1
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
2
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
3
|
Frangiamone M, Lozano M, Cimbalo A, Font G, Manyes L. AFB1 and OTA Promote Immune Toxicity in Human LymphoBlastic T Cells at Transcriptomic Level. Foods 2023; 12:259. [PMID: 36673351 PMCID: PMC9858301 DOI: 10.3390/foods12020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are typical contaminants of food and feed, which have serious implications for human and animal health, even at low concentrations. Therefore, a transcriptomic study was carried out to analyze gene expression changes triggered by low doses of AFB1 and OTA (100 nM; 7 days), individually and combined, in human lymphoblastic T cells. RNA-sequencing analysis showed that AFB1-exposure resulted in 99 differential gene expressions (DEGs), while 77 DEGs were obtained in OTA-exposure and 3236 DEGs in the combined one. Overall, 16% of human genome expression was altered. Gene ontology analysis revealed, for all studied conditions, biological processes and molecular functions typically associated with the immune system. PathVisio analysis pointed to ataxia telangiectasia mutated signaling as the most significantly altered pathway in AFB1-exposure, glycolysis in OTA-exposure, and ferroptosis in the mixed condition (Z-score > 1.96; adjusted p-value ≤ 0.05). Thus, the results demonstrated the potential DNA damage caused by AFB1, the possible metabolic reprogramming promoted by OTA, and the plausible cell death with oxidative stress prompted by the mixed exposure. They may be considered viable mechanisms of action to promote immune toxicity in vitro.
Collapse
Affiliation(s)
| | | | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | | | |
Collapse
|
4
|
Yang CZ, Yang T, Liu XT, He CF, Guo W, Liu S, Yao XH, Xiao X, Zeng WR, Lin LZ, Huang ZY. Comprehensive analysis of somatic mutator-derived and immune infiltrates related lncRNA signatures of genome instability reveals potential prognostic biomarkers involved in non-small cell lung cancer. Front Genet 2022; 13:982030. [PMID: 36226174 PMCID: PMC9548567 DOI: 10.3389/fgene.2022.982030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The function and features of long non-coding RNAs (lncRNAs) are already attracting attention and extensive research on their role as biomarkers of prediction in lung cancer. However, the signatures that are both related to genomic instability (GI) and tumor immune microenvironment (TIME) have not yet been fully explored in previous studies of non-small cell lung cancer (NSCLC). Method: The clinical characteristics, RNA expression profiles, and somatic mutation information of patients in this study came from The Cancer Genome Atlas (TCGA) database. Cox proportional hazards regression analysis was performed to construct genomic instability-related lncRNA signature (GIrLncSig). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the potential functions of lncRNAs. CIBERSORT was used to calculate the proportion of immune cells in NSCLC. Result: Eleven genomic instability-related lncRNAs in NSCLC were identified, then we established a prognostic model with the GIrLncSig ground on the 11 lncRNAs. Through the computed GIrLncSig risk score, patients were divided into high-risk and low-risk groups. By plotting ROC curves, we found that patients in the low-risk group in the test set and TCGA set had longer overall survival than those in the high-risk group, thus validating the survival predictive power of GIrLncSig. By stratified analysis, there was still a significant difference in overall survival between high and low risk groups of patients after adjusting for other clinical characteristics, suggesting the prognostic significance of GIrLncSig is independent. In addition, combining GIrLncSig with TP53 could better predict clinical outcomes. Besides, the immune microenvironment differed significantly between the high-risk and the low-risk groups, patients with low risk scores tend to have upregulation of immune checkpoints and chemokines. Finally, we found that high-risk scores were associated with increased sensitivity to chemotherapy. Conclusion: we provided a new perspective on lncRNAs related to GI and TIME and revealed the worth of them in immune infiltration and immunotherapeutic response. Besides, we found that the expression of AC027288.1 is associated with PD-1 expression, which may be a potential prognostic marker in immune checkpoint inhibitor response to improve the prediction of clinical survival in NSCLC patients.
Collapse
Affiliation(s)
- Cai-Zhi Yang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Yang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Ting Liu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can-Feng He
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Liu
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hui Yao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Ran Zeng
- Oncology Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhong-Yu Huang
- Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou, China
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Perez H, Abdallah MF, Chavira JI, Norris AS, Egeland MT, Vo KL, Buechsenschuetz CL, Sanghez V, Kim JL, Pind M, Nakamura K, Hicks GG, Gatti RA, Madrenas J, Iacovino M, McKinnon PJ, Mathews PJ. A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. eLife 2021; 10:e64695. [PMID: 34723800 PMCID: PMC8601662 DOI: 10.7554/elife.64695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders are severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons (PNs) are significantly perturbed (e.g., reduced membrane capacitance, lower action potential [AP] thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter PN neural activity, including a progressive reduction in spontaneous AP firing frequency that correlates with both cerebellar atrophy and ataxia over the animal's first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Finally, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
Collapse
Affiliation(s)
- Harvey Perez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - May F Abdallah
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jose I Chavira
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Angelina S Norris
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Martin T Egeland
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen L Vo
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Callan L Buechsenschuetz
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Valentina Sanghez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jeannie L Kim
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Molly Pind
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Kotoka Nakamura
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Richard A Gatti
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Joaquin Madrenas
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, Harbor-UCLA Medical CenterTorranceUnited States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Pediatrics, Harbor-UCLA Medical CenterTorranceUnited States
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, St. Jude Children’s Research HospitalMemphisUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| |
Collapse
|
6
|
Transcriptomic analysis revealed increased expression of genes involved in keratinization in the tears of COVID-19 patients. Sci Rep 2021; 11:19817. [PMID: 34615949 PMCID: PMC8494911 DOI: 10.1038/s41598-021-99344-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Recent studies have focused their attention on conjunctivitis as one of the symptoms of coronavirus disease 2019 (COVID-19). Therefore, tear samples were taken from COVID-19 patients and the presence of SARS-CoV-2 was evidenced using Real Time reverse transcription polymerase chain reaction. The main aim of this study was to analyze mRNA expression in the tears of patients with COVID-19 compared with healthy subjects using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 25 genes that differ statistically between healthy individuals and patients affected by COVID-19. In particular, the NGS analysis identified the presence of several genes involved in B cell signaling and keratinization. In particular, the genes involved in B cell signaling were downregulated in the tears of COVID-19 patients, while those involved in keratinization were upregulated. The results indicated that SARS-CoV-2 may induce a process of ocular keratinization and a defective B cell response.
