1
|
Barbacariu CA, Dumitru G, Dîrvariu L, Şerban DA, Dincheva I, Todirascu-Ciornea E, Burducea M. The use of wheat grass juice as a promising functional feed additive for enhancing reproductive performance and larvae quality of sterlet (Acipenser ruthenus). Anim Reprod Sci 2025; 274:107796. [PMID: 39965289 DOI: 10.1016/j.anireprosci.2025.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
The optimization of broodstock nutrition remains a critical challenge in sturgeon aquaculture. This study investigated the effects of wheatgrass juice (WGJ) supplementation of sterlet (Acipenser ruthenus) broodstock on reproductive performance, larval quality, hematological profile and oxidative status. Female sterlets were randomly assigned to three groups: control diet (V1), WGJ-supplemented diet (V2, 4 % inclusion), both (V1 and V2) hormonally stimulated and saline solution (V3) without hormonal stimulation. WGJ's chemical composition revealed substantial levels of bioactive compounds, including chlorophyll (a: 0.936 ± 0.01, b: 0.329 ± 0.01 mg/mL fw), carotenoids (0.167 ± 0.01 mg/mL fw), proteins (1.205 ± 0.04 mg PSB/mL fw), flavonoids (7.381 ± 0.31 mg/mL fw), and polyphenols (2.963 ± 0.05 mg/mL fw). WGJ supplementation significantly enhanced reproductive parameters, with V2 showing higher egg production (0.23 ± 0.03 kg vs. 0.13 ± 0.01 kg) and gonadosomatic index (14.48 ± 1.73 vs. 8.05 ± 0.51) compared to V1. Larvae from WGJ-supplemented females exhibited significantly improved length (10.9 ± 0.3 cm vs. 9.8 ± 0.14 cm, p < 0.001) and weight parameters. Analysis of oxidative stress markers revealed tissue-specific modulation of antioxidant systems, with WGJ supplementation reducing malondialdehyde levels across tissues (muscle: 1.061 ± 0.075 vs. 1.888 ± 0.105 nM/mg protein, p < 0.0001) and enhancing antioxidant enzyme activities. Hematological parameters remained within physiological ranges, with reduced neutrophil counts in the WGJ group suggesting potential immunomodulatory effects. These findings establish WGJ as a promising functional feed additive for enhancing reproductive performance in sterlet aquaculture, while maintaining optimal physiological status through improved antioxidant defense mechanisms.
Collapse
Affiliation(s)
- C-A Barbacariu
- Research and Development Station for Aquaculture and Acvatic Ecology, "Alexandru. Ioan Cuza" University', Iasi, 11, Carol I Blvd, Iasi 700506, Romania.
| | - G Dumitru
- Faculty of Biology, "Alexandru Ioan Cuza" University', Iasi, 20, Carol I. Blvd, Iasi 700506, Romania
| | - L Dîrvariu
- Research and Development Station for Aquaculture and Acvatic Ecology, "Alexandru. Ioan Cuza" University', Iasi, 11, Carol I Blvd, Iasi 700506, Romania
| | - D A Şerban
- Research and Development Station for Aquaculture and Acvatic Ecology, "Alexandru. Ioan Cuza" University', Iasi, 11, Carol I Blvd, Iasi 700506, Romania
| | - I Dincheva
- Department of Agrobiotechologies, Agrobioinstitute, Agricultural Academy, 8, Dragan Tsankov Blvd., Sofia 1164, Bulgaria
| | - E Todirascu-Ciornea
- Faculty of Biology, "Alexandru Ioan Cuza" University', Iasi, 20, Carol I. Blvd, Iasi 700506, Romania
| | - M Burducea
- Research and Development Station for Aquaculture and Acvatic Ecology, "Alexandru. Ioan Cuza" University', Iasi, 11, Carol I Blvd, Iasi 700506, Romania
| |
Collapse
|
2
|
Wang Y, Li X, Xu T, Li H, Liu J, Yang Q, Li W, Zidan SRS, Jiang C, Yuan Y, Tang R, Yu L, Li L, Zhang X, Li D. Long-Day Photoperiod Improves the Growth and Muscle Quality of Grass Carp ( Ctenopharyngodon idella). Foods 2025; 14:504. [PMID: 39942096 PMCID: PMC11817249 DOI: 10.3390/foods14030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
To investigate the effects of photoperiods on the growth and muscle quality indicators of grass carp (Ctenopharyngodon idella), 225 fish (109.65 ± 3.62 g) were randomly assigned into five different photoperiod groups (0L:24D, 8L:16D, 12L:12D, 16L:8D, and 24L:0D). The experiment spanned a 75-day period, after which sampling and analysis were performed. Compared with the 0L:24D and 8L:16D groups, the 12L:12D and 16L:8D groups significantly promoted the growth of grass carp (p < 0.05). The texture parameters of the muscle in the 0L:24D and 16L:8D groups were significantly greater than those in the 12L:12D group (p < 0.05). The crude protein content was significantly higher in the 12L:12D and 16L:8D groups (p < 0.05). The amino acid content and muscle fiber characteristics, as well as the mRNA levels of myostatin (mstn), myogenic factor 5 (myf5), type I collagen α1 (col1α1), and α2 (col1α2), along with the hydroxyproline and collagen contents, were all significantly influenced by the photoperiod (p < 0.05). The lysine (Lys), aspartic acid (Asp), and alanine (Ala) contents in the muscle and muscle fiber density of grass carp reached the highest levels under the 16L:8D treatment (p < 0.05). Collectively, these results indicate that a 16L:8D photoperiod is optimal for enhancing both the growth and muscle quality indicators of grass carp. The findings of this study offer valuable scientific references for the precise regulation of grass carp quality when using a photoperiod, and they are anticipated to foster the further development and optimization of strategies for improving grass carp quality.
Collapse
Affiliation(s)
- Yin Wang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuxu Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Tingting Xu
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Huacheng Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Jieya Liu
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- College of Life Sciences and Technology, Tarim University, Alar 843300, China
| | - Qiushi Yang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wenhan Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Sayed R. S. Zidan
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Animal Production Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Chengchen Jiang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Yutian Yuan
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Rong Tang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Liqin Yu
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xi Zhang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Dapeng Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| |
Collapse
|
3
|
Mouchlianitis FA, Charitonidou K, Tsavdari M, Minos G, Ganias K. Reproductive timing and spawning dynamics of European barracuda Sphyraena sphyraena in eastern Mediterranean Sea. JOURNAL OF FISH BIOLOGY 2025. [PMID: 39900535 DOI: 10.1111/jfb.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
This research investigated the reproductive timing and spawning dynamics of the European barracuda Sphyraena sphyraena in the Thermaikos Gulf, northern Aegean Sea, where the species is predominantly harvested using gillnets. The study was conducted over 2 years, from May to October, coinciding with the period when the local gillnet fishery targets surmullet Mullus surmuletus. The timing of reproduction was examined by the gonado-somatic index, the macroscopic assessment of the ovarian stage, and the microscopic examination of the ovarian developmental stage. All three indices demonstrated that spawning-capable females were caught in May and June and that spawning ceases by late July to August. Regarding spawning dynamics, the European barracuda is a multiple spawner; the oocyte size frequency distributions of all spawning-capable and actively spawning females were continuous, and postovulatory follicle cohorts from different daily spawning events co-occurred in the ovaries of many of those females. Relative batch fecundity was rounded off to 197 ± 108 oocytes per gram and relative total fecundity at 1263 ± 513 oocytes per gram. The somatic condition increased in postspawning individuals, suggesting a capital breeding reproductive strategy.
Collapse
Affiliation(s)
| | - Katerina Charitonidou
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Maria Tsavdari
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Minos
- School of Health Science, Department of Nursing, International Hellenic University, Thessaloniki, Greece
| | - Kostas Ganias
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Luo Q, Zhang M, Lyu M, Ke C, Gao X. Structure and function of vasa gene in gonadal gametogenesis of Pacific abalone. Int J Biol Macromol 2024; 277:134449. [PMID: 39098680 DOI: 10.1016/j.ijbiomac.2024.134449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pacific abalone (Haliotis discus hannai) is a marine gastropod mollusc with significant economic importance in both global fisheries and aquaculture. However, studies exploring the gonadal development and regulatory mechanisms of Haliotis discus hannai are limited. This study aimed to explore whether the vasa gene acted as a molecular marker for germ cells. Initially, the vasa gene was successfully cloned using the cDNA-end rapid amplification technique. The cloned gene had a 2478-bp-long open reading frame and encoded 825 amino acids. Then, a recombinant expression vector was constructed based on the Vasa protein, and an 87-kDa recombinant protein was prepared. Subsequently, a polyclonal antibody was prepared using the purified recombinant protein. The enzyme-linked immunosorbent assay (ELISA) confirmed the titer of the antibody to be ≥512 K. The immunohistochemical analysis revealed that Vasa was widely expressed in oogonia, Stage I oocytes, spermatogonia, and primary spermatocytes. The specific expression of Vasa in the hermaphroditic gonads of abalone was assessed using western blotting to investigate the effects of different photoperiods (12 L:12D, 24 L:0D, 18 L:6D, and 6 L:18D) on the gonadal development of abalone (P < 0.05), with higher expression levels observed in the ovarian proliferative and spermary maturing stages compared with other developmental stages (P < 0.05). Additionally, Vasa exhibited the highest expression in the spermary and ovary under a photoperiod of 18 L:6D (P < 0.05). These data demonstrated the key role of Vasa in developing germ cells in abalone. They shed light upon the molecular mechanism through which the photoperiod influenced Vasa expression and regulated gonadal development in abalone. The findings might provide theoretical references for analyzing the differentiation pattern of abalone germ cells and the genetic improvement and conservation of germplasm resources.
Collapse
Affiliation(s)
- Qi Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Gao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
6
|
Dan N, Shah H, Bhatt H, Ladumor R, Salunke A, Ramachandran AV, Pandya P. Decoding the effect of photoperiodic cues in transducing kisspeptin-melatonin circuit during the pubertal onset in common carp. Mol Reprod Dev 2024; 91:e23744. [PMID: 38800960 DOI: 10.1002/mrd.23744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.
