1
|
Blackburn DG, Hughes DF. Phylogenetic analysis of viviparity, matrotrophy, and other reproductive patterns in chondrichthyan fishes. Biol Rev Camb Philos Soc 2024; 99:1314-1356. [PMID: 38562006 DOI: 10.1111/brv.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
The reproductive diversity of extant cartilaginous fishes (class Chondrichthyes) is extraordinarily broad, reflecting more than 400 million years of evolutionary history. Among their many notable reproductive specialisations are viviparity (live-bearing reproduction) and matrotrophy (maternal provision of nutrients during gestation). However, attempts to understand the evolution of these traits have yielded highly discrepant conclusions. Here, we compile and analyse the current knowledge on the evolution of reproductive diversity in Chondrichthyes with particular foci on the frequency, phylogenetic distribution, and directionality of evolutionary changes in their modes of reproduction. To characterise the evolutionary transformations, we amassed the largest empirical data set of reproductive parameters to date covering nearly 800 extant species and analysed it via a comprehensive molecular-based phylogeny. Our phylogenetic reconstructions indicated that the ancestral pattern for Chondrichthyes is 'short single oviparity' (as found in extant holocephalans) in which females lay successive clutches (broods) of one or two eggs. Viviparity has originated at least 12 times, with 10 origins among sharks, one in batoids, and (based on published evidence) another potential origin in a fossil holocephalan. Substantial matrotrophy has evolved at least six times, including one origin of placentotrophy, three separate origins of oophagy (egg ingestion), and two origins of histotrophy (uptake of uterine secretions). In two clades, placentation was replaced by histotrophy. Unlike past reconstructions, our analysis reveals no evidence that viviparity has ever reverted to oviparity in this group. Both viviparity and matrotrophy have arisen by a variety of evolutionary sequences. In addition, the ancestral pattern of oviparity has given rise to three distinct egg-laying patterns that increased clutch (brood) size and/or involved deposition of eggs at advanced stages of development. Geologically, the ancestral oviparous pattern arose in the Paleozoic. Most origins of viviparity and matrotrophy date to the Mesozoic, while a few that are represented at low taxonomic levels are of Cenozoic origin. Coupled with other recent work, this review points the way towards an emerging consensus on reproductive evolution in chondrichthyans while offering a basis for future functional and evolutionary analyses. This review also contributes to conservation efforts by highlighting taxa whose reproductive specialisations reflect distinctive evolutionary trajectories and that deserve special protection and further investigation.
Collapse
Affiliation(s)
- Daniel G Blackburn
- Department of Biology & Electron Microscopy Center, Trinity College, 300 Summit St, Hartford, Connecticut, 06106, USA
| | - Daniel F Hughes
- Department of Biology, Coe College, 1220 First Avenue NE, Cedar Rapids, Iowa, 52402, USA
| |
Collapse
|
2
|
Finucci B, Pacoureau N, Rigby CL, Matsushiba JH, Faure-Beaulieu N, Sherman CS, VanderWright WJ, Jabado RW, Charvet P, Mejía-Falla PA, Navia AF, Derrick DH, Kyne PM, Pollom RA, Walls RHL, Herman KB, Kinattumkara B, Cotton CF, Cuevas JM, Daley RK, Dharmadi, Ebert DA, Fernando D, Fernando SMC, Francis MP, Huveneers C, Ishihara H, Kulka DW, Leslie RW, Neat F, Orlov AM, Rincon G, Sant GJ, Volvenko IV, Walker TI, Simpfendorfer CA, Dulvy NK. Fishing for oil and meat drives irreversible defaunation of deepwater sharks and rays. Science 2024; 383:1135-1141. [PMID: 38452078 DOI: 10.1126/science.ade9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/02/2023] [Indexed: 03/09/2024]
Abstract
The deep ocean is the last natural biodiversity refuge from the reach of human activities. Deepwater sharks and rays are among the most sensitive marine vertebrates to overexploitation. One-third of threatened deepwater sharks are targeted, and half the species targeted for the international liver-oil trade are threatened with extinction. Steep population declines cannot be easily reversed owing to long generation lengths, low recovery potentials, and the near absence of management. Depth and spatial limits to fishing activity could improve conservation when implemented alongside catch regulations, bycatch mitigation, and international trade regulation. Deepwater sharks and rays require immediate trade and fishing regulations to prevent irreversible defaunation and promote recovery of this threatened megafauna group.
Collapse
Affiliation(s)
- Brittany Finucci
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Nathan Pacoureau
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cassandra L Rigby
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jay H Matsushiba
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nina Faure-Beaulieu
- Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
- Wildlands Conservation Trust, Pietermaritzburg, South Africa
| | - C Samantha Sherman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wade J VanderWright
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rima W Jabado
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Elasmo Project, Dubai, United Arab Emirates
| | - Patricia Charvet
- Programa de Pós-Graduação em Sistemática, Uso e Conservação da Biodiversidade (PPGSis), Universidade Federal do Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Paola A Mejía-Falla
- Wildlife Conservation Society, WCS Colombia, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas -SQUALUS, Cali, Colombia
| | - Andrés F Navia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas -SQUALUS, Cali, Colombia
| | - Danielle H Derrick
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter M Kyne
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Riley A Pollom
- Species Recovery Program, Seattle Aquarium, Seattle, WA, USA
| | - Rachel H L Walls
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Bineesh Kinattumkara
- Zoological Survey of India, Marine Biology Regional Centre, Chennai, Tamil Nadu, India
| | - Charles F Cotton
- Department of Fisheries, Wildlife, and Environmental Science, State University of New York-Cobleskill, Cobleskill, NY, USA
| | - Juan-Martín Cuevas
- Wildlife Conservation Society Argentina, Buenos Aires, Argentina
- Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ross K Daley
- Horizon Consultancy, Hobart, Tasmania, Australia
| | - Dharmadi
- Research Centre for Fisheries Management and Conservation, Ministry of Marine Affairs and Fisheries, Government of Indonesia, Jakarta, Indonesia
| | - David A Ebert
- Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA, USA
- South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA
| | | | | | - Malcolm P Francis
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - David W Kulka
- Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Robin W Leslie
- Fisheries Management Branch, Department of Forestry, Fisheries and the Environment, Cape Town, South Africa
- Department of Ichthyology and Fisheries Sciences, Rhodes University, Grahamstown, South Africa
- MA-RE Institute, University of Cape Town, Cape Town, South Africa
| | - Francis Neat
- Global Ocean Institute, World Maritime University, Malmo, Sweden
| | - Alexei M Orlov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, Tomsk, Russia
| | - Getulio Rincon
- Coordenação do Curso de Engenharia de Pesca, Universidade Federal do Maranhão-UFMA Campus Pinheiro, Pinheiro, Maranhão, Brazil
| | - Glenn J Sant
- TRAFFIC, University of Wollongong, New South Wales, Australia
- ANCORS, University of Wollongong, New South Wales, Australia
| | - Igor V Volvenko
- Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, Russia
| | - Terence I Walker
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Colin A Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schartl M. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks. Nat Commun 2023; 14:6628. [PMID: 37857613 PMCID: PMC10587355 DOI: 10.1038/s41467-023-42238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
| | - Du Kang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Kathleen Kulb
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Gavin P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Adam Phillippy
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Jacquelyn Mountcastle
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jennifer R Balacco
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Rebecca E Dale
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Gene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center of Systems Biology Dresden, 01307, Dresden, Germany
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, 3800, Australia.
