1
|
Besteman SB, Bogaert D, Bont L, Mejias A, Ramilo O, Weinberger DM, Dagan R. Interactions between respiratory syncytial virus and Streptococcus pneumoniae in the pathogenesis of childhood respiratory infections: a systematic review. THE LANCET. RESPIRATORY MEDICINE 2024; 12:915-932. [PMID: 38991585 DOI: 10.1016/s2213-2600(24)00148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024]
Abstract
Lower respiratory tract infections, commonly caused by respiratory syncytial virus (RSV) or Streptococcus pneumoniae (pneumococcus), pose a substantial global health burden, especially in children younger than 5 years of age. A deeper understanding of the relationship between RSV and pneumococcus would aid the development of health-care approaches to disease prevention and management. We completed a systematic review to identify and assess evidence pertaining to the relationship between RSV and pneumococcus in the pathogenesis of childhood respiratory infections. We found mechanistic evidence for direct pathogen-pathogen interactions and for indirect interactions involving host modulation. We found a strong seasonal epidemiological association between these two pathogens, which was recently confirmed by a parallel decrease and a subsequent resurgence of both RSV and pneumococcus-associated disease during the COVID-19 pandemic. Importantly, we found that pneumococcal vaccination was associated with reduced RSV hospitalisations in infants, further supporting the relevance of their interaction in modulating severe disease. Overall evidence supports a broad biological and clinical interaction between pneumococcus and RSV in the pathogenesis of childhood respiratory infections. We hypothesise that the implementation of next-generation pneumococcal and RSV vaccines and monoclonal antibodies targeting RSV will act synergistically to reduce global morbidity and mortality related to childhood respiratory infections.
Collapse
Affiliation(s)
- Sjanna B Besteman
- Department of Pediatrics, Onze Lieve Vrouwe Gasthuis Ziekenhuis, Amsterdam, Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Louis Bont
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Ron Dagan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Nuttens C, Moyersoen J, Curcio D, Aponte-Torres Z, Baay M, Vroling H, Gessner BD, Begier E. Differences Between RSV A and RSV B Subgroups and Implications for Pharmaceutical Preventive Measures. Infect Dis Ther 2024; 13:1725-1742. [PMID: 38971918 PMCID: PMC11266343 DOI: 10.1007/s40121-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Understanding the differences between respiratory syncytial virus (RSV) subgroups A and B provides insights for the development of prevention strategies and public health interventions. We aimed to describe the structural differences of RSV subgroups, their epidemiology, and genomic diversity. The associated immune response and differences in clinical severity were also investigated. METHODS A literature review from PubMed and Google Scholar (1985-2023) was performed and extended using snowballing from references in captured publications. RESULTS RSV has two major antigenic subgroups, A and B, defined by the G glycoprotein. The RSV F fusion glycoprotein in the prefusion conformation is a major target of virus neutralizing antibodies and differs in surface exposed regions between RSV A and RSV B. The subgroups co-circulate annually, but there is considerable debate as to whether clinical severity is impacted by the subgroup of the infecting RSV strain. Large variations between the studies reporting RSV subgroup impact on clinical severity were observed. A tendency for higher disease severity may be attributed to RSV A but no consensus could be reached as to whether infection by one of the subgroup caused more severe outcomes. RSV genotype diversity decreased over the last two decades, and ON and BA have become the sole lineages detected for RSV A and RSV B, since 2014. No studies with data obtained after 2014 reported a difference in disease severity between the two subgroups. RSV F is relatively well conserved and highly similar between RSV A and B, but changes in the amino acid sequence have been observed. Some of these changes led to differences in F antigenic sites compared to reference F sequences (e.g., RSV/A Long strain), which are more pronounced in antigenic sites of the prefusion conformation of RSV B. Initial results from the second season after vaccination suggest specific RSV B efficacy wanes more rapidly than RSV A for RSV PreF-based monovalent vaccines. CONCLUSIONS RSV A and RSV B both contribute substantially to the global RSV burden. Both RSV subgroups cause severe disease and none of the available evidence to date suggests any differences in clinical severity between the subgroups. Therefore, it is important to implement measures effective at preventing disease due to both RSV A and RSV B to ensure impactful public health interventions. Monitoring overtime will be needed to assess the impact of waning antibody levels on subgroup-specific efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | - Hilde Vroling
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | | | - Elizabeth Begier
- Scientific Affairs, Older Adult RSV Vaccine Program, Global Medical Development Scientific and Clinical Affairs, Pfizer Vaccines, 9 Riverwalk, Citywest Business Campus, Dublin 24, Dublin, Ireland.