Collapse
Affiliation(s)
- Nehareeka Dan
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Himadri Bhatt
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Rahul Ladumor
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Ankita Salunke
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - A V Ramachandran
- Mentor, School of Science, Department of Biomedical and Life Sciences, Navrachana University, Vadodara, India
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| |
Collapse
|
7
|
Royan MR, Hodne K, Nourizadeh-Lillabadi R, Weltzien FA, Henkel C, Fontaine R. Day length regulates gonadotrope proliferation and reproduction via an intra-pituitary pathway in the model vertebrate Oryzias latipes. Commun Biol 2024; 7:388. [PMID: 38553567 PMCID: PMC10980775 DOI: 10.1038/s42003-024-06059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.
Collapse
Affiliation(s)
- Muhammad Rahmad Royan
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjetil Hodne
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Romain Fontaine
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
8
|
Zhang G, Ye Z, Jiang Z, Wu C, Ge L, Wang J, Xu X, Wang T, Yang J. Circadian patterns and photoperiodic modulation of clock gene expression and neuroendocrine hormone secretion in the marine teleost Larimichthys crocea. Chronobiol Int 2024; 41:329-346. [PMID: 38516993 DOI: 10.1080/07420528.2024.2315215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.
Collapse
Affiliation(s)
- Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Chenqian Wu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Lancerotto S, Fakriadis I, Papadaki M, Mandalakis M, Sigelaki I, Mylonas CC. Timing of puberty in F1-generation hatchery-produced greater amberjack (Seriola dumerili). Gen Comp Endocrinol 2024; 347:114414. [PMID: 38008343 DOI: 10.1016/j.ygcen.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
We evaluated the onset of puberty of first-generation (F1) hatchery-produced greater amberjack (Seriola dumerili) reared in sea cages for 5 years. Fish were sampled every year in June, at the expected peak of the spawning period in the Mediterranean Sea. No sexual dimorphism in body weight was observed in the study. The ovaries of 1 and 2-year-old (yo) females consisted of primary oocytes only, while at the age of 3-yo early vitellogenic (Vg) oocytes were also identified, but with extensive follicular atresia. At the age of 4-yo, late Vg oocytes were observed, but again extensive follicular atresia characterized the ovaries of 50 % of females. At the age of 5-yo, follicular atresia of Vg oocytes was very limited. In males, gametogenesis was evident already in 1- and 2-yo fish, and 100 % of sampled 3-yo males produced collectable viable sperm. Plasma testosterone (T), 17β-estradiol (E2), and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) remained similar in 3 - 5-yo females, with T and E2 levels being highest in females in advanced vitellogenesis or with significant follicular atresia, compared to immature females. In males, plasma T declined over the years, while 11-ketotestosterone (11-KT) and 17,20β-P were highest in 4 and 5-yo males, with spermatozoa motility characteristics being improved from the 4th year onwards. The administration of GnRHa implants to 5-yo fish induced only two spawns, albeit no fertilized eggs were obtained. The results indicate that hatchery-produced greater amberjack males mature well and within the same age observed in the wild, however with smaller gonad size. On the contrary, females mature later than in the wild, also with a smaller gonad size. Spawning in response to GnRHa treatment was not effective, suggesting that Mediterranean hatchery-produced broodstocks may be dysfunctional, and further research is needed to document any improvement as the fish get older, or to determine if the results may be related to the specific stock of fish.
Collapse
Affiliation(s)
- Stefano Lancerotto
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece; Biology Department, University of Crete, PO Box 2208, 71409 Heraklion, Crete, Greece
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Maria Papadaki
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Irini Sigelaki
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003 Crete, Greece.
| |
Collapse
|
10
|
Nie X, Huang C, Wei J, Wang Y, Hong K, Mu X, Liu C, Chu Z, Zhu X, Yu L. Effects of Photoperiod on Survival, Growth, Physiological, and Biochemical Indices of Redclaw Crayfish ( Cherax quadricarinatus) Juveniles. Animals (Basel) 2024; 14:411. [PMID: 38338053 PMCID: PMC10854630 DOI: 10.3390/ani14030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Through a 30-day experiment, this study investigated the effects of five photoperiods (0L:24D, 6L:18D, 12L:12D, 18L:6D, and 24L:0D) on the survival, enzyme activity, body color, and growth-related gene expression of redclaw crayfish (Cherax quadricarinatus) juveniles. The results showed that C. quadricarinatus juveniles under 18L:6D and 24L:0D photoperiods exhibited the highest survival rate, which was significantly higher than the survival rates of juveniles under the other three photoperiods (p < 0.05). However, the 0L:24D group had the highest final body weight and weight gain rate, significantly surpassing those of the 12L:12D, 18L:6D, and 24L:0D groups (p < 0.05). Regarding enzyme activity and hormone levels, juveniles under the 18L:6D photoperiod exhibited relatively higher activity of superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) enzymes than those under other photoperiods, but their levels of melatonin and cortisol were relatively low. In addition, the 24L:0D group showed the highest malondialdehyde (MDA) content. Analysis of gene expression levels revealed that retinoid X receptor (RXR) and α-amylase (α-AMY) genes in C. quadricarinatus juveniles exhibited significantly higher expression levels under the 18L:6D photoperiod than those under the other four photoperiods (p < 0.05). With increasing daylight exposure, the body color of C. quadricarinatus changed from pale blue to yellow-brown. In summary, C. quadricarinatus juveniles achieved high survival rates, good growth performance, strong antioxidant stress response, and immune defense capabilities under an 18 h photoperiod. Therefore, in the industrial seedling cultivation of redclaw crayfish, it is recommended to provide 18 h of daily light. Further, the study demonstrated the ability to manipulate the body color of C. quadricarinatus through controlled artificial photoperiods. These findings provide essential technical parameters needed for the industrial cultivation of C. quadricarinatus juveniles.
Collapse
Affiliation(s)
- Xiangxing Nie
- School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China; (X.N.); (C.H.); (Z.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Cuixue Huang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China; (X.N.); (C.H.); (Z.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Jie Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Kunhao Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.M.); (C.L.)
| | - Chao Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.M.); (C.L.)
| | - Zhangjie Chu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China; (X.N.); (C.H.); (Z.C.)
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| |
Collapse
|
11
|
Closs LE, Royan MR, Sayyari A, Mayer I, Weltzien FA, Baker DM, Fontaine R. Artificial light at night disrupts male dominance relationships and reproductive success in a model fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166406. [PMID: 37597540 DOI: 10.1016/j.scitotenv.2023.166406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Environmental light is perceived and anticipated by organisms to synchronize their biological cycles. Therefore, artificial light at night (ALAN) disrupts both diurnal and seasonal biological rhythms. Reproduction is a complex physiological process involving integration of environmental signals by the brain, and release of endocrine signals by the pituitary that regulate gametogenesis and spawning. In addition, males from many species form a dominance hierarchy that, through a combination of aggressive and protective behavior, influences their reproductive success. In this study, we investigated the effect of ALAN and continuous daylight on the behavior and fitness of male fish within a dominance hierarchy using a model fish, the Japanese medaka. In normal light/dark cycles, male medaka establish a hierarchy with the dominant males being more aggressive and remaining closer to the female thus limiting the access of subordinate males to females during spawning. However, determination of the paternity of the progeny revealed that even though subordinate males spend less time with the females, they are, in normal light conditions, equally successful at producing progeny due to an efficient sneaking behavior. Continuous daylight completely inhibited the establishment of male hierarchy, whereas ALAN did not affect it. Nonetheless, when exposed to ALAN, subordinate males fertilize far fewer eggs. Furthermore, we found that when exposed to ALAN, subordinate males produced lower quality sperm than dominant males. Surprisingly, we found no differences in circulating sex steroid levels, pituitary gonadotropin levels, or gonadosomatic index between dominant and subordinate males, neither in control nor ALAN condition. This study is the first to report an effect of ALAN on sperm quality leading to a modification of male fertilization success in any vertebrate. While this work was performed in a model fish species, our results suggest that in urban areas ALAN may impact the genetic diversity of species displaying dominance behavior.
Collapse
Affiliation(s)
- Lauren E Closs
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States.
| | - Romain Fontaine
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
12
|
Lopes ACC, de Mattos BO, Marcon JL, Vera LM, López-Olmeda JF, Sánchez-Vázquez FJ, Carvalho TB. Does exposure to moonlight affect day/night changes in melatonin and metabolic parameters in Amazonian fish? Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111489. [PMID: 37474098 DOI: 10.1016/j.cbpa.2023.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Lunar cycle modulates the rhythmic activity patterns of many animals, including fish. The effect of the moonlight cycle on daily melatonin and metabolic parameters was evaluated in matrinxã (Brycon amazonicus) subjected to external natural lighting. Eighty juvenile were distributed in 4 tanks of 1m3 (20 fish/tank) and divided into two groups. One group was exposed to the full moon and the other group to the new moon for 30 days, which corresponds to the duration of the lunar period. At the end of the lunar phase, 6 fish from each group were anesthetized to collect blood, tissue and eye samples at midday and midnight. The comparison between the light and dark periods revealed a significant increase in plasma and ocular melatonin in the last period. However, there was no significant difference for plasma melatonin between moons. Ocular melatonin presented higher concentrations during the new moon. Glucose, total proteins, cortisol, liver glutathione and gill lipid peroxidation were higher in the full moon compared to in the new moon. Plasma triglyceride was higher during the night for the full moon, and the opposite was found for the new moon. Total cholesterol values were higher at night regardless the moon phase. Glutathione in the gills and lipid peroxidation in the liver showed no significant differences. These results highlight the importance of considering both the day and lunar cycles for melatonin and metabolic parameters in species of commercial interest and susceptible to stressful situations in rearing conditions.