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77483, USA.
| | - Manfred Schartl
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
4
|
Abuobeid R, Herrera-Marcos LV, Arnal C, Bidooki SH, Sánchez-Marco J, Lasheras R, Surra JC, Rodríguez-Yoldi MJ, Martínez-Beamonte R, Osada J. Differentially Expressed Genes in Response to a Squalene-Supplemented Diet Are Accurate Discriminants of Porcine Non-Alcoholic Steatohepatitis. Int J Mol Sci 2023; 24:12552. [PMID: 37628732 PMCID: PMC10454218 DOI: 10.3390/ijms241612552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Squalene is the major unsaponifiable component of virgin olive oil, the fat source of the Mediterranean diet. To evaluate its effect on the hepatic transcriptome, RNA sequencing was carried out in two groups of male Large White x Landrace pigs developing nonalcoholic steatohepatitis by feeding them a high fat/cholesterol/fructose and methionine and choline-deficient steatotic diet or the same diet with 0.5% squalene. Hepatic lipids, squalene content, steatosis, activity (ballooning + inflammation), and SAF (steatosis + activity + fibrosis) scores were analyzed. Pigs receiving the latter diet showed hepatic squalene accumulation and twelve significantly differentially expressed hepatic genes (log2 fold change < 1.5 or <1.5) correlating in a gene network. These pigs also had lower hepatic triglycerides and lipid droplet areas and higher cellular ballooning. Glutamyl aminopeptidase (ENPEP) was correlated with triglyceride content, while alpha-fetoprotein (AFP), neutralized E3 ubiquitin protein ligase 3 (NEURL3), 2'-5'-oligoadenylate synthase-like protein (OASL), and protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B) were correlated with activity reflecting inflammation and ballooning, and NEURL3 with the SAF score. AFP, ENPEP, and PPP1R1B exhibited a remarkably strong discriminant power compared to those pathological parameters in both experimental groups. Moreover, the expression of PPP1R1B, TMEM45B, AFP, and ENPEP followed the same pattern in vitro using human hepatoma (HEPG2) and mouse liver 12 (AML12) cell lines incubated with squalene, indicating a direct effect of squalene on these expressions. These findings suggest that squalene accumulated in the liver is able to modulate gene expression changes that may influence the progression of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Roubi Abuobeid
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Luis V. Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Roberto Lasheras
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, E-50071 Zaragoza, Spain
| | - Joaquín C. Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-22071 Huesca, Spain
| | - María Jesús Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Barnett JEF, Novotny L, Astley K, Deaville R, Fox RI, Ham C, John SK, MacGregor SK, Perkins PJ, Tut G, Whatmore AM, Wessels ME. The first report of meningitis in a Greenland shark (Somniosus microcephalus). J Comp Pathol 2023; 203:31-35. [PMID: 37244160 DOI: 10.1016/j.jcpa.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/05/2023] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
The Greenland shark (Somniosus microcephalus) is a large species of shark found in the North Atlantic and Arctic Oceans and is believed to be the longest living vertebrate. Relatively little is known about its biology, abundance, health or diseases. In March 2022, only the third reported UK stranding of this species occurred and it was the first to undergo post-mortem examination. The animal was a sexually immature female, measuring 3.96 m in length and 285 kg in weight, and was in poor nutritional state. Gross findings included haemorrhages in the skin and soft tissues, particularly of the head, and silt in the stomach suggestive of live stranding, bilateral corneal opacity, slightly turbid cerebrospinal fluid (CSF) and patchy congestion of the brain. Histopathological findings included keratitis and anterior uveitis, fibrinonecrotic and lymphohistiocytic meningitis of the brain and proximal spinal cord and fibrinonecrotizing choroid plexitis. A near pure growth of a Vibrio organism was isolated from CSF. This is believed to be the first report of meningitis in this species.
Collapse
Affiliation(s)
- James E F Barnett
- Cornwall Marine Pathology Team, Fishers Well, Higher Brill, Constantine, Falmouth, Cornwall TR11 5QG, UK.
| | - Ladislav Novotny
- Finn Pathologists, One Eyed Lane, Weybread, Norfolk IP22 5TT, UK; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA
| | - Kelly Astley
- Cornwall Marine Pathology Team, Fishers Well, Higher Brill, Constantine, Falmouth, Cornwall TR11 5QG, UK; Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Richard I Fox
- Finn Pathologists, One Eyed Lane, Weybread, Norfolk IP22 5TT, UK
| | - Cally Ham
- Cornwall Marine Pathology Team, Fishers Well, Higher Brill, Constantine, Falmouth, Cornwall TR11 5QG, UK
| | - Shinto K John
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Shaheed K MacGregor
- Wildlife Health Services Department, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Peter J Perkins
- Cornwall Marine Pathology Team, Fishers Well, Higher Brill, Constantine, Falmouth, Cornwall TR11 5QG, UK
| | - Gurkan Tut
- Department of Bacteriology, Animal & Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Adrian M Whatmore
- Department of Bacteriology, Animal & Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Mark E Wessels
- Finn Pathologists, One Eyed Lane, Weybread, Norfolk IP22 5TT, UK
| |
Collapse
|
6
|
Miller HS, Avrahami HM, Zanno LE. Dental pathologies in lamniform and carcharhiniform sharks with comments on the classification and homology of double tooth pathologies in vertebrates. PeerJ 2022; 10:e12775. [PMID: 35578672 PMCID: PMC9107304 DOI: 10.7717/peerj.12775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Double tooth pathologies are important indicators of trauma, disease, diet, and feeding biomechanics, and are widely documented in mammals. However, diagnosis of double tooth pathologies in extinct non-mammalian vertebrates is complicated by several compounding factors including: a lack of shared terminology reflecting shared etiology, inconsistencies in definitions and key features within and outside of mammals (e.g., gemination, fusion, twinning, concrescence); differences in tooth morphology, heterodonty, regeneration, and implantation between mammals and non-mammalian vertebrates; and the unmet need for diagnostic criteria that can be applied to isolated teeth, which are common in the fossil record. Here we report on double tooth pathologies in the lamniform and carcharhiniform Cenozoic sharks Otodus megalodon (NCSM 33639) and Carcharhinus leucas (NCSM 33640, 33641). All three teeth bear a singular bifid crown with mirrored halves and abnormal internal microstructure-a single, bifurcating pulp cavity in C. leucas and a more than tripling of vessels in O. megalodon (from two to seven main ascending canals). We identify these abnormalities as likely examples of gemination due to their symmetry, which rules out fusion of tooth buds in one tooth file in different developmental stages in polyphyodont taxa; however, we note that incomplete forms of mesiodistal tooth fusion can be morphologically indistinguishable from gemination, and thus fusion cannot be rejected. We further compile and recategorize, when possible, the diversity of tooth pathologies in sharks. The identification of double tooth pathologies in O. megalodon and C. leucas has paleobiological implications. Such pathologies in sharks are largely hypothesized to stem from trauma to developing tooth buds. Carcharhinus leucas is known to feed on prey documented to cause feeding-related oral traumas (e.g., rays, sawfish, spiny fish, and sea urchins). However, O. megalodon, is considered to have largely fed on marine mammals, and perhaps turtles and/or fish, raising the possibility that the dietary diversity of this species is, as of yet, underappreciated. The genetic underpinnings of tooth morphogenesis and regeneration is highly conserved throughout vertebrate evolution, suggesting a homologous framework can be established. However, more research is needed to link developmental, paleobiological, and/or paleoenvironmental factors to gemination/fusion in polyphyodont taxa. We argue that the definitions and diagnostic criteria for dental pathologies in vertebrates require standardization in order to advance macroevolutionary studies of feeding trauma in deep time.