| |
Collapse
|
3
|
Rios-Guzman E, Simons LM, Dean TJ, Agnes F, Pawlowski A, Alisoltanidehkordi A, Nam HH, Ison MG, Ozer EA, Lorenzo-Redondo R, Hultquist JF. Deviations in RSV epidemiological patterns and population structures in the United States following the COVID-19 pandemic. Nat Commun 2024; 15:3374. [PMID: 38643200 PMCID: PMC11032338 DOI: 10.1038/s41467-024-47757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with the greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially in the United States (US) following the implementation of COVID-19-related non-pharmaceutical interventions but later rebounded with abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study from 2009 to 2023 in Chicago, Illinois, US, we examined RSV epidemiology, clinical severity, and genetic diversity. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings post-2020 and that hospitalized adults infected with RSV-A were at higher risk of intensive care admission than those with RSV-B. While population structures of RSV-A remained unchanged, RSV-B exhibited a genetic shift into geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Estefany Rios-Guzman
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Taylor J Dean
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Francesca Agnes
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arghavan Alisoltanidehkordi
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Hannah H Nam
- Department of Infectious Diseases, University of California - Irvine, Orange, CA, 92868, USA
| | - Michael G Ison
- Division of Microbiology and Infectious Diseases (DMID), National Institute of Health, Rockville, MD, 20852, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Korsun N, Trifonova I, Madzharova I, Alexiev I, Uzunova I, Ivanov I, Velikov P, Tcherveniakova T, Christova I. Resurgence of respiratory syncytial virus with dominance of RSV-B during the 2022-2023 season. Front Microbiol 2024; 15:1376389. [PMID: 38628867 PMCID: PMC11019023 DOI: 10.3389/fmicb.2024.1376389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of upper and lower respiratory tract infections. This study aimed to explore the prevalence of respiratory syncytial virus (RSV) and other respiratory viruses in Bulgaria, characterize the genetic diversity of RSV strains, and perform amino acid sequence analyses of RSV surface and internal proteins. Methods Clinical and epidemiological data and nasopharyngeal swabs were prospectively collected from patients with acute respiratory infections between October 2020 and May 2023. Real-time PCR for 13 respiratory viruses, whole-genome sequencing, phylogenetic, and amino acid analyses were performed. Results This study included three epidemic seasons (2020-2021, 2021-2022, and 2022-2023) from week 40 of the previous year to week 20 of the following year. Of the 3,047 patients examined, 1,813 (59.5%) tested positive for at least one viral respiratory pathogen. RSV was the second most detected virus (10.9%) after SARS-CoV-2 (22%). Coinfections between RSV and other respiratory viruses were detected in 68 cases, including 14 with SARS-CoV-2. After two seasons of low circulation, RSV activity increased significantly during the 2022-2023 season. The detection rates of RSV were 3.2, 6.6, and 13.7% in the first, second, and third seasons, respectively. RSV was the most common virus found in children under 5 years old with bronchiolitis (40%) and pneumonia (24.5%). RSV-B drove the 2022-2023 epidemic. Phylogenetic analysis indicated that the sequenced RSV-B strains belonged to the GB5.0.5a and GB5.0.6a genotypes. Amino acid substitutions in the surface and internal proteins, including the F protein antigenic sites were identified compared to the BA prototype strain. Conclusion This study revealed a strong resurgence of RSV in the autumn of 2022 after the lifting of anti-COVID-19 measures, the leading role of RSV as a causative agent of serious respiratory illnesses in early childhood, and relatively low genetic diversity in circulating RSV strains.