Collapse
Affiliation(s)
| | - Bruno Olivetti de Mattos
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil.
| | - Jaydione Luiz Marcon
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Institute of Biological Sciences, Department of Physiological Sciences, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Thaís Billalba Carvalho
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil
| |
Collapse
|
13
|
Li Y, Li C, Fu Y, Wang R, Yang Y, Zhang M, Zhang Y, Wang X, Wang G, Jiang H, Zou Y, Hu J, Guo C, Wang Y. Insulin-like growth factor 1 promotes the gonadal development of Pampus argenteus by regulating energy metabolism†. Biol Reprod 2023; 109:227-237. [PMID: 37228017 DOI: 10.1093/biolre/ioad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 05/27/2023] Open
Abstract
Insulin-like growth factor 1 (Igf1) is known to promote ovarian maturation by interacting with other hormones. However, the limited research on the role of Igf1 in the energy metabolism supply of gonads has hindered further exploration. To explore the role of Igf1 in gonadal development of silver pomfret, we analyzed the expression levels and the localization of igf1 mRNA and protein during testicular and ovarian development of silver pomfret. The results of the study showed upregulation of Igf1 in the critical period of vitellogenesis and sperm meiosis, which was found to be mainly expressed in the somatic cells of the gonads. Upon adding E2 and Igf1 to cultured gonadal tissues, the expression of energy-related genes was significantly increased, along with the E2-enhanced effect of Igf1 in the testis. Importantly, stimulation of both ovaries and testes with E2 and Igf1 led to a remarkable increase in the expression of vitellogenesis and meiosis-related genes. Therefore, we conclude that Igf1 promotes vitellogenesis and sperm meiosis by regulating gonadal energy production. Moreover, the expression of Igf1 in gonads is significantly regulated by E2. These findings provide new insights for the research of Igf1 in fish breeding, thus allowing the regulation of energy metabolism between growth and reproduction for successful reproductive outcomes.
Collapse
Affiliation(s)
- Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Chang Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yangfei Fu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Ruixian Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Mariculture and Enhancement, Marine Fishery Institute of Zhejiang Province, Zhoushan, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Xiangbing Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Guanlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Huan Jiang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yushan Zou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Chunyang Guo
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Yin P, Saito T, Fjelldal PG, Björnsson BT, Remø SC, Hansen TJ, Sharma S, Olsen RE, Hamre K. Seasonal Changes in Photoperiod: Effects on Growth and Redox Signaling Patterns in Atlantic Salmon Postsmolts. Antioxidants (Basel) 2023; 12:1546. [PMID: 37627541 PMCID: PMC10451801 DOI: 10.3390/antiox12081546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Farmed Atlantic salmon reared under natural seasonal changes in sea-cages had an elevated consumption of antioxidants during spring. It is, however, unclear if this response was caused by the increase in day length, temperature, or both. The present study examined redox processes in Atlantic salmon that were reared in indoor tanks at constant temperature (9 °C) under a simulated natural photoperiod. The experiment lasted for 6 months, from vernal to autumnal equinoxes, with the associated increase and subsequent decrease in day length. We found that intracellular antioxidants were depleted, and there was an increase in malondialdehyde (MDA) levels in the liver and muscle of Atlantic salmon with increasing day length. Antioxidant enzyme activity in liver and muscle and their related gene profiles was also affected, with a distinct upregulation of genes involved in maintaining redox homeostasis, such as peroxiredoxins in the brain in April. This study also revealed a nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response in muscle and liver, suggesting that fish integrate environmental signals through redox signaling pathways. Furthermore, growth and expression profiles implicated in growth hormone (GH) signaling and cell cycle regulation coincided with stress patterns. The results demonstrate that a change in photoperiod without the concomitant increase in temperature is sufficient to stimulate growth and change the tissue oxidative state in Atlantic salmon during spring and early summer. These findings provide new insights into redox regulation mechanisms underlying the response to the changing photoperiod, and highlight a link between oxidative status and physiological function.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Takaya Saito
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre, 5984 Matredal, Norway; (P.G.F.); (T.J.H.)
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden;
| | | | - Tom Johnny Hansen
- Institute of Marine Research, Matre, 5984 Matredal, Norway; (P.G.F.); (T.J.H.)
| | | | - Rolf Erik Olsen
- Department of Biology, Faculty of Science and Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Kristin Hamre
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
| |
Collapse
|
15
|
Xu W, Zou H, Zeng J, Mei W, Choi S. Effects of Various LED Light Spectra on Growth, Gonadal Development, and Growth-/Reproduction-Related Hormones in the Juvenile Red Spotted Grouper, Epinephelus akaara. Animals (Basel) 2023; 13:2047. [PMID: 37443845 DOI: 10.3390/ani13132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
The light spectrum is a key environmental cue involved in growth and reproduction in teleosts. This study investigated the effects of exposure on juvenile red spotted grouper exposed to white (control), red (590 nm), blue (480 nm), and green (520 nm) light-emitting diodes (LEDs) (12 h light:12 h dark) for two months. The body weight (BW), total length (TL), condition factor (CF), weight gain rate (WGR), gonadosomatic index (GSI), and hepatosomatic index (HSI) were assessed. Gonadal development was observed. The gene expression of growth-related hormones, such as growth hormone (GH), pre-pro-somatostatin-I (PSS-I), neuropeptide Y (NPY), and CCK, and of reproduction-related hormones, such as Kiss1, Kiss2, GPR54, sbGnRH, FSHβ, and LHβ, was analyzed. The results showed that the fish in the white LED group exhibited the best BW, TL, CF, WGR, and HSI after one or two months. The fish exposed to white LEDs showed the best growth after two months, but no significant differences in GH levels were detected. Contrarily, the expression levels of the PSS-I significantly increased (p < 0.05) in fish from the white group, suggesting the complex regulation of GH production and the limited effects of PSS-I on the inhibition of GH synthesis and somatic growth. The significantly increased NPY levels in the four LED groups (p < 0.05) indicated that these four LED spectra were effective in stimulating food intake and energy homeostasis. After two months, the gonads developed from chromatin nucleolar-stage oocytes to perinucleolar-stage oocytes in the four LED groups. The gene expression of Kiss2 and GPR54 in the four LED groups and of sbGnRH in the white and blue LED groups significantly increased when compared to that in the initial group (p < 0.05), while there were no significant differences in FSHβ and LHβ expression in the four LED groups. These results suggest that FSH and LH may not play important roles in gonadal development in juvenile red spotted grouper that are exposed to these four LED spectra.
Collapse
Affiliation(s)
- Wengang Xu
- School of Ocean, Yantai University, Yantai 264003, China
| | - Huafeng Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Zeng
- Guangxi Academy of Sciences, Nanning 530007, China
- Institute of Beibu Gulf Marine Industry, Fangchenggang 538000, China
| | - Weiping Mei
- Guangxi Academy of Sciences, Nanning 530007, China
- Institute of Beibu Gulf Marine Industry, Fangchenggang 538000, China
| | - SongHee Choi
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
16
|
Šmejkal M, Bartoň D, Blabolil P, Kolařík T, Kubečka J, Sajdlová Z, Souza AT, Brabec M. Diverse environmental cues drive the size of reproductive aggregation in a rheophilic fish. MOVEMENT ECOLOGY 2023; 11:16. [PMID: 36949527 PMCID: PMC10035167 DOI: 10.1186/s40462-023-00379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Animal migrations are periodic and relatively predictable events, and their precise timing is essential to the reproductive success. Despite large scientific effort in monitoring animal reproductive phenology, identification of complex environmental cues that determine the timing of reproductive migrations and temporal changes in the size of reproductive aggregations in relation to environmental variables is relatively rare in the current scientific literature. METHODS We tagged and tracked 1702 individuals of asp (Leuciscus aspius), a large minnow species, and monitored with a resolution of one hour the size of their reproductive aggregations (counts of sexes present at the breeding grounds standardized by the sum of individuals in the season) over seven breeding seasons using passive integrated transponder tag systems. We examined the size of reproductive aggregations in relation to environmental cues of day number within a reproductive season (intra-year seasonality), water temperature, discharge, hour in a day (intra-day pattern), temperature difference between water and air, precipitation, atmospheric pressure, wind speed and lunar phase. A generalized additive model integrating evidence from seven breeding seasons and providing typical dynamics of reproductive aggregations was constructed. RESULTS We demonstrated that all environmental cues considered contributed to the changes in the size of reproductive aggregations during breeding season, and that some effects varied during breeding season. Our model explained approximately 50% of the variability in the data and the effects were sex-dependent (models of the same structure were fitted to each sex separately, so that we effectively stratified on sex). The size of reproductive aggregations increased unimodally in response to day in season, correlated positively with water temperature and wind speed, was highest before and after the full moon, and highest at night (interacting with day in a season). Males responded negatively and females positively to increase in atmospheric pressure. CONCLUSION The data demonstrate complex utilization of available environmental cues to time reproductive aggregations in freshwater fish and their interactions during the reproductive season. The study highlights the need to acquire diverse data sets consisting of many environmental cues to achieve high accuracy of interpretation of reproductive timing.
Collapse
Affiliation(s)
- Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Daniel Bartoň
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Blabolil
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tomáš Kolařík
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Kubečka
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Zuzana Sajdlová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Institute for Atmospheric and Earth System Research INAR, Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Marek Brabec
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Lima ER, Freire RP, Suzuki MF, Oliveira JE, Yosidaki VL, Peroni CN, Sevilhano T, Zorzeto M, Torati LS, Soares CRJ, Lima IDDM, Kronenberger T, Maltarollo VG, Bartolini P. Isolation and Characterization of the Arapaima gigas Growth Hormone (ag-GH) cDNA and Three-Dimensional Modeling of This Hormone in Comparison with the Human Hormone (hGH). Biomolecules 2023; 13:158. [PMID: 36671542 PMCID: PMC9855374 DOI: 10.3390/biom13010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In a previous work, the common gonadotrophic hormone α-subunit (ag-GTHα), the ag-FSH β- and ag-LH β-subunit cDNAs, were isolated and characterized by our research group from A. gigas pituitaries, while a preliminary synthesis of ag-FSH was also carried out in human embryonic kidney 293 (HEK293) cells. In the present work, the cDNA sequence encoding the ag-growth hormone (ag-GH) has also been isolated from the same giant Arapaimidae Amazonian fish. The ag-GH consists of 208 amino acids with a putative 23 amino acid signal peptide and a 185 amino acid mature peptide. The highest identity, based on the amino acid sequences, was found with the Elopiformes (82.0%), followed by Anguilliformes (79.7%) and Acipenseriformes (74.5%). The identity with the corresponding human GH (hGH) amino acid sequence is remarkable (44.8%), and the two disulfide bonds present in both sequences were perfectly conserved. Three-dimensional (3D) models of ag-GH, in comparison with hGH, were generated using the threading modeling method followed by molecular dynamics. Our simulations suggest that the two proteins have similar structural properties without major conformational changes under the simulated conditions, even though they are separated from each other by a >100 Myr evolutionary period (1 Myr = 1 million years). The sequence found will be used for the biotechnological synthesis of ag-GH while the ag-GH cDNA obtained will be utilized for preliminary Gene Therapy studies.
