1
|
Maeyama JI, Kurata-Iesato Y, Isaka M, Komiya T, Sakurai S. Induction of antibody responses in mice immunized intranasally with Type I interferon as adjuvant and synergistic effect of chitosan. Microbiol Immunol 2020; 64:610-619. [PMID: 32662896 DOI: 10.1111/1348-0421.12832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023]
Abstract
Type I IFNs are a range of host-derived molecules with adjuvant potential; they have been used for many years in the treatment of cancer and viral hepatitis. Therefore, the safety of IFNs for human use has been established. In this study, we evaluated the mucosal adjuvanticity of IFN-β administered intranasally to mice with diphtheria toxoid, and suggested a method to improve its adjuvanticity. When IFN-β alone was used as a mucosal adjuvant, no clear results were obtained. However, simultaneous administration of IFN-β and chitosan resulted in an enhancement of the specific serum immunoglobulin G (IgG) and IgA antibody responses, the mucosal IgA antibody response, and antitoxin titers. Furthermore, the intranasal administration of IFN-α alone resulted in a greater increase in antibody titer than IFN-β, and a synergistic effect with chitosan was also observed. These findings suggest that intranasal administration of chitosan and Type I IFNs may display an effective synergistic mucosal adjuvant activity.
Collapse
Affiliation(s)
- Jun-Ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Kurata-Iesato
- Department of Pharmaceutical Quality Assurance, Toray Industries Inc., Mishima, Japan
| | - Masanori Isaka
- Department of Microbiology, Nagoya City University Medical School, Nagoya, Japan
| | - Takako Komiya
- Department of Bacterial Pathogenesis and Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shingou Sakurai
- Faculty of Pharmacy, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
2
|
Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with Enterotoxins for the Generation of Secretory Immunity or Tolerance: Applications for Oral Infections. J Dent Res 2016; 84:1104-16. [PMID: 16304439 DOI: 10.1177/154405910508401205] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4+ and CD8+ T-cells, and B-cells. Numerous factors—including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model—affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, Immunology, and Parasitology, and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
3
|
Gohar A, Abdeltawab NF, Fahmy A, Amin MA. Development of safe, effective and immunogenic vaccine candidate for diarrheagenic Escherichia coli main pathotypes in a mouse model. BMC Res Notes 2016; 9:80. [PMID: 26860931 PMCID: PMC4748553 DOI: 10.1186/s13104-016-1891-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
Background Enteric and diarrheal diseases are important causes of childhood death in the developing world. These diseases are responsible for more than 750 thousand deaths in children under 5 years old worldwide, ranking second cause of death, after lower respiratory diseases, in this age group. Among the major causative agents of diarrhea is Escherichia coli. There are several vaccine trials for diarrheagenic E. coli. However, diarrheagenic E. coli has seven pathotypes and vaccines are directed for one or two of the five main pathotypes-causing diarrhea. Currently, there are no combined vaccines available in the market for all five diarrheagenic E. coli pathotypes. Therefore, we aimed to develop a low-cost vaccine candidate combining the five main diarrheagenic E. coli to offer wide-spectrum protection. We formulated a formalin-killed whole-cell mixture of enteroaggregative, enteropathogenic, enteroinvasive, enterohemorrhagic, and enterotoxigenic E. coli pathotypes as a combined vaccine candidate. Results We immunized Balb/C mice subcutaneously with 109 CFU of combined vaccine candidate and found a significant increase in survival rate post challenge compared to unimmunized controls (100 % survival). Next we aimed to determine the immunological response of mice to the combined vaccine candidate compared to each pathotype immunization. To do so, we immunized mice groups with combined vaccine candidate and monitored biomarkers levels over 6 weeks as well as measured responses post challenge with relevant living E. coli. We found significant increase in specific systemic antibodies (IgG), interferon gamma (IFNγ) and interleukin 6 (IL-6) levels elicited by combined vaccine candidate especially in the first 2 weeks after mice immunization compared to controls (p < 0.05). We also evaluated alum and cholera toxin B subunit (CTB) as potential adjuvant systems for our candidate vaccine. We found that CTB-adjuvanted combined vaccine candidate showed significantly higher IgG and IFNγ levels than alum. Conclusions Overall, our combined vaccine candidate offered protection against the five main diarrheagenic E. coli pathotypes in a single vaccine using mouse model. To the best of our knowledge, this is the first combined vaccine against the five main diarrheagenic E. coli pathotypes that is cost-effective with promise for further testing in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1891-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asmaa Gohar
- Viral Control Unit, National Organization of Research and Control of Biological, Cairo, Egypt.