Collapse
Affiliation(s)
- Harrison S. Miller
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| | - Haviv M. Avrahami
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| | - Lindsay E. Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| |
Collapse
|
7
|
Ste-Marie E, Watanabe YY, Semmens JM, Marcoux M, Hussey NE. Life in the slow lane: Field Metabolic Rate and Prey Consumption Rate of the Greenland Shark (Somniosus microcephalus) modeled using Archival Biologgers. J Exp Biol 2022; 225:274642. [PMID: 35258589 DOI: 10.1242/jeb.242994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
Abstract
Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals which cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here we modeled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean FMR of 21.67±2.30 mgO2h-1kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mgO2h-1kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224kg) requires a maintenance ration of 61-193g of fish or marine mammal prey daily. As a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates suggest Greenland sharks require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.
Collapse
Affiliation(s)
- Eric Ste-Marie
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo, 190-8518, Japan.,Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, 190-8518, Japan
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, 7053, Australia
| | - Marianne Marcoux
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
8
|
Alves LMF, Lemos MFL, Cabral H, Novais SC. Elasmobranchs as bioindicators of pollution in the marine environment. MARINE POLLUTION BULLETIN 2022; 176:113418. [PMID: 35150988 DOI: 10.1016/j.marpolbul.2022.113418] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Bioindicator species are increasingly valuable in environmental pollution monitoring, and elasmobranch species include many suitable candidates for that role. By measuring contaminants and employing biomarkers of effect in relevant elasmobranch species, scientists may gain important insights about the impacts of pollution in marine ecosystems. This review compiles biomarkers applied in elasmobranchs to assess the effect of pollutants (e.g., metals, persistent organic pollutants, and plastics), and the environmental changes induced by anthropogenic activities (e.g., shifts in marine temperature, pH, and oxygenation). Over 30 biomarkers measured in more than 12 species were examined, including biotransformation biomarkers (e.g., cytochrome P450 1A), oxidative stress-related biomarkers (e.g., superoxide anion, lipid peroxidation, catalase, and vitamins), stress proteins (e.g., heat shock protein 70), reproductive and endocrine biomarkers (e.g., vitellogenin), osmoregulation biomarkers (e.g., trimethylamine N-oxide, Na+/K+-ATPase, and plasma ions), energetic and neurotoxic biomarkers (e.g., lactate dehydrogenase, lactate, and cholinesterases), and histopathological and morphologic biomarkers (e.g., tissue lesions and gross indices).
Collapse
Affiliation(s)
- Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | | | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| |
Collapse
|
9
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
10
|
Kattner P, Zeiler K, Herbener VJ, Ferla-Brühl KL, Kassubek R, Grunert M, Burster T, Brühl O, Weber AS, Strobel H, Karpel-Massler G, Ott S, Hagedorn A, Tews D, Schulz A, Prasad V, Siegelin MD, Nonnenmacher L, Fischer-Posovszky P, Halatsch ME, Debatin KM, Westhoff MA. What Animal Cancers teach us about Human Biology. Theranostics 2021; 11:6682-6702. [PMID: 34093847 PMCID: PMC8171098 DOI: 10.7150/thno.56623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Cancers in animals present a large, underutilized reservoir of biomedical information with critical implication for human oncology and medicine in general. Discussing two distinct areas of tumour biology in non-human hosts, we highlight the importance of these findings for our current understanding of cancer, before proposing a coordinated strategy to harvest biomedical information from non-human resources and translate it into a clinical setting. First, infectious cancers that can be transmitted as allografts between individual hosts, have been identified in four distinct, unrelated groups, dogs, Tasmanian devils, Syrian hamsters and, surprisingly, marine bivalves. These malignancies might hold the key to improving our understanding of the interaction between tumour cell and immune system and, thus, allow us to devise novel treatment strategies that enhance anti-cancer immunosurveillance, as well as suggesting more effective organ and stem cell transplantation strategies. The existence of these malignancies also highlights the need for increased scrutiny when considering the existence of infectious cancers in humans. Second, it has long been understood that no linear relationship exists between the number of cells within an organism and the cancer incidence rate. To resolve what is known as Peto's Paradox, additional anticancer strategies within different species have to be postulated. These naturally occurring idiosyncrasies to avoid carcinogenesis represent novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Katharina Zeiler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | - Michael Grunert
- Department of Nuclear Medicine, German Armed Forces Hospital of Ulm, Ulm, Germany
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan Republic
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini; SR, Italy
| | - Anna Sarah Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sibylle Ott
- Animal Research Center, University of Ulm, Ulm, Germany
| | | | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus D. Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
11
|
Neuropathological evaluation of a vertebrate brain aged ~ 245 years. Acta Neuropathol 2021; 141:133-136. [PMID: 33064211 PMCID: PMC7785537 DOI: 10.1007/s00401-020-02237-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
|
12
|
Grant SM, Munden JG, Hedges KJ. Effects of monofilament nylon versus braided multifilament nylon gangions on catch rates of Greenland shark ( Somniosus microcephalus) in bottom set longlines. PeerJ 2020; 8:e10407. [PMID: 33344077 PMCID: PMC7719291 DOI: 10.7717/peerj.10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 11/02/2020] [Indexed: 11/24/2022] Open
Abstract
The Greenland shark (Somniosus microcephalus) is the main bycatch species in established and exploratory inshore longline fisheries for Greenland halibut (Reinhardtius hippoglossoides) on the east coast of Baffin Island, Canada. Bycatch and entanglement in longline gear has at times been substantial and post-release survival is questionable when Greenland sharks are released with trailing fishing gear. This study investigated the effect of the type of fishing line used in the gangion and gangion breaking strength on catch rates of Greenland shark and Greenland halibut in bottom set longlines. Circle (size 14/0, 0° offset) hooks were used throughout the study. Behavior of captured sharks, mode of capture (i.e., jaw hook and/or entanglement), level of entanglement in longline gear, time required to disentangle sharks and biological information (sex, body length and health status) were recorded. Catch rates of Greenland shark were independent of monofilament nylon gangion breaking strength and monofilament gangions captured significantly fewer Greenland sharks than the traditional braided multifilament nylon gangion. Catch rates and body size of Greenland halibut did not differ significantly between gangion treatments. Although most (84%) of the Greenland sharks were hooked by the jaw, a high percentage (76%) were entangled in the mainline. The mean length of mainline entangled around the body and/or caudal peduncle and caudal fin was 28.7 m. Greenland sharks exhibited cannibalistic behavior with 15% of captured sharks cannibalized. All remaining sharks were alive and survived the disentanglement process which can be attributed to their lethargic behavior and lack of resistance when hauled to the surface. Thus, as a conservation measure fishers should be encouraged to remove trailing fishing gear prior to release. Our results are used to demonstrate benefits to the fishing industry with regard to an overall reduction in the period of time to disentangle sharks and damage to fishing gear by switching from braided multifilament to monofilament gangions in Greenland halibut longline fisheries.
Collapse
Affiliation(s)
- Scott M Grant
- Centre for Sustainable Aquatic Resources, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Kevin J Hedges
- Arctic Aquatic Research Division, Central & Arctic Region, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| |
Collapse
|
13
|
A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic. Sci Rep 2020; 10:19297. [PMID: 33168918 PMCID: PMC7653932 DOI: 10.1038/s41598-020-76371-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.