Collapse
|
7
|
Galati MA, Hodel KP, Gams MS, Sudhaman S, Bridge T, Zahurancik WJ, Ungerleider NA, Park VS, Ercan AB, Joksimovic L, Siddiqui I, Siddaway R, Edwards M, de Borja R, Elshaer D, Chung J, Forster VJ, Nunes NM, Aronson M, Wang X, Ramdas J, Seeley A, Sarosiek T, Dunn GP, Byrd JN, Mordechai O, Durno C, Martin A, Shlien A, Bouffet E, Suo Z, Jackson JG, Hawkins CE, Guidos CJ, Pursell ZF, Tabori U. Cancers from Novel Pole-Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Res 2020; 80:5606-5618. [PMID: 32938641 PMCID: PMC8218238 DOI: 10.1158/0008-5472.can-20-0624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022]
Abstract
POLE mutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype-phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated POLE mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation in vivo, independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of POLE mutations into three groups based on clinical phenotype and mutagenicity. Cancers driven by these mutations displayed striking resemblance to the human ultrahypermutation and specific signatures. Furthermore, Pole-driven cancers exhibited a continuous and stochastic mutagenesis mechanism, resulting in intertumoral and intratumoral heterogeneity. Checkpoint blockade did not prevent Pole lymphomas, but rather likely promoted lymphomagenesis as observed in humans. These observations provide insights into the carcinogenesis of POLE-driven tumors and valuable information for genetic counseling, surveillance, and immunotherapy for patients. SIGNIFICANCE: Two mouse models of polymerase exonuclease deficiency shed light on mechanisms of mutation accumulation and considerations for immunotherapy.See related commentary by Wisdom and Kirsch p. 5459.
Collapse
Affiliation(s)
- Melissa A Galati
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karl P Hodel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Miki S Gams
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Taylor Bridge
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walter J Zahurancik
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Nathan A Ungerleider
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ayse B Ercan
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lazar Joksimovic
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iram Siddiqui
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard de Borja
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dana Elshaer
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiil Chung
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victoria J Forster
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nuno M Nunes
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melyssa Aronson
- The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Xia Wang
- H Lee Moffitt Cancer Centre and Research Institute, Tampa, Florida
| | - Jagadeesh Ramdas
- Department of Pediatrics, Geisinger Medical Center, Danville, Pennsylvania
| | - Andrea Seeley
- Department of Pediatrics, Geisinger Medical Center, Danville, Pennsylvania
| | | | - Gavin P Dunn
- Department of Neurological Surgery, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan N Byrd
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Oz Mordechai
- Department of Pediatric Hematology Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Carol Durno
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zucai Suo
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Cynthia E Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
8
|
BxPC-3-Derived Small Extracellular Vesicles Induce FOXP3+ Treg through ATM-AMPK-Sirtuins-Mediated FOXOs Nuclear Translocations. iScience 2020; 23:101431. [PMID: 32798974 PMCID: PMC7452591 DOI: 10.1016/j.isci.2020.101431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy in pancreatic ductal adenocarcinoma (PDAC) treatment faces serious challenges, due particularly to the poor immunogenicity. Cancer cell-derived small extracellular vesicles (sEVs) play important roles in damaging the immune system. However, the effects of pancreatic cancer-derived sEVs on T lymphocytes are unknown. Here we investigated changes in phenotypes and signal transduction pathways in sEVs-treated T lymphocytes. We identified the overexpression of immune checkpoint proteins PD-1, PD-L1, CTLA4, and Tim-3 and the enrichment of FOXP3+ Treg cluster in sEVs-treated T lymphocytes by CyTOF. Gene set enrichment analysis revealed that DNA damage response and metabolic pathways might be involved in sEVs-induced Tregs. ATM, AMPK, SIRT1, SIRT2, and SIRT6 were activated sequentially in sEVs-treated T lymphocytes and essential for sEVs-upregulated expressions of FOXO1A, FOXO3A, and FOXP3. Our study reveals the impact and mechanism of pancreatic cancer cell-derived sEVs on T lymphocytes and may provide insights into developing immunotherapy strategies for PDAC treatment. Human pancreatic cancer cells-derived sEVs induce Treg promotion DNA damage responses and metabolism are altered in sEVs-stimulated T lymphocytes ATM-AMPK-SIRT1/2/6-FOXO1A/3A axis plays a role in sEVs-induced Treg FOXO1A, FOXO3A, and FOXP3 are highly expressed in pancreatic cancer-involved lymph nodes
Collapse
|
9
|
Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J Neurosci 2019; 39:6378-6394. [PMID: 31189575 DOI: 10.1523/jneurosci.0774-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a PI3K-like kinase best known for its role in the DNA damage response (DDR), especially after double-strand breaks. Mutations in the ATM gene result in a condition known as ataxia-telangiectasia (A-T) that is characterized by cancer predisposition, radiosensitivity, neurodegeneration, sterility, and acquired immune deficiency. We show here that the innate immune system is not spared in A-T. ATM-deficient microglia adopt an active phenotype that includes the overproduction of proinflammatory cytokines that are toxic to cultured neurons and likely contribute to A-T neurodegeneration. Causatively, ATM dysfunction results in the accumulation of DNA in the cytoplasm of microglia as well as a variety of other cell types. In microglia, cytoplasmic DNA primes an antiviral response via the DNA sensor, STING (stimulator of interferon genes). The importance of this response pathway is supported by our finding that inhibition of STING blocks the overproduction of neurotoxic cytokines. Cytosolic DNA also activates the AIM2 (absent in melanoma 2) containing inflammasome and induces proteolytic processing of cytokine precursors such as pro-IL-1β. Our study furthers our understanding of neurodegeneration in A-T and highlights the role of cytosolic DNA in the innate immune response.SIGNIFICANCE STATEMENT Conventionally, the immune deficiencies found in ataxia-telangiectasia (A-T) patients are viewed as defects of the B and T cells of the acquired immune system. In this study, we demonstrate the microglia of the innate immune system are also affected and uncover the mechanism by which this occurs. Loss of ATM (ataxia-telangiectasia mutated) activity leads to a slowing of DNA repair and an accumulation of cytoplasmic fragments of genomic DNA. This ectopic DNA induces the antivirus response, which triggers the production of neurotoxic cytokines. This expands our understanding of the neurodegeneration found in A-T and offers potentially new therapeutic options.
Collapse
|
10
|
Di Siena S, Campolo F, Gimmelli R, Di Pietro C, Marazziti D, Dolci S, Lenzi A, Nussenzweig A, Pellegrini M. Atm reactivation reverses ataxia telangiectasia phenotypes in vivo. Cell Death Dis 2018; 9:314. [PMID: 29472706 PMCID: PMC5833483 DOI: 10.1038/s41419-018-0357-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease.
Collapse
Affiliation(s)
- Sara Di Siena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberto Gimmelli
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20893, USA
| | - Manuela Pellegrini
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy. .,Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy. .,Department of Medicine and Health Science 'V. Tiberio', University of Molise, Campobasso, Italy.
| |
Collapse
|
11
|
Orlova A, Wingelhofer B, Neubauer HA, Maurer B, Berger-Becvar A, Keserű GM, Gunning PT, Valent P, Moriggl R. Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opin Ther Targets 2017; 22:45-57. [PMID: 29148847 PMCID: PMC5743003 DOI: 10.1080/14728222.2018.1406924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hematopoietic neoplasms are often driven by gain-of-function mutations of the JAK-STAT pathway together with mutations in chromatin remodeling and DNA damage control pathways. The interconnection between the JAK-STAT pathway, epigenetic regulation or DNA damage control is still poorly understood in cancer cell biology. Areas covered: Here, we focus on a broader description of mutational insights into myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas, since sequencing efforts have identified similar combinations of driver mutations in these diseases covering different lineages. We summarize how these pathways might be interconnected in normal or cancer cells, which have lost differentiation capacity and drive oncogene transcription. Expert opinion: Due to similarities in driver mutations including epigenetic enzymes, JAK-STAT pathway activation and mutated checkpoint control through TP53, we hypothesize that similar therapeutic approaches could be of benefit in these diseases. We give an overview of how driver mutations in these malignancies contribute to hematopoietic cancer initiation or progression, and how these pathways can be targeted with currently available tools.