Collapse
Affiliation(s)
- Eliana Rosa Lima
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Renan Passos Freire
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Miriam Fussae Suzuki
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - João Ezequiel Oliveira
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Vanessa Luna Yosidaki
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Cibele Nunes Peroni
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Thaís Sevilhano
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Moisés Zorzeto
- Piscicultura Raça, Canabrava do Norte 78658-000, MT, Brazil
| | - Lucas Simon Torati
- EMBRAPA Pesca e Aquicultura, Loteamento Água Fria, Palmas 77008-900, TO, Brazil
| | - Carlos Roberto Jorge Soares
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Igor Daniel de Miranda Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Paolo Bartolini
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
18
|
Spangenberg DK, Fuhrman AE, Larsen DA, Beckman BR. A correlation between seasonally changing photoperiod, whole body lipid, and condition factor in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). PLoS One 2023; 18:e0285380. [PMID: 37200396 DOI: 10.1371/journal.pone.0285380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
The regulation of lipid stores is a central process for the physiology and ecology of fishes. Seasonal variation in lipid stores has been directly linked to survival of fishes across periods of food deprivation. We assessed whether a seasonally changing photoperiod was correlated to seasonal changes in energetic status to help better understand these important processes. Groups of first feeding Chinook salmon fry were introduced to a seasonal photoperiod cycle, but the point of entrance into the seasonal cycle varied from near the winter solstice (December), to either side of the spring equinox (February & May). Temperature and feeding rate were similar for all treatments. Subsequently, condition factor and whole body lipid content were assessed through a seasonal progression. Throughout most of the experiment, length and weight did not differ between the different photoperiod treatments, however whole body lipid and Fulton's condition factor did. Furthermore, changes in both whole body lipid and Fulton's condition factor in all treatment groups followed a similar seasonal pattern that was inversely related to day length (highest K and lipid levels found during days with the least light). These results suggest that regardless of age or size, there is a correlation between seasonal changes in photoperiod and changes in body composition in juvenile Chinook salmonids.
Collapse
Affiliation(s)
- Dina K Spangenberg
- Environmental Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Abby E Fuhrman
- Environmental Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Donald A Larsen
- Environmental Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Brian R Beckman
- Environmental Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Hu CH, Bie HQ, Lu ZY, Ding Y, Guan HH, Geng LH, Ma S, Hu YX, Fan QX, Shen ZG. Out-of-season spawning of largemouth bass in a controllable recirculating system. Front Physiol 2023; 14:1175075. [PMID: 37168230 PMCID: PMC10164978 DOI: 10.3389/fphys.2023.1175075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Largemouth bass (LMB) production exceeded 0.7 million tons in 2021 and has become one of the most important freshwater aquaculture species in China. The stable and fixed culture cycle led to regular and drastic price fluctuation during the past decade. Strong price fluctuation provides opportunities and challenges for the LMB industry, and out-of-season spawning (OSS) and culture will provide technical support for the opportunities. To induce OSS at a low cost, we established a controllable recirculating system that allows precise thermo-photoperiod manipulation. In the system, four experimental groups were assigned, 18NP (18°C overwintering water temperature, natural photoperiod), 18CP (18°C overwintering water temperature, controlled photoperiod), 16CP (16°C overwintering water temperature, controlled photoperiod), and NTNP (natural water temperature and natural photoperiod), to determine the effects of chilling temperature and photoperiod on spawning performance. OSS was observed in all the experimental groups without significant differences, except NTNP. The manipulated broodstock can re-spawn 3 months later in the next spring in advance. Further analysis of the volume percentage of different stages of oocytes provides a base for excellent regression between the volume percentage of the primary growth stage, cortical alveoli stage, vitellogenesis/maturation stage, and gonadal development/maturation. The results suggest that the volume percentage of oocytes is a better indicator of gonadal development and maturation than the gonadosomatic index. We also found that LMB prefers palm fiber as a spawning nest over gravel. The findings of this work provide important technique guidance for practical OSS of the LMB aquaculture industry and standardization of ovary development and maturation in fish with asynchronous developmental oocytes.
Collapse
Affiliation(s)
- Chen-Hao Hu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Han-Qing Bie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zi-Yi Lu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yang Ding
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - He-He Guan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Long-Hui Geng
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shuai Ma
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuan-Xiang Hu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qi-Xue Fan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- HuBei HuangYouYuan Fishery Development Limited Company, Wuhan, China
| | - Zhi-Gang Shen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhi-Gang Shen,
| |
Collapse
|
20
|
Perry WB. Sleeping with the fishes: Looking under the bonnet of melatonin synthesis. JOURNAL OF FISH BIOLOGY 2022; 101:1387. [PMID: 36511098 DOI: 10.1111/jfb.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
21
|
Sanjita Devi H, Rajiv C, Mondal G, Khan ZA, Devi SD, Bharali R, Chattoraj A. Influence of photoperiod variations on the mRNA expression pattern of melatonin bio-synthesizing enzyme genes in the pineal organ and retina: A study in relation to the serum melatonin profile in the tropical carp Catla catla. JOURNAL OF FISH BIOLOGY 2022; 101:1569-1581. [PMID: 36205436 DOI: 10.1111/jfb.15234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Surface-dwelling C. catla were exposed to different photoperiods (8L:16D, 12L:12D, 12D:12L and 16L:8D) and the mRNA level profile of enzymes involved in melatonin synthesis was evaluated in the pineal gland and retina. Furthermore, a comparative analysis of the serum melatonin profile with the mRNA level was also performed. The results indicated diurnal variations in the transcripts of tph1, aanat and hiomt in the pineal organ and retina, and these variations change with the change in lighting regime. The serum melatonin profile showed rhythmicity in the natural photoperiod, but the serum melatonin level increased proportionally with increasing daylength. In short photoperiods, the peak value (though lower than in long photoperiods) of melatonin maintains a longer duration in serum. Moreover, the comparative analysis revealed a similar profile of mRNA of pineal aanat1 and aanat2 with serum melatonin under the same lighting conditions. This indicates that serum melatonin is produced by the pineal gland. Our results specify the importance of day length and the timing of onset or offset of the dark for maintaining the oscillating levels of serum melatonin and mRNA levels of melatonin biosynthesizing enzyme genes in the pineal organ and retina as well. The findings in this study highlight the distinctive pattern of mRNA levels in the pineal organ and retina under different photoperiods. The pineal melatonin biosynthesizing enzyme genes showed a similar pattern with serum melatonin levels while the retinal genes changed dramatically with photoperiod. We also revealed a light-dependent transcriptional regulation of pineal aanat genes in C. catla. Moreover, our results suggest that ALAN and skyglow can influence the levels of serum melatonin and its biosynthesis, resulting in desynchronization of the entire biological clock as well as the overall physiology of the animal.
Collapse
Affiliation(s)
| | - Chongtham Rajiv
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Gopinath Mondal
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Zeeshan Ahmad Khan
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
22
|
Ljubobratović U, Bogár K, Káldy J, Fazekas G, Vass N, Feledi T, Kovács G. Optimizing the gonadoliberin dosage and evaluating the egg quality in the preseason and seasonal artificial reproduction of pond-reared sterlet Acipenser ruthenus. Anim Reprod Sci 2022; 247:107097. [DOI: 10.1016/j.anireprosci.2022.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/01/2022]
|
23
|
Dahlke F, Puvanendran V, Mortensen A, Pörtner HO, Storch D. Broodstock exposure to warming and elevated pCO 2 impairs gamete quality and narrows the temperature window of fertilisation in Atlantic cod. JOURNAL OF FISH BIOLOGY 2022; 101:822-833. [PMID: 35737847 DOI: 10.1111/jfb.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Impacts of global warming and CO2 -related ocean acidification (OA) on fish reproduction may include chronic effects on gametogenesis and gamete quality, as well as acute effects on external fertilisation. Here, temperature thresholds and OA-sensitivity of gametogenesis and fertilisation were investigated in Atlantic cod, Gadus morhua. Three broodstock groups of farmed cod (FC 1-3) were exposed for 3 months to three maturation conditions (FC 1: control, 6°C/400 μatm CO2 ; FC 2: warming, 9.5°C/400 μatm; FC 3: warming and OA, 9.5°C/1100 μatm). In addition, a broodstock group of wild cod (WC) was kept at control conditions to compare the acute temperature window of fertilisation with that of farmed cod (FC 1). Fertilisations were conducted in a temperature-gradient table at 10 temperatures (between -1.5 and 12°C) and two CO2 levels (400/1100 μatm). In FC 1 and WC, fertilisation success was relatively high between 0.5°C and 11°C (TRange of c. 10.5°C), indicating similar gamete quality in farmed and wild broodstocks kept at control conditions. Exposure of farmed broodstocks to warming (FC 2) and the combination of warming and OA (FC 3) impaired gamete quality, causing a reduction in fertilisation success of -20% (FC 2) and - 42% (FC 3) compared to FC 1. The acute temperature window of fertilisation narrowed from FC 1 (TRange = 10.4°C) to FC 2 (TRange = 8.8°C) and FC 3 (TRange = 5.9°C). Acute effects of CO2 on fertilisation success were not significant. This study demonstrates potential climate change impacts on gametogenesis and fertilisation in Atlantic cod, suggesting the loss of spawning habitat in the coming decades.
