1
|
Kanaya T, Jinnohara T, Sakakibara S, Tachibana N, Sasaki T, Kato T, Riemann M, Jin J, Shiroguchi K, Kawakami E, Ohno H. RelB and C/EBPα critically regulate the development of Peyer's patch mononuclear phagocytes. Mucosal Immunol 2025; 18:151-161. [PMID: 39413971 DOI: 10.1016/j.mucimm.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
To establish protection against harmful foreign antigens, the small intestine harbors guardian sites called Peyer's patches (PPs). PPs take up antigens through microfold (M) cells and transfer them to the sub-epithelial dome (SED), which contains a high density of mononuclear phagocytes (MPs), for T cell-priming. Accumulating evidence indicates that SED-MPs have unique functions other than T cell-priming to facilitate mucosal immune responses; however, the crucial factors regulating the functions of SED-MPs have not been determined. Here we performed transcriptome analysis, and identified the gene signatures of SED-MPs. Further data interpretation with transcription factor (TF) enrichment analysis estimated TFs responsible for the functions of SED-MPs. Among them, we found that RelB and C/EBPα were preferentially activated in SED-MPs. RelB-deficiency silenced the expression of IL-22BP and S100A4 by SED-MPs. On the other hand, C/EBPα-deficiency decreased the expression of lysozyme by SED-MPs, resulting the increased invasion of orally administered pathogenic bacteria into PPs and mesenteric lymph nodes. Our findings thus demonstrate that RelB and C/EBPα are essential to regulate the functions of SED-MPs.
Collapse
Affiliation(s)
- Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Toshi Jinnohara
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Sayuri Sakakibara
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Marc Riemann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Jianshi Jin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Kanagawa, Japan; Department of Artificial intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| |
Collapse
|
2
|
Kuroda Y, Maruyama K, Fujii H, Sugawara I, Ko SBH, Yasuda H, Matsui H, Matsuo K. Osteoprotegerin Regulates Pancreatic β-Cell Homeostasis upon Microbial Invasion. PLoS One 2016; 11:e0146544. [PMID: 26751951 PMCID: PMC4709133 DOI: 10.1371/journal.pone.0146544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/19/2015] [Indexed: 12/19/2022] Open
Abstract
Osteoprotegerin (OPG), a decoy receptor for receptor activator of NF-κB ligand (RANKL), antagonizes RANKL’s osteoclastogenic function in bone. We previously demonstrated that systemic administration of lipopolysaccharide (LPS) to mice elevates OPG levels and reduces RANKL levels in peripheral blood. Here, we show that mice infected with Salmonella, Staphylococcus, Mycobacteria or influenza virus also show elevated serum OPG levels. We then asked whether OPG upregulation following microbial invasion had an effect outside of bone. To do so, we treated mice with LPS and observed OPG production in pancreas, especially in β-cells of pancreatic islets. Insulin release following LPS administration was enhanced in mice lacking OPG, suggesting that OPG inhibits insulin secretion under acute inflammatory conditions. Consistently, treatment of MIN6 pancreatic β-cells with OPG decreased their insulin secretion following glucose stimulation in the presence of LPS. Finally, our findings suggest that LPS-induced OPG upregulation is mediated in part by activator protein (AP)-1 family transcription factors, particularly Fos proteins. Overall, we report that acute microbial infection elevates serum OPG, which maintains β-cell homeostasis by restricting glucose-stimulated insulin secretion, possibly preventing microbe-induced exhaustion of β-cell secretory capacity.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Maruyama
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Hideki Fujii
- Department of Immunology Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Isamu Sugawara
- Mycobacterial Reference Center, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shigeru B. H. Ko
- Department of Systems Medicine, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Shiga, Japan
| | - Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Matsui H, Isshiki Y, Eguchi M, Ogawa Y, Shimoji Y. Evaluation of the live vaccine efficacy of virulence plasmid-cured, and phoP- or aroA-deficient Salmonella enterica serovar Typhimurium in mice. J Vet Med Sci 2014; 77:181-6. [PMID: 25341392 PMCID: PMC4363020 DOI: 10.1292/jvms.14-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the protective efficacy of 94-kb virulence plasmid-cured, and phoP- or aroA-deficient strains of Salmonella enterica serovar Typhimurium (ΔphoP or ΔaroA S. Typhimurium) as oral vaccine candidates in BALB/c mice. Two weeks after the completion of 3 oral immunizations with 1 × 108 colony-forming units (CFU) of virulence plasmid-cured, and ΔphoP or ΔaroA S. Typhimurium at 10-day intervals, S. Typhimurium lipopolysaccharide (LPS)-specific mucosal secretory immunoglobulin A (s-IgA) antibody titers were detected in the cecal homogenate, bile and lung lavage fluid, but not in the intestinal lavage fluid. In addition, the increases in S. Typhimurium LPS-specific immunoglobulin G (IgG) and IgA antibody titers in the serum were also observed 2 weeks after completing 3 oral immunizations with virulence
plasmid-cured, and ΔphoP or ΔaroA S. Typhimurium. The series of 3 oral immunizations protected the mice against an oral challenge with 5 × 108 CFU of the virulent strain of S. Typhimurium, suggesting that both the virulence plasmid-cured, and ΔphoP and ΔaroA S. Typhimurium strains are promising candidates for safe and effective live S. Typhimurium vaccines.
Collapse
Affiliation(s)
- Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
4
|
Sano GI, Takada Y, Goto S, Maruyama K, Shindo Y, Oka K, Matsui H, Matsuo K. Flagella facilitate escape of Salmonella from oncotic macrophages. J Bacteriol 2007; 189:8224-32. [PMID: 17873035 PMCID: PMC2168665 DOI: 10.1128/jb.00898-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The intracellular parasite Salmonella enterica serovar Typhimurium causes a typhoid-like systemic disease in mice. Whereas the survival of Salmonella in phagocytes is well understood, little has been documented about the exit of intracellular Salmonella from host cells. Here we report that in a population of infected macrophages Salmonella induces "oncosis," an irreversible progression to eukaryotic cell death characterized by swelling of the entire cell body. Oncotic macrophages (OnMphis) are terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling negative and lack actin filaments (F-actin). The plasma membrane of OnMphis filled with bacilli remains impermeable, and intracellular Salmonella bacilli move vigorously using flagella. Eventually, intracellular Salmonella bacilli intermittently exit host cells in a flagellum-dependent manner. These results suggest that induction of macrophage oncosis and intracellular accumulation of flagellated bacilli constitute a strategy whereby Salmonella escapes from host macrophages.
Collapse
Affiliation(s)
- Gen-ichiro Sano
- Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Eguchi M, Sekiya Y, Kikuchi Y, Takaya A, Yamamoto T, Matsui H. ExpressedSalmonellaantigens within macrophages enhance the proliferation of CD4+and CD8+T lymphocytes by means of bystander dendritic cells. ACTA ACUST UNITED AC 2007; 50:411-20. [PMID: 17573927 DOI: 10.1111/j.1574-695x.2007.00275.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP-dependent Lon protease-deficient Salmonella enterica serovar Typhimurium (strain CS2022) appeared to invade successfully the mesenteric lymph nodes (MLN) and Peyer's patches (PP) of BALB/c mice and appeared to be easily eradicated by the host after oral immunization. As detected by flow cytometry, the population of major histocompatibility complex class I (MHC-I)-expressing macrophages and dendritic cells (DCs) was increased in the PP of mice immunized with CS2022 on day 6 after immunization. Thereafter, the population of splenic surface CD69(+) T lymphocytes prepared from mice immunized with CS2022 6 weeks prior to measurement increased as a result of the administration of the extracellular vesicles of RAW264.7 macrophage-like cells derived by Salmonella challenge. In addition, the proliferation of CD8(+) and even of CD4(+)T cells isolated from mouse spleens immunized with CS2022 was enhanced after cocultivation with naive DCs in the presence of the extracellular vesicles. These findings indicate that the extracellular vesicles prepared from the Salmonella-challenged macrophages carried salmonellae antigens to bystander DCs, thereby stimulating T-cell responses. Therefore, as antigen presentation after phagocytosis should be a central process in the T-cell activation that occurs in response to Salmonella infection, an oral immunization with CS2022 sufficiently induces T cell-mediated immunity in mice.
