1
|
Zhao GZ, Li B, Wang YF, Guo SQ, Du Y, Ma QX, Guo YH, Liu QQ. Reduning Injection versus Neuraminidase Inhibitors in the Treatment of Influenza: A Systematic Review and Meta-Analysis. Chin J Integr Med 2022; 28:1023-1031. [PMID: 35508864 PMCID: PMC9068505 DOI: 10.1007/s11655-022-3524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 11/11/2022]
Abstract
Objective To perform a systematic review to assess the effectiveness and safety of Reduning Injection versus neuraminidase inhibitors in treatment of influenza. Methods The MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Chinese Bio-medical Literature and Retrieval System (Sinomed), China National Knowledge Infrastructure Database (CNKI), China Science and Technology Journal Database (VIP), Wanfang Data Knowledge Service Platform and ClinicalTrails.gov were systematically searched from inception dates to May 2021 for randomized controlled trials (RCTs) exploring Reduning Injection alone or in combination with neuraminidase inhibitors in patients with influenza. Statistical analysis was performed using RevMan 5.4 and Stata 15.1. The qualities of the involved studies were assessed by the risk of bias according to the Cochrane handbook. The evidence quality of each outcome was evaluated by GRADEpro GDT. Results Twelve trials with 1,460 patients were included. The included studies had a certain unclear or high risk of bias. Reduning Injection appeared to be more effective in shortening the fever clearance time (MD: −16.20 h, 95% CI: −19.40 to −12.99, 7 trials, 814 patients, I2=94%, very low certainty), fever alleviation time (MD: −4.09 h, 95% CI: −4.22 to −3.96, 3 trials, 366 patients, I2=0%, low certainty), cough alleviation time (MD: −21.34 h, 95% CI: −41.56 to −1.11, 2 trials, 228 patients, I2=89%, very low certainty), fatigue alleviation time (MD: −31.83 h, 95% CI: −36.88 to −26.77, 2 trials, 270 patients, I2=0%, low certainty), sore throat alleviation time (MD: −28.66 h, 95% CI: −32.23 to −25.10, 1 trial, 150 patients, low certainty), and improving the total effective rate (RR: 1.15, 95% CI: 1.06 to 1.25, 10 trials, 1,074 patients, I2=76%, very low certainty). Besides, Reduning Injection seemed generally safe. Conclusions This study provided low or very low evidence indicating Reduning Injection may be effective in the treatment of influenza and might be safe. Further rigorously designed studies are needed to confirm the effectiveness and safety of Reduning Injection and support it as a recommendation for influenza. Electronic Supplementary Material Supplementary material (Appendixes 1 and 2) are available in the online version of this article at DOI: 10.1007/s11655-022-3524-9.
Collapse
Affiliation(s)
- Guo-Zhen Zhao
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.,Beijing Evidence-Based Chinese Medicine Center, Beijing, 100010, China
| | - Bo Li
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.,Beijing Evidence-Based Chinese Medicine Center, Beijing, 100010, China.,Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Ya-Fan Wang
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shi-Qi Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuan Du
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qiu-Xiao Ma
- Department of Respiratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu-Hong Guo
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qing-Quan Liu
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China. .,Beijing Evidence-Based Chinese Medicine Center, Beijing, 100010, China. .,Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| |
Collapse
|
2
|
Abstract
Antiviral drugs are an important measure of control for influenza in the population, particularly for those that are severely ill or hospitalised. The neuraminidase inhibitor (NAI) class of drugs, including oseltamivir, have been the standard of care (SOC) for severe influenza illness for many years. The approval of drugs with novel mechanisms of action, such as baloxavir marboxil, is important and broadens potential treatment options for combination therapy. The use of antiviral treatments in combination for influenza is of interest; one potential benefit of this treatment strategy is that the combination of drugs with different mechanisms of action may lower the selection of resistance due to treatment. In addition, combination therapy may become an important treatment option to improve patient outcomes in those with severe illness due to influenza or those that are immunocompromised. Clinical trials increasingly evaluate drug combinations in a range of patient cohorts. Here, we summarise preclinical and clinical advances in combination therapy for the treatment of influenza with reference to immunocompromised animal models and clinical data in hospitalised patient cohorts where available. There is a wide array of drug categories in development that have also been tested in combination. Therefore, in this review, we have included polymerase inhibitors, monoclonal antibodies (mAbs), host-targeted therapies, and adjunctive therapies. Combination treatment regimens should be carefully evaluated to determine whether they provide an added benefit relative to effectiveness of monotherapy and in a variety of patient cohorts, particularly, if there is a greater chance of an adverse outcome. Safe and effective treatment of influenza is important not only for seasonal influenza infection, but also if a pandemic strain was to emerge.
Collapse
|
3
|
Secondary Structure of Influenza A Virus Genomic Segment 8 RNA Folded in a Cellular Environment. Int J Mol Sci 2022; 23:ijms23052452. [PMID: 35269600 PMCID: PMC8910647 DOI: 10.3390/ijms23052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.
Collapse
|
4
|
Taubenberger JK, Morens DM. The 1918 Influenza Pandemic and Its Legacy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038695. [PMID: 31871232 DOI: 10.1101/cshperspect.a038695] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Just over a century ago in 1918-1919, the "Spanish" influenza pandemic appeared nearly simultaneously around the world and caused extraordinary mortality-estimated at 50-100 million fatalities-associated with unexpected clinical and epidemiological features. The pandemic's sudden appearance and high fatality rate were unprecedented, and 100 years later still serve as a stark reminder of the continual threat influenza poses. Sequencing and reconstruction of the 1918 virus have allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. Several of the unusual features of the 1918-1919 pandemic, including age-specific mortality patterns and the high frequency of severe pneumonias, are still not fully understood. The 1918 pandemic virus initiated a pandemic era still ongoing. The descendants of the 1918 virus remain today as annually circulating and evolving influenza viruses causing significant mortality each year. This review summarizes key findings and unanswered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Yu Y, Qin HJ, Shi XX, Song JQ, Zhou JP, Yu P, Fan ZC, Zhong M, Yang Y. Thiosialoside-decorated polymers use a two-step mechanism to inhibit both early and late stages of influenza virus infection. Eur J Med Chem 2020; 199:112357. [DOI: 10.1016/j.ejmech.2020.112357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
|
6
|
Dunning J, Thwaites RS, Openshaw PJM. Seasonal and pandemic influenza: 100 years of progress, still much to learn. Mucosal Immunol 2020; 13:566-573. [PMID: 32317736 PMCID: PMC7223327 DOI: 10.1038/s41385-020-0287-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
Influenza viruses are highly transmissible, both within and between host species. The severity of the disease they cause is highly variable, from the mild and inapparent through to the devastating and fatal. The unpredictability of epidemic and pandemic outbreaks is accompanied but the predictability of seasonal disease in wide areas of the Globe, providing an inexorable toll on human health and survival. Although there have been great improvements in understanding influenza viruses and the disease that they cause, our knowledge of the effects they have on the host and the ways that the host immune system responds continues to develop. This review highlights the importance of the mucosa in defence against infection and in understanding the pathogenesis of disease. Although vaccines have been available for many decades, they remain suboptimal in needing constant redesign and in only providing short-term protection. There are real prospects for improvement in treatment and prevention of influenza soon, based on deeper knowledge of how the virus transmits, replicates and triggers immune defences at the mucosal surface.