Collapse
Affiliation(s)
- Neli Korsun
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivelina Trifonova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iveta Madzharova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivaylo Alexiev
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Ivan Ivanov
- Department of Infectious Diseases, Medical University, Sofia, Bulgaria
| | - Petar Velikov
- Department of Infectious Diseases, Medical University, Sofia, Bulgaria
| | | | - Iva Christova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
5
|
Deng S, Guo L, Cohen C, Meijer A, Moyes J, Pasittungkul S, Poovorawan Y, Teirlinck A, van Boven M, Wanlapakorn N, Wolter N, Paget J, Nair H, Li Y. Impact of Subgroup Distribution on Seasonality of Human Respiratory Syncytial Virus: A Global Systematic Analysis. J Infect Dis 2024; 229:S25-S33. [PMID: 37249267 DOI: 10.1093/infdis/jiad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Previous studies reported inconsistent findings regarding the association between respiratory syncytial virus (RSV) subgroup distribution and timing of RSV season. We aimed to further understand the association by conducting a global-level systematic analysis. METHODS We compiled published data on RSV seasonality through a systematic literature review, and unpublished data shared by international collaborators. Using annual cumulative proportion (ACP) of RSV-positive cases, we defined RSV season onset and offset as ACP reaching 10% and 90%, respectively. Linear regression models accounting for meteorological factors were constructed to analyze the association of proportion of RSV-A with the corresponding RSV season onset and offset. RESULTS We included 36 study sites from 20 countries, providing data for 179 study-years in 1995-2019. Globally, RSV subgroup distribution was not significantly associated with RSV season onset or offset globally, except for RSV season offset in the tropics in 1 model, possibly by chance. Models that included RSV subgroup distribution and meteorological factors explained only 2%-4% of the variations in timing of RSV season. CONCLUSIONS Year-on-year variations in RSV season onset and offset are not well explained by RSV subgroup distribution or meteorological factors. Factors including population susceptibility, mobility, and viral interference should be examined in future studies.
Collapse
Affiliation(s)
- Shuyu Deng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling Guo
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adam Meijer
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Siripat Pasittungkul
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anne Teirlinck
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Michiel van Boven
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Nasamon Wanlapakorn
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Paget
- Netherlands Institute for Health Services Research, Utrecht, The Netherlands
| | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Cohen C, Kleynhans J, Moyes J, McMorrow ML, Treurnicht FK, Hellferscee O, Wolter N, Martinson NA, Kahn K, Lebina L, Mothlaoleng K, Wafawanaka F, Gómez-Olivé FX, Mkhencele T, Mathunjwa A, Carrim M, Mathee A, Piketh S, Language B, von Gottberg A, Tempia S. Incidence and transmission of respiratory syncytial virus in urban and rural South Africa, 2017-2018. Nat Commun 2024; 15:116. [PMID: 38167333 PMCID: PMC10761814 DOI: 10.1038/s41467-023-44275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Data on respiratory syncytial virus (RSV) incidence and household transmission are limited. To describe RSV incidence and transmission, we conducted a prospective cohort study in rural and urban communities in South Africa over two seasons during 2017-2018. Nasopharyngeal swabs were collected twice-weekly for 10 months annually and tested for RSV using PCR. We tested 81,430 samples from 1,116 participants in 225 households (follow-up 90%). 32% (359/1116) of individuals had ≥1 RSV infection; 10% (37/359) had repeat infection during the same season, 33% (132/396) of infections were symptomatic, and 2% (9/396) sought medical care. Incidence was 47.2 infections/100 person-years and highest in children <5 years (78.3). Symptoms were commonest in individuals aged <12 and ≥65 years. Individuals 1-12 years accounted for 55% (134/242) of index cases. Household cumulative infection risk was 11%. On multivariable analysis, index cases with ≥2 symptoms and shedding duration >10 days were more likely to transmit; household contacts aged 1-4 years vs. ≥65 years were more likely to acquire infection. Within two South African communities, RSV attack rate was high, and most infections asymptomatic. Young children were more likely to introduce RSV into the home, and to be infected. Future studies should examine whether vaccines targeting children aged <12 years could reduce community transmission.
