1
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
2
|
Kolbe K, Wittner M, Hartjen P, Hüfner AD, Degen O, Ackermann C, Cords L, Stellbrink HJ, Haag F, Schulze zur Wiesch J. Inversed Ratio of CD39/CD73 Expression on γδ T Cells in HIV Versus Healthy Controls Correlates With Immune Activation and Disease Progression. Front Immunol 2022; 13:867167. [PMID: 35529864 PMCID: PMC9074873 DOI: 10.3389/fimmu.2022.867167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background γδ T cells are unconventional T cells that have been demonstrated to be crucial for the pathogenesis and potentially for the cure of HIV-1 infection. The ectonucleotidase CD39 is part of the purinergic pathway that regulates immune responses by degradation of pro-inflammatory ATP in concert with CD73. Few studies on the expression of the ectoenzymes CD73 and CD39 on human γδ T cells in HIV have been performed to date. Methods PBMC of n=86 HIV-1-infected patients were compared to PBMC of n=26 healthy individuals using 16-color flow cytometry determining the surface expression of CD39 and CD73 on Vδ1 and Vδ2 T cells in association with differentiation (CD45RA, CD28, CD27), activation and exhaustion (TIGIT, PD-1, CD38, and HLA-DR), and assessing the intracellular production of pro- and anti-inflammatory cytokines (IL-2, TGF-ß, TNF-α, Granzyme B, IL-10, IFN-γ) after in vitro stimulation with PMA/ionomycin. Results CD39 and CD73 expression on γδ T cells were inversed in HIV infection which correlated with HIV disease progression and immune activation. CD39, but not CD73 expression on γδ T cells of ART-treated patients returned to levels comparable with those of healthy individuals. Only a small subset (<1%) of γδ T cells co-expressed CD39 and CD73 in healthy or HIV-infected individuals. There were significantly more exhausted and terminally differentiated CD39+ Vδ1 T cells regardless of the disease status. Functionally, IL-10 was only detectable in CD39+ γδ T cells after in vitro stimulation in all groups studied. Viremic HIV-infected patients showed the highest levels of IL-10 production. The highest percentage of IL-10+ cells was found in the small CD39/CD73 co-expressing γδ T-cell population, both in healthy and HIV-infected individuals. Also, CD39+ Vδ2 T cells produced IL-10 more frequently than their CD39+ Vδ1 counterparts in all individuals regardless of the HIV status. Conclusions Our results point towards a potential immunomodulatory role of CD39+ and CD73+ γδ T cells in the pathogenesis of chronic HIV infection that needs further investigation.
Collapse
Affiliation(s)
- Katharina Kolbe
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Melanie Wittner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
- *Correspondence: Melanie Wittner,
| | - Philip Hartjen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja-Dorothee Hüfner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| |
Collapse
|
3
|
Dong LW, Sun XN, Ma ZC, Fu J, Liu FJ, Huang BL, Liang DC, Sun DM, Lan C. Increased Vδ1γδT cells predominantly contributed to IL-17 production in the development of adult human post-infectious irritable bowel syndrome. BMC Gastroenterol 2021; 21:271. [PMID: 34193069 PMCID: PMC8243880 DOI: 10.1186/s12876-021-01722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND γδT cells play an important role in the mucosa inflammation and immunity-associated disorders. Our previous study reported that γδ T cells producing IL-17 were involved in the pathogenesis of post-infectious irritable bowel syndrome (PI-IBS). However, their subset characteristic profile in this kind of disease remains unclear. Thus the current study's aim is to investigate the functionally predominant subset and its role in PI-IBS. METHODS The total T cells were collected from the peripheral blood of patients with PI-IBS. The peripheral proportion of Vδ1 and Vδ2 subset was detected by FACS after stained with anti δ1-PE and anti δ2-APC. The local colonic proportion of this two subsets were measured under laser confocal fluorescence microscope. Vδ1 γδ T cells were enriched from the total peripheral T cells by minoantibody-immuno-microbeads (MACS) method and cultured, functionally evaluated by CCK-8 assay (proliferation), CD69/CD62L molecules expression assay (activation) and ELISA (IL-17 production) respectively. RESULTS 1. Vδ1 γδ T cells significantly increased while Vδ2 γδ T cells remained unchanged in both the peripheral blood and local colonic tissue from PI-IBS patients (p < 0.05). 2. When cultured in vitro, the Vδ1 γδ T cells remarkably proliferated, activated and produced IL-17 (p < 0.05). CONCLUSIONS Our results suggest that Vδ1 γδ T cells was the predominant γδ T cells subset in both peripheral and intestinal tissue, and was the major IL-17 producing γδ T cells in PI-IBS.
Collapse
Affiliation(s)
- L W Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - X N Sun
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Z C Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - J Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - F J Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - B L Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - D C Liang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - D M Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA, 90033, USA
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
4
|
Liu J, Luthuli S, Yang Y, Cheng Y, Zhang Y, Wu M, Choi J, Tong H. Therapeutic and nutraceutical potentials of a brown seaweed Sargassum fusiforme. Food Sci Nutr 2020; 8:5195-5205. [PMID: 33133523 PMCID: PMC7590327 DOI: 10.1002/fsn3.1835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Sargassum fusiforme, also known as Yangqicai () in Chinese and Hijiki in Japanese, is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries such as Japan, Korea, and China. The first use of S. fusiforme as a traditional Chinese medicinal plant was recorded in the Shennong Bencao Jing, dated 200 AD. It was referred to as Haizao (seaweed), renowned for treating Yinglu (tumor-like induration), dysuria, and edema. Currently, it is commonly used in traditional cuisine as it is rich in dietary fiber and minerals such as calcium, iron, and magnesium. Owing to its health benefits, S. fusiforme remains popular in China, Korea, and Japan, as well as in the UK and in North America. Currently, there is a lack of research on S. fusiforme; thus, we review the therapeutic effects of S. fusiforme, such as anticancer, antiangiogenic, and antiviral effects, in vitro and in vivo as reported during the past two decades. This review may promote further research on the therapeutic uses of S. fusiforme. Furthermore, we discuss the processes and considerations involved in using drugs produced from marine sources.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
| | - Sibusiso Luthuli
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yue Yang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yang Cheng
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Ya Zhang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Mingjiang Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jong‐il Choi
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
| | - Haibin Tong
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| |
Collapse
|
5
|
Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol 2020; 109:339-347. [PMID: 32678936 PMCID: PMC7891415 DOI: 10.1002/jlb.3ru0220-111] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal immune tolerance is essential for the immune system, as it prevents abnormal immune responses to large quantities of antigens from the intestinal lumen, such as antigens from commensal microorganisms, and avoids self‐injury. Intestinal intraepithelial lymphocytes (IELs), a special group of mucosal T lymphocytes, play a significant role in intestinal immune tolerance. To accomplish this, IELs exhibit a high threshold of activation and low reactivity to most antigens from the intestinal lumen. In particular, CD8αα+TCRαβ+ IELs, TCRγδ+ IELs, and CD4+CD8αα+ IELs show great potential for maintaining intestinal immune tolerance and regulating intestinal immunity. However, if the intestinal microenvironment becomes abnormal or intestinal tolerance is broken, IELs may be activated abnormally and become pathogenic.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Abstract
γδT cells function in the regulation of T-cell activation in cancer and have been identified as a novel target for cancer immunotherapy. Activated γδT cells release a series of cytotoxic molecules-including granulysin, perforin, Fas/Fas ligand (Fas-L), and granzymes A and B-to kill target cells. Our previous research has shown that high mobility group nucleosomal-binding domain 2 (HMGN2), which is expressed at a high level in activated CD8T cells, is an antitumor effector molecule of CD8T cells. In the present study, we examined the expression and antitumor effects of HMGN2 in γδT cells. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors with a PBMC separation column. PMBCs were stimulated with isopentenyl pyrophosphate (IPP) and interleukin-2 (IL-2) for 10 days for activation and expansion. Activated γδT cells were isolated from IPP-pretreated PBMCs with a Moflo XDP flow cytometry sorter. The expression of HMGN2 in γδT cells was detected by flow cytometry and enzyme-linked immunosorbent assay. The cytotoxic effects of γδT cells and HMGN2 were analyzed by carboxyfluorescein succinimidyl ester labeling. IPP combined with IL-2 induced significant activation and expansion of γδT cells in vitro. HMGN2 was constitutively expressed in γδT cells. IPP-activated γδT cells expressed a high level of HMGN2 that could be detected intracellularly and in the supernatant. Moreover, supernatants of purified γδT cells were sufficient to kill tumor cells and could be blocked with anti-human HMGN2 antibody. This study suggests that HMGN2 is an antitumor effector molecule of γδT cells.