Collapse
Affiliation(s)
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
7
|
Taubenberger JK, Kash JC, Morens DM. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci Transl Med 2019; 11:eaau5485. [PMID: 31341062 PMCID: PMC11000447 DOI: 10.1126/scitranslmed.aau5485] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The 2018-2019 period marks the centennial of the "Spanish" influenza pandemic, which caused at least 50 million deaths worldwide. The unprecedented nature of the pandemic's sudden appearance and high fatality rate serve as a stark reminder of the threat influenza poses. Unusual features of the 1918-1919 pandemic, including age-specific mortality and the high frequency of severe pneumonias, are still not fully understood. Sequencing and reconstruction of the 1918 virus has allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. This Review summarizes key findings and still-to-be answered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Figueira TN, Augusto MT, Rybkina K, Stelitano D, Noval MG, Harder OE, Veiga AS, Huey D, Alabi CA, Biswas S, Niewiesk S, Moscona A, Santos NC, Castanho MARB, Porotto M. Effective in Vivo Targeting of Influenza Virus through a Cell-Penetrating/Fusion Inhibitor Tandem Peptide Anchored to the Plasma Membrane. Bioconjug Chem 2018; 29:3362-3376. [PMID: 30169965 DOI: 10.1021/acs.bioconjchem.8b00527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of influenza virus infection is felt each year on a global scale when approximately 5-10% of adults and 20-30% of children globally are infected. While vaccination is the primary strategy for influenza prevention, there are a number of likely scenarios for which vaccination is inadequate, making the development of effective antiviral agents of utmost importance. Anti-influenza treatments with innovative mechanisms of action are critical in the face of emerging viral resistance to the existing drugs. These new antiviral agents are urgently needed to address future epidemic (or pandemic) influenza and are critical for the immune-compromised cohort who cannot be vaccinated. We have previously shown that lipid tagged peptides derived from the C-terminal region of influenza hemagglutinin (HA) were effective influenza fusion inhibitors. In this study, we modified the influenza fusion inhibitors by adding a cell penetrating peptide sequence to promote intracellular targeting. These fusion-inhibiting peptides self-assemble into ∼15-30 nm nanoparticles (NPs), target relevant infectious tissues in vivo, and reduce viral infectivity upon interaction with the cell membrane. Overall, our data show that the CPP and the lipid moiety are both required for efficient biodistribution, fusion inhibition, and efficacy in vivo.
Collapse
Affiliation(s)
- T N Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - M T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - K Rybkina
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - D Stelitano
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - M G Noval
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - O E Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - D Huey
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - C A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - S Biswas
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - S Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A Moscona
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Microbiology & Immunology , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Physiology & Cellular Biophysics , Columbia University Medical Center , New York , New York 10032 , United States
| | - N C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M Porotto
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Experimental Medicine , University of Campania 'Luigi Vanvitelli' , 81100 Caserta , Caserta , Italy
| |
Collapse
|
9
|
Abstract
Influenza virus infections are a leading cause of morbidity and mortality worldwide. This is due in part to the continual emergence of new viral variants and to synergistic interactions with other viruses and bacteria. There is a lack of understanding about how host responses work to control the infection and how other pathogens capitalize on the altered immune state. The complexity of multi-pathogen infections makes dissecting contributing mechanisms, which may be non-linear and occur on different time scales, challenging. Fortunately, mathematical models have been able to uncover infection control mechanisms, establish regulatory feedbacks, connect mechanisms across time scales, and determine the processes that dictate different disease outcomes. These models have tested existing hypotheses and generated new hypotheses, some of which have been subsequently tested and validated in the laboratory. They have been particularly a key in studying influenza-bacteria coinfections and will be undoubtedly be useful in examining the interplay between influenza virus and other viruses. Here, I review recent advances in modeling influenza-related infections, the novel biological insight that has been gained through modeling, the importance of model-driven experimental design, and future directions of the field.
Collapse
Affiliation(s)
- Amber M Smith
- University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
10
|
Nicholson EG, Munoz FM. A Review of Therapeutics in Clinical Development for Respiratory Syncytial Virus and Influenza in Children. Clin Ther 2018; 40:1268-1281. [PMID: 30077340 DOI: 10.1016/j.clinthera.2018.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE Respiratory syncytial virus (RSV) and influenza are important viral pathogens worldwide. Children, in particular, bear considerable burdens of morbidity and mortality associated with these viruses. There are limited therapeutic options for children infected with RSV or influenza. This review focuses on therapeutics for RSV and influenza that are currently under clinical investigation. METHODS This study used a systematic approach to identify prospective therapeutics in clinical trials and briefly reviewed those that are currently available for use in adults and children. FINDINGS Overall, we found 14 investigational drugs currently in clinical trials for RSV and 20 investigation drugs currently in clinical trials for influenza. These candidates range in development from Phase I to Phase III clinical trials. IMPLICATIONS Both RSV and influenza are targets for active therapeutic research, and promising candidates for both viruses are currently in clinical development.
Collapse
Affiliation(s)
- Erin G Nicholson
- Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas.
| | - Flor M Munoz
- Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Hadházi Á, Li L, Bailly B, Maggioni A, Martin G, Dirr L, Dyason JC, Thomson RJ, Gao GF, Borbás A, Ve T, Pascolutti M, von Itzstein M. A Sulfonozanamivir Analogue Has Potent Anti-influenza Virus Activity. ChemMedChem 2018; 13:785-789. [DOI: 10.1002/cmdc.201800092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Ádám Hadházi
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
- Department of Pharmaceutical Chemistry; University of Debrecen; 4032 Debrecen Hungary
| | - Linghui Li
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
- University of Chinese Academy of Sciences; Beijing 101408 China
| | - Benjamin Bailly
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Andrea Maggioni
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Gael Martin
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Larissa Dirr
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Jeffrey C. Dyason
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Robin J. Thomson
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - George F. Gao
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing 101408 China
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; 4032 Debrecen Hungary
| | - Thomas Ve
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Mauro Pascolutti
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| |
Collapse
|
12
|
Wang Y, Hu Y, Xu S, Zhang Y, Musharrafieh R, Hau RK, Ma C, Wang J. In Vitro Pharmacokinetic Optimizations of AM2-S31N Channel Blockers Led to the Discovery of Slow-Binding Inhibitors with Potent Antiviral Activity against Drug-Resistant Influenza A Viruses. J Med Chem 2018; 61:1074-1085. [PMID: 29341607 DOI: 10.1021/acs.jmedchem.7b01536] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Influenza viruses are respiratory pathogens that are responsible for both seasonal influenza epidemics and occasional influenza pandemics. The narrow therapeutic window of oseltamivir, coupled with the emergence of drug resistance, calls for the next-generation of antivirals. With our continuous interest in developing AM2-S31N inhibitors as oral influenza antivirals, we report here the progress of optimizing the in vitro pharmacokinetic (PK) properties of AM2-S31N inhibitors. Several AM2-S31N inhibitors, including compound 10b, were discovered to have potent channel blockage, single to submicromolar antiviral activity, and favorable in vitro PK properties. The antiviral efficacy of compound 10b was also synergistic with oseltamivir carboxylate. Interestingly, binding kinetic studies (Kd, Kon, and Koff) revealed several AM2-S31N inhibitors that have similar Kd values but significantly different Kon and Koff values. Overall, this study identified a potent lead compound (10b) with improved in vitro PK properties that is suitable for the in vivo mouse model studies.