Collapse
Affiliation(s)
- Flemming Dahlke
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | | | | | - Hans-Otto Pörtner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
- Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Daniela Storch
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| |
Collapse
|
24
|
Li Y, Yang Y, Zhang Y, Hu J, Zhang M, Sun J, Tian X, Jin Y, Zhang D, Wang Y, Xu S, Yan X. Expression and cellular localization of insulin-like growth factor 3 in gonads of the seasonal breeding teleost silver pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1377-1387. [PMID: 36136164 DOI: 10.1007/s10695-022-01122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Insulin-like growth factor 3 plays an important role in gonad development in teleost fish. Previous studies found that igf3 was specifically expressed in gonads of silver pomfret (Pampus argenteus). Unlike in other fish, IGF3 is a membrane protein in silver pomfret, and its specific role in gonads is unclear. Herein, we explored the importance of IGF3 in oogenesis and spermatogenesis in silver pomfret by analyzing gene expression and cellular localization. During follicular development, igf3 was detected in ovaries at both mRNA and protein levels during the critical stages of vitellogenesis (IV-VI). Localization analysis detected igf3 mRNA and protein in somatic cells, including theca and granulosa cells around oocytes. Similar to cathepsin L and cathepsin K, igf3 was consistently expressed in ovaries during vitellogenesis, suggesting that it might play a key role in vitellogenesis of oocytes. During spermatogenesis, igf3 mRNA and protein levels were high in stages II, IV, and V, similar to sycp3 and dmc1, and the highest igf3 mRNA and protein levels were reached in stage VI. Furthermore, igf3 mRNA and protein were detected in spermatogonia, spermatocytes, spermatids, and surrounding Sertoli cells, but not in spermatozoon, indicating that IGF3 might be involved in differentiation and meiosis of spermatogonia.
Collapse
Affiliation(s)
- Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiachu Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xinyue Tian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuxuan Jin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Dingyuan Zhang
- Key Laboratory of Mariculture, Marine Fishery Institute of Zhejiang Province, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
- College of Marine Sciences, Ningbo University, Ningbo, China.
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
- College of Marine Sciences, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
- College of Marine Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
25
|
Corona-Herrera GA, Navarrete-Ramírez P, Sanchez-Flores FA, Jimenez-Jacinto V, Martínez-Palacios CA, Palomera-Sánchez Z, Volkoff H, Martínez-Chávez CC. Shining light on the transcriptome: Molecular regulatory networks leading to a fast-growth phenotype by continuous light in an environmentally sensitive teleost (Atherinopsidae). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112550. [PMID: 36049383 DOI: 10.1016/j.jphotobiol.2022.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Photoperiod can profoundly affect the physiology of teleost fish, including accelerated growth here defined as "fast growth phenotypes". However, molecular regulatory networks (MRNs) and biological processes being affected by continuous illumination and which allow some teleost species evident plasticity to thrive under this condition are not yet clear. Therefore, to provide a broad perspective of such mechanisms, Chirostoma estor fish were raised and sampled for growth under a simulated control (LD) 12 h Light: 12 h Dark or a continuous illumination (LL) 24 h Light: 0 h Dark since fertilization. The experiment lasted 12 weeks after hatching (wah), the time at which fish were sampled for growth, length, and whole-body cortisol levels. Additionally, 3 heads of fish from each treatment were used to perform a de novo transcriptome analysis using Next-Generation Sequencing. Fish in LL developed the fast growth phenotype with significant differences visible at 4 wah and gained 66% more mass by 12 wah than LD fish. Cortisol levels under LL were below basal levels at all times compared to fish in LD, suggesting circadian dysregulation effects. A strong effect of LL was observed in samples with a generalized down-regulation of genes except for Reactive Oxygen Species responses, genome stability, and growth biological processes. To our knowledge, this work is the first study using a transcriptomic approach to understand environmentally sensitive MRNs that mediate phenotypic plasticity in fish submitted to continuous illumination. This study gives new insights into the plasticity mechanisms of teleost fish under constant illumination.
Collapse
Affiliation(s)
- Guillermo A Corona-Herrera
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Pamela Navarrete-Ramírez
- CONACYT-Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - F Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carlos A Martínez-Palacios
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Zoraya Palomera-Sánchez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's A1B3X9, Canada
| | - C Cristian Martínez-Chávez
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico.
| |
Collapse
|
26
|
Chmura HE, Williams CT. A cross-taxonomic perspective on the integration of temperature cues in vertebrate seasonal neuroendocrine pathways. Horm Behav 2022; 144:105215. [PMID: 35687987 DOI: 10.1016/j.yhbeh.2022.105215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The regulation of seasonality has been an area of interest for decades, yet global climate change has created extra urgency in the quest to understand how sensory circuits and neuroendocrine control systems interact to generate flexibility in biological timekeeping. The capacity of temperature to alter endogenous or photoperiod-regulated neuroendocrine mechanisms driving seasonality, either as a direct cue or through temperature-dependent effects on energy and metabolism, is at the heart of this phenological flexibility. However, until relatively recently, little research had been done on the integration of temperature information in canonical seasonal neuroendocrine pathways, particularly in vertebrates. We review recent advances from research in vertebrates that deepens our understanding of how temperature cues are perceived and integrated into seasonal hypothalamic thyroid hormone (TH) signaling, which is a critical regulator of downstream seasonal phenotypic changes such as those regulated by the BPG (brain-pituitary-gonadal) axis. Temperature perception occurs through cutaneous transient receptor potential (TRP) neurons, though sensitivity of these neurons varies markedly across taxa. Although photoperiod is the dominant cue used to trigger seasonal physiology or entrain circannual clocks, across birds, mammals, fish, reptiles and amphibians, seasonality appears to be temperature sensitive and in at least some cases this appears to be related to phylogenetically conserved TH signaling in the hypothalamus. Nevertheless, the exact mechanisms through which temperature modulates seasonal neuroendocrine pathways remains poorly understood.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA; Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave., Missoula, MT 59801, USA.
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
27
|
Lahnsteiner F. Seasonal differences in thermal stress susceptibility of diploid and triploid brook trout, Salvelinus fontinalis (Teleostei, Pisces). JOURNAL OF FISH BIOLOGY 2022; 101:276-288. [PMID: 35633147 DOI: 10.1111/jfb.15118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Many physiological processes of teleost fish show periodicity due to intrinsic rhythms. It may be hypothesized that also susceptibility to thermal stress differs seasonally. To shed more light on this problem the following experiment was conducted. Diploid and triploid Salvelinus fontinalis were kept at an acclimation temperature of 9°C and at a natural photoperiod typical for the Northern Hemisphere during their entire live. During eight different periods of the year, different subgroups were exposed to a 32 day lasting thermal stress of 20°C. Rate of fish maintaining equilibrium, daily growth rate, condition factor, viscerosomatic index and hepato-somatic index were measured. Complementary mRNA expression of genes characterizing growth (GHR1, GHR2), proteolysis (Protreg, Protα5), stress (Hsp47, Hsp90) and respiratory energy metabolism (ATPJ52) was determined. Seasonal differences in thermal stress susceptibility of 2n and 3n S. fontinalis were detected. It was highest from September to December and moderate from January to March. During the remaining period of the year, susceptibility to thermal stress was minimal. Increased thermal stress susceptibility was related to decreased rates of fish maintaining equilibrium, decreased growth rates, reduction of viscera and liver mass and changes in mRNA expression of genes characterizing proteolysis, growth, respiratory energy metabolism and stress. The differences in seasonal stress susceptibility were minor between 2n and 3n S. fontinalis. The data are valuable for ecology and fish culture to identify periods when animals are most susceptible to thermal stress.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Mondsee, Austria
- Fishfarm Kreuzstein, Unterach, Austria
| |
Collapse
|
28
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
29
|
Environmental Conditions along Tuna Larval Dispersion: Insights on the Spawning Habitat and Impact on Their Development Stages. WATER 2022. [DOI: 10.3390/w14101568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estimated larval backward trajectories of three Tuna species, namely, Atlantic Bluefin Tuna (Thunnus thynnus, Linnaeus, 1758), Bullet Tuna (Auxis Rochei, Risso, 1801) and Albacore Tuna (Thunnus alalunga, Bonnaterre, 1788) in the central Mediterranean Sea, were used to characterize their spawning habitats, and to assess the impact of changes due to the major environmental parameters (i.e., sea surface temperature and chlorophyll-a concentration) on larval development during their advection by surface currents. We assumed that the environmental variability experienced by larvae along their paths may have influenced their development, also affecting their survival. Our results showed that the Tuna larvae underwent an accelerated growth in favorable environmental conditions, impacting on the notochord development. In addition, further updated information on spawning and larval retention habitats of Atlantic Bluefin Tuna, Bullet and Albacore Tunas in the central Mediterranean Sea were delivered.
Collapse
|
30
|
Smythe TA, Su G, Bergman Å, Letcher RJ. Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review. ENVIRONMENT INTERNATIONAL 2022; 161:107097. [PMID: 35134713 DOI: 10.1016/j.envint.2022.107097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Over the past few decades, production trends of the flame retardant (FR) industry, and specifically for brominated FRs (BFRs), is for the replacement of banned and regulated compounds with more highly brominated, higher molecular weight compounds including oligomeric and polymeric compounds. Chemical, biological, and environmental stability of BFRs has received some attention over the years but knowledge is currently lacking in the transformation potential and metabolism of replacement emerging or novel BFRs (E/NBFRs). For articles published since 2015, a systematic search strategy reviewed the existing literature on the direct (e.g., in vitro or in vivo) non-human BFR metabolism in fauna (animals). Of the 51 papers reviewed, and of the 75 known environmental BFRs, PBDEs were by far the most widely studied, followed by HBCDDs and TBBPA. Experimental protocols between studies showed large disparities in exposure or incubation times, age, sex, depuration periods, and of the absence of active controls used in in vitro experiments. Species selection emphasized non-standard test animals and/or field-collected animals making comparisons difficult. For in vitro studies, confounding variables were generally not taken into consideration (e.g., season and time of day of collection, pollution point-sources or human settlements). As of 2021 there remains essentially no information on the fate and metabolic pathways or kinetics for 30 of the 75 environmentally relevant E/BFRs. Regardless, there are clear species-specific and BFR-specific differences in metabolism and metabolite formation (e.g. BDE congeners and HBCDD isomers). Future in vitro and in vivo metabolism/biotransformation research on E/NBFRs is required to better understand their bioaccumulation and fate in exposed organisms. Also, studies should be conducted on well characterized lab (e.g., laboratory rodents, zebrafish) and commonly collected wildlife species used as captive models (crucian carp, Japanese quail, zebra finches and polar bears).
