of SVOCs from these products and to assess human exposure. The objective of this study was to measure y0 for different PVC products and to evaluate its relationship with the material-phase concentrations ( C0). Also, C0 and y0 data from other sources were included, resulting in a substantially larger data set ( Ntotal = 34, T = 25 °C) than found in previous studies. The results show that the material/gas equilibrium relationship does not follow Raoult's law and that therefore the assumption of an ideal solution is invalid. Instead, Henry's law applies, and the Henry's law constant for all target SVOCs consists of the respective pure liquid vapor pressure and an activity coefficient γ, which accounts for the nonideal nature of the solution. For individual SVOCs, a simple partitioning relationship exists, but Henry's law is more generally applicable and will be of greater value in rapid exposure assessment procedures.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yaoxing Wu
- Department of Environmental Engineering , Texas A&M University-Kingsville , Kingsville , Texas 78363 , United States
| | - Jianping Cao
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Shanshan Shi
- School of Architecture and Urban Planning , Nanjing University , Nanjing 210093 , China
| | - John C Little
- Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
34
|
Cao J, Liu N, Zhang Y. SPME-Based C a-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9137-9145. [PMID: 28714305 DOI: 10.1021/acs.est.7b02540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clothes play an important role in dermal exposure to indoor semivolatile organic compounds (SVOCs). The diffusion coefficient of SVOCs in clothing material (Dm) is essential for estimating SVOC sorption by clothing material and subsequent dermal exposure to SVOCs. However, few studies have reported the measured Dm for clothing materials. In this paper, we present the solid-phase microextraction (SPME) based Ca-history method. To the best of our knowledge, this is the first try to measure Dm with known relative standard deviation (RSD). A thin sealed chamber is formed by a circular ring and two pieces of flat SVOC source materials that are tightly covered by the targeted clothing materials. Dm is obtained by applying an SVOC mass transfer model in the chamber to the history of gas-phase SVOC concentrations (Ca) in the chamber measured by SPME. Dm's of three SVOCs, di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and tris(1-chloro-2-propyl) phosphate (TCPP), in a cotton T-shirt can be obtained within 16 days, with RSD less than 3%. This study should prove useful for measuring SVOC Dm in various sink materials. Further studies are expected to facilitate application of this method and investigate the effects of temperature, relative humidity, and clothing material on Dm.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Ningrui Liu
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| |
Collapse
|
35
|
Ghislain M, Beigbeder J, Plaisance H, Desauziers V. New sampling device for on-site measurement of SVOC gas-phase concentration at the emitting material surface. Anal Bioanal Chem 2017; 409:3199-3210. [DOI: 10.1007/s00216-017-0259-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/27/2017] [Accepted: 02/13/2017] [Indexed: 01/18/2023]
|
36
|
Cao J, Du Z, Mo J, Li X, Xu Q, Zhang Y. Inverse Problem Optimization Method to Design Passive Samplers for Volatile Organic Compounds: Principle and Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13477-13485. [PMID: 27993075 DOI: 10.1021/acs.est.6b04872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Passive sampling is an alternative to active sampling for measuring concentrations of gas-phase volatile organic compounds (VOCs). However, the uncertainty or relative error of the measurements have not been minimized due to the limitations of existing design methods. In this paper, we have developed a novel method, the inverse problem optimization method, to address the problems associated with designing accurate passive samplers. The principle is to determine the most appropriate physical properties of the materials, and the optimal geometry of a passive sampler, by minimizing the relative sampling error based on the mass transfer model of VOCs for a passive sampler. As an example application, we used our proposed method to optimize radial passive samplers for the sampling of benzene and formaldehyde in a normal indoor environment. A new passive sampler, which we have called the Tsinghua Passive Diffusive Sampler (THPDS), for indoor benzene measurement was developed according to the optimized results. Silica zeolite was selected as the sorbent for the THPDS. The measured overall uncertainty of THPDS (22% for benzene) is lower than that of most commercially available passive samplers but is quite a bit larger than the modeled uncertainty (4.8% for benzene, the optimized result), suggesting that further research is required.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Zhengjian Du
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Xinxiao Li
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Qiujian Xu
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control , Beijing 100084, China
| |
Collapse
|
37
|
Cao J, Xiong J, Wang L, Xu Y, Zhang Y. Transient Method for Determining Indoor Chemical Concentrations Based on SPME: Model Development and Calibration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9452-9459. [PMID: 27476381 DOI: 10.1021/acs.est.6b01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Solid-phase microextraction (SPME) is regarded as a nonexhaustive sampling technique with a smaller extraction volume and a shorter extraction time than traditional sampling techniques and is hence widely used. The SPME sampling process is affected by the convection or diffusion effect along the coating surface, but this factor has seldom been studied. This paper derives an analytical model to characterize SPME sampling for semivolatile organic compounds (SVOCs) as well as for volatile organic compounds (VOCs) by considering the surface mass transfer process. Using this model, the chemical concentrations in a sample matrix can be conveniently calculated. In addition, the model can be used to determine the characteristic parameters (partition coefficient and diffusion coefficient) for typical SPME chemical samplings (SPME calibration). Experiments using SPME samplings of two typical SVOCs, dibutyl phthalate (DBP) in sealed chamber and di(2-ethylhexyl) phthalate (DEHP) in ventilated chamber, were performed to measure the two characteristic parameters. The experimental results demonstrated the effectiveness of the model and calibration method. Experimental data from the literature (VOCs sampled by SPME) were used to further validate the model. This study should prove useful for relatively rapid quantification of concentrations of different chemicals in various circumstances with SPME.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture , Beijing 100044, China
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712-1094, United States
| | - Yinping Zhang
- Department of Building Science, Tsinghua University , Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| |
Collapse
|