Collapse
Affiliation(s)
- Yuanxiang Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States
| | - Shuting Xu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States
| | - Yongtao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| | - Raymond Kin Hau
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States
| | - Chunlong Ma
- BIO5 Institute, The University of Arizona , Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Leiva R, Barniol-Xicota M, Codony S, Ginex T, Vanderlinden E, Montes M, Caffrey M, Luque FJ, Naesens L, Vázquez S. Aniline-Based Inhibitors of Influenza H1N1 Virus Acting on Hemagglutinin-Mediated Fusion. J Med Chem 2017; 61:98-118. [PMID: 29220568 DOI: 10.1021/acs.jmedchem.7b00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two series of easily accessible anilines were identified as inhibitors of influenza A virus subtype H1N1, and extensive chemical synthesis and analysis of the structure-activity relationship were performed. The compounds were shown to interfere with low pH-induced membrane fusion mediated by the H1 and H5 (group 1) hemagglutinin (HA) subtypes. A combination of virus resistance, HA interaction, and molecular dynamics simulation studies elucidated the binding site of these aniline-based influenza fusion inhibitors, which significantly overlaps with the pocket occupied by some H3 HA-specific inhibitors, indicating the high relevance of this cavity for drug design.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Marta Barniol-Xicota
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Prat de la Riba 171, Santa Coloma de Gramanet E-08921, Spain
| | | | - Marta Montes
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Michael Caffrey
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Prat de la Riba 171, Santa Coloma de Gramanet E-08921, Spain
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| |
Collapse
|
14
|
Vikse J, Klos J, Berg A. A travelling camper with a spiking fever, headache, myalgia, hepatitis, and intracellular inclusions. THE LANCET. INFECTIOUS DISEASES 2017; 17:1318. [PMID: 29173891 PMCID: PMC7150174 DOI: 10.1016/s1473-3099(17)30305-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/23/2022]
Affiliation(s)
- Jens Vikse
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway.
| | - Jan Klos
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Aase Berg
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
15
|
Alimi Y, Lim WS, Lansbury L, Leonardi-Bee J, Nguyen-Van-Tam JS. Systematic review of respiratory viral pathogens identified in adults with community-acquired pneumonia in Europe. J Clin Virol 2017; 95:26-35. [PMID: 28837859 PMCID: PMC7185624 DOI: 10.1016/j.jcv.2017.07.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
Community-acquired pneumonia (CAP) is an important respiratory disease and the fifth leading cause of mortality in Europe. The development of molecular diagnostic tests has highlighted the contributions of respiratory viruses to the aetiology of CAP, suggesting the incidence of viral pneumonia may have been previously underestimated. We performed a systematic review and meta-analysis to describe the overall identification of respiratory viruses in adult patients with CAP in Europe, following PRISMA guidelines (PROSPERO; CRD42016037233). We searched EMBASE, MEDLINE, CINAHL, WHOLIS, COCHRANE library and grey literature sources for relevant studies, and screened these against protocol eligibility criteria. Two researchers performed data extraction and risk of bias assessments, independently, using a piloted form. Results were synthesised narratively, and random effects meta-analyses performed to calculate pooled estimates of effect; heterogeneity was quantified using I2. Twenty-eight studies met inclusion criteria of which 21 were included in the primary meta-analysis. The pooled proportion of patients with identified respiratory viruses was 22.0% (95% CI: 18.0%-27.0%), rising to 29.0% (25.0%-34.0%) in studies where polymerase chain reaction (PCR) diagnostics were performed. Influenza virus was the most frequently detected virus in 9% (7%-12%) of adults with CAP. Respiratory viruses make a substantial contribution to the aetiology of CAP in adult patients in Europe; one or more respiratory viruses are detected in about one quarter of all cases.
Collapse
Affiliation(s)
- Y Alimi
- Health Protection and Influenza Research Group, Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - W S Lim
- University Hospitals NHS Trust, Nottingham, UK
| | - L Lansbury
- Health Protection and Influenza Research Group, Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - J Leonardi-Bee
- Health Protection and Influenza Research Group, Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - J S Nguyen-Van-Tam
- Health Protection and Influenza Research Group, Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK.
| |
Collapse
|
16
|
Finding the right combination antiviral therapy for influenza. THE LANCET. INFECTIOUS DISEASES 2017; 17:1221-1222. [PMID: 28958679 DOI: 10.1016/s1473-3099(17)30537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
|
17
|
Shin WJ, Seong BL. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opin Drug Discov 2017; 12:1139-1152. [DOI: 10.1080/17460441.2017.1372417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Pohl MO, von Recum-Knepper J, Rodriguez-Frandsen A, Lanz C, Yángüez E, Soonthornvacharin S, Wolff T, Chanda SK, Stertz S. Identification of Polo-like kinases as potential novel drug targets for influenza A virus. Sci Rep 2017; 7:8629. [PMID: 28819179 PMCID: PMC5561215 DOI: 10.1038/s41598-017-08942-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza. We show that knockdown of PLK1, PLK3, and PLK4, as well as inhibition of PLK kinase activity by four different compounds, leads to reduced influenza virus replication, and we map the requirement of PLK activity to early stages of the viral replication cycle. We also tested the impact of the PLK inhibitor BI2536 on influenza virus replication in a human lung tissue culture model and observed strong inhibition of virus replication with no measurable toxicity. This study establishes the PLKs as potential drug targets for influenza and contributes to a more detailed understanding of the intricate interactions between influenza viruses and their host cells.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Jessica von Recum-Knepper
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Emilio Yángüez
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, 13353, Berlin, Germany
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
19
|
Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem 2017; 17:2271-2285. [PMID: 28240183 DOI: 10.2174/1568026617666170224122508] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Hannah Sneyd
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| |
Collapse
|
20
|
Villa TG, Feijoo-Siota L, Rama JLR, Ageitos JM. Antivirals against animal viruses. Biochem Pharmacol 2017; 133:97-116. [PMID: 27697545 PMCID: PMC7092833 DOI: 10.1016/j.bcp.2016.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023]
Abstract
Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle. As viruses are mandatory intracellular parasites that use the host's cellular machinery to survive and multiply, it is essential that antivirals do not harm the host. In addition, viruses are continually developing new antiviral resistant strains, due to their high mutation rate, which makes it mandatory to continually search for, or develop, new antiviral compounds. This review describes natural and synthetic antivirals in chronological order, with an emphasis on natural compounds, even when their mechanisms of action are not completely understood, that could serve as the basis for future development of novel and/or complementary antiviral treatments.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - L Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J L R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J M Ageitos
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain.
| |
Collapse
|
21
|
Abstract
Most viral respiratory tract infections are caused by classic respiratory viruses, including influenza, respiratory syncytial virus, human metapneumovirus, parainfluenza, rhinovirus, and adenovirus, whereas other viruses, such as herpes simplex, cytomegalovirus, and measles virus, can opportunistically affect the respiratory tract. The M2 inhibitors, amantadine and rimantadine, were historically effective for the prevention and treatment of influenza A but all circulating strains are currently resistant to these drugs. Neuraminidase inhibitors are the sole approved class of antivirals to treat influenza. Ribavirin, especially when combined with intravenous antibody, reduces morbidity and mortality among immunosuppressed patients.