Collapse
Affiliation(s)
- Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Guanyong Su
- School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
31
|
Bartoň D, Brabec M, Sajdlová Z, Souza AT, Duras J, Kortan D, Blabolil P, Vejřík L, Kubečka J, Šmejkal M. Hydropeaking causes spatial shifts in a reproducing rheophilic fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150649. [PMID: 34597557 DOI: 10.1016/j.scitotenv.2021.150649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The hydropeaking regime below hydropower facilities represents a serious threat to riverine fauna and may cause declines in populations living under its influence. However, the knowledge on direct fish responses to the threat of hydropeaking is limited. Here, we aimed to test whether the hydropeaking generated 12 km upstream may have a negative effect on the position of actively spawning rheophilic fish, asp, Leuciscus aspius. Two passive telemetry antenna arrays were used to record fish position on the spawning ground. We monitored the position of spawning fish (545, 764 and 852 individuals) in three one-month long spawning seasons in 2017-2019 and related the changes in detection probability on the two antenna arrays to flow conditions, temperature, time of a day and individual fish ID. The fish detection on the spawning ground was negatively affected by the flow change (both increase and decrease) in time. Moreover, the probability of fish detection was also influenced by water temperature, the time of the day and, as seen from the magnitude of individual random effect variability, the detection probability was rather individual-specific. Hydropeaking resulted in the change of spawning behaviour and likely caused interruption of spawning or shifting spawning outside the optimal area for egg development. We therefore advise to reduce the hydropeaking regime during the rheophilic fish spawning season under fisheries or conservation interests.
Collapse
Affiliation(s)
- Daniel Bartoň
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Marek Brabec
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Sajdlová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jindřich Duras
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic; Department of Water Management Planning, Vltava River Authority, State Enterprise, Plzeň, Czech Republic
| | - David Kortan
- Department of Biology, State Enterprise Vltava River Authority, České Budějovice, Czech Republic
| | - Petr Blabolil
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lukáš Vejřík
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Kubečka
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
32
|
Bolton CM, Bekaert M, Eilertsen M, Helvik JV, Migaud H. Rhythmic Clock Gene Expression in Atlantic Salmon Parr Brain. Front Physiol 2021; 12:761109. [PMID: 34925060 PMCID: PMC8674837 DOI: 10.3389/fphys.2021.761109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p < 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.
Collapse
Affiliation(s)
- Charlotte M Bolton
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
33
|
Badruzzaman M, Goswami C, Sayed MA. Photoperiodic light pulse induces ovarian development in the catfish, Mystus cavasius: Possible roles of dopamine and melatonin in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112941. [PMID: 34710816 DOI: 10.1016/j.ecoenv.2021.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
34
|
Falcón J, Herrero MJ, Nisembaum LG, Isorna E, Peyric E, Beauchaud M, Attia J, Covès D, Fuentès M, Delgado MJ, Besseau L. Pituitary Hormones mRNA Abundance in the Mediterranean Sea Bass Dicentrarchus labrax: Seasonal Rhythms, Effects of Melatonin and Water Salinity. Front Physiol 2021; 12:774975. [PMID: 34975529 PMCID: PMC8715012 DOI: 10.3389/fphys.2021.774975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
In fish, most hormonal productions of the pituitary gland display daily and/or seasonal rhythmic patterns under control by upstream regulators, including internal biological clocks. The pineal hormone melatonin, one main output of the clocks, acts at different levels of the neuroendocrine axis. Melatonin rhythmic production is synchronized mainly by photoperiod and temperature. Here we aimed at better understanding the role melatonin plays in regulating the pituitary hormonal productions in a species of scientific and economical interest, the euryhaline European sea bass Dicentrarchus labrax. We investigated the seasonal variations in mRNA abundance of pituitary hormones in two groups of fish raised one in sea water (SW fish), and one in brackish water (BW fish). The mRNA abundance of three melatonin receptors was also studied in the SW fish. Finally, we investigated the in vitro effects of melatonin or analogs on the mRNA abundance of pituitary hormones at two times of the year and after adaptation to different salinities. We found that (1) the reproductive hormones displayed similar mRNA seasonal profiles regardless of the fish origin, while (2) the other hormones exhibited different patterns in the SW vs. the BW fish. (3) The melatonin receptors mRNA abundance displayed seasonal variations in the SW fish. (4) Melatonin affected mRNA abundance of most of the pituitary hormones in vitro; (5) the responses to melatonin depended on its concentration, the month investigated and the salinity at which the fish were previously adapted. Our results suggest that the productions of the pituitary are a response to multiple factors from internal and external origin including melatonin. The variety of the responses described might reflect a high plasticity of the pituitary in a fish that faces multiple external conditions along its life characterized by marked daily and seasonal changes in photoperiod, temperature and salinity.
Collapse
Affiliation(s)
- Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS UMR 8067, SU, IRD 207, UCN, UA, Paris, France
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Maria Jesus Herrero
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Elodie Peyric
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Marilyn Beauchaud
- Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS UMR 5292, UMR-S 1028, Faculté des Sciences et Techniques, Université Jean-Monnet (UJM), Saint-Étienne, France
| | - Joël Attia
- Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS UMR 5292, UMR-S 1028, Faculté des Sciences et Techniques, Université Jean-Monnet (UJM), Saint-Étienne, France
| | - Denis Covès
- Station Ifremer de Palavas, Palavas-les-Flots, Nantes, France
| | - Michael Fuentès
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Maria Jesus Delgado
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
35
|
Le François NR, Beirão J, Superio J, Dupont Cyr BA, Foss A, Bolla S. Spotted Wolffish Broodstock Management and Egg Production: Retrospective, Current Status, and Research Priorities. Animals (Basel) 2021; 11:2849. [PMID: 34679871 PMCID: PMC8532854 DOI: 10.3390/ani11102849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
The first artificially fertilized spotted wolffish (Anarhichas minor) eggs hatched in Norway in the mid-1990s as this species was considered by Norwegian authorities to be a top candidate species for cold-water aquaculture in the North Atlantic regions. Previous research conducted in Norway (since 1992) and Canada (since 2000), focused on identifying key biological parameters for spotted wolffish cultivation which led, respectively, to the rapid establishment of a full commercial production line in northern Norway, while Québec (Canada) is witnessing its first privately driven initiative to establish commercial production of spotted wolffish on its territory. The control of reproduction can be viewed as a major requirement to achieve the development of performant strains using genetic selection tools and/or all-year-round production to bring about maximal productivity and synchronization among a given captive population. Although the basic reproduction aspects are more understood and controlled there are still some challenges remaining involving broodstock and upscaling of operations that limit the achievement of a standardized production at the commercial level. Quality of gametes is still considered a major constraint and it can be affected by multiple factors including nutrition, environmental conditions, handling practices, and welfare status. Internal insemination/fertilization and the protracted incubation period are challenging as well as the establishment of a health monitoring program to secure large-scale operations. The profound progress achieved in the control of reproduction, sperm handling, and cryopreservation methods for this species is presented and discussed. In this review, we also go into detail over the full range of up-to-date cultivation practices involving broodstock and identify areas that could benefit from additional research efforts (i.e., broodstock nutrition, health and welfare, scaling-up egg and larval production, genetics, and development of selective breeding programs).
Collapse
Affiliation(s)
- Nathalie Rose Le François
- Laboratoire de Physiologie et Aquaculture de la Conservation, Division des Collections Vivantes, de la Conservation et de la Recherche, Biodôme de Montréal/Espace pour la Vie, Montréal, QC H1V 1B3, Canada
| | - José Beirão
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodo, Norway; (J.S.); (S.B.)
| | - Joshua Superio
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodo, Norway; (J.S.); (S.B.)
| | | | - Atle Foss
- Akvaplan-Niva Inc., Framsenteret, 9296 Tromsø, Norway;
| | - Sylvie Bolla
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodo, Norway; (J.S.); (S.B.)
| |
Collapse
|
36
|
Doyle A, Cowan ME, Migaud H, Wright PJ, Davie A. Neuroendocrine regulation of reproduction in Atlantic cod (Gadus morhua): Evidence of Eya3 as an integrator of photoperiodic cues and nutritional regulation to initiate sexual maturation. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111000. [PMID: 34089890 DOI: 10.1016/j.cbpa.2021.111000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023]
Abstract
Evidence from mammals and aves alludes to a possibly conserved seasonal photoperiod induced neuroendocrine cascade which stimulates subsequent sexual maturation however our understanding of this mechanism in teleosts is lacking. Unlike all teleosts studied to date, the Atlantic cod (Gadus morhua) is a short day breeder with the reduction in day-length from the summer solstice stimulating gametogenesis. Cod specific orthologues of eya3, tshβ and dio2 were identified and their expression was monitored in the brain and pituitary of cod held under either stimulated or inhibited photoperiod conditions. While no differential expression was apparent in brain dio2 & tshβ and pituitary tshβ, there was significant temporal variation in expression of pituitary eya3 under the SNP treatment, with expression level elevating in association with active gametogenesis. Under the LL treatment, sexual maturation was inhibited and there was a corresponding suppression of eya3 expression. In a second study the impact of size/energetic status on the initiation of sexual maturation was investigated. In the feed restricted population maturation was significantly suppressed (5% sexually mature) compared to the ab libitum fed stock (95% sexually mature) with there being a concomitant significant suppression in pituitary eya3 expression. Overall, these results suggest that pituitary eya3 has the potential to act as an integrator of both environmental and energetic regulation of sexual maturation of cod. Being the first account of eya3 induction in a short day breeding teleost, the conserved association with stimulation of reproduction and not seasonal state indicates that the upstream drivers which initiate the pathway differ among vertebrates according to their breeding strategies, but the pathway itself and its role in the reproductive cascade appears to be conserved across the vertebrate clade.