Collapse
Affiliation(s)
- Masahiro Eguchi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Haga T, Kumabe S, Ikejiri A, Shimizu Y, Li H, Goto Y, Matsui H, Miyata H, Miura T. In vitro and in vivo stability of plasmids in attenuated Salmonella enterica serovar typhimurium used as a carrier of DNA vaccine is associated with its replication origin. Exp Anim 2006; 55:405-9. [PMID: 16880689 DOI: 10.1538/expanim.55.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability of live attenuated Salmonella enterica serovar typhimurium (S. typhimurium) as a carrier of DNA vaccine was evaluated using model plasmid encoding beta-galactosidase (beta-Gal) and BALB/c mice. We constructed pBRCMVbeta, beta-Gal expression apparatus having a replication origin from low copy pBR322. Comparison of the plasmid stability showed that pBRCMVbeta remained stable in Salmonella even after oral administration, while pUC-based pCMVbeta tended to be lost quickly. However, titers for beta-Gal specific IgG in sera did not significantly increase in mice orally administered S. typhimurium harboring pBRCMVbeta. These data suggest that the stability of plasmid in S. typhimurium is associated with its replication origin. Further studies are required to scientifically establish this methodology.
Collapse
Affiliation(s)
- Takeshi Haga
- Department of Veterinary Microbiology, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kodama C, Eguchi M, Sekiya Y, Yamamoto T, Kikuchi Y, Matsui H. Evaluation of the Lon-deficient Salmonella strain as an oral vaccine candidate. Microbiol Immunol 2006; 49:1035-45. [PMID: 16365528 DOI: 10.1111/j.1348-0421.2005.tb03700.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We evaluated the efficacy of CS2022 (the Lon protease-deficient mutant strain of Salmonella enterica serovar Typhimurium) as a candidate live oral vaccine strain against subsequent oral challenge with a virulent strain administered to BALB/c and C57BL/6 mice. CS2022 persistently resided in the spleen, mesenteric lymph nodes, Peyer's patches, and cecum of both strains of mice after a single oral inoculation with 1 x 10(8) colony-forming units. Finally, CS2022 almost disappeared from each tissue sample by week 12 in BALB/c mice, whereas CS2022 still resided in each tissue type at week 12 after inoculation of C57BL/6 mice. A significant increase in the serovar Typhimurium lipopolysaccharide-specific secretory immunoglobulin A (s-IgA), as measured for one of the mucosal immune responses, was detected in bile and intestinal samples of both strains of immunized mice at week 4 after immunization. In addition, the expression of gamma interferon mRNA in the spleens of both strains of immunized mice, especially those of C57BL/6 mice, was significantly increased at week 4 after immunization and was boosted during the following 5 days after the challenge was administered to the mice. Furthermore, peritoneal macrophages isolated from immunized mice at week 4 after immunization exhibited an increase in intracellular killing activity against both virulent and avirulent Salmonella. The present results suggested that salmonellae-specific s-IgA on the mucosal surfaces induced by immunization with CS2022 generally prevented mice from succumbing to an oral challenge with a virulent strain. Simultaneously, CS2022 promoted the protective immunity associated with macrophages in both strains of mice.