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Ali Fahmy
- Viral Control Unit, National Organization of Research and Control of Biological, Cairo, Egypt. .,Research and Development Sector, Egyptian Company for Production of Vaccines, Sera and Drugs, The Holding Company for Biological Products and Vaccines (VACSERA), Cairo, Egypt.
| | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Abstract
Bacterial DNA comprising palindromic sequences and containing unmethylated CpG is recognized by toll-like receptor 9 of plasmacytoid dendritic cells (pDCs) and induces the production of interferon-α and chemokines, leading to the activation of a Th1 immune response. Therefore, synthetic equivalents of bacterial DNA (CpG oligodeoxynucleotides) have been developed for clinical applications. They are usually phosphorothioated for in vivo use; this approach also leads to adverse effects as reported in mouse models.Mucosal vaccines that induce both mucosal and systemic immunity received substantial attention in recent years. For their development, phosphodiester-linked oligodeoxynucleotides, including the sequence of a palindromic CpG DNA may be advantageous as adjuvants because their target pDCs are present right there, in the mucosa of the vaccination site. In addition, the probability of adverse effects is believed to be low. Here, we review the discovery of such CpG oligodeoxynucleotides and their possible use as mucosal adjuvants.
Collapse
Key Words
- Ab, antibody
- BCG, Mycobacterium bovis Bacillus Calmette-Guerin
- CpG
- DT, diphtheria toxoid
- DTH, delayed-type hypersensitivity
- G, guanine
- IFN, interferon
- IgG1
- IgG2a/c
- ODNs, oligodeoxynucleotides
- PBMCs, peripheral blood mononuclear cells
- PPD, purified protein derivative
- TLR, toll-like receptor
- Th1
- mucosal adjuvant
- pDC
- pDCs, plasmacytoid dendritic cells
- palindrome
- phosphodiester
- phylaxis
- rCTB, recombinant cholera toxin B subunit
- sIgA, secretory IgA
- secretory IgA
Collapse
Affiliation(s)
- Sumiko Iho
- a Host Defense Laboratory; Faculty of Medical Sciences; University of Fukui ; Yoshida-gun , Fukui , Japan
| | | | | |
Collapse
|
5
|
Wiedinger K, Romlein H, Bitsaktsis C. Cholera toxin B induced activation of murine macrophages exposed to a fixed bacterial immunogen. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:155-63. [PMID: 26668753 DOI: 10.1177/2051013615613473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Previous studies have demonstrated that intranasal administration of inactivated (fixed) Francisella tularensis (iFt) live vaccine strain (LVS) in conjunction with the mucosal adjuvant, cholera toxin B (CTB), provides full protection against subsequent lethal challenge with Ft LVS and partial protection against the more virulent Ft SchuS4 strain. Understanding the mechanisms of CTB-induced immune stimulation that confer protection against Ft will be valuable to the development of an effective vaccine against this highly virulent fatal pathogen. In this study, an in vitro system was utilized to further elucidate the immunologic adjuvant effect of CTB when administered with the fixed bacterial immunogen iFt. METHODS The murine macrophage cell line (RAW264.7) was treated with combinations of iFt and CTB. The treated RAW264.7 cells and their supernatants were collected and assessed for cell surface marker expression and cytokine secretion. In addition, the ability of RAW264.7 cells to present bacterial antigens (iFt or LVS) to an Ft-specific T-cell hybridoma cell line, following exposure to CTB, was analyzed. RESULTS We found that RAW264.7 cells responded to treatment with iFt + CTB by an increased secretion of the proinflammatory cytokines interleukin 6 and tumor necrosis factor α and upregulation of the surface expression of toll-like receptor 4 and the costimulatory molecules CD80 and CD86. Furthermore, the experimental vaccine treatment iFt + CTB enhanced the ability of macrophages to present iFt antigens to an FT-specific T-cell hybridoma cell line, although they failed to do so with LVS. CONCLUSION The adjuvant CTB administered in conjunction with iFt showed evidence of enhancing an antigen-specific proinflammatory response in vitro. These observations allow us to define, in part, the mechanisms of immune activation conferred by mucosal administration of iFt + CTB against lethal F. tularensis challenge.