Collapse
|
14
|
Nielsen J, Hedeholm RB, Lynghammar A, McClusky LM, Berland B, Steffensen JF, Christiansen JS. Assessing the reproductive biology of the Greenland shark (Somniosus microcephalus). PLoS One 2020; 15:e0238986. [PMID: 33027263 PMCID: PMC7540863 DOI: 10.1371/journal.pone.0238986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
The Greenland shark (Somniosus microcephalus, Squaliformes: Somniosidae) is a long-lived Arctic top predator, which in combination with the high historical and modern fishing pressures, has made it subject to increased scientific focus in recent years. Key aspects of reproduction are not well known as exemplified by sparse and contradictory information e.g. on birth size and number of pups per pregnancy. This study represents the first comprehensive work on Greenland shark reproductive biology based on data from 312 specimens collected over the past 60 years. We provide guidelines quantifying reproductive parameters to assess specific maturation stages, as well as calculate body length-at-maturity (TL50) which was 2.84±0.06 m for males and 4.19±0.04 m for females. From the available information on the ovarian fecundity of Greenland sharks as well as a meta-analysis of Squaliform reproductive parameters, we estimate up to 200-324 pups per pregnancy (depending on maternal size) with a body length-at-birth of 35-45 cm. These estimates remain to be verified by future observations from gravid Greenland sharks.
Collapse
Affiliation(s)
- Julius Nielsen
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | | | - Arve Lynghammar
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Leon M. McClusky
- Faculty of Health Sciences, UiT The Arctic University of Norway, Narvik, Norway
| | | | | | - Jørgen S. Christiansen
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
15
|
Barkley AN, Broell F, Pettitt‐Wade H, Watanabe YY, Marcoux M, Hussey NE. A framework to estimate the likelihood of species interactions and behavioural responses using animal‐borne acoustic telemetry transceivers and accelerometers. J Anim Ecol 2020; 89:146-160. [DOI: 10.1111/1365-2656.13156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Amanda N. Barkley
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Franziska Broell
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Harri Pettitt‐Wade
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Yuuki Y. Watanabe
- National Institute of Polar Research Tachikawa Japan
- Department of Polar Science The Graduate University for Advanced Studies, SOKENDAI Tachikawa Japan
| | - Marianne Marcoux
- Fisheries and Oceans Canada Winnipeg MB Canada
- Department of Biological Sciences University of Manitoba Winnipeg MB Canada
| | - Nigel E. Hussey
- Department of Integrative Biology University of Windsor Windsor ON Canada
| |
Collapse
|
16
|
McClain CR, Nunnally C, Dixon R, Rouse GW, Benfield M. Alligators in the abyss: The first experimental reptilian food fall in the deep ocean. PLoS One 2019; 14:e0225345. [PMID: 31860642 PMCID: PMC6924670 DOI: 10.1371/journal.pone.0225345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/01/2019] [Indexed: 11/18/2022] Open
Abstract
The high respiration rates of the deep-sea benthos cannot be sustained by known carbon supply pathways alone. Here, we investigate moderately-sized reptilian food falls as a potential alternative carbon pathway. Specifically, three individual carcasses of Alligator mississippiensis were deployed along the continental slope of the northern Gulf of Mexico at depths of ~2000m in early 2019. We posit the tough hide of alligators would impeded scavengers by limiting access to soft tissues of the alligator fall. However, the scavengers began consuming the food fall 43 hours post-deployment for one individual (198.2cm, 29.7kg), and the carcass of another individual (175.3 cm, 19.5kg) was completely devoid of soft tissue at 51 days post-deployment. A third individual (172.7cm, 18.5kg) was missing completely after 8 days, with only the deployment harness and weight remaining drug 8 meters away, suggesting a large elasmobranch scavenger. Additionally, bones recovered post-deployment reveal the first observations of the bone-eating Osedax in the Gulf of Mexico and are confirmed here as new to science. The findings of this study indicate the quick and successful utilization of terrestrial and aquatic-based carbon food sources in the deep marine environment, though outcome variability may be high.
Collapse
Affiliation(s)
- Craig Robert McClain
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
- Department of Biology, University of Louisiana, Lafayette, LA, United States of America
| | - Clifton Nunnally
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
| | - River Dixon
- Louisiana Universities Marine Consortium, Chauvin, LA, United States of America
- Department of Biology, University of Louisiana, Lafayette, LA, United States of America
| | - Greg W. Rouse
- Scripps Oceanography, UC San Diego, La Jolla, CA, United States of America
| | - Mark Benfield
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
17
|
Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev 2019; 55:100947. [PMID: 31449890 DOI: 10.1016/j.arr.2019.100947] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a millennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain why such stark longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumulation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality - like planarian flatworms, panther worms, and hydra - further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. The evolutionary response to extrinsic mortality is likely dependent on multiple interacting factors in the organism, population, and ecology, including food availability, population density, reproductive cost, age-mortality interactions, and the mortality source.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Boris Shoshitaishvili
- Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Comparative Brain Morphology of the Greenland and Pacific Sleeper Sharks and its Functional Implications. Sci Rep 2019; 9:10022. [PMID: 31296954 PMCID: PMC6624305 DOI: 10.1038/s41598-019-46225-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (>3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle.
Collapse
|
19
|
Unveiling hákarl: A study of the microbiota of the traditional Icelandic fermented fish. Food Microbiol 2019; 82:560-572. [PMID: 31027819 DOI: 10.1016/j.fm.2019.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/10/2023]
Abstract
Hákarl is produced by curing of the Greenland shark (Somniosus microcephalus) flesh, which before fermentation is toxic due to the high content of trimethylamine (TMA) or trimethylamine N-oxide (TMAO). Despite its long history of consumption, little knowledge is available on the microbial consortia involved in the fermentation of this fish. In the present study, a polyphasic approach based on both culturing and DNA-based techniques was adopted to gain insight into the microbial species present in ready-to-eat hákarl. To this aim, samples of ready-to-eat hákarl were subjected to viable counting on different selective growth media. The DNA directly extracted from the samples was further subjected to Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and 16S amplicon-based sequencing. Moreover, the presence of Shiga toxin-producing Escherichia coli (STEC) and Pseudomonas aeruginosa was assessed via qualitative real-time PCR assays. pH values measured in the analyzed samples ranged from between 8.07 ± 0.06 and 8.76 ± 0.00. Viable counts revealed the presence of total mesophilic aerobes, lactic acid bacteria and Pseudomonadaceae. Regarding bacteria, PCR-DGGE analysis highlighted the dominance of close relatives of Tissierella creatinophila. For amplicon sequencing, the main operational taxonomic units (OTUs) shared among the data set were Tissierella, Pseudomonas, Oceanobacillus, Abyssivirga and Lactococcus. The presence of Pseudomonas in the analyzed samples supports the hypothesis of a possible role of this microorganism on the detoxification of shark meat from TMAO or TMA during fermentation. Several minor OTUs (<1%) were also detected, including Alkalibacterium, Staphylococcus, Proteiniclasticum, Acinetobacter, Erysipelothrix, Anaerobacillus, Ochrobactrum, Listeria and Photobacterium. Analysis of the yeast and filamentous fungi community composition by PCR-DGGE revealed the presence of close relatives of Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida zeylanoides, Saccharomyces cerevisiae, Debaryomyces, Torulaspora, Yamadazyma, Sporobolomyces, Alternaria, Cladosporium tenuissimum, Moristroma quercinum and Phoma/Epicoccum, and some of these species probably play key roles in the development of the sensory qualities of the end product. Finally, qualitative real-time PCR assays revealed the absence of STEC and Pseudomonas aeruginosa in all of the analyzed samples.