Collapse
Affiliation(s)
- A Doyle
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - M E Cowan
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - H Migaud
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - P J Wright
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - A Davie
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
37
|
Saha S, Singh KM, Gupta BBP. Robust circadian and circannual rhythms of expression of clock genes and clock controlled aanat2 gene in the photoreceptive pineal organ of catfish, Clarias gariepinus under natural conditions. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1911550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Braj B. P. Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
38
|
Studd EK, Bates AE, Bramburger AJ, Fernandes T, Hayden B, Henry HAL, Humphries MM, Martin R, McMeans BC, Moise ERD, O'Sullivan AM, Sharma S, Sinclair BJ, Sutton AO, Templer PH, Cooke SJ. Nine Maxims for the Ecology of Cold-Climate Winters. Bioscience 2021. [DOI: 10.1093/biosci/biab032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Frozen winters define life at high latitudes and altitudes. However, recent, rapid changes in winter conditions have highlighted our relatively poor understanding of ecosystem function in winter relative to other seasons. Winter ecological processes can affect reproduction, growth, survival, and fitness, whereas processes that occur during other seasons, such as summer production, mediate how organisms fare in winter. As interest grows in winter ecology, there is a need to clearly provide a thought-provoking framework for defining winter and the pathways through which it affects organisms. In the present article, we present nine maxims (concise expressions of a fundamentally held principle or truth) for winter ecology, drawing from the perspectives of scientists with diverse expertise. We describe winter as being frozen, cold, dark, snowy, less productive, variable, and deadly. Therefore, the implications of winter impacts on wildlife are striking for resource managers and conservation practitioners. Our final, overarching maxim, “winter is changing,” is a call to action to address the need for immediate study of the ecological implications of rapidly changing winters.
Collapse
Affiliation(s)
- Emily K Studd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Bates
- Department of Ocean Sciences at Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Andrew J Bramburger
- Department of Ocean Sciences at Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Timothy Fernandes
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Murray M Humphries
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Rosemary Martin
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Bailey C McMeans
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Eric R D Moise
- Natural Resources Canada's Canadian Forest Service, Corner Brook, Newfoundland, Canada
| | - Antóin M O'Sullivan
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Alex O Sutton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pamela H Templer
- Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Steven J Cooke
- Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
40
|
Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML, Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proc Biol Sci 2021; 288:20202398. [PMID: 33622133 PMCID: PMC7934995 DOI: 10.1098/rspb.2020.2398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring (Clupea pallasii) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2, which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring (Clupea harengus). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.
Collapse
Affiliation(s)
- Eleni L. Petrou
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | | | - Luke A. Rogers
- Fisheries and Oceans Canada, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Melissa Orobko
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Isadora Jiménez-Hidalgo
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Madonna L. Moss
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Dongya Yang
- Department of Archaeology, Simon Fraser University, Education Building 9635, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Tony J. Pitcher
- University of British Columbia, Institute for the Oceans and Fisheries, Vancouver, British Columbia, Canada
| | - Todd Sandell
- Washington Department of Fish and Wildlife, 16018 Mill Creek Boulevard, Mill Creek, WA 98012-1541, USA
| | - Dayv Lowry
- Washington Department of Fish and Wildlife, 1111 Washington Street SE, 6th Floor, Olympia, WA 98504-3150, USA
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| |
Collapse
|
41
|
Fresno PSD, Colautti DC, Berasain GE, Miranda LA. Gonadal development in pejerrey (Odontesthes bonariensis) during spawning season in relation with sex steroids and temperature variation in Gómez lake (Pampas region, Argentina). AN ACAD BRAS CIENC 2021; 93:e20190795. [PMID: 33470382 DOI: 10.1590/0001-3765202120190795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/27/2019] [Indexed: 11/22/2022] Open
Abstract
Gómez lake (34 ° 39 'S 61 ° 01' W) is a typical shallow lake of Pampas region placed in the upper area of the Salado river. The most abundant fish species in this lake is the pejerrey (Odontesthes bonariensis) valued due to the quality of its flesh and its attractiveness as a game fish. The aim of this study was to describe for the first time in this pejerrey wild population the gonadal stages during three consecutive spawning seasons (August to December) in relation with sexual steroids and temperature in this lake. In general, pejerrey gonadal development, the gonadosomatic index and the plasma levels of estradiol and testosterone varied in relation to air temperature. During the sampling period, pejerrey females started to ovulate in early August (winter), with a peak in October and ending in December with some of them with atretic oocytes. For males, it was possible to find spermiating animals during the whole spawning season and some arrested animals only in December. Our results confirm the relationship with pejerrey maturation and temperature and can be useful for decision making in the management of this natural resource.
Collapse
Affiliation(s)
- Pamela S Del Fresno
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Avenida Intendente Marino Km 8.200 (B7130IWA), Chascomús, Buenos Aires, Argentina
| | - DarÍo C Colautti
- Instituto de Limnología "Dr. Raúl a. Ringuelet" ILPLA-(CONICET-UNLP), Boulevard 120, Casco Urbano, 1900 La Plata, Buenos Aires, Argentina
| | - Gustavo E Berasain
- Ministerio de Desarrollo Agrario de la provincia de Buenos Aires, Estación Hidrobiológica, Avenida Lastra y Juárez 7130, Chascomús, Buenos Aires, Argentina
| | - Leandro A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Avenida Intendente Marino Km 8.200 (B7130IWA), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
42
|
Takahashi T, Ogiwara K. Roles of melatonin in the teleost ovary: A review of the current status. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110907. [PMID: 33482340 DOI: 10.1016/j.cbpa.2021.110907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Melatonin, the neurohormone mainly synthesized in and secreted from the pineal gland of vertebrates following a circadian rhythm, is an important factor regulating various physiological processes, including reproduction. Recent data indicate that melatonin is also synthesized in the ovary and that it acts directly at the level of the ovary to modulate ovarian physiology. In some teleosts, melatonin is reported to affect ovarian steroidogenesis. The direct action of melatonin on the ovary could be a possible factor promoting oocyte maturation in teleosts. A role for melatonin in follicle rupture during ovulation in the teleost medaka has recently emerged. In addition, melatonin is suggested to affect oocyte maturation by its antioxidant activity. However, the molecular mechanisms underlying these direct effects of melatonin are largely unknown.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
43
|
Chaube R, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Expression profile of kisspeptin2 and gonadotropin-releasing hormone2 mRNA during photo-thermal and melatonin treatments in the female air-breathing catfish Heteropneustes fossilis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2403-2419. [PMID: 33030711 DOI: 10.1007/s10695-020-00888-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
In seasonally breeding vertebrates, extrinsic factors like photoperiod and temperature are major determinants, controlling the annual reproductive cycle. In teleosts, kisspeptin, which occurs in two molecular forms: kisspeptin1 (Kiss1) and kisspetin2 (Kiss2), has been reported to alter gonadotropin (Lh and Fsh) secretion but its effect on gonadotropin-releasing hormone (Gnrh) secretion is not unequivocally proved. In the catfish Heteropneustes fossilis, we isolated and characterized kiss2 and gnrh2 cDNAs and the present work reports effects of altered photo-thermal conditions and melatonin (MT, a pineal hormone) on their expressions in the brain. The exposure of the catfish to long photoperiod (LP, 16 h light) at normal temperature (NT) or high temperature (HT, 28 °C) at normal photoperiod (NP) for 14 or 28 days stimulated both kiss2 and gnrh2 expression in both gonad resting and preparatory phases with the combination of LP + HT eliciting maximal effects. Short photoperiod (SP, 8 h light) under NT or HT altered the gene expression according to the reproductive phase and temperature. MT that mediates photo-thermal signals to the brain inhibited brain kiss2 and gnrh2 gene expression in the NP + HT, LP + NT, and SP + NT groups. The altered photo-thermal conditions elicited changes in steroidogenic pathway as evident from changes in plasma E2, progesterone, and testosterone levels. The results show that brain kiss2-gnrh2 signaling is involved in photo-thermal-mediated mechanisms controlling reproduction.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - S G Bhat
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India
| | - K P Joy
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
44
|
Bet hedging and cold-temperature termination of diapause in the life history of the Atlantic salmon ectoparasite Argulus canadensis. Parasitology 2020; 147:1774-1785. [PMID: 32951617 DOI: 10.1017/s0031182020001766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Argulus canadensis is a crustacean ectoparasite observed increasingly on wild migrating adult Atlantic salmon. We investigated temperature and salinity tolerance regarding development, survival and hatch of A. canadensis eggs to help understand spatiotemporal features of transmission. Argulus canadensis eggs differentiate to pharate embryos by 35 days buttheir hatch is protracted to ~7 months. Cold treatment ⩾75 days mimics overwintering and terminates egg diapause, with 84.6% (72.1-100%) metanauplius hatch induced ⩾13 °C and synchronized to 3-4 weeks. Inter- and intra-clutch variability and protracted hatch in the absence of cold-temperature termination of diapause is compatible with bet hedging. Whereas diapause likely promotes phenological synchrony for host colocalization, bet hedging could afford temporal plasticity to promote host encounter during environmental change. Our egg storage and hatch induction/synchronization methodologies can be exploited for empirical investigations. Salinity tolerance reveals both significantly higher embryonic development (94.4 ± 3.5% vs 61.7 ± 24.6%) and metanauplius hatch (53.3 ± 7.5% vs 10.1 ± 8.2%) for eggs in freshwater than at 17 ppt. Unhatched embryos were alive in freshwater by the end of the trial (213 days) but were dead/dying at 17 ppt. Eggs did not develop at 34 ppt. Salinity tolerance of A. canadensis eggs supports riverine transmission to adult Atlantic salmon during return to freshwater for mating each year.