Collapse
Affiliation(s)
- Michael G Ison
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, 645 North Michigan Avenue Suite 900, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Antiviral Resistance in Influenza Viruses: Clinical and Epidemiological Aspects. ANTIMICROBIAL DRUG RESISTANCE 2017. [PMCID: PMC7122614 DOI: 10.1007/978-3-319-47266-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
There are three classes of antiviral drugs approved for the treatment of influenza: the M2 ion channel inhibitors (amantadine, rimantadine), neuraminidase (NA) inhibitors (laninamivir, oseltamivir, peramivir, zanamivir), and the protease inhibitor (favipiravir); some of the agents are only available in selected countries [1, 2]. These agents are effective at treating the signs and symptoms of influenza in patients infected with susceptible viruses. Clinical failure has been demonstrated in patients infected with viruses with primary resistance, i.e., antivirals can be present in the virus initially infecting the patient, or resistance may emerge during the course of therapy [3–5]. NA inhibitors are active against all nine NA subtypes recognized in nature [6], including highly pathogenic avian influenza A/H5N1 and recent low-pathogenic avian influenza A/H7N9 viruses [7]. Since seasonal influenza is usually an acute, self-limited illness in which viral clearance usually occurs rapidly due to innate and adaptive host immune responses, the emergence of drug-resistant variants would be anticipated to have limited effect on clinical recovery in otherwise healthy patients, as has been demonstrated clinically [3, 8, 9]. Unfortunately, immunocompromised or immunologically naïve hosts, such as young children and infants or those exposed to novel strains, are more likely to have mutations that confer resistance emergence during therapy; such resistant variants may also result in clinically significant adverse outcomes [10–13].
Collapse
|
23
|
|
24
|
Smith AM. Quantifying the therapeutic requirements and potential for combination therapy to prevent bacterial coinfection during influenza. J Pharmacokinet Pharmacodyn 2016; 44:81-93. [PMID: 27679506 PMCID: PMC5376398 DOI: 10.1007/s10928-016-9494-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/17/2016] [Indexed: 01/17/2023]
Abstract
Secondary bacterial infections (SBIs) exacerbate influenza-associated disease and mortality. Antimicrobial agents can reduce the severity of SBIs, but many have limited efficacy or cause adverse effects. Thus, new treatment strategies are needed. Kinetic models describing the infection process can help determine optimal therapeutic targets, the time scale on which a drug will be most effective, and how infection dynamics will change under therapy. To understand how different therapies perturb the dynamics of influenza infection and bacterial coinfection and to quantify the benefit of increasing a drug's efficacy or targeting a different infection process, I analyzed data from mice treated with an antiviral, an antibiotic, or an immune modulatory agent with kinetic models. The results suggest that antivirals targeting the viral life cycle are most efficacious in the first 2 days of infection, potentially because of an improved immune response, and that increasing the clearance of infected cells is important for treatment later in the infection. For a coinfection, immunotherapy could control low bacterial loads with as little as 20 % efficacy, but more effective drugs would be necessary for high bacterial loads. Antibiotics targeting bacterial replication and administered 10 h after infection would require 100 % efficacy, which could be reduced to 40 % with prophylaxis. Combining immunotherapy with antibiotics could substantially increase treatment success. Taken together, the results suggest when and why some therapies fail, determine the efficacy needed for successful treatment, identify potential immune effects, and show how the regulation of underlying mechanisms can be used to design new therapeutic strategies.
Collapse
Affiliation(s)
- Amber M Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
25
|
Ma Y, Zhang W, Zhao Z, Li M, Liu J, Wang Y. Combination of ribavirin and reduning protects mice against severe pneumonia induced by H1N1 influenza a virus. J TRADIT CHIN MED 2016; 36:181-6. [PMID: 27400472 DOI: 10.1016/s0254-6272(16)30025-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effects of ribavirin administration combined with Reduning in a mouse model of influenza A (H1N1)-induced severe pneumonia. METHODS Influenza A/Beijing/501/2009 (H1N1)-infected C57BL/6 mice were randomly divided into four experimental groups treated with either a mock injection of phosphate-buffered saline (PBS), ribavirin (66.6 mg/kg daily) or Reduning (86.6 mg/ kg daily), or a combination of both, for 7 days. Mice were monitored for clinical signs and survival, and body weight was measured daily for 14 days. Virus titer, lung wet-to-dry ratios, pathology and cytokines including interleukin (IL)-6, IL-10, and interferon (IFN)-γ were assayed on different days. RESULTS In the untreated group injected with phosphate buffer saline, all the mice died of the infection. The survival rate of mice treated with Reduning was only 10%, whereas 100% of the ribavirin- and the combination-treated mice survived. Low lung viral loads indicated that ribavirin significantly inhibited virus replication, whereas Reduning did not. Lung wet-to-dry ratios demonstrated that both ribavirin and Reduning, administered together or separately, reduced acute lung edema compared with results in the untreated group. Pathology analyses also showed that treatment with a combination of both drugs relieved pathological lesions, whereas the single drug treatment did not. Levels of IL-6, IL-10 and IFN-γ in mice treated with ribavirin or the combination of both ribavirin and Reduning were all significantly lower than in the untreated group, especially in the combination-treated group. In addition, Reduning administration significantly decreased both IL-6 and IL-10 production but had no effect on IFN-γ. CONCLUSION Due to the synergistic effect of antiviral and antiinflammation, the combination of ribavirin and Reduning could be an effective treatment for severe H1N1 which was considered to be significant to delayed antiviral and drug resistant.