Collapse
|
20
|
Guest PC. Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:1-24. [PMID: 31493219 DOI: 10.1007/978-3-030-25650-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The quest for increased human longevity has been a goal of mankind throughout recorded history. Recent molecular studies are now providing potentially useful insights into the aging process which may help to achieve at least some aspects of this quest. This chapter will summarize the main findings of these studies with a focus on long-lived mutant mice and worms, and the longest living natural species including Galapagos giant tortoises, bowhead whales, Greenland sharks, quahog clams and the immortal jellyfish.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
21
|
Yurkowski DJ, Auger-Méthé M, Mallory ML, Wong SNP, Gilchrist G, Derocher AE, Richardson E, Lunn NJ, Hussey NE, Marcoux M, Togunov RR, Fisk AT, Harwood LA, Dietz R, Rosing-Asvid A, Born EW, Mosbech A, Fort J, Grémillet D, Loseto L, Richard PR, Iacozza J, Jean-Gagnon F, Brown TM, Westdal KH, Orr J, LeBlanc B, Hedges KJ, Treble MA, Kessel ST, Blanchfield PJ, Davis S, Maftei M, Spencer N, McFarlane-Tranquilla L, Montevecchi WA, Bartzen B, Dickson L, Anderson C, Ferguson SH. Abundance and species diversity hotspots of tracked marine predators across the North American Arctic. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12860] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | | | | | - Grant Gilchrist
- Environment and Climate Change Canada; Ottawa Ontario Canada
| | | | - Evan Richardson
- Environment and Climate Change Canada; Winnipeg Manitoba Canada
| | | | | | | | - Ron R. Togunov
- University of British Columbia; Vancouver British Columbia Canada
| | | | - Lois A. Harwood
- Fisheries and Oceans Canada; Yellowknife Northwest Territories Canada
| | | | | | - Erik W. Born
- Greenland Institute of Natural Resources; Nuuk Greenland
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs); UMR7266 CNRS-University of La Rochelle; La Rochelle France
| | - David Grémillet
- Centre d’Ecologie Fonctionnelle et Evolutive; UMR 5175, CNRS; Montpellier France
| | - Lisa Loseto
- Fisheries and Oceans Canada; Winnipeg Manitoba Canada
| | | | - John Iacozza
- University of Manitoba; Winnipeg Manitoba Canada
| | | | | | | | - Jack Orr
- Fisheries and Oceans Canada; Winnipeg Manitoba Canada
| | | | | | | | - Steven T. Kessel
- Daniel P. Haerther Center for Conservation and Research; John G. Shedd Aquarium; Chicago Illinois
| | | | - Shanti Davis
- High Arctic Gull Research Group; Victoria British Columbia Canada
| | - Mark Maftei
- High Arctic Gull Research Group; Victoria British Columbia Canada
| | - Nora Spencer
- High Arctic Gull Research Group; Victoria British Columbia Canada
| | | | | | - Blake Bartzen
- Environment and Climate Change Canada; Saskatoon Saskatchewan Canada
| | - Lynne Dickson
- Environment and Climate Change Canada; Edmonton Alberta Canada
| | | | | |
Collapse
|
22
|
Shadwick RE, Bernal D, Bushnell PG, Steffensen JF. Blood pressure in the Greenland shark as estimated from ventral aortic elasticity. ACTA ACUST UNITED AC 2018; 221:jeb.186957. [PMID: 30104302 DOI: 10.1242/jeb.186957] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/04/2018] [Indexed: 11/20/2022]
Abstract
We conducted in vitro inflations of freshly excised ventral aortas of the Greenland shark, Somniosus microcephalus, and used pressure-diameter data to estimate the point of transition from high to low compliance, which has been shown to occur at the mean blood pressure in other vertebrates including fishes. We also determined the pressure at which the modulus of elasticity of the aorta reached 0.4 MPa, as occurs at the compliance transition in other species. From these analyses, we predict the average ventral aortic blood pressure in S. microcephalus to be about 2.3-2.8 kPa, much lower than reported for other sharks. Our results support the idea that this species is slow moving and has a relatively low aerobic metabolism. Histological investigation of the ventral aorta shows that elastic fibres are present in relatively low abundance and loosely connected, consistent with this aorta having high compliance at a relatively low blood pressure.
Collapse
Affiliation(s)
- Robert E Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Diego Bernal
- Department of Biology, University of Massachusetts, Dartmouth, MA 02747, USA
| | - Peter G Bushnell
- Department of Biological Sciences, Indiana University South Bend, IN USA
| | - John F Steffensen
- Department of Biology, Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| |
Collapse
|
23
|
Cotronei S, Pozo K, Audy O, Přibylová P, Corsolini S. Contamination Profile of DDTs in the Shark Somniosus microcephalus from Greenland Seawaters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:7-13. [PMID: 29845485 DOI: 10.1007/s00128-018-2371-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
DDT isomers were detected in all the liver and muscle samples of Greenland sharks Somniosus microcephalus (n = 15) caught in Greenland seawaters. The mean concentrations of ΣDDTs (sum of o,p' and p,p' DDT, DDD, and DDE isomers) were 1094 ± 818 ng/g lipid weight (lw) in the muscle and 761 ± 416 ng/g lw in the liver. The p,p'-DDE accounted for 48% ± 41% and 53% ± 54% of the total DDT residue in the white muscle and liver, respectively. The lipid content was 48% ± 10% in the muscle and 43% ± 17% in the liver. Female sharks showed the highest concentrations of ΣDDTs. The youngest shark showed higher concentrations of ΣDDTs in the liver than the older sharks. To our knowledge, this is one of the few investigations on DDT levels in S. microcephalus where concentrations were correlated to lipid content and sex/size.
Collapse
Affiliation(s)
- Salvatore Cotronei
- Department of Physics, Earth and Environmental Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy.
| | - Karla Pozo
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - Ondřej Audy
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Přibylová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simonetta Corsolini
- Department of Physics, Earth and Environmental Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
24
|
Landry JJ, Fisk AT, Yurkowski DJ, Hussey NE, Dick T, Crawford RE, Kessel ST. Feeding ecology of a common benthic fish, shorthorn sculpin (Myoxocephalus scorpius) in the high arctic. Polar Biol 2018. [DOI: 10.1007/s00300-018-2348-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Grant SM, Sullivan R, Hedges KJ. Greenland shark ( Somniosus microcephalus) feeding behavior on static fishing gear, effect of SMART (Selective Magnetic and Repellent-Treated) hook deterrent technology, and factors influencing entanglement in bottom longlines. PeerJ 2018; 6:e4751. [PMID: 29785345 PMCID: PMC5960585 DOI: 10.7717/peerj.4751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/22/2018] [Indexed: 11/20/2022] Open
Abstract
The Greenland Shark (Somniosus microcephalus) is the most common bycatch in the Greenland halibut (Reinhardtius hippoglossoides) bottom longline fishery in Cumberland Sound, Canada. Historically, this inshore fishery has been prosecuted through the ice during winter but winter storms and unpredictable landfast ice conditions since the mid-1990s have led to interest in developing a summer fishery during the ice-free season. However, bycatch of Greenland shark was found to increase substantially with 570 sharks captured during an experimental Greenland halibut summer fishery (i.e., mean of 6.3 sharks per 1,000 hooks set) and mortality was reported to be about 50% due in part to fishers killing sharks that were severely entangled in longline gear. This study investigated whether the SMART (Selective Magnetic and Repellent-Treated) hook technology is a practical deterrent to Greenland shark predation and subsequent bycatch on bottom longlines. Greenland shark feeding behavior, feeding kinematics, and variables affecting entanglement/disentanglement and release are also described. The SMART hook failed to deter Greenland shark predation, i.e., all sharks were captured on SMART hooks, some with more than one SMART hook in their jaw. Moreover, recently captured Greenland sharks did not exhibit a behavioral response to SMART hooks. In situ observations of Greenland shark feeding show that this species uses a powerful inertial suction mode of feeding and was able to draw bait into the mouth from a distance of 25–35 cm. This method of feeding is suggested to negate the potential deterrent effects of electropositive metal and magnetic alloy substitutions to the SMART hook technology. The number of hooks entangled by a Greenland shark and time to disentangle and live-release a shark was found to increase with body length.