Collapse
Affiliation(s)
- Anna Orlova
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Bettina Wingelhofer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Heidi A Neubauer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Barbara Maurer
- c Institute of Pharmacology and Toxicology , University of Veterinary Medicine Vienna , Vienna , Austria
| | - Angelika Berger-Becvar
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - György Miklós Keserű
- d Medicinal Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Budapest , Hungary
| | - Patrick T Gunning
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - Peter Valent
- e Department of Internal Medicine I, Division of Hematology and Hemostaseology , Medical University of Vienna , Vienna , Austria.,f Ludwig Boltzmann-Cluster Oncology , Medical University of Vienna , Vienna , Austria
| | - Richard Moriggl
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria.,i Medical University Vienna , Vienna , Austria
| |
Collapse
|
12
|
NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death Differ 2017; 24:1632-1644. [PMID: 28574504 DOI: 10.1038/cdd.2017.91] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Although tumor-associated macrophages have been extensively studied in the control of response to radiotherapy, the molecular mechanisms involved in the ionizing radiation-mediated activation of macrophages remain elusive. Here we show that ionizing radiation induces the expression of interferon regulatory factor 5 (IRF5) promoting thus macrophage activation toward a pro-inflammatory phenotype. We reveal that the activation of the ataxia telangiectasia mutated (ATM) kinase is required for ionizing radiation-elicited macrophage activation, but also for macrophage reprogramming after treatments with γ-interferon, lipopolysaccharide or chemotherapeutic agent (such as cisplatin), underscoring the fact that the kinase ATM plays a central role during macrophage phenotypic switching toward a pro-inflammatory phenotype through the regulation of mRNA level and post-translational modifications of IRF5. We further demonstrate that NADPH oxidase 2 (NOX2)-dependent ROS production is upstream to ATM activation and is essential during this process. We also report that the inhibition of any component of this signaling pathway (NOX2, ROS and ATM) impairs pro-inflammatory activation of macrophages and predicts a poor tumor response to preoperative radiotherapy in locally advanced rectal cancer. Altogether, our results identify a novel signaling pathway involved in macrophage activation that may enhance the effectiveness of radiotherapy through the reprogramming of tumor-infiltrating macrophages.
Collapse
|
13
|
Mortaz E, Marashian SM, Ghaffaripour H, Varahram M, Mehrian P, Dorudinia A, Garssen J, Adcock IM, Taylor M, Mahdaviani SA. A new ataxia-telangiectasia mutation in an 11-year-old female. Immunogenetics 2017; 69:415-419. [PMID: 28488180 PMCID: PMC5486830 DOI: 10.1007/s00251-017-0983-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
Abstract
Ataxia-telangiectasia (A-T), a rare inherited disorder, usually affects the nervous and immune systems, and occasionally other organs. A-T is associated mainly with mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a protein kinase that has a major role in the cellular response to DNA damage. We report here a novel ATM mutation (c.3244_3245insG; p.His1082fs) in an 11-year old female. This subject presented with typical features, with the addition of chest manifestations including mediastinal lymphadenopathy and diffuse bilateral micronodular infiltration of the lungs, along with a high EBV titer. The subject died as a result of rapid B-cell lymphoma progression before chemotherapy could be initiated. This case highlights the need for the rapid diagnosis of A-T mutations and the detection of associated life-threatening outcomes such as cancers.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sayed Mehran Marashian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosseinali Ghaffaripour
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mehrian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atosa Dorudinia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kulinski JM, Darrah EJ, Broniowska KA, Mboko WP, Mounce BC, Malherbe LP, Corbett JA, Gauld SB, Tarakanova VL. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection. Virology 2015; 483:264-74. [PMID: 26001649 PMCID: PMC4516584 DOI: 10.1016/j.virol.2015.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 12/28/2022]
Abstract
Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A Corbett
- Biochemistry, Medical College of Wisconsin, United States
| | - Stephen B Gauld
- Division of Allergy and Clinical Immunology, Department of Pediatrics, United States
| | - Vera L Tarakanova
- Microbiology and Molecular Genetics, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
15
|
ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun 2015; 6:6886. [PMID: 25881002 DOI: 10.1038/ncomms7886] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
ATM kinase preserves genomic stability by acting as a tumour suppressor. However, its identification as a component of several signalling networks suggests a dualism for ATM in cancer. Here we report that ATM expression and activity promotes HER2-dependent tumorigenicity in vitro and in vivo. We reveal a correlation between ATM activation and the reduced time to recurrence in patients diagnosed with invasive HER2-positive breast cancer. Furthermore, we identify ATM as a novel modulator of HER2 protein stability that acts by promoting a complex of HER2 with the chaperone HSP90, therefore preventing HER2 ubiquitination and degradation. As a consequence, ATM sustains AKT activation downstream of HER2 and may modulate the response to therapeutic approaches, suggesting that the status of ATM activity may be informative for the treatment and prognosis of HER2-positive tumours. Our findings provide evidence for ATM's tumorigenic potential revising the canonical role of ATM as a pure tumour suppressor.
Collapse
|
16
|
Perova T, Grandal I, Nutter LMJ, Papp E, Matei IR, Beyene J, Kowalski PE, Hitzler JK, Minden MD, Guidos CJ, Danska JS. Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6:236ra62. [PMID: 24828076 DOI: 10.1126/scitranslmed.3008661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensified and central nervous system (CNS)-directed chemotherapy has improved outcomes for pediatric B cell acute lymphoblastic leukemia (B-ALL) but confers treatment-related morbidities. Moreover, many patients suffer relapses, underscoring the need to develop new molecular targeted B-ALL therapies. Using a mouse model, we show that leukemic B cells require pre-B cell receptor (pre-BCR)-independent spleen tyrosine kinase (SYK) signaling in vivo for survival and proliferation. In diagnostic samples from human pediatric and adult B-ALL patients, SYK and downstream targets were phosphorylated regardless of pre-BCR expression or genetic subtype. Two small-molecule SYK inhibitors, fostamatinib and BAY61-3606, attenuated the growth of 69 B-ALL samples in vitro, including high-risk (HR) subtypes. Orally administered fostamatinib reduced heavy disease burden after xenotransplantation of HR B-ALL samples into immunodeficient mice and decreased leukemia dissemination into spleen, liver, kidneys, and the CNS of recipient mice. Thus, SYK activation sustains the growth of multiple HR B-ALL subtypes, suggesting that SYK inhibitors may improve outcomes for HR and relapsed B-ALL.