Collapse
|
45
|
Arambam K, Singh SK, Biswas P, Patel AB, Jena AK, Pandey PK. Influence of light intensity and photoperiod on embryonic development, survival and growth of threatened catfish Ompok bimaculatus early larvae. JOURNAL OF FISH BIOLOGY 2020; 97:740-752. [PMID: 32515488 DOI: 10.1111/jfb.14428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Larval growth and survival of catfishes are largely influenced by the various biotic and abiotic factors. The present study investigated the effect of different light intensities and photoperiods on growth and survival of Ompok bimaculatus larvae. Three separate trials of 21 days each were carried out in an aquarium tank. The first trial investigated the embryonic changes (based on hatching rate and time) upon exposure to varied light intensity (0, 300, 500, 900 and 1200 lx) and photoperiodic regime (24l:0d, 16l:8d, 12l:12d, 8l:16d and 0l:24d). Subsequently, hatched-out larvae were subjected to the aforementioned intensities (Trial II) and photoperiod (Trial III, intensity of 300 lx) for growth and survival attributes. Eight hundred healthy larvae (average body weight = 0.003 g) were randomly distributed into five treatment groups for the last two trials. Results suggest a higher embryo hatching rate and larval survival at 0 and 300 lx, whereas the largest larval growth was observed at 900 lx. In Trial III, survival was highest in 0l:24d and growth in 24l:0d and 16l:8d was higher (P < 0.05). Performance index was higher (P < 0.05) in both 0 and 300 lx light and decreased at higher intensities. The overall interpretation from the present study concludes that a completely dark rearing environment is recommended for better survival of O. bimaculatus although growth was compromised.
Collapse
Affiliation(s)
- Kalpana Arambam
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, India
| | - Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, India
| | - Alok Kumar Jena
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, India
| | - Pramod Kumar Pandey
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, India
| |
Collapse
|
46
|
Rizky D, Mahardini A, Byun J, Takemura A. Molecular cloning of insulin-like growth factor 3 (igf3) and its expression in the tissues of a female damselfish, Chrysiptera cyanea, in relation to seasonal and food-manipulated reproduction. Gen Comp Endocrinol 2020; 295:113479. [PMID: 32246963 DOI: 10.1016/j.ygcen.2020.113479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Food availability is a permissive determinant that drives gonadal activity in fish. The present study aimed to clarify the interactions between reproductive and nutritive statuses in the sapphire devil (Chrysiptera cyanea), a tropical damselfish with a long-day preference for reproduction. Insulin-like growth factor 3 (IGF3), a novel IGF that likely plays a role in gonadal maturation, was closely monitored in the sapphire devil. The cDNA of sapphire devil igf3 had an open reading frame of 443 base pairs (146 amino acid residues). Phylogenetic analyses revealed that sapphire devil IGF3 was clustered within the teleost IGF3 family. The transcript levels of sapphire devil igf3 increased in the brain, liver, and ovary of the fish during the late vitellogenic phase, suggesting that it plays a role in reproduction. Immersion of the fish in seawater containing estradiol-17β suppressed transcript levels of sapphire devil igf3 in the liver, but not in the brain, suggesting that intensive protein synthesis in relation to vitellogenesis negatively impacts somatic metabolism in this tissue. When fish were reared with high or low food under conditions of photoperiod (LD = 14:10) and temperature (at 25-28 °C) during the non-reproductive season, ovarian development was induced in high-food fish. Furthermore, prior to ovarian development in the high-food fish, the transcript levels of sapphire devil igf3 increased in the brain, liver, and ovary. These results indicated crosstalk between the reproductive and growth networks and suggested that a metabolic shift, from growth mode to reproductive mode, occurs in peripheral tissues when nutritive status is improved under suitable conditions of photoperiod and water temperature.
Collapse
Affiliation(s)
- Dinda Rizky
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Angka Mahardini
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Junhwan Byun
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
47
|
Alix M, Kjesbu OS, Anderson KC. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. JOURNAL OF FISH BIOLOGY 2020; 97:607-632. [PMID: 32564350 DOI: 10.1111/jfb.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 05/17/2023]
Abstract
Ambient temperature modulates reproductive processes, especially in poikilotherms such as teleosts. Consequently, global warming is expected to impact the reproductive function of fish, which has implications for wild population dynamics, fisheries and aquaculture. In this extensive review spanning tropical and cold-water environments, we examine the impact of higher-than-optimal temperatures on teleost reproductive development and physiology across reproductive stages, species, generations and sexes. In doing so, we demonstrate that warmer-than-optimal temperatures can affect every stage of reproductive development from puberty through to the act of spawning, and these responses are mediated by age at spawning and are associated with changes in physiology at multiple levels of the brain-pituitary-gonad axis. Response to temperature is often species-specific and changes with environmental history/transgenerational conditioning, and the amplitude, timing and duration of thermal exposure within a generation. Thermally driven changes to physiology, gamete development and maturation typically culminate in poor sperm and oocyte quality, and/or advancement/delay/inhibition of ovulation/spermiation and spawning. Although the field of teleost reproduction and temperature is advanced in many respects, we identify areas where research is lacking, especially for males and egg quality from "omics" perspectives. Climate-driven warming will continue to disturb teleost reproductive performance and therefore guide future research, especially in the emerging areas of transgenerational acclimation and epigenetic studies, which will help to understand and project climate change impacts on wild populations and could also have implications for aquaculture.
Collapse
Affiliation(s)
- Maud Alix
- Institute of Marine Research, Bergen, Norway
| | | | - Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Newnham, Tasmania, Australia
| |
Collapse
|
48
|
Singh A, Zutshi B. Photoperiodic effects on somatic growth and gonadal maturation in Mickey Mouse platy, Xiphophorus maculatus (Gunther, 1866). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1483-1495. [PMID: 32372327 DOI: 10.1007/s10695-020-00806-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Photoperiod is important in initiation or suppression of reproductive timing and gonadal maturation which varies with species. The aim of the present study was to investigate the effect of two photoperiodic manipulating regimes, i.e., long (18L:6D) and short (10L:14D) photoperiods for a period of 60 days on somatic growth and gonadal maturation of a live-bearer ornamental fish, Mickey Mouse platy (Xiphophorus maculatus). The control fish were further kept under the laboratory environmental condition. The results showed a significant increase in weight gain, specific growth rate, and gonadosomatic index in fish under long photoperiod than those exposed to short photoperiod and control condition (P < 0.05). A condition factor showed significant variations between long photoperiod and control groups. Furthermore, a long photoperiod also induced a significant increase in the number of fish with mature embryo and middle-eyed embryo in the ovary. Similarly, histological analysis of testes of males showed an increase in the number of mature spermatid and spermatozoa under long photoperiod when compared to those of control and short photoperiod ones. Thus, it can be concluded that long-day photoperiodic manipulation may be applied for healthy growth and early gonadal maturation of live-bearer ornamental fishes.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Zoology, Aquaculture Laboratory, Bangalore University, Bengaluru, India
| | - Bela Zutshi
- Department of Zoology, Aquaculture Laboratory, Bangalore University, Bengaluru, India.
| |
Collapse
|
49
|
Rashidian G, Rainis S, Prokić MD, Faggio C. Effects of different levels of carotenoids and light sources on swordtail fish (Xiphophorus helleri) growth, survival rate and reproductive parameters. Nat Prod Res 2020; 35:3675-3686. [DOI: 10.1080/14786419.2020.1723091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ghasem Rashidian
- Aquaculture Department, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | | | - Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia University of Belgrade, Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
50
|
Ben Ammar I, Milla S, Ledoré Y, Teletchea F, Fontaine P. Constant long photoperiod inhibits the onset of the reproductive cycle in roach females and males. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:89-102. [PMID: 31485807 DOI: 10.1007/s10695-019-00698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Photoperiod and temperature are commonly accepted as the determinant factors for the control of the reproductive cycle in freshwater fishes. However, this determining effect is dependent on fish species. While applying a constant long photoperiod has an inhibitory effect in some species, the same photoperiodic manipulation has a stimulating effect in others. In cyprinids, a decrease in temperature or photoperiod can induce the gonad recrudescence. However, in roach Rutilus rutilus an early spring spawner cyprinid, there is little knowledge about the cueing role of each environmental factor. The aim of this work was to study the effect of a constant long photoperiod on the gametogenesis in roach. Fish were kept under either naturally simulated photoperiod or artificial constant long photoperiod and sampled at three times: at the beginning of photoperiod decrease, at the beginning of temperature decrease, and at the end of temperature decrease. Morphological parameters (gonado-somatic, hepato-somatic, and viscera-somatic indexes), plasma sexual steroids, and proportion of gametogenesis stages were estimated at each sampling time. The results showed that a constant, long photoperiod exerted inhibitory effects on gametogenesis advancement in both females and males that could stem from decrease of sex steroid production. Roach displayed a similar response to photoperiodic manipulations to other early spring spawners like percids, such as European perch, yellow perch and pikeperch. These results clearly showed the cueing role of the photoperiod in the induction of the reproductive cycle in roach.
Collapse
Affiliation(s)
- Imen Ben Ammar
- Equipe Domestication en Aquaculture Continentale, UR AFPA-INRA, Faculté des Sciences, Université de Lorraine, Entrée 1B, 5ème étage, Boulevard des Aiguillettes BP 236, 54506, Vandœuvre-lès-Nancy, France.
- Unité de Recherche en Biologie environnementale et évolutive, URBE, Université de Namur, 61, rue de Bruxelles, 5000, Namur, Belgique.
| | - Sylvain Milla
- Equipe Domestication en Aquaculture Continentale, UR AFPA-INRA, Faculté des Sciences, Université de Lorraine, Entrée 1B, 5ème étage, Boulevard des Aiguillettes BP 236, 54506, Vandœuvre-lès-Nancy, France
| | - Yannick Ledoré
- Equipe Domestication en Aquaculture Continentale, UR AFPA-INRA, Faculté des Sciences, Université de Lorraine, Entrée 1B, 5ème étage, Boulevard des Aiguillettes BP 236, 54506, Vandœuvre-lès-Nancy, France
| | - Fabrice Teletchea
- Equipe Domestication en Aquaculture Continentale, UR AFPA-INRA, Faculté des Sciences, Université de Lorraine, Entrée 1B, 5ème étage, Boulevard des Aiguillettes BP 236, 54506, Vandœuvre-lès-Nancy, France
| | - Pascal Fontaine
- Equipe Domestication en Aquaculture Continentale, UR AFPA-INRA, Faculté des Sciences, Université de Lorraine, Entrée 1B, 5ème étage, Boulevard des Aiguillettes BP 236, 54506, Vandœuvre-lès-Nancy, France.
| |
Collapse
|