Collapse
Affiliation(s)
- Scott M Grant
- Centre for Sustainable Aquatic Resources, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Rennie Sullivan
- Centre for Sustainable Aquatic Resources, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kevin J Hedges
- Central and Arctic Region, Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| |
Collapse
|
26
|
First estimates of Greenland shark (Somniosus microcephalus) local abundances in Arctic waters. Sci Rep 2018; 8:974. [PMID: 29343730 PMCID: PMC5772532 DOI: 10.1038/s41598-017-19115-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/16/2017] [Indexed: 11/20/2022] Open
Abstract
Baited remote underwater video cameras were deployed in the Eastern Canadian Arctic, for the purpose of estimating local densities of the long-lived Greenland shark within five deep-water, data-poor regions of interest for fisheries development and marine conservation in Nunavut, Canada. A total of 31 camera deployments occurred between July-September in 2015 and 2016 during joint exploratory fishing and scientific cruises. Greenland sharks appeared at 80% of deployments. A total of 142 individuals were identified and no individuals were observed in more than one deployment. Estimates of Greenland shark abundance and biomass were calculated from averaged times of first arrival, video-derived swimming speed and length data, and local current speed estimates. Density estimates varied 1–15 fold among regions; being highest in warmer (>0 °C), deeper areas and lowest in shallow, sub-zero temperature regions. These baited camera results illustrate the ubiquity of this elusive species and suggest that Nunavut’s Lancaster Sound eco-zone may be of particular importance for Greenland shark, a potentially vulnerable Arctic species.
Collapse
|
27
|
Bioaccumulation of nonylphenols and bisphenol A in the Greenland shark Somniosus microcephalus from the Greenland seawaters. Microchem J 2018. [DOI: 10.1016/j.microc.2016.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Walter RP, Roy D, Hussey NE, Stelbrink B, Kovacs KM, Lydersen C, McMeans BC, Svavarsson J, Kessel ST, Biton Porsmoguer S, Wildes S, Tribuzio CA, Campana SE, Petersen SD, Grubbs RD, Heath DD, Hedges KJ, Fisk AT. Origins of the Greenland shark ( Somniosus microcephalus): Impacts of ice-olation and introgression. Ecol Evol 2017; 7:8113-8125. [PMID: 29043060 PMCID: PMC5632604 DOI: 10.1002/ece3.3325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 07/21/2017] [Indexed: 12/04/2022] Open
Abstract
Herein, we use genetic data from 277 sleeper sharks to perform coalescent‐based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic‐Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub‐Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial‐interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.
Collapse
Affiliation(s)
- Ryan P Walter
- Department of Biological Science California State University Fullerton CA USA.,Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| | - Denis Roy
- Department of Natural Resources and the Environment Wildlife and Fisheries Conservation Center and Center for Environmental Sciences and Engineering University of Connecticut Storrs CT USA
| | - Nigel E Hussey
- Biological Sciences University of Windsor Windsor ON Canada
| | | | - Kit M Kovacs
- Fram Centre Norwegian Polar Institute Tromsø Norway
| | | | - Bailey C McMeans
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada.,Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Steven T Kessel
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Sebastián Biton Porsmoguer
- Mediterranean Institute of Oceanography (MIO) UM 110 Aix-Marseille University CNRS/INSU Toulon University IRD Marseille France
| | - Sharon Wildes
- Auke Bay Laboratories AFSC/NMFS/NOAA/DOC Ted Stevens Marine Research Institute Juneau AK USA
| | - Cindy A Tribuzio
- Auke Bay Laboratories AFSC/NMFS/NOAA/DOC Ted Stevens Marine Research Institute Juneau AK USA
| | - Steven E Campana
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Stephen D Petersen
- Conservation and Research Department Assiniboine Park Zoo Winnipeg MB Canada
| | - R Dean Grubbs
- Coastal and Marine Laboratory Florida State University St. Teresa FL USA
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| | - Kevin J Hedges
- Arctic Aquatic Research Division Fisheries and Oceans Canada Winnipeg MB Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| |
Collapse
|
29
|
Russo R, Giordano D, Paredi G, Marchesani F, Milazzo L, Altomonte G, Del Canale P, Abbruzzetti S, Ascenzi P, di Prisco G, Viappiani C, Fago A, Bruno S, Smulevich G, Verde C. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties. PLoS One 2017; 12:e0186181. [PMID: 29023598 PMCID: PMC5638460 DOI: 10.1371/journal.pone.0186181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022] Open
Abstract
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.
Collapse
Affiliation(s)
- Roberta Russo
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Gianluca Paredi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3–13, Sesto Fiorentino (FI), Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Dipartimento di Biologia, Università Roma 3, Viale Marconi 448, Roma, Italy
| | - Pietro Del Canale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
- NEST Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università RomaTre, Via della Vasca Navale 79, Roma, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
- NEST Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, Italy
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3–13, Sesto Fiorentino (FI), Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Dipartimento di Biologia, Università Roma 3, Viale Marconi 448, Roma, Italy
- * E-mail: ,
| |
Collapse
|
30
|
Augustine S, Lika K, Kooijman SALM. Comment on the ecophysiology of the Greenland shark, Somniosus microcephalus. Polar Biol 2017. [DOI: 10.1007/s00300-017-2154-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Blood O2 affinity of a large polar elasmobranch, the Greenland shark Somniosus microcephalus. Polar Biol 2017. [DOI: 10.1007/s00300-017-2142-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Santaquiteria A, Nielsen J, Klemetsen T, Willassen NP, Præbel K. The complete mitochondrial genome of the long-lived Greenland shark (Somniosus microcephalus): characterization and phylogenetic position. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-016-0676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Costantini D, Smith S, Killen SS, Nielsen J, Steffensen JF. The Greenland shark: A new challenge for the oxidative stress theory of ageing? Comp Biochem Physiol A Mol Integr Physiol 2016; 203:227-232. [PMID: 27717642 DOI: 10.1016/j.cbpa.2016.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
The free radical theory of ageing predicts that long-lived species should be more resistant to oxidative damage than short-lived species. Although many studies support this theory, recent studies found notable exceptions that challenge the generality of this theory. In this study, we have analysed the oxidative status of the Greenland shark (Somniosus microcephalus), which has recently been found as the longest living vertebrate animal known to science with a lifespan of at least 272years. As compared to other species, the Greenland shark had body mass-corrected values of muscle glutathione peroxidase and red blood cells protein carbonyls (metric of protein oxidative damage) above 75 percentile and below 25 percentile, respectively. None of the biochemical metrics of oxidative status measured in either skeletal muscle or red blood cells were correlated with maximum lifespan of species. We propose that the values of metrics of oxidative status we measured might be linked to ecological features (e.g., adaptation to cold waters and deep dives) of this shark species rather to its lifespan.