Collapse
Affiliation(s)
- Tatiana Perova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ildiko Grandal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Lauryl M J Nutter
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Eniko Papp
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Irina R Matei
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Joseph Beyene
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Paul E Kowalski
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, Ontario M5T 2M9, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jayne S Danska
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
17
|
Multifunctional role of ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere maintenance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787404. [PMID: 25247188 PMCID: PMC4163350 DOI: 10.1155/2014/787404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development.
Collapse
|
18
|
Stagni V, Oropallo V, Fianco G, Antonelli M, Cinà I, Barilà D. Tug of war between survival and death: exploring ATM function in cancer. Int J Mol Sci 2014; 15:5388-409. [PMID: 24681585 PMCID: PMC4013570 DOI: 10.3390/ijms15045388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer.
Collapse
Affiliation(s)
- Venturina Stagni
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Veronica Oropallo
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Giulia Fianco
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Martina Antonelli
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Irene Cinà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Daniela Barilà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
19
|
Fan CH, Liu WL, Cao H, Wen C, Chen L, Jiang G. O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis 2013; 4:e876. [PMID: 24157870 PMCID: PMC4648381 DOI: 10.1038/cddis.2013.388] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Abstract
Temozolomide (TMZ) is an alkylating agent currently used as first-line therapy for gliomas treatment due to its DNA-damaging effect. However, drug resistance occurs, preventing multi-cycle use of this chemotherapeutic agent. One of the major mechanisms of cancer drug resistance is enhanced activity of a DNA repair enzyme, O(6)-methylguanine-DNA-methyltransferase (MGMT), which counteracts chemotherapy-induced DNA alkylation and is a key component of chemoresistance. MGMT repairs TMZ-induced DNA lesions, O(6)-meG, by transferring the alkyl group from guanine to a cysteine residue. This review provides an overview of recent advances in the field, with particular emphasis on the inhibitors of MGMT and underlying mechanisms. Literature search was performed through PubMed and all relevant articles were reviewed, with particular attention to MGMT, its role in TMZ-resistant gliomas, effects of MGMT inhibitors and the underlying mechanisms. Several strategies are currently being pursued to improve the therapeutic efficacy of TMZ via inhibition of MGMT to reduce chemoresistance and improve overall survival. MGMT may be a promising target for the treatment of TMZ-resistant gliomas.
Collapse
Affiliation(s)
- C-H Fan
- Xuzhou Children's Hospital, Xuzhou 221006, China
| | | | | | | | | | | |
Collapse
|
20
|
ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire. PLoS One 2013; 8:e62188. [PMID: 23626787 PMCID: PMC3633875 DOI: 10.1371/journal.pone.0062188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022] Open
Abstract
Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4−CD8− double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4+CD8+ double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4+CD8+ thymocytes, resulting in reduced numbers of CD4+CD8+ cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4+CD8+ cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.
Collapse
|
21
|
Bowen S, Wangsa D, Ried T, Livak F, Hodes RJ. Concurrent V(D)J recombination and DNA end instability increase interchromosomal trans-rearrangements in ATM-deficient thymocytes. Nucleic Acids Res 2013; 41:4535-48. [PMID: 23470994 PMCID: PMC3632137 DOI: 10.1093/nar/gkt154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During the CD4−CD8− (DN) stage of T-cell development, RAG-dependent DNA breaks and V(D)J recombination occur at three T-cell receptor (TCR) loci: TCRβ, TCRγ and TCRδ. During this stage, abnormal trans-rearrangements also take place between TCR loci, occurring at increased frequency in absence of the DNA damage response mediator ataxia telangiectasia mutated (ATM). Here, we use this model of physiologic trans-rearrangement to study factors that predispose to rearrangement and the role of ATM in preventing chromosomal translocations. The frequency of DN thymocytes with DNA damage foci at multiple TCR loci simultaneously is increased 2- to 3-fold in the absence of ATM. However, trans-rearrangement is increased 10 000- to 100 000-fold, indicating that ATM function extends beyond timely resolution of DNA breaks. RAG-mediated synaptic complex formation occurs between recombination signal sequences with unequal 12 and 23 base spacer sequences (12/23 rule). TCR trans-rearrangements violate this rule, as we observed similar frequencies of 12/23 and aberrant 12/12 or 23/23 recombination products. This suggests that trans-rearrangements are not the result of trans-synaptic complex formation, but they are instead because of unstable cis synaptic complexes that form simultaneously at distinct TCR loci. Thus, ATM suppresses trans-rearrangement primarily through stabilization of DNA breaks at TCR loci.
Collapse
Affiliation(s)
- Steven Bowen
- Department of Microbiology and Immunology, Graduate Program in Life Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
22
|
ATM kinase activity modulates ITCH E3-ubiquitin ligase activity. Oncogene 2013; 33:1113-23. [PMID: 23435430 PMCID: PMC3938399 DOI: 10.1038/onc.2013.52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) kinase, a central regulator of the DNA damage response regulates the activity of several E3-ubiquitin ligases and the ubiquitination-proteasome system is a consistent target of ATM. ITCH is an E3-ubiquitin ligase that modulates the ubiquitination of several targets, therefore participating to the regulation of several cellular responses, among which the DNA damage response, TNFα, Notch and Hedgehog signalling and T cell development. Here we uncover ATM as a novel positive modulator of ITCH E3-ubiquitin ligase activity. A single residue on ITCH protein, S161, which is part of an ATM SQ consensus motif, is required for ATM-dependent activation of ITCH. ATM activity enhances ITCH enzymatic activity, which in turn drives the ubiquitination and degradation of c-FLIP-L and c-Jun, previously identified as ITCH substrates. Importantly, Atm deficient mice show resistance to hepatocyte cell death, similarly to Itch deficient animals, providing in vivo genetic evidence for this circuit. Our data identify ITCH as a novel component of the ATM-dependent signaling pathway and suggest that the impairment of the correct functionality of ITCH caused by Atm deficiency may contribute to the complex clinical features linked to Ataxia Telangiectasia.