Collapse
Affiliation(s)
- Chie Kodama
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Matsui H, Eguchi M, Ohsumi K, Nakamura A, Isshiki Y, Sekiya K, Kikuchi Y, Nagamitsu T, Masuma R, Sunazuka T, Omura S. Azithromycin inhibits the formation of flagellar filaments without suppressing flagellin synthesis in Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 2005; 49:3396-403. [PMID: 16048953 PMCID: PMC1196272 DOI: 10.1128/aac.49.8.3396-3403.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The present study shows that a sub-MIC of the macrolide antibiotic azithromycin (AZM) diminishes the virulence function of Salmonella enterica serovar Typhimurium. We first constructed an AZM-resistant strain (MS248) by introducing ermBC, an erythromycin ribosome methylase gene, into serovar Typhimurium. The MIC of AZM for MS248 exceeded 100 microg/ml. Second, we managed to determine the efficacy with which a sub-MIC of AZM reduced the virulence of MS248 in vitro. On the one hand, AZM (10 microg/ml) in the culture medium was unable to inhibit the total protein synthesis, growth rate, or survival within macrophages of MS248. On the other hand, AZM (10 microg/ml) reduced MS248's swarming and swimming motilities in addition to its invasive activity in Henle-407 cells. Electron micrographs revealed no flagellar filaments on the surface of MS248 after overnight growth in L broth supplemented with AZM (10 microg/ml). However, immunoblotting analysis showed that flagellin (FliC) was fully synthesized within the bacterial cells in the presence of AZM (10 microg/ml). In contrast, the same concentration of AZM reduced the export of FliC to the culture medium. These results indicate that a sub-MIC of AZM was able to affect the formation of flagellar filaments, specifically by reducing the amount of flagellin exported from bacterial cells, but it was not involved in suppressing the synthesis of flagellin. Unfortunately, AZM treatment was ineffective against murine salmonellosis caused by MS248.
Collapse
Affiliation(s)
- Hidenori Matsui
- Laboratory of Immunoregulation, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pizarro-Cerdá J, Tedin K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 2005; 52:1827-44. [PMID: 15186428 DOI: 10.1111/j.1365-2958.2004.04122.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous, overlapping global regulatory systems mediate the environmental signalling controlling the virulence of Salmonella typhimurium. With both extra- and intracellular lifestyles, unravelling the mechanisms involved in regulating Salmonella pathogenesis has been complex. Here, we report a factor co-ordinating environmental signals with global regulators involved in pathogenesis. An S. typhimuriumDeltarelADeltaspoT strain deficient in guanosine tetraphosphate (ppGpp) synthesis was found to be highly attenuated in vivo and non-invasive in vitro. The DeltarelADeltaspoT strain exhibited severely reduced expression of hilA and invF, encoding major transcriptional activators required for Salmonella pathogenicity island 1 (SPI-1) gene expression and at least two other pathogenicity islands. None of the growth conditions intended to mimic the intestinal milieu was capable of inducing hilA expression in the absence of ppGpp. However, the expression of global regulators of Salmonella virulence, RpoS and PhoP/Q, and RpoS- and PhoP/Q-dependent, non-virulence-related genes was not significantly different from the wild-type strain. The results indicate that ppGpp plays a central role as a regulator of virulence gene expression in S. typhimurium and implicates ppGpp as a major factor in the environmental and host-dependent regulation of Salmonella pathogenesis.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité Interactions Bactéries-Cellules, 28 Rue du Docteur Roux, F-75724 Cedex 15 Paris, France
| | | |
Collapse
|
10
|
Matsui H, Suzuki M, Isshiki Y, Kodama C, Eguchi M, Kikuchi Y, Motokawa K, Takaya A, Tomoyasu T, Yamamoto T. Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium. Infect Immun 2003; 71:30-9. [PMID: 12496146 PMCID: PMC143154 DOI: 10.1128/iai.71.1.30-39.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the efficacy of mutants with a deletion of the stress response protease gene as candidates for live oral vaccine strains against Salmonella infection through infection studies with mice by using a Salmonella enterica serovar Typhimurium mutant with a disruption of the ClpXP or Lon protease. In vitro, the ClpXP protease regulates flagellum synthesis and the ClpXP-deficient mutant strain exhibits hyperflagellated bacterial cells (T. Tomoyasu et al., J. Bacteriol. 184:645-653, 2002). On the other hand, the Lon protease negatively regulates the efficacy of invading epithelial cells and the expression of invasion genes (A. Takaya et al., J. Bacteriol. 184:224-232, 2002). When 5-week-old BALB/c mice were orally administered 5 x 10(8) CFU of the ClpXP- or Lon-deficient strain, bacteria were detected with 10(3) to 10(4) CFU in the spleen, mesenteric lymph nodes, Peyer's patches, and cecum 1 week after inoculation and the bacteria then decreased gradually in each tissue. Significant increases of lipopolysaccharide-specific immunoglobulin G (IgG) and secretory IgA were detected at week 4 and maintained until at least week 12 after inoculation in serum and bile, respectively. Immunization with the ClpXP- or Lon-deficient strain protected mice against oral challenge with the serovar Typhimurium virulent strain. Both the challenged virulent and immunized avirulent salmonellae were completely cleared from the spleen, mesenteric lymph nodes, Peyer's patches, and even cecum 5 days after the challenge. These data indicate that Salmonella with a disruption of the ATP-dependent protease ClpXP or Lon can be useful in developing a live vaccine strain.