Collapse
Affiliation(s)
- David Costantini
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Shona Smith
- Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Shaun S Killen
- Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Julius Nielsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
34
|
Corsolini S, Pozo K, Christiansen JS. Legacy and emergent POPs in the marine fauna of NE Greenland with special emphasis on the Greenland shark Somniosus microcephalus. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0541-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Lydersen C, Fisk AT, Kovacs KM. A review of Greenland shark (Somniosus microcephalus) studies in the Kongsfjorden area, Svalbard Norway. Polar Biol 2016. [DOI: 10.1007/s00300-016-1949-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
|
37
|
McMeans BC, Arts MT, Fisk AT. Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:216-225. [PMID: 24630590 DOI: 10.1016/j.scitotenv.2014.01.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Benthic and pelagic food web components in Cumberland Sound, Canada were explored as sources of total mercury (THg) to Greenland Sharks (Somniosus microcephalus) via both bottom-up food web transfer and top-down shark feeding behavior. Log10THg increased significantly with δ(15)N and trophic position from invertebrates (0.01 ± 0.01 μg · g(-1) [113 ± 1 ng · g(-1)] dw in copepods) to Greenland Sharks (3.54 ± 1.02 μg · g(-1)). The slope of the log10THg vs. δ(15)N linear regression was higher for pelagic compared to benthic food web components (excluding Greenland Sharks, which could not be assigned to either food web), which resulted from THg concentrations being higher at the base of the benthic food web (i.e., in benthic than pelagic primary consumers). However, feeding habitat is unlikely to consistently influence shark THg exposure in Cumberland Sound because THg concentrations did not consistently differ between benthic and pelagic shark prey. Further, size, gender and feeding behavior (inferred from stable isotopes and fatty acids) were unable to significantly explain THg variability among individual Greenland Sharks. Possible reasons for this result include: 1) individual sharks feeding as generalists, 2) high overlap in THg among shark prey, and 3) differences in turnover time between ecological tracers and THg. This first assessment of Greenland Shark THg within an Arctic food web revealed high concentrations consistent with biomagnification, but low ability to explain intra-specific THg variability. Our findings of high THg levels and consumption of multiple prey types, however, suggest that Greenland Sharks acquire THg through a variety of trophic pathways and are a significant contributor to the total biotic THg pool in northern seas.
Collapse
Affiliation(s)
- Bailey C McMeans
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Michael T Arts
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; National Water Research Institute, Environment Canada, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
38
|
McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, Dove ADM, Gaskins L, Helm RR, Hochberg FG, Lee FB, Marshall A, McMurray SE, Schanche C, Stone SN, Thaler AD. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 2015; 3:e715. [PMID: 25649000 PMCID: PMC4304853 DOI: 10.7717/peerj.715] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans.
Collapse
Affiliation(s)
- Craig R McClain
- National Evolutionary Synthesis Center , Durham, NC , USA ; Department of Biology, Duke University , Durham, NC , USA
| | - Meghan A Balk
- Department of Biology, University of New Mexico , Albuquerque, NM , USA
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University , Baton Rouge, LA , USA
| | - Trevor A Branch
- School of Aquatic & Fishery Sciences, University of Washington , Seattle, WA , USA
| | - Catherine Chen
- Department of Biology, Duke University , Durham, NC , USA
| | - James Cosgrove
- Natural History Section, Royal British Columbia Museum , Victoria, BC , Canada
| | | | - Leo Gaskins
- Department of Biology, Duke University , Durham, NC , USA
| | - Rebecca R Helm
- Department of Ecology and Evolutionary Biology, Brown University , Providence, RI , USA
| | - Frederick G Hochberg
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History , Santa Barbara, CA , USA
| | - Frank B Lee
- Department of Biology, Duke University , Durham, NC , USA
| | | | - Steven E McMurray
- Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC , USA
| | | | - Shane N Stone
- Department of Biology, Duke University , Durham, NC , USA
| | - Andrew D Thaler
- Blackbeard Biologic: Science and Environmental Advisors , Vallejo, CA , USA
| |
Collapse
|
39
|
Hussey NE, Cosandey-Godin A, Walter RP, Hedges KJ, VanGerwen-Toyne M, Barkley AN, Kessel ST, Fisk AT. Juvenile Greenland sharks Somniosus microcephalus (Bloch & Schneider, 1801) in the Canadian Arctic. Polar Biol 2014. [DOI: 10.1007/s00300-014-1610-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Corsolini S, Ancora S, Bianchi N, Mariotti G, Leonzio C, Christiansen JS. Organotropism of persistent organic pollutants and heavy metals in the Greenland shark Somniosus microcephalus in NE Greenland. MARINE POLLUTION BULLETIN 2014; 87:381-387. [PMID: 25084679 DOI: 10.1016/j.marpolbul.2014.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The Greenland shark Somniosus microcephalus is an opportunistic feeder, a top predator, and a very long-lived species. The brain, liver, red and white muscle, gonads, fat, skin, pancreas, and spleen of Greenland sharks from NE Greenland fjords were analysed for PCBs, PCDDs/DFs, PBDEs; DDT isomers; HCH isomers; dieldrin; endrin; HCB; Cd, Hg, Pb, and Se. PCBs (2.01-103 ng/g wet wt) and PBDEs (7.9-3050 pg/g wet wt) were detected in most of the samples. PCDDs/DFs showed high values when detected. DDTs, HCB and HCHs were only detected in some tissues. The ΣTEQ was 5.76 pg/g in muscle. Cadmium mainly accumulated in the pancreas and liver (19.6 and 10.7 mg/kg dry wt, respectively); mercury in red muscle (4.10-6.91 mg/kg dry wt); selenium in the pancreas (3.57 mg/kg dry wt) and spleen (1.95 mg/kg dry wt); lead in the skin (0.358 mg/kgd ry wt). The selenium-mercury ratio in the liver was also evaluated.
Collapse
Affiliation(s)
- Simonetta Corsolini
- Department of Physics, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy.
| | - Stefania Ancora
- Department of Physics, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy
| | - Nicola Bianchi
- Department of Physics, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy
| | - Giacomo Mariotti
- Department of Physics, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy
| | - Claudio Leonzio
- Department of Physics, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy
| | - Jørgen S Christiansen
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway; Department of Biosciences-Environmental and Marine Biology, Åbo Akademi University, FI-20500 Turku, Finland
| |
Collapse
|
41
|
Christiansen HM, Lin V, Tanaka S, Velikanov A, Mollet HF, Wintner SP, Fordham SV, Fisk AT, Hussey NE. The last frontier: catch records of white sharks (Carcharodon carcharias) in the Northwest Pacific Ocean. PLoS One 2014; 9:e94407. [PMID: 24740299 PMCID: PMC3989224 DOI: 10.1371/journal.pone.0094407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
White sharks are highly migratory apex predators, globally distributed in temperate, sub-tropical, and tropical waters. Knowledge of white shark biology and ecology has increased recently based on research at known aggregation sites in the Indian, Atlantic, and Northeast Pacific Oceans; however, few data are available for the Northwest Pacific Ocean. This study provides a meta-analysis of 240 observations of white sharks from the Northwest Pacific Ocean between 1951 and 2012. Records comprise reports of bycatch in commercial fisheries, media accounts, personal communications, and documentation of shark-human interactions from Russia (n = 8), Republic of Korea (22), Japan (129), China (32), Taiwan (45), Philippines (1) and Vietnam (3). Observations occurred in all months, excluding October-January in the north (Russia and Republic of Korea) and July-August in the south (China, Taiwan, Philippines, and Vietnam). Population trend analysis indicated that the relative abundance of white sharks in the region has remained relatively stable, but parameterization of a 75% increase in observer effort found evidence of a minor decline since 2002. Reliably measured sharks ranged from 126–602 cm total length (TL) and 16–2530 kg total weight. The largest shark in this study (602 cm TL) represents the largest measured shark on record worldwide. For all countries combined the sex ratio was non-significantly biased towards females (1∶1.1; n = 113). Of 60 females examined, 11 were confirmed pregnant ranging from the beginning stages of pregnancy (egg cases) to near term (140 cm TL embryos). On average, 6.0±2.2 embryos were found per litter (maximum of 10) and gestation period was estimated to be 20 months. These observations confirm that white sharks are present in the Northwest Pacific Ocean year-round. While acknowledging the difficulties of studying little known populations of a naturally low abundance species, these results highlight the need for dedicated research to inform regional conservation and management planning.