Collapse
|
7
|
Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. J Immunol Res 2018; 2018:5081634. [PMID: 30116753 PMCID: PMC6079409 DOI: 10.1155/2018/5081634] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022] Open
Abstract
γδ T cells, a subgroup of T cells based on the γδ TCR, when compared with conventional T cells (αβ T cells), make up a very small proportion of T cells. However, its various subgroups are widely distributed in different parts of the human body and are attractive effectors for infectious disease immunity. γδ T cells are activated and expanded by nonpeptidic antigens (P-Ags), major histocompatibility complex (MHC) molecules, and lipids which are associated with different kinds of pathogen infections. Activation and proliferation of γδ T cells play a significant role in diverse infectious diseases induced by viruses, bacteria, and parasites and exert their potential effector function to effectively eliminate infection. It is well known that many types of infectious diseases are detrimental to human life and health and give rise to high incidence of illnesses and death rate all over the world. To date, there is no comprehensive understanding of the correlation between γδ T cells and infectious diseases. In this review, we will focus on the various subgroups of γδ T cells (mainly Vδ1 T cells and Vδ2 T cells) which can induce multiple immune responses or effective functions to fight against common pathogen infections, such as Mycobacterium tuberculosis, Listeria monocytogenes, influenza viruses, HIV, EBV, and HBV. Hopefully, the gamma-delta T cell study will provide a novel effective way to treat infectious diseases.
Collapse
Affiliation(s)
- Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S. γδ cells and tumor microenvironment: A helpful or a dangerous liason? J Leukoc Biol 2017; 103:485-492. [PMID: 29345336 DOI: 10.1002/jlb.5mr0717-275rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
γδ T cells are a subset of T lymphocytes that have been implicated in immunosurveillance against infections and tumors. γδ T cells are endowed with antitumor activities, and hence several γδ T cell-based small-scale clinical trials have been conducted either by in vivo activation by intravenous administration of aminobiphosphonates or by adoptive transfer of in vitro expanded γδ T cells. Although both these strategies have yielded promising results, there are a number of limitations associated with each of them which, if overcome may help to further improve efficacy. One of the most important limits is the possible polarization of tumor-infiltrating γδ T cells toward different γδ T cells population with functional activities that help the progression and spread of the tumor. Here, we review the modalities and the possible mechanisms involved in the polarization of tumor-infiltrating γδ T cells upon interaction with several components of the tumor microenvironment and discuss their implications for the manipulation of γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Roberto Di Mitri
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Gabriele Pizzolato
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Filippo Mocciaro
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380:413-423. [PMID: 27392648 PMCID: PMC5003697 DOI: 10.1016/j.canlet.2016.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors.
Collapse
MESH Headings
- Animals
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Genetic Therapy/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/transplantation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sang Yun Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Frossard CP, Asigbetse KE, Burger D, Eigenmann PA. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol 2015; 180:118-30. [PMID: 25430688 DOI: 10.1111/cei.12561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 01/13/2023] Open
Abstract
The gut immune system is usually tolerant to harmless foreign antigens such as food proteins. However, tolerance breakdown may occur and lead to food allergy. To study mechanisms underlying food allergy, animal models have been developed in mice by using cholera toxin (CT) to break tolerance. In this study, we identify T cell receptor (TCR)-γδ(+) intraepithelial lymphocytes (IELs) as major targets of CT to break tolerance to food allergens. TCR-γδ(+) IEL-enriched cell populations isolated from mice fed with CT and transferred to naive mice hamper tolerization to the food allergen β-lactoglobulin (BLG) in recipient mice which produce anti-BLG immunoglobulin (Ig)G1 antibodies. Furthermore, adoptive transfer of TCR-γδ(+) cells from CT-fed mice triggers the production of anti-CT IgG1 antibodies in recipient mice that were never exposed to CT, suggesting antigen-presenting cell (APC)-like functions of TCR-γδ(+) IELs. In contrast to TCR-αβ(+) cells, TCR-γδ(+) IELs bind and internalize CT both in vitro and in vivo. CT-activated TCR-γδ(+) IELs express major histocompatibility complex (MHC) class II molecules, CD80 and CD86 demonstrating an APC phenotype. CT-activated TCR-γδ(+) IELs migrate to the lamina propria, where they produce interleukin (IL)-10 and IL-17. These results provide in-vivo evidence for a major role of TCR-γδ(+) IELs in the modulation of oral tolerance in the pathogenesis of food allergy.
Collapse
Affiliation(s)
- C P Frossard
- Inflammation and Allergy Research Group, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
11
|
Toth S, Jonecova Z, Kruzliak P, Ciccocioppo R, Nemcova R. Influence of dietary supplementation with flaxseed and lactobacilli on the cells of local innate immunity response in the jejunal mucosa in piglets after weaning. Acta Histochem 2015; 117:188-95. [PMID: 25582687 DOI: 10.1016/j.acthis.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022]
Abstract
A histological study was designed to determine the influence of flaxseed and/or lactobacilli inclusion in the diet of piglets from 10 days before to 21 days after weaning. The selected inflammatory cell population incidence in the piglet jejunal mucosa was investigated. Significantly higher numbers of myeloperoxidase-positive (P<0.01) and CD163-positive (P<0.001) cells in the jejunal mucosa were recorded on the weaning day and for 7 days after (P<0.001 and P<0.01, respectively) in the flaxseed group compared with the basal diet. The number of intraepithelial lymphocytes was also significantly increased until 3 days after weaning (P<0.001). A prolonged significant increase in the myeloperoxidase-positive cells and intraepithelial lymphocyte numbers in the flaxseed+lactobacilli group was detected. In contrast, the number of CD163-positive cells in the flaxseed+lactobacilli group was significantly lower on the day of weaning (P<0.05) and 3 days after (P<0.01). The same effect was observed in the group with lactobacilli alone during the first 3 days after weaning (P<0.05 and P<0.01, respectively) and these findings indicate down-regulation of CD163 expression in the jejunal mucosa by lactobacilli. The presence of lactobacilli in the diet had a stimulatory effect on goblet cell quantity in the epithelium (P<0.001) and a distinct 50% reduction in the flaxseed group (P<0.01) compared with the basal diet was observed on the weaning day. A significant increase in myeloperoxidase-positive cell number in the jejunal mucosa in the flaxseed+lactobacilli group was the only significant difference (P<0.05 and P<0.01, respectively) found 21 days after weaning in comparison with all the other groups, indicating the pro-inflammatory effect of this feed additive combination. We conclude that dietary supplementation with flaxseed and lactobacilli on the cells of local innate immunity response in the jejunal mucosa in piglets after weaning might be linked with significant anti-inflammatory effects in the jejunal mucosa.