Collapse
|
23
|
Carney EF, Srinivasan V, Moss PA, Taylor AM. Classical ataxia telangiectasia patients have a congenitally aged immune system with high expression of CD95. THE JOURNAL OF IMMUNOLOGY 2012; 189:261-8. [PMID: 22649200 DOI: 10.4049/jimmunol.1101909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ataxia-telangiectasia (A-T) is a rare neurodegenerative immunodeficiency disorder caused by mutations in the ataxia telangiectasia mutated gene. Patients commonly have lymphopenia and Ig-production abnormalities. We used multicolor flow cytometry and IL-7 ELISA to investigate the effect of A-T and age on the proportions of major lymphocyte subsets and their pattern of CD95 expression in relation to IL-7 levels in 15 classical A-T patients. We also analyzed the sensitivity of T cells from four classical A-T patients to CD95-mediated apoptosis using TUNEL and caspase-activation assays. Our results confirmed lymphopenia and a deficiency in naive T and B cells in A-T patients. In contrast to controls, the proportions of naive and memory T and B cell subsets in A-T patients did not vary in relation to age. There was no evidence of a deficiency in plasma IL-7 or IL-7R expression, and IL-7 concentration correlated positively with CD95 expression on CD4(+) T cells. CD95 expression on unstimulated A-T lymphocytes was high, and the apoptotic sensitivity of activated naive and central memory T cells was increased. These findings show that the immunodeficiency in A-T patients may be described as congenitally aged and is not progressive. The naive cell deficiency is not related to a deficiency in IL-7 or its receptor. However, IL-7 may upregulate CD95 on A-T lymphocytes. High CD95 expression and increased apoptotic sensitivity of activated naive and central memory T cells may result in an increased level of CD95-mediated apoptosis, which could contribute to the congenital lymphopenia in A-T.
Collapse
Affiliation(s)
- Ellen F Carney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
24
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
25
|
Saba I, Kosan C, Vassen L, Klein-Hitpass L, Möröy T. Miz-1 is required to coordinate the expression of TCRbeta and p53 effector genes at the pre-TCR "beta-selection" checkpoint. THE JOURNAL OF IMMUNOLOGY 2011; 187:2982-92. [PMID: 21841135 DOI: 10.4049/jimmunol.1101451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Miz-1 is a Broad-complex, Tramtrack and Bric-à-brac/pox virus zinc finger domain (BTB/POZ)-containing protein expressed in lymphoid precursors that can activate or repress transcription. We report in this article that mice expressing a nonfunctional Miz-1 protein lacking the BTB/POZ domain (Miz-1(ΔPOZ)) have a severe differentiation block at the pre-T cell "β-selection" checkpoint, evident by a drastic reduction of CD4(-)CD8(-) double-negative-3 (DN3) and DN4 cell numbers. T cell-specific genes including Rag-1, Rag-2, CD3ε, pTα, and TCRβ are expressed in Miz-1-deficient cells and V(D)J recombination is intact, but few DN3/DN4 cells express a surface pre-TCR. Miz-1-deficient DN3 cells are highly apoptotic and do not divide, which is consistent with enhanced expression of p53 target genes such as Cdkn1a, PUMA, and Noxa. However, neither coexpression of the antiapoptotic protein Bcl2 nor the deletion of p21(CIP1) nor the combination of both relieved Miz-1-deficient DN3/DN4 cells from their differentiation block. Only the coexpression of rearranged TCRαβ and Bcl2 fully rescued Miz-1-deficient DN3/DN4 cell numbers and enabled them to differentiate into DN4TCRβ(+) and double-positive cells. We propose that Miz-1 is a critical factor for the β-selection checkpoint and is required for both the regulation of p53 target genes and proper expression of the pre-TCR to support the proliferative burst of DN3 cells during T cell development.
Collapse
Affiliation(s)
- Ingrid Saba
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
26
|
Grigoryev YA, Kurian SM, Hart T, Nakorchevsky AA, Chen C, Campbell D, Head SR, Yates JR, Salomon DR. MicroRNA regulation of molecular networks mapped by global microRNA, mRNA, and protein expression in activated T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2233-43. [PMID: 21788445 DOI: 10.4049/jimmunol.1101233] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) regulate specific immune mechanisms, but their genome-wide regulation of T lymphocyte activation is largely unknown. We performed a multidimensional functional genomics analysis to integrate genome-wide differential mRNA, miRNA, and protein expression as a function of human T lymphocyte activation and time. We surveyed expression of 420 human miRNAs in parallel with genome-wide mRNA expression. We identified a unique signature of 71 differentially expressed miRNAs, 57 of which were previously not known as regulators of immune activation. The majority of miRNAs are upregulated, mRNA expression of these target genes is downregulated, and this is a function of binding multiple miRNAs (combinatorial targeting). Our data reveal that consideration of this complex signature, rather than single miRNAs, is necessary to construct a full picture of miRNA-mediated regulation. Molecular network mapping of miRNA targets revealed the regulation of activation-induced immune signaling. In contrast, pathways populated by genes that are not miRNA targets are enriched for metabolism and biosynthesis. Finally, we specifically validated miR-155 (known) and miR-221 (novel in T lymphocytes) using locked nucleic acid inhibitors. Inhibition of these two highly upregulated miRNAs in CD4(+) T cells was shown to increase proliferation by removing suppression of four target genes linked to proliferation and survival. Thus, multiple lines of evidence link top functional networks directly to T lymphocyte immunity, underlining the value of mapping global gene, protein, and miRNA expression.
Collapse
Affiliation(s)
- Yevgeniy A Grigoryev
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gapud EJ, Lee BS, Mahowald GK, Bassing CH, Sleckman BP. Repair of chromosomal RAG-mediated DNA breaks by mutant RAG proteins lacking phosphatidylinositol 3-like kinase consensus phosphorylation sites. THE JOURNAL OF IMMUNOLOGY 2011; 187:1826-34. [PMID: 21742970 DOI: 10.4049/jimmunol.1101388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
28
|
Gapud EJ, Sleckman BP. Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination. Cell Cycle 2011; 10:1928-35. [PMID: 21673501 DOI: 10.4161/cc.10.12.16011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
29
|
Brioli A, Parisi S, Iacobucci I, Cavo M, Papayannidis C, Anna Zannetti B, Martinelli G, Baccarani M. Patient with ataxia telangiectasia who developed acute myeloid leukemia. Leuk Lymphoma 2011; 52:1818-20. [DOI: 10.3109/10428194.2011.577256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet 2011; 204:227-44. [DOI: 10.1016/j.cancergen.2011.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/19/2022]
|
31
|
Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proc Natl Acad Sci U S A 2011; 108:2022-7. [PMID: 21245316 DOI: 10.1073/pnas.1013295108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphocyte antigen receptor gene assembly occurs through the process of V(D)J recombination, which is initiated when the RAG endonuclease introduces DNA DSBs at two recombining gene segments to form broken DNA coding end pairs and signal end pairs. These paired DNA ends are joined by proteins of the nonhomologous end-joining (NHEJ) pathway of DSB repair to form a coding joint and signal joint, respectively. RAG DSBs are generated in G1-phase developing lymphocytes, where they activate the ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases to orchestrate diverse cellular DNA damage responses including DSB repair. Paradoxically, although Atm and DNA-PKcs both function during coding joint formation, Atm appears to be dispensible for signal joint formation; and although some studies have revealed an activity for DNA-PKcs during signal joint formation, others have not. Here we show that Atm and DNA-PKcs have overlapping catalytic activities that are required for chromosomal signal joint formation and for preventing the aberrant resolution of signal ends as potentially oncogenic chromosomal translocations.