Collapse
|
6
|
Maeyama JI, Isaka M, Yasuda Y, Matano K, Morokuma K, Ohkuma K, Tochikubo K, Yamamoto S, Goto N. Effects of Recombinant Cholera Toxin B Subunit (rCTB) on Cellular Immune Responses: Enhancement of Delayed-Type Hypersensitivity Following Intranasal Co-Administration ofMycobacterium bovis-BCG with rCTB. Microbiol Immunol 2013; 48:457-63. [PMID: 15215619 DOI: 10.1111/j.1348-0421.2004.tb03536.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recombinant cholera toxin B subunit (rCTB) is a safe and potent mucosal adjuvant. To gain insight into the mechanism underlying the adjuvant effect of rCTB, the effects of rCTB on cell-mediated immune responses of mice and guinea pigs were examined after intranasal administration of Mycobacterium bovis -bacillus Calmette-Guérin (BCG) with and without rCTB. Delayed-type hypersensitivity, for skin reactions in guinea pigs and for footpad swelling reactions in mice, to purified protein derivative (PPD) were enhanced by intranasal co-administration of BCG and rCTB, as compared to giving BCG alone to these animals. Moreover, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma production of spleen cells and antigen specific spleen cell proliferation, stimulated with PPD, were enhanced in the presence of rCTB. These results strongly suggest that rCTB enhances cellular as well as humoral immune responses.
Collapse
Affiliation(s)
- Jun-Ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cloning, expression, purification and characterization of the cholera toxin B subunit and triple glutamic acid decarboxylase epitopes fusion protein in Escherichia coli. Protein Expr Purif 2009; 66:191-7. [PMID: 19364533 DOI: 10.1016/j.pep.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
Induction of specific immunological unresponsiveness by oral autoantigens such as glutamic acid decarboxylase 65 (GAD65) is termed oral tolerance and may be a potential therapy for autoimmune diabetes. However, the requirement for large amounts of protein will limit clinical testing of autoantigens, which are difficult to produce. Mucosal adjuvants such as cholera toxin B subunit (CTB) may lower the level of autoantigens required. Here we describe cloning, expression, purification and identification study of the CTB and triple GAD(531-545) epitopes fusion gene. The fusion gene was ligated via a flexible hinge tetrapeptide and expressed as a soluble protein in Escherichia coli BL21 (DE3) driven by the T7 promoter. We purified the recombination protein from the cell lysate and obtained approximately 2.5mg of CTB-GAD((531-545)3) per liter of culture with greater than 90% purity by a Ni-NTA resin column. The bacteria produced this protein as the pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and GAD65. Further studies revealed that oral administration of bacterial CTB-GAD((531-545)3) fusion protein showed the prominent reduction in pancreatic islet inflammation in non-obese diabetic mice. The results presented here demonstrate that the bacteria bioreactor is an ideal production system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes.