Collapse
Affiliation(s)
- Stefan Toth
- Department of Histology and Embryology, Faculty of Medicine, Pavel Jozef Safarik University, Kosice, Slovak Republic
| | - Zuzana Jonecova
- Department of Histology and Embryology, Faculty of Medicine, Pavel Jozef Safarik University, Kosice, Slovak Republic
| | - Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.
| | - Rachele Ciccocioppo
- Clinica Medica I, Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Pavia, Italy
| | - Radomira Nemcova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic
| |
Collapse
|
12
|
|
13
|
Rombout JHWM, Yang G, Kiron V. Adaptive immune responses at mucosal surfaces of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2014; 40:634-43. [PMID: 25150451 DOI: 10.1016/j.fsi.2014.08.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 05/13/2023]
Abstract
This review describes the extant knowledge on the teleostean mucosal adaptive immune mechanisms, which is relevant for the development of oral or mucosal vaccines. In the last decade, a number of studies have shed light on the presence of new key components of mucosal immunity: a distinct immunoglobulin class (IgT or IgZ) and the polymeric Ig receptor (pIgR). In addition, intestinal T cells and their putative functions, antigen uptake mechanisms at mucosal surfaces and new mucosal vaccination strategies have been reported. New information on pIgR of Atlantic cod and common carp and comparison of natural and specific cell-mediated cytotoxicity in the gut of common carp and European seabass, is also included in this review. Based on the known facts about intestinal immunology and mucosal vaccination, suggestions are made for the advancement of fish vaccines.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway; Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Guiwen Yang
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands; Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway.
| |
Collapse
|
14
|
Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. γδ T cells and their potential for immunotherapy. Int J Biol Sci 2014; 10:119-35. [PMID: 24520210 PMCID: PMC3920167 DOI: 10.7150/ijbs.7823] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
Vγ9Vδ2 (also termed Vγ2Vδ2) T cells, a major human peripheral blood γδ T cell subset, recognize microbial (E)-4-hydroxy-3-methylbut-2-enyl diphosphate and endogenous isopentenyl diphosphate in a TCR-dependent manner. The recognition does not require specific accessory cells, antigen uptake, antigen processing, or MHC class I, class II, or class Ib expression. This subset of T cells plays important roles in mediating innate immunity against a wide variety of infections and displays potent and broad cytotoxic activity against human tumor cells. Because γδT cells express both natural killer receptors such as NKG2D and γδ T cell receptors, they are considered to represent a link between innate and adaptive immunity. In addition, activated γδ T cells express a high level of antigen-presenting cell-related molecules and can present peptide antigens derived from destructed cells to αβ T cells. Utilizing these antimicrobial and anti-tumor properties of γδ T cells, preclinical and clinical trials have been conducted to develop novel immunotherapies for infections and malignancies. Here, we review the immunological properties of γδ T cells including the underlying recognition mechanism of nonpeptitde antigens and summarize the results of γδ T cell-based therapies so far performed. Based on the results of the reported trials, γδ T cells appear to be a promising tool for novel immunotherapies against certain types of diseases.
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Lab of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
| | - Yan-Ping Ding
- 1. Lab of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Li-Wen Shen
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Chuan-He Wei
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Nagahiro Minato
- 4. Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- 2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
15
|
Yue M, Shen Z, Yu CH, Ye H, Li YM. The therapeutic role of oral tolerance in dextran sulfate sodium-induced colitis via Th1-Th2 balance and γδ T cells. J Dig Dis 2013; 14:543-551. [PMID: 23647697 DOI: 10.1111/1751-2980.12068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the state of oral tolerance and its therapeutic role in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS Delayed-type hypersensitivity (DTH) was determined 7 and 14 days after DSS-induced colitis and control mice. Disease activity index (DAI) score and colonic histopathological score were measured 7 days after colonic extracted protein (CEP) or bovine serum albumin (BSA) (control) was administrated, with the evaluation of Th1-Th2 balance in the spleen, Peyer's patch and γδ T cells in intraepithelial lymphocytes and lamina proper lymphocytes in the intestine. RESULTS After fed with 250 μg ovalbumin oral tolerance was induced in 7 days in both DSS-induced colitis and control mice, while oral tolerance persisted in the control mice but vanished in DSS-induced colitis 14 days after ovalbumin challenge. DAI and colonic histopathological scores were decreased significantly after the ingestion of CEP (controlled by BSA) in DSS-induced colitis with significant reduction of Th1 and the ratio of Th1 to Th2 in Peyer's patch as well as the γδ T cells in lamina proper lymphocytes in the intestine. No significant difference in Th1-Th2 balance in the spleen and γδ T cells in intraepithelial lymphocytes in the intestine were observed. CONCLUSIONS There is a defect in oral tolerance at day 7 in DSS-induced colitis. If taken orally, CEP may have a protective role in DSS-induced colitis, which may be related to the deflection from Th1 to Th2 in Peyer's patch and the reduction of γδ T cells in lamina proper lymphocytes in the intestine.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Autoantigens/immunology
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/prevention & control
- Colon/immunology
- Colon/pathology
- Dextran Sulfate
- Immune Tolerance/immunology
- Immunity, Mucosal
- Male
- Mice
- Mice, Inbred BALB C
- Peyer's Patches/immunology
- Proteins/immunology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- Th1-Th2 Balance
Collapse
Affiliation(s)
- Min Yue
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
16
|
Ye J, Ma C, Wang F, Hsueh EC, Toth K, Huang Y, Mo W, Liu S, Han B, Varvares MA, Hoft DF, Peng G. Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res 2013; 73:6137-48. [PMID: 23959855 DOI: 10.1158/0008-5472.can-13-0348] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the role of different subtypes of tumor-infiltrating lymphocytes (TIL) in the immunosuppressive tumor microenvironment is essential for improving cancer treatment. Enriched γδ1 T-cell populations in TILs suppress T-cell responses and dendritic cell maturation in breast cancer, where their presence is correlated negatively with clinical outcomes. However, mechanism(s) that explain the increase in this class of regulatory T cells (γδ Treg) in patients with breast cancer have yet to be elucidated. In this study, we show that IP-10 secreted by breast cancer cells attracted γδ Tregs. Using neutralizing antibodies against chemokines secreted by breast cancer cells, we found that IP-10 was the only functional chemokine that causes γδ Tregs to migrate toward breast cancer cells. In a humanized NOD-scid IL-2Rγ(null) (NSG) mouse model, human breast cancer cells attracted γδ Tregs as revealed by a live cell imaging system. IP-10 neutralization in vivo inhibited migration and trafficking of γδ Tregs into breast tumor sites, enhancing tumor immunity mediated by tumor-specific T cells. Together, our studies show how γδ Tregs accumulate in breast tumors, providing a rationale for their immunologic targeting to relieve immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Jian Ye
- Authors' Affiliations: Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Departments of Surgery, Molecular Microbiology and Immunology, and Otolaryngology-Head and Neck Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri; Department of Immunology and Microbiology, Shandong Medical College, Linyi; and Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, Hoft DF, Peng G. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. THE JOURNAL OF IMMUNOLOGY 2013; 190:2403-14. [PMID: 23355732 DOI: 10.4049/jimmunol.1202369] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamentally understanding the suppressive mechanisms used by different subsets of tumor-infiltrating regulatory T (Treg) cells is critical for the development of effective strategies for antitumor immunotherapy. γδ Treg cells have recently been identified in human diseases including cancer. However, the suppressive mechanisms and functional regulations of this new subset of unconventional Treg cells are largely unknown. In the current studies, we explored the suppressive mechanism(s) used by breast tumor-derived γδ Treg cells on innate and adaptive immunity. We found that γδ Treg cells induced immunosenescence in the targeted naive and effector T cells, as well as dendritic cells (DCs). Furthermore, senescent T cells and DCs induced by γδ Treg cells had altered phenotypes and impaired functions and developed potent suppressive activities, further amplifying the immunosuppression mediated by γδ Treg cells. In addition, we demonstrated that manipulation of TLR8 signaling in γδ Treg cells can block γδ Treg-induced conversion of T cells and DCs into senescent cells in vitro and in vivo. Our studies identify the novel suppressive mechanism mediated by tumor-derived γδ Treg cells on innate and adaptive immunity, which should be critical for the development of strong and innovative approaches to reverse the tumor-suppressive microenvironment and improve effects of immunotherapy.