Collapse
|
26
|
Ma C, Zhang J, Wang J. Pharmacological Characterization of the Spectrum of Antiviral Activity and Genetic Barrier to Drug Resistance of M2-S31N Channel Blockers. Mol Pharmacol 2016; 90:188-98. [PMID: 27385729 PMCID: PMC4998667 DOI: 10.1124/mol.116.105346] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Adamantanes (amantadine and rimantadine) are one of the two classes of Food and Drug Administration-approved antiviral drugs used for the prevention and treatment of influenza A virus infections. They inhibit viral replication by blocking the wild-type (WT) M2 proton channel, thus preventing viral uncoating. However, their use was discontinued due to widespread drug resistance. Among a handful of drug-resistant mutants, M2-S31N is the predominant mutation and persists in more than 95% of currently circulating influenza A strains. We recently designed two classes of M2-S31N inhibitors, S31N-specific inhibitors and S31N/WT dual inhibitors, which are represented by N-[(5-cyclopropyl-1,2-oxazol-3-yl)methyl]adamantan-1-amine (WJ379) and N-[(5-bromothiophen-2-yl)methyl]adamantan-1-amine (BC035), respectively. However, their antiviral activities against currently circulating influenza A viruses and their genetic barrier to drug resistance are unknown. In this report, we evaluated the therapeutic potential of these two classes of M2-S31N inhibitors (WJ379 and BC035) by profiling their antiviral efficacy against multidrug-resistant influenza A viruses, in vitro drug resistance barrier, and synergistic effect with oseltamivir. We found that M2-S31N inhibitors were active against several influenza A viruses that are resistant to one or both classes of Food and Drug Administration-approved anti-influenza drugs. In addition, M2-S31N inhibitors display a higher in vitro genetic barrier to drug resistance than amantadine. The antiviral effect of WJ379 was also synergistic with oseltamivir carboxylate. Overall, these results reaffirm that M2-S31N inhibitors are promising antiviral drug candidates that warrant further development.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, Tucson, Arizona
| |
Collapse
|
27
|
Wang J, Li F, Ma C. Recent progress in designing inhibitors that target the drug-resistant M2 proton channels from the influenza A viruses. Biopolymers 2016; 104:291-309. [PMID: 25663018 DOI: 10.1002/bip.22623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022]
Abstract
Influenza viruses are the causative agents for seasonal influenza, which results in thousands of deaths and millions of hospitalizations each year. Moreover, sporadic transmission of avian or swan influenza viruses to humans often leads to an influenza pandemic, as there is no preimmunity in the human body to fight against such novel strains. The metastable genome of the influenza viruses, coupled with the reassortment of different strains from a wide range of host origins, leads to the continuous evolution of the influenza virus diversity. Such characteristics of influenza viruses present a grand challenge in devising therapeutic strategies to combat influenza virus infection. This review summarizes recent progress in designing small molecule inhibitors that target the drug-resistant influenza A virus M2 proton channels and highlights the contribution of mechanistic studies of proton conductance to drug discovery. The lessons learned throughout the course of M2 drug discovery might provide insights for designing inhibitors that target other therapeutically important ion channels.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721.,BIO5 Institute, University of Arizona, Tucson, AZ, 85721
| | - Fang Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
28
|
Lenartowicz E, Nogales A, Kierzek E, Kierzek R, Martínez-Sobrido L, Turner DH. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication. Nucleic Acid Ther 2016; 26:277-285. [PMID: 27463680 PMCID: PMC5067832 DOI: 10.1089/nat.2016.0619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza A virus (IAV) affects 5%–10% of the world's population every year. Through genome changes, many IAV strains develop resistance to currently available anti-influenza therapeutics. Therefore, there is an urgent need to find new targets for therapeutics against this important human respiratory pathogen. In this study, 2′-O-methyl and locked nucleic acid antisense oligonucleotides (ASOs) were designed to target internal regions of influenza A/California/04/2009 (H1N1) genomic viral RNA segment 8 (vRNA8) based on a base-pairing model of vRNA8. Ten of 14 tested ASOs showed inhibition of viral replication in Madin-Darby canine kidney cells. The best five ASOs were 11–15 nucleotides long and showed inhibition ranging from 5- to 25-fold. In a cell viability assay they showed no cytotoxicity. The same five ASOs also showed no inhibition of influenza B/Brisbane/60/2008 (Victoria lineage), indicating that they are sequence specific for IAV. Moreover, combinations of ASOs slightly improved anti-influenza activity. These studies establish the accessibility of IAV vRNA for ASOs in regions other than the panhandle formed between the 5′ and 3′ ends. Thus, these regions can provide targets for the development of novel IAV antiviral approaches.
Collapse
Affiliation(s)
| | - Aitor Nogales
- 2 Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Elzbieta Kierzek
- 3 Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Ryszard Kierzek
- 3 Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Luis Martínez-Sobrido
- 2 Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Douglas H Turner
- 1 Department of Chemistry, University of Rochester , Rochester, New York
| |
Collapse
|
29
|
Hirano T, Kikuchi T, Tode N, Santoso A, Yamada M, Mitsuhashi Y, Komatsu R, Kawabe T, Tanimoto T, Ishii N, Tanaka Y, Nishimura H, Nukiwa T, Watanabe A, Ichinose M. OX40 ligand newly expressed on bronchiolar progenitors mediates influenza infection and further exacerbates pneumonia. EMBO Mol Med 2016; 8:422-36. [PMID: 26976612 PMCID: PMC4818750 DOI: 10.15252/emmm.201506154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza virus epidemics potentially cause pneumonia, which is responsible for much of the mortality due to the excessive immune responses. The role of costimulatory OX40-OX40 ligand (OX40L) interactions has been explored in the non-infectious pathology of influenza pneumonia. Here, we describe a critical contribution of OX40L to infectious pathology, with OX40L deficiency, but not OX40 deficiency, resulting in decreased susceptibility to influenza viral infection. Upon infection, bronchiolar progenitors increase in number for repairing the influenza-damaged epithelia. The OX40L expression is induced on the progenitors for the antiviral immunity during the infectious process. However, these defense-like host responses lead to more extensive infection owing to the induced OX40L with α-2,6 sialic acid modification, which augments the interaction with the viral hemagglutinin. In fact, the specific antibody against the sialylated site of OX40L exhibited therapeutic potency in mitigating the OX40L-mediated susceptibility to influenza. Our data illustrate that the influenza-induced expression of OX40L on bronchiolar progenitors has pathogenic value to develop a novel therapeutic approach against influenza.
Collapse
Affiliation(s)
- Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Tode
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Arif Santoso
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiya Mitsuhashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Tanimoto
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine University of the Ryukyus, Okinawa, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Sendai Medical Center National Hospital Organization, Sendai, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Watanabe
- Research Division for Development of Anti-Infective Agents, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Hofstetter AR, De La Cruz JA, Cao W, Patel J, Belser JA, McCoy J, Liepkalns JS, Amoah S, Cheng G, Ranjan P, Diebold BA, Shieh WJ, Zaki S, Katz JM, Sambhara S, Lambeth JD, Gangappa S. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice. PLoS One 2016; 11:e0149864. [PMID: 26910342 PMCID: PMC4766197 DOI: 10.1371/journal.pone.0149864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Juan A De La Cruz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Weiping Cao
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jenish Patel
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James McCoy
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Justine S Liepkalns
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Guangjie Cheng
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Priya Ranjan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Becky A Diebold
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Wun-Ju Shieh
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sherif Zaki
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
31
|
Kwok HH, Poon PY, Fok SP, Ying-Kit Yue P, Mak NK, Chan MCW, Peiris JSM, Wong RNS. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells. Sci Rep 2016; 6:18941. [PMID: 26732368 PMCID: PMC4702174 DOI: 10.1038/srep18941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3′-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3′-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-β and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Po-Ying Poon
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Siu-Ping Fok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Patrick Ying-Kit Yue
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Nai-Ki Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Michael Chi-Wai Chan
- Centre of Influenza Research and School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Joseph Sriyal Malik Peiris
- Centre of Influenza Research and School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ricky Ngok-Shun Wong
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| |
Collapse
|
32
|
Song JY, Noh JY, Choi WS, Cheong HJ, Kim WJ. Antiviral therapy in seasonal influenza and 2009 H1N1 pandemic influenza: Korean experiences and perspectives. Expert Rev Anti Infect Ther 2015; 13:1361-72. [PMID: 26256778 DOI: 10.1586/14787210.2015.1076334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Influenza is a major cause of substantial morbidity and mortality in humans every year. Vaccination is the main strategy to prevent influenza infection, but antiviral agents also play an important role in the control of both seasonal and pandemic influenza. During the influenza A/H1N1 pandemic in 2009, early prompt antiviral therapy may have reduced the severity of the influenza outcomes including pneumonia, hospitalization and mortality in the Republic of Korea. Since the 2009 H1N1 pandemic, there have been increasing usages of antiviral agents for the treatment of patients with seasonal influenza. Although currently rare, antiviral resistance among influenza viruses may emerge and increase with increased use of neuraminidase inhibitors. New agents with different modes of action are under investigation, including favipiravir, DAS181, nitazoxanide and broad-spectrum neutralizing monoclonal antibodies. Data are limited with respect to high-dose and combination antiviral therapies. So, clinical trials are warranted to evaluate diverse antiviral combinations that may be synergistic and less likely to induce breakthrough resistance.