Collapse
|
32
|
Mönnich M, Hess I, Wiest W, Bachrati C, Hickson ID, Schorpp M, Boehm T. Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase III alpha. Eur J Immunol 2010; 40:2379-84. [PMID: 20623552 DOI: 10.1002/eji.201040634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All organisms possess at least one type IA DNA topoisomerase. These topoisomerases function as part of a DNA structure-specific "dissolvasome," also known as the RTR complex, which has critical functions in faithful DNA replication, recombination, and chromosome segregation. In humans, the heteromeric RTR complex consists of RMI1, RMI2, the Bloom's syndrome gene product (BLM), and topoisomerase 3A (TOP3A) proteins. Here, we describe the identification and characterization of two deleterious mutations in the zebrafish top3a gene that reveal an unexpected tissue-specific requirement of top3a function in developing thymocytes. Deficiency in top3a activates a p53-dependent check-point but does not affect VDJ recombination. Our results suggest that TOP3A could be a candidate gene involved in human primary immunodeficiency syndromes.
Collapse
Affiliation(s)
- Maren Mönnich
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Intrinsic radiosensitivity correlated with radiation-induced ROS and cell cycle regulation. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci U S A 2009; 106:18339-44. [PMID: 19820166 DOI: 10.1073/pnas.0902545106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Canonical chromosomal translocations juxtaposing antigen receptor genes and oncogenes are a hallmark of many lymphoid malignancies. These translocations frequently form through the joining of DNA ends from double-strand breaks (DSBs) generated by the recombinase activating gene (RAG)-1 and -2 proteins at lymphocyte antigen receptor loci and breakpoint targets near oncogenes. Our understanding of chromosomal breakpoint target selection comes primarily from the analyses of these lesions, which are selected based on their transforming properties. RAG DSBs are rarely resolved aberrantly in wild-type developing lymphocytes. However, in ataxia telangiectasia mutated (ATM)-deficient lymphocytes, RAG breaks are frequently joined aberrantly, forming chromosomal lesions such as translocations that predispose (ATM)-deficient mice and humans to the development of lymphoid malignancies. Here, an approach that minimizes selection biases is used to isolate a large cohort of breakpoint targets of aberrantly resolved RAG DSBs in Atm-deficient lymphocytes. Analyses of this cohort revealed that frequently, the breakpoint targets for aberrantly resolved RAG breaks are other DSBs. Moreover, these nonselected lesions exhibit a bias for using breakpoints in cis, forming small chromosomal deletions, rather than breakpoints in trans, forming chromosomal translocations.
Collapse
|
35
|
Callén E, Bunting S, Huang CY, Difilippantonio MJ, Wong N, Khor B, Mahowald G, Kruhlak MJ, Ried T, Sleckman BP, Nussenzweig A. Chimeric IgH-TCRalpha/delta translocations in T lymphocytes mediated by RAG. Cell Cycle 2009; 8:2408-12. [PMID: 19556863 DOI: 10.4161/cc.8.15.9085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Translocations involving the T cell receptor alpha/delta (TCRalpha/delta) chain locus, which bring oncogenes in the proximity of the TCRalpha enhancer, are one of the hallmark features of human T cell malignancies from ataxia telangiectasia (AT) and non-AT patients. These lesions are frequently generated by the fusion of DNA breaks at the TCRalpha/delta locus to a disperse region centromeric of the immunoglobulin heavy chain (IgH) locus. Aberrant VDJ joining accounts for TCRalpha/delta associated DNA cleavage, but the molecular mechanism that leads to generation of the "oncogene partner" DNA break is unclear. Here we show that in ATM deficient primary mouse T cells, IgH/TCRalpha/delta fusions arise at a remarkably similar frequency as in human AT lymphocytes. Recombinase-activating gene (RAG) is responsible for both TCRalpha/delta as well as IgH associated breaks on chromosome 12 (Chr12), which are subject to varying degrees of chromosomal degradation. We suggest a new model for how oncogenic translocations can arise from two non-concerted physiological DSBs.
Collapse
Affiliation(s)
- Elsa Callén
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status. BMC Cancer 2009; 9:281. [PMID: 19674456 PMCID: PMC2743708 DOI: 10.1186/1471-2407-9-281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 08/12/2009] [Indexed: 11/15/2022] Open
Abstract
Background Current chemotherapy of human cancers focuses on the DNA damage pathway to induce a p53-mediated cellular response leading to either G1 arrest or apoptosis. However, genotoxic treatments may induce mutations and translocations that result in secondary malignancies or recurrent disease. In addition, about 50% of human cancers are associated with mutations in the p53 gene. Nongenotoxic activation of apoptosis by targeting specific molecular pathways thus provides an attractive therapeutic approach. Methods Normal and leukemic cells were evaluated for their sensitivity to 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) through cell viability and caspase activation tests. The apoptotic pathway induced by DRB was analysed by immunfluorescence and immunoblot analysis. H2AX phosphorylation and cell cycle analysis were performed to study the dependance of apoptosis on DNA damage and DNA replication, respectively. To investigate the role of p53 in DRB-induced apoptosis, specific p53 inhibitors were used. Statistical analysis on cell survival was performed with the test of independence. Results Here we report that DRB, an inhibitor of the transcriptional cyclin-dependent kinases (CDKs) 7 and 9, triggers DNA replication-independent apoptosis in normal and leukemic human cells regardless of their p53 status and without inducing DNA damage. Our data indicate that (i) in p53-competent cells, apoptosis induced by DRB relies on a cytosolic accumulation of p53 and subsequent Bax activation, (ii) in the absence of p53, it may rely on p73, and (iii) it is independent of ATM and NBS1 proteins. Notably, even apoptosis-resistant leukemic cells such as Raji were sensitive to DRB. Conclusion Our results indicate that DRB represents a potentially useful cancer chemotherapeutic strategy that employs both the p53-dependent and -independent apoptotic pathways without inducing genotoxic stress, thereby decreasing the risk of secondary malignancies.
Collapse
|
37
|
Shao L, Fujii H, Colmegna I, Oishi H, Goronzy JJ, Weyand CM. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 206:1435-49. [PMID: 19451263 PMCID: PMC2715066 DOI: 10.1084/jem.20082251] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In rheumatoid arthritis (RA), dysfunctional T cells sustain chronic inflammatory immune responses in the synovium. Even unprimed T cells are under excessive replication pressure, suggesting an intrinsic defect in T cell regeneration. In naive CD4 CD45RA+ T cells from RA patients, DNA damage load and apoptosis rates were markedly higher than in controls; repair of radiation-induced DNA breaks was blunted and delayed. DNA damage was highest in newly diagnosed untreated patients. RA T cells failed to produce sufficient transcripts and protein of the DNA repair kinase ataxia telangiectasia (AT) mutated (ATM). NBS1, RAD50, MRE11, and p53 were also repressed. ATM knockdown mimicked the biological effects characteristic for RA T cells. Conversely, ATM overexpression reconstituted DNA repair capabilities, response patterns to genotoxic stress, and production of MRE11 complex components and rescued RA T cells from apoptotic death. In conclusion, ATM deficiency in RA disrupts DNA repair and renders T cells sensitive to apoptosis. Apoptotic attrition of naive T cells imposes lymphopenia-induced proliferation, leading to premature immunosenescence and an autoimmune-biased T cell repertoire. Restoration of DNA repair mechanisms emerges as an important therapeutic target in RA.