Collapse
Affiliation(s)
- Heather M. Christiansen
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- * E-mail:
| | | | - Sho Tanaka
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | - Anatoly Velikanov
- Division of Marine and Freshwater Biological Resources, Sakhalin Research Institute of Fisheries & Oceanography, Yuzhno-Sakhalinsk, Russia
| | - Henry F. Mollet
- Moss Landing Marine Laboratories, Moss Landing, California, United States of America
- Monterey Bay Aquarium, Monterey, California, United States of America
| | - Sabine P. Wintner
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, South Africa
- Biomedical Resource Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Sonja V. Fordham
- Shark Advocates International (a project of The Ocean Foundation), Washington, DC, United States of America
| | - Aaron T. Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Nigel E. Hussey
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
42
|
Lu Z, Fisk AT, Kovacs KM, Lydersen C, McKinney MA, Tomy GT, Rosenburg B, McMeans BC, Muir DCG, Wong CS. Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:216-225. [PMID: 24389599 DOI: 10.1016/j.envpol.2013.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) chiral signatures were measured in Greenland sharks (Somniosus microcephalus) and their potential prey in arctic marine food webs from Canada (Cumberland Sound) and Europe (Svalbard) to assess temporal and spatial variation in PCB contamination at the stereoisomer level. Marine mammals had species-specific enantiomer fractions (EFs), likely due to a combination of in vivo biotransformation and direct trophic transfer. Greenland sharks from Cumberland Sound in 2007-2008 had similar EFs to those sharks collected a decade ago in the same location (PCBs 91, 136 and 149) and also similar to their conspecifics from Svalbard for some PCB congeners (PCBs 95, 136 and 149). However, other PCB EFs in the sharks varied temporally (PCB 91) or spatially (PCB 95), suggesting a possible spatiotemporal variation in their diets, since biotransformation capacity was unlikely to have varied within this species from region to region or over the time frame studied.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | | | - Melissa A McKinney
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bruno Rosenburg
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada
| | - Bailey C McMeans
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON L7R 4A6, Canada
| | - Charles S Wong
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Richardson College for the Environment, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| |
Collapse
|
43
|
Hussey NE, MacNeil MA, McMeans BC, Olin JA, Dudley SFJ, Cliff G, Wintner SP, Fennessy ST, Fisk AT. Rescaling the trophic structure of marine food webs. Ecol Lett 2014; 17:239-50. [PMID: 24308860 PMCID: PMC3912912 DOI: 10.1111/ele.12226] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/05/2013] [Accepted: 10/29/2013] [Indexed: 12/25/2022]
Abstract
Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ(15) N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ(15) N between predator and prey, Δ(15) N = 3.4‰), resulting in an additive framework that omits known Δ(15) N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ(15) N and δ(15) N values of prey consumed. The resulting scaled Δ(15) N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ(15) N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management.
Collapse
Affiliation(s)
- Nigel E Hussey
- Great Lakes Institute for Environmental Research, University of Windsor401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - M Aaron MacNeil
- Australian Institute of Marine SciencePMB No.3, Townsville MC, Townsville, QLD 4810, Australia
| | - Bailey C McMeans
- Great Lakes Institute for Environmental Research, University of Windsor401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
- Department of Integrative Biology, University of GuelphGuelph, ON N1G 2W1, Canada
| | - Jill A Olin
- Great Lakes Institute for Environmental Research, University of Windsor401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
- Department of Oceanography and Coastal Sciences, Louisiana State UniversityBaton Rouge, LA, 70803, USA
| | - Sheldon FJ Dudley
- Department of Agriculture, Forest and FisheriesPrivate Bag X2, Rogge Bay 8012, Cape Town, South Africa
- KwaZulu-Natal Sharks BoardPrivate Bag 2, Umhlanga Rocks 4320, KwaZulu-Natal, South Africa
- Biomedical Resource Unit, University of KwaZulu-NatalPrivate Bag X54001, Durban 4056, South Africa
| | - Geremy Cliff
- KwaZulu-Natal Sharks BoardPrivate Bag 2, Umhlanga Rocks 4320, KwaZulu-Natal, South Africa
- Biomedical Resource Unit, University of KwaZulu-NatalPrivate Bag X54001, Durban 4056, South Africa
| | - Sabine P Wintner
- KwaZulu-Natal Sharks BoardPrivate Bag 2, Umhlanga Rocks 4320, KwaZulu-Natal, South Africa
- Biomedical Resource Unit, University of KwaZulu-NatalPrivate Bag X54001, Durban 4056, South Africa
| | - Sean T Fennessy
- Oceanographic Research InstitutePO Box 10712, Marine Parade, Durban 4056, South Africa
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
44
|
Lehnert K, Seibel H, Hasselmeier I, Wohlsein P, Iversen M, Nielsen NH, Heide-Jørgensen MP, Prenger-Berninghoff E, Siebert U. Increase in parasite burden and associated pathology in harbour porpoises (Phocoena phocoena) in West Greenland. Polar Biol 2013. [DOI: 10.1007/s00300-013-1433-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Nielsen J, Hedeholm RB, Simon M, Steffensen JF. Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol 2013. [DOI: 10.1007/s00300-013-1408-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Strid A, Bruhn C, Sverko E, Svavarsson J, Tomy G, Bergman Å. Brominated and chlorinated flame retardants in liver of Greenland shark (Somniosus microcephalus). CHEMOSPHERE 2013; 91:222-228. [PMID: 23360749 DOI: 10.1016/j.chemosphere.2012.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are known brominated flame retardants that have now been banned or phased out in many parts of the world. As a consequence, interest in the environmental occurrence of non-PBDE flame retardants has increased. In the present study several potential PBDE replacement products together with short chained chlorinated paraffins (SCCPs) were assessed in Greenland sharks accidentally caught in waters around Iceland between 2001 and 2003. Non-PBDE flame retardants detected were pentabromoethylbenzene (PBEB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 2,3,5,6-tetrabromo-p-xylene (TBX). The concentrations were lower than levels of BDE-47 but similar to other PBDE congeners previously reported in Greenland shark. The median concentrations of SCCPs was 430 ng g(-1) fat, similar to individual PCB congeners previously reported. This is the first report of SCCPs, BTBPE, PBEB and TBX in any shark species globally and confirms the usefulness of the Greenland shark as a screening species for environmental contamination in the Arctic and sub-Arctic environment.
Collapse
Affiliation(s)
- Anna Strid
- Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
White WT, Blaber SJM, Craig JF. The current status of elasmobranchs: biology, fisheries and conservation. JOURNAL OF FISH BIOLOGY 2012; 80:897-900. [PMID: 22497366 DOI: 10.1111/j.1095-8649.2012.03268.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|