Collapse
|
8
|
The mucosal adjuvanticity of the oligodeoxynucleotides containing a non-methylated CpG motif on BCG and diphtheria toxoid. Vaccine 2009; 27:1166-73. [PMID: 19136040 DOI: 10.1016/j.vaccine.2008.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 12/09/2008] [Accepted: 12/18/2008] [Indexed: 12/13/2022]
Abstract
CpG-DNA is currently attracting attention as an effective and safe vaccine adjuvant to prevent from microbial infections. In this report, we examined the effects of oligo B, which is a synthetic CpG-DNA, in mucosal administration of Bacillus Calmette-Guérin (BCG) and diphtheria toxoid (DT). Co-administration with oligo B enhanced BCG-induced delayed type hypersensitivity to purified protein derivative (PPD) in guinea pigs. The titers of anti-DT serum IgG, IgA and mucosal IgA antibodies induced by intranasal administration with DT plus oligo B were significantly higher than that with DT alone. In both C57BL/6 and BALB/c mice, intranasal administration of DT with oligo B induced enough level of antibodies to prevent onset of diphtheria. The analysis of antibody subclasses showed that intranasal administration of oligo B induced not only IgG1 but also IgG2a, IgG2c and IgA anti-DT antibodies. In contrast, there was no or little production of the anti-DT serum IgE. Taken together our data suggest that oligo B is a powerful adjuvant in mucosal immunization.
Collapse
|
9
|
Donaldson DS, Williams NA. Bacterial toxins as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:1-18. [PMID: 20054971 DOI: 10.1007/978-1-4419-1601-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial toxins are the causative agent at pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immunomodulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases. Furthermore, the ability of toxins to gain entry to cells can be used in novel bacterial toxin based immuno-therapies in order to deliver antigens into MHC Class I processing pathways. Whether the immunomodulatory properties of these toxins arose in order to enhance bacterial survival within hosts, to aid spread within the population or is pure serendipity, it is interesting to think that these same toxins potentially hold the key to preventing or treating human disease.
Collapse
Affiliation(s)
- David S Donaldson
- Department of Cellular and Molecular Medicine, School of Medicine Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
10
|
Isaka M, Zhao Y, Nobusawa E, Nakajima S, Nakajima K, Yasuda Y, Matsui H, Hasegawa T, Maeyama JI, Morokuma K, Ohkuma K, Tochikubo K. Protective effect of nasal immunization of influenza virus hemagglutinin with recombinant cholera toxin B subunit as a mucosal adjuvant in mice. Microbiol Immunol 2008; 52:55-63. [DOI: 10.1111/j.1348-0421.2008.00010.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Isomura I, Yasuda Y, Tsujimura K, Takahashi T, Tochikubo K, Morita A. Recombinant cholera toxin B subunit activates dendritic cells and enhances antitumor immunity. Microbiol Immunol 2005; 49:79-87. [PMID: 15665457 DOI: 10.1111/j.1348-0421.2005.tb03632.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of dendritic cells (DC) is crucial for priming of cytotoxic T lymphocytes (CTL), which have a critical role in tumor immunity, and it is considered that adjuvants are necessary for activation of DC and for enhancement of cellular immunity. In this study, we examined an adjuvant capacity of recombinant cholera toxin B subunit (rCTB), which is non-toxic subunit of cholera toxin, on maturation of murine splenic DC. After the in vitro incubation of DC with rCTB, the expression of MHC class II and B7-2 on DC was upregulated and the secretion of IL-12 from DC was enhanced. In addition, larger DC with longer dendrites were observed. These data suggest that rCTB induced DC maturation. Subsequently, we examined the induction of tumor immunity by rCTB-treated DC by employing Meth A tumor cells in mice. Pretreatment with subcutaneous injection of rCTB-treated DC pulsed with Meth A tumor lysate inhibited the growth of the tumor cells depending on the number of DC. Moreover, intratumoral injection of rCTB-treated DC pulsed with tumor lysate had therapeutic effect against established Meth A tumor. Immunization with DC activated by rCTB and the tumor lysate increased number of CTL precursor recognizing Meth A tumor. The antitumor immune response was significantly inhibited in CD8+ T cell-depleted mice, although substantial antitumor effect was observed in CD4+ T cell-depleted mice. These results indicated that rCTB acts as an adjuvant to enhance antitumor immunity through DC maturation and that CD8+ T cells play a dominant role in the tumor immunity. Being considered to be safe, rCTB may be useful as an effective adjuvant to raise immunity for a tumor in clinical application.