Collapse
Affiliation(s)
- Jian Ye
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E, Schwartz T, Hunborg P, Varvares MA, Hoft DF, Hsueh EC, Peng G. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. THE JOURNAL OF IMMUNOLOGY 2012; 189:5029-36. [PMID: 23034170 DOI: 10.4049/jimmunol.1201892] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding and dissecting the role of different subsets of regulatory tumor-infiltrating lymphocytes (TILs) in the immunopathogenesis of individual cancer is a challenge for anti-tumor immunotherapy. High levels of γδ regulatory T cells have been discovered in breast TILs. However, the clinical relevance of these intratumoral γδ T cells is unknown. In this study, γδ T cell populations were analyzed by performing immunohistochemical staining in primary breast cancer tissues from patients with different stages of cancer progression. Retrospective multivariate analyses of the correlations between γδ T cell levels and other prognostic factors and clinical outcomes were completed. We found that γδ T cell infiltration and accumulation in breast tumor sites was a general feature in breast cancer patients. Intratumoral γδ T cell numbers were positively correlated with advanced tumor stages, HER2 expression status, and high lymph node metastasis but inversely correlated with relapse-free survival and overall survival of breast cancer patients. Multivariate and univariate analyses of tumor-infiltrating γδ T cells and other prognostic factors further suggested that intratumoral γδ T cells represented the most significant independent prognostic factor for assessing severity of breast cancer compared with the other known factors. Intratumoral γδ T cells were positively correlated with FOXP3(+) cells and CD4(+) T cells but negatively correlated with CD8(+) T cells in breast cancer tissues. These findings suggest that intratumoral γδ T cells may serve as a valuable and independent prognostic biomarker, as well as a potential therapeutic target for human breast cancer.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sant'Ana DMG, Góis MB, Zanoni JN, da Silva AV, da Silva CJT, Araújo EJA. Intraepithelial lymphocytes, goblet cells and VIP-IR submucosal neurons of jejunum rats infected with Toxoplasma gondii. Int J Exp Pathol 2012; 93:279-86. [PMID: 22804764 DOI: 10.1111/j.1365-2613.2012.00824.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii (T. gondii) crosses the intestinal barrier in oral infections and can lead to changes in different cell types, including the neurons located there. In the gastrointestinal system, the autonomous nervous system component that regulate blood flow and mucous secretion is the submucosal plexus. The aim of this study was to examine the effects of T. gondii infection on intraepithelial lymphocytes (IELs), goblet cells and submucosal neurons that are immunoreactive to vasoactive intestinal peptide (VIP-IR) of rat jejunum. Twenty male rats distributed as a control group (CG) and an infected group (IG), which received a suspension with 500 parasite oocysts (strain ME-49, genotype II) orally, were assessed. Routine histological sections were used to quantify IELs and to detect mucins secreted by goblet cells. Whole mounts including the submucosal layer were examined using immunofluorescence to detect the VIP neurotransmitter. Quantitative alterations in IELs were not observed. However, the reduction (P < 0.05) in the number of goblet cells that produce neutral mucins (PAS+) and sulphomucins (AB pH 1.0) and the maintenance of sialomucin-secreting cells (AB pH 2.5) resulting in a more fluid mucous were observed. Concerning the VIP-IR submucosal neurons, an increase in fluorescence on IG animals was observed. There was a reduction (P < 0.05) in the number of VIP-IR submucosal neurons and atrophy of their cell bodies in IG rats. Infection with T. gondii caused alterations in the chemical composition of the intestinal mucous and reduction in the neuron number and atrophy of the remaining neurons in this cell subpopulation.
Collapse
|
20
|
Protective function of an unconventional γδ T cell subset against malaria infection in apoptosis inhibitor deficient mice. Cell Immunol 2012; 279:151-9. [DOI: 10.1016/j.cellimm.2012.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/11/2012] [Accepted: 09/25/2012] [Indexed: 11/22/2022]
|
21
|
The effect of oral tolerance on the roles of small intestinal intraepithelial lymphocytes in murine colitis induced by dextran sodium sulfate. Int J Colorectal Dis 2012; 27:583-93. [PMID: 22246420 DOI: 10.1007/s00384-011-1354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS AND AIMS There is increasing evidence that gut-derived intraepithelial lymphocytes have potent cytolytic and immunoregulatory functions, which they use to sustain epithelial integrity. The aims of this study were to investigate the roles of small intestinal intraepithelial lymphocytes (SI-IELs) in oral tolerance and dextran sodium sulfate (DSS)-induced colitis. METHODS SI-IELs or sorted γδ T cells from untreated, colitis, and colitis-extracted protein (CEP)-fed colitis mice were adoptively transferred to BALB/c mice; colitis was then induced with DSS. Cytokines were analyzed in sera from mice and culture supernatants. RESULTS Transfer of SI-IELs or sorted γδ T cells from untreated and colitis mice all alleviated experimental colitis. Mice orally administered with five low doses of CEP showed less severe symptoms and histological injury. SI-IELs from CEP-fed colitis mice more significantly ameliorated colitis than those from control mice (weight, 94.1 ± 2.5% vs. 89.8 ± 2.6%, p < 0.05; disease activity index, 7.2 ± 1.2 vs. 8.7 ± 1.9, p < 0.05; histological scores, 22.1 ± 2.8 vs. 25.7 ± 2.1, p < 0.05, n = 8 per group); however, not did SI-γδ IELs from CEP-fed colitis mice. Alleviation of colitis was accompanied by an increase of TGF-β1 secretion and no change of IFN-γ in sera and culture supernatants. The level of serum TGF-β1 was negatively related to the severity of colitis. CONCLUSIONS The protective effects of SI-IELs in DSS-induced colitis were partly accomplished by γδ T cells and could be mediated by TGF-β but were not associated with IFN-γ. Oral tolerance strengthens the suppressive effects of regulatory subsets in SI-IELs.
Collapse
|
22
|
New insights into the immunological changes in IL-10-deficient mice during the course of spontaneous inflammation in the gut mucosa. Clin Dev Immunol 2012; 2012:560817. [PMID: 22400037 PMCID: PMC3287045 DOI: 10.1155/2012/560817] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/15/2011] [Indexed: 12/18/2022]
Abstract
IL-10 is a regulatory cytokine that plays a major role in the homeostasis of the gut and this is illustrated by the fact that IL-10−/− mice develop spontaneous colitis. In this study, IL-10−/− mice were analyzed for immunological changes during colitis development. We found a reduced frequency of regulatory T cells CD4+CD25+Foxp3+ and higher frequency of activated T cells in the colon that precedes the macroscopic signs of the disease. Production of IL-17 and IFN-γ was higher in the colon. Colitis progression culminates with the reduction of CD4+LAP+ regulatory T cells in the intestine. Frequency of B1 cells and the secretory IgA production were both elevated. Despite these alterations, 16-week-old IL-10−/− mice could be rendered tolerant by a continuous feeding protocol. Our study provides detailed analysis of changes that precede colitis and it also suggests that oral tolerance could be used to design novel alternative therapies for the disease.