Collapse
Affiliation(s)
- Joon Young Song
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Ji Yun Noh
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Won Suk Choi
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Hee Jin Cheong
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Woo Joo Kim
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| |
Collapse
|
33
|
Kiselev OI, Maleev VV, Deeva EG, Leneva IA, Selkova EP, Osipova EA, Obukhov AA, Nadorov SA, Kulikova EV. [Clinical efficacy of arbidol (umifenovir) in the therapy of influenza in adults: preliminary results of the multicenter double-blind randomized placebo-controlled study ARBITR]. TERAPEVT ARKH 2015; 87:88-96. [PMID: 25823275 DOI: 10.17116/terarkh201587188-96] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM To evaluate the efficacy and safety of Arbidol (umifenovir) in adult patients with influenza. SUBJECTS AND METHODS The analysis of the preliminary results of the multicenter double-blind randomized placebo-controlled post-marketing study ARBITR was performed. A total of 293 adults aged 18 to 65 years with influenza or acute respiratory tract infection of no more than 36 hours' duration were enrolled in the study. Individuals were randomized into 2 treatment groups: oral umifenovir 200 mg four times daily for 5 days or placebo four times daily for 5 days. The efficacy endpoints were time to resolution of all symptoms, severity of symptoms and illness, durations of virus shedding. RESULTS The efficacy of umifenovir was evaluated in the group of 119 (40.6%) patients with influenza: 45 patients with laboratory-confirmed influenza and 74 patients whom diagnosis of influenza was made based on clinical and epidemiological data. Umifenovir had influence on the time to resolution of all symptoms. All symptoms were resolved within the first 60 hours after therapy initiation in 23.8% patients with laboratory-confirmed influenza in the umifenovir group and it was 5.7 times greater compared to placebo group (4.2%) (p < 0.05). Severity of illness, catarrhal symptoms and intoxication was reduced with umifenovir compared to placebo, reducing of severity was most evidently observed within the first 2-3 days following the therapy initiation. Umifenovir had a significant effect on viral shedding. The proportion of patients still shedding influenza virus on day 4 was significantly reduced in the umifenovir group compared to placebo (25 vs 53%, respectively; p < 0.05). CONCLUSION It was found that the effect of umifenovir in the treatment of influenza in adults is most pronounced in the acute stage of the disease and appears in the reduction of time to resolution of all symptoms of the disease, reducing the severity of symptoms of the disease and durations of virus shedding.
Collapse
Affiliation(s)
- O I Kiselev
- Research Institute of Influenza, Ministry of Health of Russia, Saint-Petersburg, Russia
| | - V V Maleev
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow, Russia
| | - E G Deeva
- Research Institute of Influenza, Ministry of Health of Russia, Saint-Petersburg, Russia
| | - I A Leneva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - E P Selkova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow, Russia
| | | | - A A Obukhov
- JSC 'Pharmstandart', Dolgoprudnyi, Moscow Region, Russia
| | - S A Nadorov
- JSC 'Pharmstandart', Dolgoprudnyi, Moscow Region, Russia
| | - E V Kulikova
- JSC 'Pharmstandart', Dolgoprudnyi, Moscow Region, Russia
| |
Collapse
|
34
|
Hurt AC, Hui DS, Hay A, Hayden FG. Overview of the 3rd isirv-Antiviral Group Conference--advances in clinical management. Influenza Other Respir Viruses 2015; 9:20-31. [PMID: 25399715 PMCID: PMC4280814 DOI: 10.1111/irv.12293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/30/2022] Open
Abstract
This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted.
Collapse
Affiliation(s)
- Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL at the Peter Doherty Institute for Infection and Immunity, Parkville, Vic., Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
35
|
Tanaka Y, Sato Y, Takahashi D, Matsumoto H, Sasaki T. Treatment of a case of feline infectious peritonitis with cyclosporin A. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2014-000134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary HygieneVeterinary SchoolNippon Veterinary & Life Science UniversityMusashinoTokyoJapan
| | - Yuka Sato
- Division of Molecular VirologyDepartment of Microbiology and ImmunologyThe University of TokyoThe Institute of Medical ScienceMinato‐kuTokyoJapan
| | - Daiki Takahashi
- Division of Molecular VirologyDepartment of Microbiology and ImmunologyDaiki Animal HospitalKatsushika‐kuTokyoJapan
| | - Hirotaka Matsumoto
- Department of Veterinary Internal MedicineVeterinary SchoolNippon Veterinary & Life Science UniversityMusashinoTokyoJapan
| | - Takashi Sasaki
- Faculty of MedicineDepartment of BacteriologyJuntendo UniversityBunkyoTokyoJapan
| |
Collapse
|
36
|
Wu Y, Canturk B, Jo H, Ma C, Gianti E, Klein M, Pinto LH, Lamb RA, Fiorin G, Wang J, DeGrado WF. Flipping in the pore: discovery of dual inhibitors that bind in different orientations to the wild-type versus the amantadine-resistant S31N mutant of the influenza A virus M2 proton channel. J Am Chem Soc 2014; 136:17987-95. [PMID: 25470189 PMCID: PMC4286326 DOI: 10.1021/ja508461m] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 12/13/2022]
Abstract
Influenza virus infections lead to numerous deaths and millions of hospitalizations each year. One challenge facing anti-influenza drug development is the heterogeneity of the circulating influenza viruses, which comprise several strains with variable susceptibility to antiviral drugs. For example, the wild-type (WT) influenza A viruses, such as the seasonal H1N1, tend to be sensitive to antiviral drugs, amantadine and rimantadine, while the S31N mutant viruses, such as the pandemic 2009 H1N1 (H1N1pdm09) and seasonal H3N2, are resistant to this class of drugs. Thus, drugs targeting both WT and the S31N mutant are highly desired. We report our design of a novel class of dual inhibitors along with their ion channel blockage and antiviral activities. The potency of the most active compound 11 in inhibiting WT and the S31N mutant influenza viruses is comparable with that of amantadine in inhibiting WT influenza virus. Solution NMR studies and molecular dynamics (MD) simulations of drug-M2 interactions supported our design hypothesis: namely, the dual inhibitor binds in the WT M2 channel with an aromatic group facing down toward the C-terminus, while the same drug binds in the S31N M2 channel with its aromatic group facing up toward the N-terminus. The flip-flop mode of drug binding correlates with the structure-activity relationship (SAR) and has paved the way for the next round of rational design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Yibing Wu
- Department
of Pharmaceutical Chemistry, University
of California, Mission Bay Box 3122, San Francisco, California 94158, United States
| | - Belgin Canturk
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Hyunil Jo
- Department
of Pharmaceutical Chemistry, University
of California, Mission Bay Box 3122, San Francisco, California 94158, United States
| | - Chunlong Ma
- Department
of Pharmacology and Toxicology and the BIO5 Institute, The University of Arizona, 1501 N. Campbell Avenue, Tucson, Arizona 85721, United States
| | - Eleonora Gianti
- Institute
for Computational and Molecular Science, Science Education and Research
Center (035-07), Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael
L. Klein
- Institute
for Computational and Molecular Science, Science Education and Research
Center (035-07), Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Lawrence H. Pinto
- Department
of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Robert A. Lamb
- Department
of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
- Howard
Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Fiorin
- Institute
for Computational and Molecular Science, Science Education and Research
Center (035-07), Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jun Wang
- Department
of Pharmacology and Toxicology and the BIO5 Institute, The University of Arizona, 1501 N. Campbell Avenue, Tucson, Arizona 85721, United States
| | - William F. DeGrado
- Department
of Pharmaceutical Chemistry, University
of California, Mission Bay Box 3122, San Francisco, California 94158, United States
| |
Collapse
|
37
|
Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob Agents Chemother 2014; 59:1569-82. [PMID: 25547360 DOI: 10.1128/aac.04623-14] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m(7)GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.