Collapse
Affiliation(s)
- Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Meredith L McMorrow
- Coronavirus and Other Respiratory Viruses Division (proposed), Centers for Disease Control and Prevention, Atlanta, GA, USA
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
| | - Florette K Treurnicht
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Orienka Hellferscee
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A Martinson
- Perinatal HIV Research Unit, MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, MD, USA
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Limakatso Lebina
- Perinatal HIV Research Unit, MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa
| | - Katlego Mothlaoleng
- Perinatal HIV Research Unit, MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Francesc Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulisa Mkhencele
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Azwifarwi Mathunjwa
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Maimuna Carrim
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Stuart Piketh
- Unit for Environmental Science and Management, Climatology Research Group, North-West University, Potchefstroom, South Africa
| | - Brigitte Language
- Unit for Environmental Science and Management, Climatology Research Group, North-West University, Potchefstroom, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefano Tempia
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
- MassGenics, Duluth, GA, USA
| |
Collapse
|
7
|
Tramuto F, Maida CM, Mazzucco W, Costantino C, Amodio E, Sferlazza G, Previti A, Immordino P, Vitale F. Molecular Epidemiology and Genetic Diversity of Human Respiratory Syncytial Virus in Sicily during Pre- and Post-COVID-19 Surveillance Seasons. Pathogens 2023; 12:1099. [PMID: 37764907 PMCID: PMC10534943 DOI: 10.3390/pathogens12091099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is an important pathogen of acute respiratory tract infection of global significance. In this study, we investigated the molecular epidemiology and the genetic variability of hRSV over seven surveillance seasons between 2015 and 2023 in Sicily, Italy. hRSV subgroups co-circulated through every season, although hRSV-B mostly prevailed. After the considerable reduction in the circulation of hRSV due to the widespread implementation of non-pharmaceutical preventive measures during the COVID-19 pandemic, hRSV rapidly re-emerged at a high intensity in 2022-2023. The G gene was sequenced for genotyping and analysis of deduced amino acids. A total of 128 hRSV-A and 179 hRSV-B G gene sequences were obtained. The phylogenetic analysis revealed that the GA2.3.5a (ON1) and GB5.0.5a (BA9) genotypes were responsible for the hRSV epidemics in Sicily.; only one strain belonged to the genotype GB5.0.4a. No differences were observed in the circulating genotypes during pre- and post-pandemic years. Amino acid sequence alignment revealed the continuous evolution of the G gene, with a combination of amino acid changes specifically appearing in 2022-2023. The predicted N-glycosylation sites were relatively conserved in ON1 and BA9 genotype strains. Our findings augment the understanding and prediction of the seasonal evolution of hRSV at the local level and its implication in the monitoring of novel variants worth considering in better design of candidate vaccines.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Claudio Costantino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
| | - Giuseppe Sferlazza
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Adriana Previti
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| | - Palmira Immordino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90134 Palermo, Italy; (C.M.M.); (W.M.); (C.C.); (E.A.); (P.I.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy; (G.S.); (A.P.)
| |
Collapse
|
8
|
Goya S, Lucion MF, Shilts MH, Juárez MDV, Gentile A, Mistchenko AS, Viegas M, Das SR. Evolutionary dynamics of respiratory syncytial virus in Buenos Aires: Viral diversity, migration, and subgroup replacement. Virus Evol 2023; 9:vead006. [PMID: 36880065 PMCID: PMC9985318 DOI: 10.1093/ve/vead006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/25/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Globally, the human respiratory syncytial virus (RSV) is one of the major causes of lower respiratory tract infections (LRTIs) in children. The scarcity of complete genome data limits our understanding of RSV spatiotemporal distribution, evolution, and viral variant emergence. Nasopharyngeal samples collected from hospitalized pediatric patients from Buenos Aires tested positive for RSV LRTI during four consecutive outbreaks (2014-2017) were randomly subsampled for RSV complete genome sequencing. Phylodynamic studies and viral population characterization of genomic variability, diversity, and migration of viruses to and from Argentina during the study period were performed. Our sequencing effort resulted in one of the largest collections of RSV genomes from a given location (141 RSV-A and 135 RSV-B) published so far. RSV-B was dominant during the 2014-2016 outbreaks (60 per cent of cases) but was abruptly replaced by RSV-A in 2017, with RSV-A accounting for 90 per cent of sequenced samples. A significant decrease in RSV genomic diversity-represented by both a reduction in genetic lineages detected and the predominance of viral variants defined by signature amino acids-was observed in Buenos Aires in 2016, the year prior to the RSV subgroup predominance replacement. Multiple introductions to Buenos Aires were detected, some with persistent detection over seasons, and also, RSV was observed to migrate from Buenos Aires to other countries. Our results suggest that the decrease in viral diversity may have allowed the dramatic predominance switch from RSV-B to RSV-A in 2017. The immune pressure generated against circulating viruses with limited diversity during a given outbreak may have created a fertile ground for an antigenically divergent RSV variant to be introduced and successfully spread in the subsequent outbreak. Overall, our RSV genomic analysis of intra- and inter-outbreak diversity provides an opportunity to better understand the epochal evolutionary dynamics of RSV.