Collapse
|
23
|
Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V. Teleost intestinal immunology. FISH & SHELLFISH IMMUNOLOGY 2011; 31:616-26. [PMID: 20832474 DOI: 10.1016/j.fsi.2010.09.001] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 05/12/2023]
Abstract
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4-5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-ɛ+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Santiago AF, Alves AC, Oliveira RP, Fernandes RM, Paula-Silva J, Assis FA, Carvalho CR, Weiner HL, Faria AMC. Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa. Immunobiology 2011; 216:1085-93. [PMID: 21676485 PMCID: PMC3206609 DOI: 10.1016/j.imbio.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/11/2011] [Accepted: 05/07/2011] [Indexed: 11/22/2022]
Abstract
Aging is reported to be associated with decline in oral tolerance induction, which is initiated at the intestinal mucosal surface. Herein, we examined the effect of aging in T cells and cytokines at the intestinal mucosa that might be involved in oral tolerance induction. Frequencies of regulatory-type IEL subsets such as TCRγδ(+) and TCRαβ(+)CD8αα(+) were lower in aged mice. Mucosal CD4(+)CD25(+)Foxp3(+) and CD4(+)LAP(+) T cells increased with aging but activated CD44(+)CD4(+) mucosal T cells also augmented. Production of TGF-β and IL-10 in the small intestine of old mice was reduced. Moreover, the ability of mucosal dendritic cells of aged mice to stimulate TGF-β secretion and differentiation of CD4(+)LAP(+) T cells in co-culture studies also declined with aging. Reduction in these regulatory-type cytokines and T cells may help to explain the decline in susceptibility to oral induction during aging. However, not all mucosal regulatory elements were altered by aging and CD4(+)CD25(+)Foxp3(+) T cells were especially resistant to changes. Persistence of some mechanisms of regulation may play a critical role in maintaining mucosal homeostasis during aging.
Collapse
Affiliation(s)
- Andrezza F Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Disruption of circulating γδ T-cell populations is an early and common outcome of HIV infection. T-cell receptor (TCR)-γ2δ2 cells (expressing the Vγ2 and Vδ2 chains of the γδ TCR) are depleted, even though they are minimally susceptible to direct HIV infection, and exemplify indirect cell depletion mechanisms that are important in the progression to AIDS. Among individuals with common or normally progressing HIV disease, the loss of TCR-γ2δ2 cells has a broad impact on viral immunity, control of opportunistic pathogens and resistance to malignant disease. Advanced HIV disease can result in complete loss of TCR-γ2δ2 cells that are not recovered even during antiretroviral therapy with complete virus suppression. However, normal levels of TCR-γ2δ2 were observed among natural virus suppressors (low or undetectable virus without antiretroviral therapy) irrespective of their MHC haplotype, consistent with their disease-free status. The pattern of loss and recovery of TCR-γ2δ2 cells revealed their unique features and functional capacities, and encourage the development of immune-based therapies to activate and expand this T-cell subset. New research has identified drugs that might reconstitute the TCR-γ2δ2 population, recover their functional contributions, and improve control of HIV replication and disease. Here, we review research on HIV and TCR-γδ T cells to highlight the consequences of depleting this subset and the unique features of TCR-γδ biology that argue in favor of clinical strategies to reconstitute this T-cell subset in individuals with HIV/AIDS.
Collapse
Affiliation(s)
- C David Pauza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Riedel
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bruce L Gilliam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert R Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Albert E, Walker J, Thiesen A, Churchill T, Madsen K. cis-Urocanic acid attenuates acute dextran sodium sulphate-induced intestinal inflammation. PLoS One 2010; 5:e13676. [PMID: 21060867 PMCID: PMC2965142 DOI: 10.1371/journal.pone.0013676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/27/2010] [Indexed: 12/19/2022] Open
Abstract
On exposure to sunlight, urocanic acid (UCA) in the skin is converted from trans to the cis form and distributed systemically where it confers systemic immunosuppression. The aim of this study was to determine if administration of cis-UCA would be effective in attenuating colitis and the possible role of IL-10. Colitis was induced in 129/SvEv mice by administering 5% dextran sodium sulfate (DSS) for 7 days in drinking water. During this period mice received daily subcutaneously injections of cis-UCA or vehicle. To examine a role for IL-10, 129/SvEv IL-10(-/-) mice were injected for 24 days with cis-UCA or vehicle. Clinical disease was assessed by measurement of body weight, stool consistency, and presence of blood. At sacrifice, colonic tissue was collected for histology and measurement of myeloperoxidase and cytokines. Splenocytes were analyzed for CD4+CD25+FoxP3+ T-regulatory cells via flow cytometry. Murine bone-marrow derived antigen-presenting cells were treated with lipopolysaccharide (LPS) ± UCA and cytokine secretion measured. Our results demonstrated that cis-UCA at a dose of 50 µg was effective in ameliorating DSS-induced colitis as evidenced by reduced weight loss and attenuated changes in colon weight/length. This protection was associated with reduced colonic expression of CXCL1, an increased expression of IL-17A and a significant preservation of splenic CD4+CD25+FoxP3+ T-regulatory cells. cis-UCA decreased LPS induced CXCL1, but not TNFα secretion, from antigen-presenting cells in vitro. UCA reduced colonic levels of IFNγ in IL-10(-/-) mice but did not attenuate colitis. In conclusion, this study demonstrates that cis-urocanic acid is effective in reducing the severity of colitis in a chemically-induced mouse model, indicating that pathways induced by ultraviolet radiation to the skin can influence distal sites of inflammation. This provides further evidence for a possible role for sunlight exposure in modulating inflammatory disorders.
Collapse
Affiliation(s)
- Eric Albert
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Walker
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Churchill
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Ye Y, Yue M, Jin X, Chen S, Li Y. Isolation of Murine Small Intestinal Intraepithelial γδT Cells. Immunol Invest 2010; 39:661-73. [DOI: 10.3109/08820131003753026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Ye Y, Jin X, Yue M, Chen S, Yu C, Li Y. The protective effect of oral colitis-derived proteins in a murine model of inflammatory bowel disease is associated with an increase in gammadelta T cells in large intestinal mucosa. Int J Colorectal Dis 2010; 25:1055-1062. [PMID: 20571813 DOI: 10.1007/s00384-010-0975-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS AND AIMS Oral tolerance has previously been shown effective in preventing several immune-mediated disorders in animal models. The aims of this study were to investigate the effect of oral colitis-extracted proteins (CEP) on dextran sulfate sodium (DSS)-induced colitis in BALB/c mice and to explore the relative role of the intestinal mucosal gammadelta T cells. METHODS The effect of five low oral doses of CEP on colitis was evaluated by clinical manifestation and histological lesions. Serum cytokines were measured by enzyme-linked immunosorbent assay. The percentages of the intestinal mucosal gammadelta T cells were evaluated by flow cytometry. RESULTS CEP-fed colitis mice showed less severe symptoms and histological injury than bovine serum albumin (BSA)-fed control mice. Tolerized mice developed an increase in TGF-beta1 and no change in IFN-gamma serum levels. Increases in TCRgammadelta(+) T cells and CD8alpha(+)TCRgammadelta(+) T cells in small intestinal mucosal lymphocytes and no quantitative change in large intestinal mucosal lymphocytes were demonstrated in colitis mice compared to untreated mice. The proportions of TCRgammadelta(+) T cells and CD8alpha(+)TCRgammadelta(+) T cells in large intestinal mucosal lymphocytes from CEP-fed colitis mice were significantly higher compared to BSA-fed controls. The disease activity index negatively correlated with the percentages of large intestinal mucosal gammadelta T cells. Furthermore, mucosal repair in repair-period mice was also accompanied by increases in TCRgammadelta(+) T cells and CD8alpha(+)TCRgammadelta(+) T cells in large intestinal mucosal lymphocytes. CONCLUSION Improvement of DSS-induced colitis that resulted from oral administration of colitis-extracted proteins is associated with an increase in gammadelta T cells in large intestinal mucosa.