Collapse
Affiliation(s)
- Hidenori Matsui
- Laboratory of Immunoregulation, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 2002; 184:224-32. [PMID: 11741864 PMCID: PMC134781 DOI: 10.1128/jb.184.1.224-232.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An early step in the pathogenesis of Salmonella enterica serovar Typhimurium infection is bacterial penetration of the intestinal epithelium. Penetration requires the expression of invasion genes found in Salmonella pathogenicity island 1 (SPI1). These genes are controlled in a complex manner by regulators in SPI1, including HilA and InvF, and those outside SPI1, such as two-component regulatory systems and small DNA-binding proteins. We report here that the expression of invasion genes and the invasive phenotype of S. enterica serovar Typhimurium are negatively regulated by the ATP-dependent Lon protease, which is known to be a major contributor to proteolysis in Escherichia coli. A disrupted mutant of lon was able to efficiently invade cultured epithelial cells and showed increased production and secretion of three identified SPI1 proteins, SipA, SipC, and SipD. The lon mutant also showed a dramatic enhancement in transcription of the SPI1 genes hilA, invF, sipA, and sipC. The increases ranged from 10-fold to almost 40-fold. It is well known that the expression of SPI1 genes is also regulated in response to several environmental conditions. We found that the disruption of lon does not abolish the repression of hilA and sipC expression by high-oxygen or low-osmolarity conditions, suggesting that Lon represses SPI1 gene expression by a regulatory pathway independent of these environmental signals. Since HilA is thought to function as a central regulator of SPI1 gene expression, it is speculated that Lon may regulate SPI1 gene expression by proteolysis of putative factors required for activation of hilA expression.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Salmonella species proliferate within membrane-bound vacuoles of eukaryotic cells. Recent work has shown that macrophages are the main cell type supporting bacterial growth in vivo. In contrast, tissue culture models have traditionally described epithelial cells as the most permissive cells for bacterial growth. Unfortunately, no mechanism used by Salmonella to initiate growth within a vacuole has been characterised. Recently, it has been shown that Salmonella is capable of attenuating intracellular proliferation. This finding suggests that both the host and the pathogen contribute to a fine adjustment of the intracellular growth rate.
Collapse
Affiliation(s)
- F García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049-Madrid, Spain.
| |
Collapse
|
13
|
Matsui H, Eguchi M, Kikuchi Y. Effect of constitutively expressed phoP gene on the localization of Salmonella typhimurium within Mac-1 positive phagocytes. Microbiol Immunol 2001; 45:79-83. [PMID: 11270610 DOI: 10.1111/j.1348-0421.2001.tb01261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular localization of the wild-type (Spv+), the phoP-constitutively expressed strain (PhoPc), and the spv-deleted strain (Spv-) of Salmonella typhimurium was examined by the use of confocal laser scanning microscopy analysis of immunostained sections of mouse spleens after oral or subcutaneous inoculation. Only 40% of salmonellae of both the PhoPc and the Spv- strains were detected intracellularly within Mac-1 positive cells at day five after oral or day four after subcutaneous inoculation. In contrast, over 85% of salmonellae of the Spv+ strain were detected inside Mac-1 positive cells. In both inoculation trials, the splenic colony-forming unit values for the PhoPc and Spv- strains were significantly lower than the corresponding value for the Spv+ strain. These findings suggest that the constitutively expressed phoP gene of S. typhimurium attenuated virulence by limiting intracellular proliferation within mouse spleen phagocytes, and that the lack of spv genes had the same effect.