Collapse
Affiliation(s)
- Stephanie Goya
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
- National Scientific and Technical Research Council, Godoy Cruz 2290, Buenos Aires 1425, Argentina
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
| | - Maria Florencia Lucion
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
| | - María del Valle Juárez
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Angela Gentile
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Alicia S Mistchenko
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Mariana Viegas
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
- National Scientific and Technical Research Council, Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
- Department Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Regassa BT, Gebrewold LA, Mekuria WT, Kassa NA. Molecular epidemiology of respiratory syncytial virus in children with acute respiratory illnesses in Africa: A systematic review and meta-analysis. J Glob Health 2023; 13:04001. [PMID: 36637855 PMCID: PMC9840062 DOI: 10.7189/jogh.13.04001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Globally, the respiratory syncytial virus (RSV) is the most common etiologic agent of acute respiratory illnesses in children. However, its burden has not been well addressed in developing countries. We aimed to estimate the molecular epidemiology of RSV in children less than 18 years of age with acute respiratory infections in Africa by conducting a systematic review and meta-analysis. Methods We systematically searched PubMed, Scopus, CINAHL, and Global Index Medicus databases to identify studies published from January 1, 2002, to April 27, 2022, following the PRISMA 2020 guideline. We assessed the study quality using the Joanna Brigg's Institute (JBI) critical appraisal checklists. We conducted a qualitative synthesis by describing the characteristics of included studies and performed the quantitative synthesis with random effects model using STATA-14. We checked for heterogeneity with Q statistics, quantified by I2, and determined the prediction interval. We performed subgroup analyses to explain the sources of heterogeneity and assessed publication biases by funnel plots augmented with Egger's test. Results Eighty-eight studies with 105 139 participants were included in the review. The overall pooled prevalence of RSV in children <18 years of age was 23% (95% confidence interval (CI) = 20, 25%). Considerable heterogeneity was present across the included studies. The adjusted prediction interval was found to be 19%-27%. Heterogeneities were explained by subgroups analyses. The highest prevalence of RSV was found among inpatients, 28% (95% CI = 25, 31%) compared with inpatients/outpatients and outpatients, with statistically significant differences (P < 0.01). The RSV estimate was also highest among those with acute lower respiratory tract illnesses (ALRTIs), 28% (95% CI = 25, 31%) compared with acute upper respiratory tract illnesses (AURTIs) and both acute upper/lower respiratory manifestations, with statistically different prevalence (P < 0.01). RSV infection estimates in each sub-region of Africa were statistically different (P < 0.01). There were no statistically significant differences in RSV infections by designs, specimen types, and specimen conditions, despite them contributing to heterogeneity. Conclusions We found a high prevalence of RSV in pediatric populations with acute respiratory tract illnesses in Africa, highlighting that the prevention and control of RSV infections in children deserve more attention. Registration PROSPERO CRD42022327054.
Collapse
Affiliation(s)
- Belay Tafa Regassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ethiopia
| | - Lami Abebe Gebrewold
- Department of Public Health, College of Medicine and Health Sciences, Ambo University, Ethiopia
| | - Wagi Tosisa Mekuria
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ethiopia
| | - Nega Assefa Kassa
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Ethiopia
| |
Collapse
|
10
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
11
|
Rios Guzman E, Hultquist JF. Clinical and biological consequences of respiratory syncytial virus genetic diversity. Ther Adv Infect Dis 2022; 9:20499361221128091. [PMID: 36225856 PMCID: PMC9549189 DOI: 10.1177/20499361221128091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.
Collapse
Affiliation(s)
- Estefany Rios Guzman
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Judd F. Hultquist
- Robert H. Lurie Medical Research Center,
Northwestern University, 9-141, 303 E. Superior St., Chicago, IL 60611,
USA
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|