Collapse
|
38
|
Memoli MJ, Czajkowski L, Reed S, Athota R, Bristol T, Proudfoot K, Fargis S, Stein M, Dunfee RL, Shaw PA, Davey RT, Taubenberger JK. Validation of the wild-type influenza A human challenge model H1N1pdMIST: an A(H1N1)pdm09 dose-finding investigational new drug study. Clin Infect Dis 2014; 60:693-702. [PMID: 25416753 DOI: 10.1093/cid/ciu924] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Healthy volunteer wild-type influenza challenge models offer a unique opportunity to evaluate multiple aspects of this important virus. Such studies have not been performed in the United States in more than a decade, limiting our capability to investigate this virus and develop countermeasures. We have completed the first ever wild-type influenza A challenge study under an Investigational New Drug application (IND). This dose-finding study will lead to further development of this model both for A(H1N1)pdm09 and other strains of influenza. METHODS Volunteers were admitted to an isolation unit at the National Institutes of Health Clinical Center for a minimum of 9 days. A reverse genetics, cell-based, Good Manufacturing Practice (GMP)-produced, wild-type A(H1N1)pdm09 virus was administered intranasally. Escalating doses were given until a dose was reached that produced disease in a minimum of 60% of volunteers. RESULTS An optimal dose of 10(7) tissue culture infectious dose 50 was reached that caused mild to moderate influenza disease in 69% of individuals with mean viral shedding for 4-5 days and significant rises in convalescent influenza antibody titers. Viral shedding preceded symptoms by 12-24 hours and terminated 2-3 days prior to symptom resolution, indicating that individuals may be infectious before symptom development. As expected, nasal congestion and rhinorrhea were most common, but interestingly, fever was observed in only 10% of individuals. CONCLUSIONS This study represents the first healthy volunteer influenza challenge model using a GMP-produced wild-type virus under an IND. This unique clinical research program will facilitate future studies of influenza pathogenesis, animal model validation, and the rapid, efficient, and cost-effective evaluation of efficacy of novel vaccines and therapeutics. Clinical Trials Registration.NCT01646138.
Collapse
Affiliation(s)
- Matthew J Memoli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lindsay Czajkowski
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susan Reed
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rani Athota
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tyler Bristol
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kathleen Proudfoot
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah Fargis
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Matthew Stein
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rebecca L Dunfee
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pamela A Shaw
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Richard T Davey
- Clinical Research Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Mechanisms of action and efficacy of statins against influenza. BIOMED RESEARCH INTERNATIONAL 2014; 2014:872370. [PMID: 25478576 PMCID: PMC4244940 DOI: 10.1155/2014/872370] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
Collapse
|
40
|
Zumla A, Memish ZA, Maeurer M, Bates M, Mwaba P, Al-Tawfiq JA, Denning DW, Hayden FG, Hui DS. Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options. THE LANCET. INFECTIOUS DISEASES 2014; 14:1136-1149. [PMID: 25189352 PMCID: PMC7106460 DOI: 10.1016/s1473-3099(14)70828-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence and spread of antimicrobial-resistant bacterial, viral, and fungal pathogens for which diminishing treatment options are available is of major global concern. New viral respiratory tract infections with epidemic potential, such as severe acute respiratory syndrome, swine-origin influenza A H1N1, and Middle East respiratory syndrome coronavirus infection, require development of new antiviral agents. The substantial rise in the global numbers of patients with respiratory tract infections caused by pan-antibiotic-resistant Gram-positive and Gram-negative bacteria, multidrug-resistant Mycobacterium tuberculosis, and multiazole-resistant fungi has focused attention on investments into development of new drugs and treatment regimens. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings will necessitate rapid, precise diagnosis and more effective and pathogen-specific therapies. This Series paper describes the development and use of new antimicrobial agents and immune-based and host-directed therapies for a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, London, UK; NIHR Biomedical Research Centre, University College London Hospitals, London, UK; University of Zambia-University College London Research and Training Project, University Teaching Hospital, Lusaka, Zambia; Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Al-Faisal University, Riyadh, Saudi Arabia
| | - Markus Maeurer
- Therapeutic Immunology, Departments of Laboratory Medicine and Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Matthew Bates
- Division of Infection and Immunity, University College London, London, UK; University of Zambia-University College London Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Peter Mwaba
- University of Zambia-University College London Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Jaffar A Al-Tawfiq
- Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, USA
| | - David W Denning
- National Aspergillosis Centre, University Hospital South Manchester, University of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David S Hui
- Division of Respiratory Medicine and Stanley Ho Center for Emerging Infectious Diseases, Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong.
| |
Collapse
|
41
|
Abstract
Observational data suggest that the treatment of influenza infection with neuraminidase inhibitors decreases progression to more severe illness, especially when treatment is started soon after symptom onset. However, even early treatment might fail to prevent complications in some patients, particularly those infected with novel viruses such as the 2009 pandemic influenza A H1N1, avian influenza A H5N1 virus subtype, or the avian influenza A H7N9 virus subtype. Furthermore, treatment with one antiviral drug might promote the development of antiviral resistance, especially in immunocompromised hosts and critically ill patients. An obvious strategy to optimise antiviral therapy is to combine drugs with different modes of action. Because host immune responses to infection might also contribute to illness pathogenesis, improved outcomes might be gained from the combination of antiviral therapy with drugs that modulate the immune response in an infected individual. We review available data from preclinical and clinical studies of combination antiviral therapy and of combined antiviral-immunomodulator therapy for influenza. Early-stage data draw attention to several promising antiviral combinations with therapeutic potential in severe infections, but there remains a need to substantiate clinical benefit. Combination therapies with favourable experimental data need to be tested in carefully designed aclinical trials to assess their efficacy.
Collapse
|
42
|
Compans RW, Oldstone MBA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol Immunol 2014; 385:327-56. [PMID: 25027822 PMCID: PMC7122299 DOI: 10.1007/82_2014_394] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.