Collapse
Affiliation(s)
- Yuefang Ye
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Immune regulation and the eye. Trends Immunol 2009; 29:548-54. [PMID: 18838303 DOI: 10.1016/j.it.2008.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 11/21/2022]
Abstract
The eye is an immune privileged site that is styled to maintain the visual pathway while at the same time provide defense against invading organisms. The eye does this by selecting immune responses that function in the absence of inflammation. Immune regulation by the eye takes the form of several active processes including a local immunosuppressive environment, the contribution of soluble factors, Fas-FasL-induced apoptosis and unique suppressive mechanisms used by pigment epithelial cells in the eye. These processes are so effective that antigens encountered in the eye result in specific systemic tolerization; a phenomenon akin to gut-induced oral tolerance. This review discusses the cellular and molecular basis of tolerance induction by the eye and notes the parallels to gut-induced peripheral tolerance.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Worldwide awareness of coeliac disease in all ages continues to grow. This article aims to summarize critically the recent research advances in coeliac disease. RECENT FINDINGS Large multicentre studies have provided further evidence of the role of environmental and nonhuman leucocyte antigen genetic factors in coeliac disease. Siblings of coeliac patients carry a high risk, but those found to have negative coeliac serology are very unlikely to develop the disease. Advances in the efficacy of serological antibody testing potentiate the possibility of future accurate screening programmes in the community. Adherence to a gluten-free diet remains paramount as the recognition of coeliac related complications increases. SUMMARY Despite the encouraging progress that has taken place in our genetic and immunological knowledge of coeliac disease, early introduction of a gluten-free diet remains the cornerstone of treatment. Alternatives, however, aimed at altering the toxicity of cereal proteins are now looking more promising.
Collapse
|
31
|
Zhou J, Appleton SE, Stadnyk A, Lee TDG, Nashan BAP. CD8+γδ T regulatory cells mediate kidney allograft prolongation after oral exposure to alloantigen. Transpl Int 2008; 21:679-87. [DOI: 10.1111/j.1432-2277.2008.00669.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Bhagat G, Naiyer AJ, Shah JG, Harper J, Jabri B, Wang TC, Green PH, Manavalan JS. Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest 2008; 118:281-93. [PMID: 18064301 PMCID: PMC2117760 DOI: 10.1172/jci30989] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 10/17/2007] [Indexed: 01/03/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) bearing the gammadelta TCR are more abundant in the small intestinal mucosa of patients with celiac disease (CD) compared with healthy individuals. However, their role in disease pathogenesis is not well understood. Here, we investigated the functional attributes of TCRgammadelta+ IELs isolated from intestinal biopsies of patients with either active celiac disease (ACD) or those on a gluten-free diet (GFD). We found that compared with individuals with ACD, individuals on GFD have a higher frequency of CD8+TCRgammadelta+ IELs that express the inhibitory NK receptor NKG2A and intracellular TGF-beta1. TCR triggering as well as cross-linking of NKG2A increased both TGF-beta1 intracellular expression and secretion in vitro. Coculture of sorted TCRgammadelta+NKG2A+ IELs, IL-15-stimulated TCRalphabeta+ IELs, and HLA-E+ enterocytes resulted in a decreased percentage of cytotoxic CD8+TCRalphabeta+ IELs expressing intracellular IFN-gamma and granzyme-B and surface NKG2D. This inhibition was partially abrogated by blocking either TGF-beta alone or both NKG2A and HLA-E. Thus, our data indicate that suppression was at least partially mediated by TGF-beta secretion as a result of engagement of NKG2A with its ligand, HLA-E, on enterocytes and/or TCRalphabeta+ IELs. These findings demonstrate that human small intestinal CD8+TCRgammadelta+ IELs may have regulatory potential in celiac disease.
Collapse
Affiliation(s)
- Govind Bhagat
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Afzal J. Naiyer
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Jayesh G. Shah
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Jason Harper
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Bana Jabri
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Timothy C. Wang
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Peter H.R. Green
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - John S. Manavalan
- Department of Pathology and
Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Departments of Pathology, Medicine, and Pediatrics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Kristóf K, Erdei A, Bajtay Z. Set a thief to catch a thief: self-reactive innate lymphocytes and self tolerance. Autoimmun Rev 2007; 7:278-83. [PMID: 18295730 DOI: 10.1016/j.autrev.2007.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/07/2007] [Indexed: 02/03/2023]
Abstract
Self-reactive lymphocytes form part of the peripheral repertoire in healthy individuals. Some of these cells are anergic classical lymphocytes, but a remarkable subset of self-reactive clones is related to innate immunity and many of them bear a partially activated phenotype. In the past few years growing evidence has pointed out the importance of this physiological autoimmunity in self tolerance, with special regard to the role of periportal innate lymphocytes. This population is involved in a wide range of immunoregulatory processes including immune privilege and oral tolerance, providing systemic tolerance to highly tissue-specific antigens as well as microbial epitopes cross-reactive to self. This kind of self-protection is dominantly mediated by self-reactive clones, which commonly play a dual role by acting as potent effectors and regulators at the same time. Here we provide an overview of the field.