Collapse
Affiliation(s)
- H Matsui
- Center for Basic Research, The Kitasato Institute, Tokyo, Japan.
| | | | | |
Collapse
|
14
|
Cano DA, Martínez-Moya M, Pucciarelli MG, Groisman EA, Casadesús J, García-Del Portillo F. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 2001; 69:6463-74. [PMID: 11553591 PMCID: PMC98782 DOI: 10.1128/iai.69.10.6463-6474.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium proliferates within cultured epithelial and macrophage cells. Intracellular bacterial proliferation is, however, restricted within normal fibroblast cells. To characterize this phenomenon in detail, we investigated the possibility that the pathogen itself might contribute to attenuating the intracellular growth rate. S. enterica serovar Typhimurium mutants were selected in normal rat kidney fibroblasts displaying an increased intracellular proliferation rate. These mutants harbored loss-of-function mutations in the virulence-related regulatory genes phoQ, rpoS, slyA, and spvR. Lack of a functional PhoP-PhoQ system caused the most dramatic change in the intracellular growth rate. phoP- and phoQ-null mutants exhibited an intracellular growth rate 20- to 30-fold higher than that of the wild-type strain. This result showed that the PhoP-PhoQ system exerts a master regulatory function for preventing bacterial overgrowth within fibroblasts. In addition, an overgrowing clone was isolated harboring a mutation in a previously unknown serovar Typhimurium open reading frame, named igaA for intracellular growth attenuator. Mutations in other serovar Typhimurium virulence genes, such as ompR, dam, crp, cya, mviA, spiR (ssrA), spiA, and rpoE, did not result in pathogen intracellular overgrowth. Nonetheless, lack of either SpiA or the alternate sigma factor RpoE led to a substantial decrease in intracellular bacterial viability. These results prove for the first time that specific serovar Typhimurium virulence regulators are involved in a response designed to attenuate the intracellular growth rate within a nonphagocytic host cell. This growth-attenuating response is accompanied by functions that ensure the viability of intracellular bacteria.
Collapse
Affiliation(s)
- D A Cano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Matsui H, Bacot CM, Garlington WA, Doyle TJ, Roberts S, Gulig PA. Virulence plasmid-borne spvB and spvC genes can replace the 90-kilobase plasmid in conferring virulence to Salmonella enterica serovar Typhimurium in subcutaneously inoculated mice. J Bacteriol 2001; 183:4652-8. [PMID: 11443102 PMCID: PMC95362 DOI: 10.1128/jb.183.15.4652-4658.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a mouse model of systemic infection, the spv genes carried on the Salmonella enterica serovar Typhimurium virulence plasmid increase the replication rate of salmonellae in host cells of the reticuloendothelial system, most likely within macrophages. A nonpolar deletion in the spvB gene greatly decreased virulence but could not be complemented by spvB alone. However, a low-copy-number plasmid expressing spvBC from a constitutive lacUV5 promoter did complement the spvB deletion. By examining a series of spv mutations and cloned spv sequences, we deduced that spvB and spvC could be sufficient to confer plasmid-mediated virulence to S. enterica serovar Typhimurium. The spvBC-bearing plasmid was capable of replacing all of the spv genes, as well as the entire virulence plasmid, of serovar Typhimurium for causing systemic infection in BALB/c mice after subcutaneous, but not oral, inoculation. A point mutation in the spvBC plasmid preventing translation but not transcription of spvC eliminated the ability of the plasmid to confer virulence. Therefore, it appears that both spvB and spvC encode the principal effector factors for Spv- and plasmid-mediated virulence of serovar Typhimurium.
Collapse
Affiliation(s)
- H Matsui
- Laboratory of Infectious Diseases and Immunology, Center for Basic Research, The Kitasato Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- E A Groisman
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA.
| |
Collapse
|