Collapse
Affiliation(s)
- Richard W. Compans
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| |
Collapse
|
43
|
Rowe E, Ng PY, Chandra T, Chen M, Leo YS. Seasonal Human Influenza: Treatment Options. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2014; 6:227-244. [PMID: 32288650 PMCID: PMC7101591 DOI: 10.1007/s40506-014-0019-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Seasonal influenza can be a self-limiting illness in healthy individuals but is associated with short-term morbidity and economic burden. Influenza can cause significant morbidity and mortality in young children, the elderly, pregnant and post-partum women, patients with co-morbidities and the immunocompromised. Neuraminidase inhibitors (NAIs) are the treatment of choice for influenza due to widespread resistance to the adamantanes. NAIs are efficacious for the treatment of influenza in ambulatory patients with mild illness, when initiated within 48 h of symptom onset. Early treatment with NAIs has been shown to reduce otitis media in children, and lower respiratory tract complications, resulting in antibiotic therapy, in adults. Evidence on the efficacy of NAIs for the prevention of influenza-related complications in at-risk populations, based on reviews of data from randomised trials is inconclusive. However, observational studies suggest that in hospitalised patients early treatment with NAIs has been associated with reduced mortality. NAIs should be initiated as soon as possible in patients at high-risk of influenza-related complications, with suspected or proven influenza, hospitalised patients and patients with severe or progressive disease. NAIs can be considered in previously healthy patients when therapy can be initiated within 48 h of symptom onset. In previously healthy patients, the therapeutic efficacy of oseltamivir is time-dependent, with maximal benefit observed when therapy is initiated within 48 h of symptom onset. However, several observational studies suggest therapeutic benefit beyond 48 h, in hospitalised patients, severe disease, and patients at high risk of complications, including pregnant women. NAIs should be considered in patients at high risk of influenza-related complications who present late. Further studies are needed to define the optimal timing of NAIs. Oseltamivir-resistant virus has been widely reported but is predominantly an issue in H1N1 seasonal influenza. Zanamivir-resistant influenza virus is rare, and inhaled or intravenous (IV) zanamivir is the treatment of choice in proven or suspected oseltamivir-resistant virus. Intubated patients with severe influenza can be treated with oseltamivir (suspension) administered via nasogastric tube. The commercial dry powder formulation of zanamivir should not be administered, via nebulisation, as it has been associated with ventilator malfunction and mortality. In intubated patients, when there are concerns about gastric absorption, IV zanamivir should be obtained under Emergency Investigational New Drug access schemes. Currently available evidence does not support the use of high-dose or extended-duration oseltamivir in patients with severe influenza, but does require further investigation. Extracorporeal membrane oxygenation has not been shown to be superior to conventional management in patients with influenza-associated acute respiratory distress syndrome and should be considered as salvage therapy. Corticosteriods should not be used in the treatment of severe influenza as this has been associated with increased risk of mortality and bacterial superinfection.
Collapse
Affiliation(s)
- Emily Rowe
- 1Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 1 Moulmein Road, Singapore, 308433 Singapore
| | - Pei Yi Ng
- 1Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 1 Moulmein Road, Singapore, 308433 Singapore
| | - Thiaghu Chandra
- 2Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Mark Chen
- 1Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 1 Moulmein Road, Singapore, 308433 Singapore.,3Saw Swee Hock School of Public Health, National University Singapore, Singapore, Singapore
| | - Yee-Sin Leo
- 1Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 1 Moulmein Road, Singapore, 308433 Singapore.,2Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,3Saw Swee Hock School of Public Health, National University Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Cao B, Hayden FG. Therapy of H7N9 pneumonia: current perspectives. Expert Rev Anti Infect Ther 2014; 11:1123-6. [PMID: 24151830 DOI: 10.1586/14787210.2013.847787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bin Cao
- Department of Infectious Diseases and Clinical Microbiology, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, 100020, Beijing, China
| | | |
Collapse
|
45
|
Hurt AC. The epidemiology and spread of drug resistant human influenza viruses. Curr Opin Virol 2014; 8:22-9. [PMID: 24866471 DOI: 10.1016/j.coviro.2014.04.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/25/2023]
Abstract
Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral.
Collapse
Affiliation(s)
- Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria 3051, Australia.
| |
Collapse
|
46
|
Musafia B, Oren-Banaroya R, Noiman S. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction. PLoS One 2014; 9:e97696. [PMID: 24846127 PMCID: PMC4028238 DOI: 10.1371/journal.pone.0097696] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/23/2014] [Indexed: 01/19/2023] Open
Abstract
This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA) that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus' infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer's binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship) tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers' binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model's sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer's binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction with the influenza virus are discussed.
Collapse
|
47
|
Hayden FG. Advances in antivirals for non-influenza respiratory virus infections. Influenza Other Respir Viruses 2014; 7 Suppl 3:36-43. [PMID: 24215380 PMCID: PMC6492651 DOI: 10.1111/irv.12173] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Progress in the development of antivirals for non‐influenza respiratory viruses has been slow with the result that many unmet medical needs and few approved agents currently exist. This commentary selectively reviews examples of where specific agents have provided promising clinical benefits in selected target populations and also considers potential therapeutics for emerging threats like the SARS and Middle East respiratory syndrome coronaviruses. Recent studies have provided encouraging results in treating respiratory syncytial virus infections in lung transplant recipients, serious parainfluenza virus and adenovirus infections in immunocompromised hosts, and rhinovirus colds in outpatient asthmatics. While additional studies are needed to confirm the efficacy and safety of the specific agents tested, these observations offer the opportunity to expand therapeutic studies to other patient populations.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
48
|
Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob Agents Chemother 2014; 58:3689-96. [PMID: 24752266 DOI: 10.1128/aac.02798-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influenza pH1N1 virus caused a global flu pandemic in 2009 and continues manifestation as a seasonal virus. Better understanding of the virus-host cell interaction could result in development of better prevention and treatment options. Here we show that the Akt inhibitor MK2206 blocks influenza pH1N1 virus infection in vitro. In particular, at noncytotoxic concentrations, MK2206 alters Akt signaling and inhibits endocytic uptake of the virus. Interestingly, MK2206 is unable to inhibit H3N2, H7N9, and H5N1 viruses, indicating that pH1N1 evolved specific requirements for efficient infection. Thus, Akt signaling could be exploited further for development of better therapeutics against pH1N1 virus.
Collapse
|
49
|
Butler J, Hooper KA, Petrie S, Lee R, Maurer-Stroh S, Reh L, Guarnaccia T, Baas C, Xue L, Vitesnik S, Leang SK, McVernon J, Kelso A, Barr IG, McCaw JM, Bloom JD, Hurt AC. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses. PLoS Pathog 2014; 10:e1004065. [PMID: 24699865 PMCID: PMC3974874 DOI: 10.1371/journal.ppat.1004065] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/27/2014] [Indexed: 01/06/2023] Open
Abstract
Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.
Collapse
Affiliation(s)
- Jeff Butler
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Kathryn A. Hooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Stephen Petrie
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Raphael Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
- National Public Health Laboratory, Communicable Diseases Division Ministry of Health, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Lucia Reh
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Teagan Guarnaccia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Chantal Baas
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - Lumin Xue
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Sophie Vitesnik
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Sook-Kwan Leang
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Jodie McVernon
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anne Kelso
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Ian G. Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - James M. McCaw
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jesse D. Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aeron C. Hurt
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| |
Collapse
|
50
|
Wu YL, Shen LW, Ding YP, Tanaka Y, Zhang W. Preliminary success in the characterization and management of a sudden breakout of a novel H7N9 influenza A virus. Int J Biol Sci 2014; 10:109-18. [PMID: 24520209 PMCID: PMC3920865 DOI: 10.7150/ijbs.8198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
Influenza has always been one of the major threats to human health. The Spanish influenza in 1918, the pandemic influenza A/H1N1 in 2009, and the avian influenza A/H5N1 have brought about great disasters or losses to mankind. More recently, a novel avian influenza A/H7N9 broke out in China and until December 2, 2013, it had caused 139 cases of infection, including 45 deaths. Its risk and pandemic potential attract worldwide attention. In this article, we summarize epidemiology, virology characteristics, clinical symptoms, diagnosis methods, clinical treatment and preventive measures about the avian influenza A/H7N9 virus infection to provide a reference for a possible next wave of flu outbreak.
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China
| | - Li-Wen Shen
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yan-Ping Ding
- 1. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| |
Collapse
|