Collapse
Affiliation(s)
- Katalin Kristóf
- Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/c, H-1117 Budapest, Hungary
| | | | | |
Collapse
|
34
|
Enoh VT, Lin SH, Lin CY, Toliver-Kinsky T, Murphey ED, Varma TK, Sherwood ER. Mice depleted of alphabeta but not gammadelta T cells are resistant to mortality caused by cecal ligation and puncture. Shock 2007; 27:507-19. [PMID: 17438456 DOI: 10.1097/shk.0b013e31802b5d9f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present study was undertaken to determine whether the mice depleted of alphabeta or gammadelta T cells show resistance to acute polymicrobial sepsis caused by cecal ligation and puncture (CLP). T-cell receptor beta knockout (betaTCRKO) and T-cell receptor delta knockout (deltaTCRKO) mice were used. An additional group of mice was treated with an antibody against the alphabeta T-cell receptor to induce alphabeta T-cell depletion; a subset of alphabeta T cell-deficient mice was also treated with anti-asialoGM1 to deplete natural killer (NK) cells. The mice underwent CLP and were monitored for survival, temperature, acid-base balance, bacterial counts, and cytokine production. The betaTCRKO mice and the wild-type mice treated with anti-beta T-cell receptor (anti-TCRbeta) antibody showed improved survival after CLP compared with wild-type mice. The treatment of alphabeta T cell-deficient mice with anti-asialoGM1further improved survival after CLP, especially when the mice were treated with imipenem. The improved survival observed in alphabeta T cell-deficient mice was associated with less hypothermia, improved acid-base balance, and decreased production of the proinflammatory cytokines interleukin (IL) 6 and macrophage inflammatory protein (MIP) 2. Compared with wild-type controls, the overall survival was not improved in deltaTCRKO mice. The concentrations of IL-6 and MIP-2 in plasma and cytokine mRNA expression in tissues were not significantly different between wild-type and deltaTCRKO mice. These studies indicate that mice depleted of alphabeta but not of gammadelta T cells are resistant to mortality in an acutely lethal model of CLP. The depletion of NK cells caused further survival benefit in alphabeta T cell-deficient mice. These findings suggest that alphabeta T and NK cells mediate or facilitate CLP-induced inflammatory injury.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/therapeutic use
- Bacteremia/drug therapy
- Bacteremia/immunology
- Bacteremia/mortality
- Bacteria/drug effects
- Bacteria/growth & development
- Cecum/injuries
- Chemokine CXCL2
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Imipenem/therapeutic use
- Interleukin-6/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monokines/metabolism
- Punctures
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sepsis/drug therapy
- Sepsis/immunology
- Sepsis/mortality
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Temperature
- Time Factors
Collapse
Affiliation(s)
- Victor T Enoh
- *Departments of Anesthesiology , The University of Texas Medical Branch, Galveston, Galveston, Texas 77555-0591, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Howard KE, Burkhard MJ. Mucosal challenge with cell-associated or cell-free feline immunodeficiency virus induces rapid and distinctly different patterns of phenotypic change in the mucosal and systemic immune systems. Immunology 2007; 122:571-83. [PMID: 17635613 PMCID: PMC2266040 DOI: 10.1111/j.1365-2567.2007.02673.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The majority of human immunodeficiency virus type 1 (HIV-1) infections occur via mucosal transmission through contact with genital secretions containing cell-associated and cell-free virus. However, few studies have assessed whether exposure to cells, HIV-1 infected or uninfected, plays a role in the sexual transmission of HIV-1. This study examined phenotypic changes in mucosal and systemic lymphoid tissue 24 hr after vaginal exposure to in vitro equilibrated infectious doses of cell-associated or cell-free feline immunodeficiency virus, uninfected heterologous cells, or medium alone. We found that even at this early time-point, mucosal exposure to virus induced substantial alterations in the phenotype and distribution of leucocytes, particularly in the tissues of the mucosal immune system. Second, we found that the type of virus inoculum directly influenced the phenotypic changes seen. Vaginal exposure to cell-free virus tended to induce more generalized phenotypic changes, typically in the peripheral immune system (blood and systemic lymph nodes). In contrast, exposure to cell-associated virus was primarily associated with phenotypic shifts in the mucosal immune system (gut and mucosal/draining lymph nodes). In addition, we found that exposure to uninfected heterologous cells also induced alterations in the mucosal immune system. These data suggest that significant immune changes occur within the first 24 hr of virus exposure, well before substantial replication would be anticipated. As the mucosal immune system, and particularly the gut, is an early and persistent target for lentiviral replication, these findings have substantial implications for HIV-1 pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Kristina E Howard
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | |
Collapse
|
36
|
Ashour HM, Niederkorn JY. Gammadelta T cells promote anterior chamber-associated immune deviation and immune privilege through their production of IL-10. THE JOURNAL OF IMMUNOLOGY 2007; 177:8331-7. [PMID: 17142729 DOI: 10.4049/jimmunol.177.12.8331] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anterior chamber-associated immune deviation (ACAID) is a form of peripheral tolerance that is induced by introducing Ags into the anterior chamber (AC) of the eye, and is maintained by Ag-specific regulatory T cells (Tregs). ACAID regulates harmful immune responses that can lead to irreparable injury to innocent bystander cells that are incapable of regeneration. This form of immune privilege in the eye is mediated through Tregs and is a product of complex cellular interactions. These involve F4/80+ ocular APCs, B cells, NKT cells, CD4+CD25+ Tregs, and CD8+ Tregs. gammadelta T cells are crucial for the generation of ACAID and for corneal allograft survival. However, the functions of gammadelta T cells in ACAID are unknown. Several hypotheses were proposed for determining the functions of gammadelta T cells in ACAID. The results indicate that gammadelta T cells do not cause direct suppression of delayed-type hypersensitivity nor do they act as tolerogenic APCs. In contrast, gammadelta T cells were shown to secrete IL-10 and facilitate the generation of ACAID Tregs. Moreover, the contribution of gammadelta T cells ACAID generation could be replaced by adding exogenous recombinant mouse IL-10 to ACAID spleen cell cultures lacking gammadelta T cells.
Collapse
Affiliation(s)
- Hossam M Ashour
- Immunology Graduate Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | |
Collapse
|
37
|
Ma C, Xu C, Duan L, He W. The intestinal intraepithelial lymphocytes with t cell receptor alphabeta express toll-like receptor 4 and are responsive to lipopolysaccharide. Int Arch Allergy Immunol 2006; 141:401-7. [PMID: 16943680 DOI: 10.1159/000095468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 06/10/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intestinal intraepithelial lymphocytes (iIELs) play an important role in intestinal innate immunity and oral immune tolerance. To compare the differences in gene expression between murine iIELs and splenic T lymphocytes, we established the cDNA subtractive library of iIELs and analyzed the iIELs special genes. Our study focused on the relationship between Toll-like receptor 4 (TLR4), TLR5 and iIELs. METHODS Ninety percent purified iIELs and splenic T lymphocytes were isolated by density-gradient centrifugation in a Percoll and nylon column, respectively. We then established the cDNA subtractive library of iIELs via improved subtractive hybridization. The special expressed sequence tags of iIELs were screened by reverse Northern blot. The expressions of TLR4 and TLR5 were analyzed by RT-PCR and fluorescence staining. The proliferation of T cells was determined by (3)H-TdR incorporation. RESULTS TLR4, but not TLR5, was detected in iIELs by RT-PCR and fluorescence staining. However, TLR4 was only found in alphabeta iIELs. Furthermore, iIELs were observed to proliferate in response to lipopolysaccharide in vitro, with upregulation of IRAK-1 mRNA expression. CONCLUSION alphabeta iIELs can recognize lipopolysaccharide via TLR4, which may play an important role in the intestinal innate immunity.
Collapse
Affiliation(s)
- Chi Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China.
| | | | | | | |
Collapse
|
38
|
Locke NR, Stankovic S, Funda DP, Harrison LC. TCR gamma delta intraepithelial lymphocytes are required for self-tolerance. THE JOURNAL OF IMMUNOLOGY 2006; 176:6553-9. [PMID: 16709812 DOI: 10.4049/jimmunol.176.11.6553] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal thymectomy (NTX) impairs T cell regulation and leads to organ-specific autoimmune disease in susceptible mouse strains. In the NOD mouse model of spontaneous type 1 diabetes, we observed that NTX dramatically accelerated autoimmune pancreatic beta cell destruction and diabetes. NTX had only a minor effect in NOD mice protected from diabetes by transgenic expression of the beta cell autoantigen proinsulin in APCs, inferring that accelerated diabetes after NTX is largely due to failure to regulate proinsulin-specific T cells. NTX markedly impaired the development of intraepithelial lymphocytes (IEL), the number of which was already reduced in euthymic NOD mice compared with control strains. IEL purified from euthymic NOD mice, specifically CD8alphaalpha TCRgammadelta IEL, when transferred into NTX-NOD mice, trafficked to the small intestinal epithelium and prevented diabetes. Transfer of prototypic CD4+CD25+ regulatory T cells also prevented diabetes in NTX-NOD mice; however, the induction of these cells by oral insulin in euthymic mice depended on the integrity of TCRgammadelta IEL. We conclude that TCRgammadelta IEL at the mucosal interface between self and nonself play a key role in maintaining peripheral tolerance both physiologically and during oral tolerance induction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CD8 Antigens/physiology
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Incidence
- Insulin/administration & dosage
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lymphocyte Activation/drug effects
- Lymphopenia/immunology
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Self Tolerance
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/transplantation
- Thymectomy
Collapse
Affiliation(s)
- Natasha R Locke
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
39
|
Parmar S, Robinson SN, Komanduri K, St John L, Decker W, Xing D, Yang H, McMannis J, Champlin R, de Lima M, Molldrem J, Rieber A, Bonyhadi M, Berenson R, Shpall EJ. Ex vivo expanded umbilical cord blood T cells maintain naive phenotype and TCR diversity. Cytotherapy 2006; 8:149-57. [PMID: 16698688 DOI: 10.1080/14653240600620812] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Umbilical cord blood (CB) is a promising source of hematopoietic stem cells for allogeneic transplantation. However, delayed engraftment and impaired immune reconstitution remain major limitations. Enrichment of donor grafts with CB T cells expanded ex vivo might facilitate improved T-cell immune reconstitution post-transplant. We hypothesized that CB T cells could be expanded using paramagnetic microbeads covalently linked to anti-CD3 and anti-CD28 Ab. METHODS CB units were divided into three fractions: (1) cells cultured without beads, (2) cells cultured with beads and (3) cells cultured with beads following CD3+ magnetic enrichment. All fractions were cultured for 14 days in the presence of IL-2 (200 IU/mL). RESULTS A mean 100-fold expansion (range 49-154) of total nucleated cells was observed in the CD3+ magnetically enriched fraction. Following expansion, CB T cells retained a naive and/or central memory phenotype and contained a polyclonal TCR diversity demonstrated by spectratyping. DISCUSSION Our data provide evidence that naive and diverse CB T cells may be expanded ex vivo and warrant additional studies in the setting of human CB transplantation.