Collapse
Affiliation(s)
- Lan Shao
- The Kathleen B. and Mason I. Lowance Center for Human Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
38
|
Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A. Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. ACTA ACUST UNITED AC 2008; 183:777-83. [PMID: 19047460 PMCID: PMC2592823 DOI: 10.1083/jcb.200805154] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular responses to both physiological and pathological DNA double-strand breaks are initiated through activation of the evolutionarily conserved ataxia telangiectasia mutated (ATM) kinase. Upon DNA damage, an activation mechanism involving autophosphorylation has been reported to allow ATM to phosphorylate downstream targets important for cell cycle checkpoints and DNA repair. In humans, serine residues 367, 1893, and 1981 have been shown to be autophosphorylation sites that are individually required for ATM activation. To test the physiological importance of these sites, we generated a transgenic mouse model in which all three conserved ATM serine autophosphorylation sites (S367/1899/1987) have been replaced with alanine. In this study, we show that ATM-dependent responses at both cellular and organismal levels are functional in mice that express a triple serine mutant form of ATM as their sole ATM species. These results lend further support to the notion that ATM autophosphorylation correlates with the DNA damage–induced activation of the kinase but is not required for ATM function in vivo.
Collapse
Affiliation(s)
- Jeremy A Daniel
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis. Immunol Res 2008; 41:103-22. [PMID: 18214391 DOI: 10.1007/s12026-008-8015-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lymphocyte maturation requires generation of a large diversity of antigen receptors, which involves somatic rearrangements at the antigen receptor genes in a process termed V(D)J recombination. Upon encountering specific antigens, B-lymphocytes undergo rearrangements in the constant region of the immunoglobulin genes to optimize immune responses in a process called class switch recombination. Activated B-cells also undergo somatic hypermutation in the variable regions of the immunoglobulin genes to enhance their antigenic affinity. These somatic events are initiated by the infliction of DNA lesions within the antigen receptor genes that are strictly confined to a specific developmental window and cell-cycle stage. DNA lesions are then repaired by one of the general DNA repair mechanisms, such as non-homologous end-joining. Mutations in key factors of these pathways lead to the interruption of these processes and immunodeficiency, making it possible to study the mechanisms of cellular response to DNA lesions and their repair. This review briefly summarizes some of the recently developed animal models with focus on current advances in the understanding of the mechanism of DNA end-joining activities, and its role in the maintenance of genomic stability and the prevention of tumorigenesis.
Collapse
|
40
|
Porcedda P, Turinetto V, Brusco A, Cavalieri S, Lantelme E, Orlando L, Ricardi U, Amoroso A, Gregori D, Giachino C. A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia. Cytometry A 2008; 73:508-16. [PMID: 18431795 DOI: 10.1002/cyto.a.20566] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ataxia telangiectasia (A-T) is a progressive neurodegenerative disease with onset in early childhood, caused by mutations in the ATM (ataxia-telangiectasia mutated) gene. Diagnosis relies on laboratory tests showing high levels of serum alphafetoprotein, cell sensitivity to ionizing radiation (IR) and absence or reduced levels of ATM protein. Many tests, however, are not sufficiently sensitive or specific for A-T, have long turnaround times, or require large blood samples. This prompted us to develop a new flow cytometry method for the diagnosis of A-T based on the measurement of histone H2AX phosphorylation. We established normal ranges of histone H2AX phosphorylation after 2 Gy IR by testing T-cell lines, lymphoblastoid cell lines (LCLs) and/or peripheral blood mononuclear cells (PBMCs) or both from 20 genetically proven A-T and 46 control donors. To further evaluate the specificity and sensitivity of the test, we analyzed cells from 19 patients suspected of having A-T, and from one Friedreich Ataxia, one Ataxia with Oculomotor Apraxia type 2, and one Nijmegen Breakage Syndrome patients. Phosphorylated histone H2AX mean fluorescence intensity of irradiated A-T cells was significantly lower than that of healthy donors. The intrastaining, intraassay, and interassay imprecisions were <or=13.22%. Sensitivity and specificity were virtually 100% when the test was performed on PBMCs. Screening of 19 consecutive new patients with suspected A-T classified 15 patients as non-A-T and four as A-T; diagnosis of the latter four was subsequently confirmed by DNA sequencing to identify ATM mutations. The Friedreich Ataxia patient, the Ataxia with Oculomotor Apraxia type 2 patient and the Nijmegen Breakage Syndrome patient were classified as non-A-T. This flow cytometry test is very sensitive, specific and rapid, and requires only 2 ml of blood. It may thus be proposed for the early differential diagnosis of A-T as an alternative to methods requiring the production of LCLs.
Collapse
Affiliation(s)
- Paola Porcedda
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marusyk A, DeGregori J. Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1785:1-11. [PMID: 17980163 PMCID: PMC2234267 DOI: 10.1016/j.bbcan.2007.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 02/08/2023]
Abstract
Age is the single most important prognostic factor in the development of many cancers. The major reason for this age-dependence is thought to be the progressive accumulation of oncogenic mutations and epigenetic changes. Similarly, mutagens are thought to be carcinogenic primarily by engendering oncogenic mutations. Yet while the accumulation of heritable somatic changes is expected to augment the incidence of oncogenic mutations, a major effect of increased mutation load is reduced fitness. We propose that the fitness of progenitor cell compartments substantially impacts on the selective advantage conferred by particular mutations. We hypothesize that reduced cellular fitness within aged stem cell pools can select for adaptive oncogenic events and thereby promote the initiation of cancer. Thus, certain oncogenic mutations may be adaptive within aged but not young stem cell pools. We further argue that accumulating genetic alterations with age or mutagen exposure might promote cancer not only by causing oncogenic hits within cells but also by leading to eventual reduction in stem cell fitness, which then selects for oncogenic events. Therefore, initial stages of cancer development may not be limited by the incidence of initiating oncogenic changes, but instead by contexts of reduced cellular fitness that select for these changes.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
42
|
ATM kinase activity modulates Fas sensitivity through the regulation of FLIP in lymphoid cells. Blood 2007; 111:829-37. [PMID: 17932249 DOI: 10.1182/blood-2007-04-085399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ataxia telangiectasia (A-T) is a rare cancer-predisposing genetic disease, caused by the lack of functional ATM kinase, a major actor of the double strand brakes (DSB) DNA-damage response. A-T patients show a broad and diverse phenotype, which includes an increased rate of lymphoma and leukemia development. Fas-induced apoptosis plays a fundamental role in the homeostasis of the immune system and its defects have been associated with autoimmunity and lymphoma development. We therefore investigated the role of ATM kinase in Fas-induced apoptosis. Using A-T lymphoid cells, we could show that ATM deficiency causes resistance to Fas-induced apoptosis. A-T cells up-regulate FLIP protein levels, a well-known inhibitor of Fas-induced apoptosis. Reconstitution of ATM kinase activity was sufficient to decrease FLIP levels and to restore Fas sensitivity. Conversely, genetic and pharmacologic ATM kinase inactivation resulted in FLIP protein up-regulation and Fas resistance. Both ATM and FLIP are aberrantly regulated in Hodgkin lymphoma. Importantly, we found that reconstitution of ATM kinase activity decreases FLIP protein levels and restores Fas sensitivity in Hodgkin lymphoma-derived cells. Overall, these data identify a novel molecular mechanism through which ATM kinase may regulate the immune system homeostasis and impair lymphoma development.
Collapse
|
43
|
Datta A, Silverman L, Phipps AJ, Hiraragi H, Ratner L, Lairmore MD. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival. Retrovirology 2007; 4:49. [PMID: 17634129 PMCID: PMC1937004 DOI: 10.1186/1742-4690-4-49] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 07/16/2007] [Indexed: 12/18/2022] Open
Abstract
Background Human T-lymphotropic virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C), had enhanced checkpoint kinase 1 (Chk1) serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1), diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T-cell survival.
Collapse
Affiliation(s)
- Antara Datta
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Lee Silverman
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Drug Safety and Disposition, Millenium Pharmaceuticals, Inc., 45 Sidney Street, Cambridge, Massachusetts, USA
| | - Andrew J Phipps
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Hajime Hiraragi
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Genentech, Inc. MS68, 1 DNA Way, South San Francisco, California, USA
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael D Lairmore
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
DNA-Reparaturdefekte und Krebs. MED GENET-BERLIN 2007. [DOI: 10.1007/s11825-007-0013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zusammenfassung
Die Zellen des lymphatischen Systems sind durch das hohe Ausmaß somatischer Rekombination und die damit verbundene Hypermutabilität gekennzeichnet. Dabei werden DNA-Doppelstrang-Brüche (DSB) induziert und „repariert“, wobei die beteiligten Gene auch in die allgemeine Reparatur von DSB einbezogen sind. Keimbahnmutationen in diesen Genen gehen mit einem besonders hohen Risiko für Lymphome einher. Diese genetisch bedingten Krankheiten sowie die charakteristischen somatischen Mutationen in Lymphomen haben wesentlich zum Verständnis von DNA-Reparaturdefekten bei der Kanzerogenese beigetragen.
Collapse
|
45
|
Huang CY, Sharma GG, Walker LM, Bassing CH, Pandita TK, Sleckman BP. Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. ACTA ACUST UNITED AC 2007; 204:1371-81. [PMID: 17502661 PMCID: PMC2118620 DOI: 10.1084/jem.20061460] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ataxia-telangiectasia mutated (ATM)–deficient lymphocytes exhibit defects in coding joint formation during V(D)J recombination in vitro. Similar defects in vivo should affect both T and B cell development, yet the lymphoid phenotypes of ATM deficiency are more pronounced in the T cell compartment. In this regard, ATM-deficient mice exhibit a preferential T lymphopenia and have an increased incidence of nontransformed and transformed T cells with T cell receptor α/δ locus translocations. We demonstrate that there is an increase in the accumulation of unrepaired coding ends during different steps of antigen receptor gene assembly at both the immunoglobulin and T cell receptor loci in developing ATM-deficient B and T lymphocytes. Furthermore, we show that the frequency of ATM-deficient αβ T cells with translocations involving the T cell receptor α/δ locus is directly related to the number of T cell receptor α rearrangements that these cells can make during development. Collectively, these findings demonstrate that ATM deficiency leads to broad defects in coding joint formation in developing B and T lymphocytes in vivo, and they provide a potential molecular explanation as to why the developmental impact of these defects could be more pronounced in the T cell compartment.
Collapse
Affiliation(s)
- Ching-Yu Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Vacchio MS, Olaru A, Livak F, Hodes RJ. ATM deficiency impairs thymocyte maturation because of defective resolution of T cell receptor alpha locus coding end breaks. Proc Natl Acad Sci U S A 2007; 104:6323-8. [PMID: 17405860 PMCID: PMC1851038 DOI: 10.1073/pnas.0611222104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATM (ataxia telangiectasia mutated) protein plays a central role in sensing and responding to DNA double-strand breaks. Lymphoid cells are unique in undergoing physiologic double-strand breaks in the processes of Ig class switch recombination and T or B cell receptor V(D)J recombination, and a role for ATM in these processes has been suggested by clinical observations in ataxia telangiectasia patients as well as in engineered mice with mutations in the Atm gene. We demonstrate here a defect in thymocyte maturation in ATM-deficient mice that is associated with decreased efficiency in V-J rearrangement of the endogenous T cell receptor (TCR)alpha locus, accompanied by increased frequency of unresolved TCR Jalpha coding end breaks. We also demonstrate that a functionally rearranged TCRalphabeta transgene is sufficient to restore thymocyte maturation, whereas increased thymocyte survival by bcl-2 cannot improve TCRalpha recombination and T cell development. These data indicate a direct role for ATM in TCR gene recombination in vivo that is critical for surface TCR expression in CD4(+)CD8(+) cells and for efficient thymocyte selection. We propose a unified model for the two major clinical characteristics of ATM deficiency, defective T cell maturation and increased genomic instability, frequently affecting the TCRalpha locus. In the absence of ATM, delayed TCRalpha coding joint formation results both in a reduction of alphabeta TCR-expressing immature cells, leading to inefficient thymocyte selection, and in accumulation of unstable open chromosomal DNA breaks, predisposing to TCRalpha locus-associated chromosomal abnormalities.
Collapse
Affiliation(s)
- Melanie S. Vacchio
- *Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexandru Olaru
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ferenc Livak
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Richard J. Hodes
- *Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4B36, Bethesda, MD 20892. E-mail:
| |
Collapse
|
48
|
Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 2006; 442:466-70. [PMID: 16799570 DOI: 10.1038/nature04866] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 05/03/2006] [Indexed: 01/23/2023]
Abstract
The ATM (ataxia-telangiectasia mutated) protein kinase mediates early cellular responses to DNA double-strand breaks (DSBs) generated during metabolic processes or by DNA-damaging agents. ATM deficiency leads to ataxia-telangiectasia, a disease marked by lymphopenia, genomic instability and an increased predisposition to lymphoid malignancies with chromosomal translocations involving lymphocyte antigen receptor loci. ATM activates cell-cycle checkpoints and can induce apoptosis in response to DNA DSBs. However, defects in these pathways of the DNA damage response cannot fully account for the phenotypes of ATM deficiency. Here, we show that ATM also functions directly in the repair of chromosomal DNA DSBs by maintaining DNA ends in repair complexes generated during lymphocyte antigen receptor gene assembly. When coupled with the cell-cycle checkpoint and pro-apoptotic activities of ATM, these findings provide a molecular explanation for the increase in lymphoid tumours with translocations involving antigen receptor loci associated with ataxia-telangiectasia.
Collapse
Affiliation(s)
- Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Cynthia Guidos
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|