Collapse
Affiliation(s)
- S Parmar
- The Department of Blood and Marrow Transplantation, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Champagne E, Martinez LO, Vantourout P, Collet X, Barbaras R. Role of apolipoproteins in gammadelta and NKT cell-mediated innate immunity. Immunol Res 2006; 33:241-55. [PMID: 16462001 DOI: 10.1385/ir:33:3:241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent findings reveal unanticipated connections between the fields of lipid metabolism and immunology. They concern gammadelta and NKT cells, nonconventional T cell populations that do not recognize protein antigens and are involved in immunity against cancer, defense against infections, or in regulation of classical immune responses. In this review, we summarize data linking perturbations of apolipoprotein levels and nonconventional T cells with inflammatory processes such as autoimmune diseases or atherosclerosis. We integrate and discuss recent findings on the implication of apolipoproteins in antigen recognition by gammadelta and NKT cells, with emphasis on apolipoproteins A-I and E. These findings also provide indications that apolipoproteins influence antitumor immunosurveillance.
Collapse
Affiliation(s)
- Eric Champagne
- Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Departement Lipoproteines et Médiateurs Lipidiques, Toulouse, France.
| | | | | | | | | |
Collapse
|
41
|
Brown DC, Maxwell CV, Erf GF, Davis ME, Singh S, Johnson ZB. The influence of different management systems and age on intestinal morphology, immune cell numbers and mucin production from goblet cells in post-weaning pigs. Vet Immunol Immunopathol 2006; 111:187-98. [PMID: 16621019 DOI: 10.1016/j.vetimm.2005.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 12/22/2005] [Indexed: 12/21/2022]
Abstract
At time of weaning, the immune system in piglets is not fully mature resulting in reduced growth and increased mortality. Early-weaned pigs transported to a segregated early weaning (SEW) facility have enhanced performance and gut development compared to conventional (CONV) pigs which may be due, in part, to decreased pathogen challenge. To gain further insight into SEW enhanced performance and gut development, gut samples from pigs weaned at 19+/-2 days were assessed during the post-weaning (PW) period. The numbers of cells expressing CD2, CD4, CD8, and CD172 (the 74-22-15 (SWC3) antibody is now known to be specific for CD172), MHC class II, and CD25 were quantified using immunohistochemistry. Additionally, samples of duodenum, jejunum, and ileum were evaluated for the production of neutral, acidic, and sulfuric mucins from goblet cells and morphological measurements were also made. No effects due to the management systems alone were observed for any of the parameters. However, there were interactive effects of age/time post-weaning and management system on the immune cells as well as on the mucin secreting goblet cells. There were no differences in gut morphology between SEW and CONV reared pigs.
Collapse
Affiliation(s)
- D C Brown
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | |
Collapse
|
42
|
McKenna KC, Anderson KM, Kapp JA. CD8+ T-cell tolerance induced by delivery of antigen to the anterior chamber is not the result of de facto intravenous or mucosal administration of antigen. Ocul Immunol Inflamm 2005; 13:149-57. [PMID: 16019674 DOI: 10.1080/09273940590933520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE We tested whether antigen administration via the anterior chamber (a.c.) was equivalent to intravenous (i.v.) or mucosal administration antigen. METHODS Ovalbumin (OVA)-specific CD8(+) T cells (OT-I) were enumerated in lymphoid tissues of C57Bl/6 (B6) mice via adoptive transfer after the same amount of antigen was administered via a.c., i.v., or mucosal routes. Lytic activity was measured in B6 and gammadeltaT cell-deficient B6 mice given OVA via a.c., i.v, or mucosal routes after injection with OVA in adjuvant. RESULTS OVA a.c. induced a pattern of T-cell proliferation distinct from i.v. or mucosal administration. A.c. and i.v., but not mucosal, OVA induced cytolytic T lymphocyte (CTL) tolerance. The inhibition of CTL responses was significantly greater in mice given OVA a.c. rather than i.v. gammadeltaT cells contributed to a.c.-, but not i.v.-, induced CTL tolerance. CONCLUSIONS A.c. administration of antigen not de-facto i.v. or mucosal administration of antigen.
Collapse
Affiliation(s)
- Kyle C McKenna
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
43
|
Okunuki H, Teshima R, Sato Y, Nakamura R, Akiyama H, Maitani T, Sawada JI. The Hyperresponsiveness of W/Wv Mice to Oral Sensitization Is Associated with a Decrease in TCR.GAMMA..DELTA.-T Cells. Biol Pharm Bull 2005; 28:584-90. [PMID: 15802791 DOI: 10.1248/bpb.28.584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have already reported that WBB6F1-W/W(v) (W/W(v)) mice, which have mutations in the c-kit gene, are highly susceptible to oral sensitization, and that the proportion of TCRgammadelta-T cells among the intraepithelial lymphocytes (IELs) (gammadelta-IELs) of W/W(v) is much lower than in congenic wild-type (+/+) mice. In this study we examined an inhibitory role of gammadelta-IELs in oral sensitization using two different methods. First, wild-type (+/+) mice were sensitized by oral administration of 1.0 mg ovalbumin (OVA) by gavage every day for 9 weeks after anti-TCRgammadelta antibody treatment 4 times. The treatment resulted in an enhanced OVA-specific IgG1 antibody production, active systemic anaphylaxis (ASA), and Th2-dominant cytokine production. Next, W/W(v) mice whose bone marrow cells were reconstituted from C57BL/6J mice for 5 months were sensitized by oral administration of OVA. The OVA-specific IgG1 antibody titer in the bone marrow-reconstituted W/W(v) mice was neither significantly enhanced, nor ASA was induced. The proportion of gammadelta-IELs in the reconstituted mice was much higher than that in the untreated W/W(v) mice. The above findings suggest that the decrease or increase in number of gammadelta-IELs enhances or decreases oral sensitization respectively. These results show that gammadelta-IELs have an important role in the oral tolerance to food antigens.
Collapse
Affiliation(s)
- Haruyo Okunuki
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Japan
| | | | | | | | | | | | | |
Collapse
|