Collapse
Affiliation(s)
- Iwao Isomura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Royaee AR, Mendis C, Das R, Jett M, Yang DCH. Cholera toxin induced gene expression alterations. Mol Immunol 2005; 43:702-9. [PMID: 16360015 DOI: 10.1016/j.molimm.2005.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Indexed: 01/17/2023]
Abstract
The cholera toxin (CT) is a well-known inducer of cAMP and cAMP regulates gene expression of many genes. However, little is known as to the alterations in gene expression in response to CT. Here the alterations of the expression of 800 selected genes in response to CT were examined using cDNA microarrays. Gene expression alterations in human lymphocytes and monocytes were found after exposure to CT at varying concentrations for different time periods. Over 200 genes showed varying degrees of alterations of expression in CT-treated cells. The CT-induced changes in gene expression were compared by cDNA microarrays under the same conditions to those in response to forskolin, a specific activator of adenylate cyclase, and MDL-12, an irreversible inhibitor of adenylate cyclase. Thirty-five CT-responsive genes were found responded similarly to forskolin but differently to MDL-12. Fourteen CT-responsive genes were affected similarly by MDL-12 but differently by forskolin. Many of these CT responsive genes were involved in immunity, inflammation and oxidative stress. The CT induced responses correlated with those induced by CT subunits. The down regulation of Th1 markers and upregulation of Th2 markers by CT are consistent with the CT induction of Th2 cells.
Collapse
Affiliation(s)
- Atabak R Royaee
- Department of Chemistry, Georgetown University, 37th, 654 Reiss Science Building, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
13
|
Yasuda Y, Isaka M, Taniguchi T, Zhao Y, Matano K, Matsui H, Morokuma K, Maeyama JI, Ohkuma K, Goto N, Tochikubo K. Frequent nasal administrations of recombinant cholera toxin B subunit (rCTB)-containing tetanus and diphtheria toxoid vaccines induced antigen-specific serum and mucosal immune responses in the presence of anti-rCTB antibodies. Vaccine 2003; 21:2954-63. [PMID: 12798639 DOI: 10.1016/s0264-410x(03)00114-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination via a mucosal route is a very attractive means for immunization, because both local and systemic immune responses are inducible and vaccines can be administered easily and safely from infants to elderly persons. For developing widely applicable mucosal vaccines using recombinant cholera toxin B subunit (rCTB) as a safe adjuvant, we examined whether frequent nasal administrations of rCTB-containing same and different vaccines could induce antigen-specific immune responses without induction of systemic tolerance and suppression by pre-existing anti-rCTB immunity. Ten repetitive nasal administrations to mice of tetanus toxoid (TT) + rCTB or diphtheria toxoid (DT) + rCTB raised and maintained high levels of antigen- and rCTB-specific serum IgG including high levels of tetanus/diphtheria antitoxin titres and raised nasal, salivary, lung, vaginal and fecal secreted IgA, suggesting that the regimen did not induce systemic tolerance to TT/DT and rCTB. Mice successively received repetitive five doses of TT as the first antigen and subsequent five doses of DT as the second antigen, and vice versa, raised serum IgG to the second antigen at various levels including low but sufficient protective levels of antitoxin titres and induced mucosal IgA in the lungs, the vaginas and feces, but hardly in the nasal secretions and salivas. After an interval of 22 weeks between the dosage of the first and second antigens, mice induced serum IgG to the second antigen at high levels and mucosal IgA in all sites. In conclusion, anti-TT and -DT serum and mucosal antibody responses induced by repeated intranasal immunization using rCTB adjuvant lasted for a long period, and for improving the effectivity of vaccination, different rCTB-containing vaccines should be administered at appropriate intervals.
Collapse
Affiliation(s)
- Yoko Yasuda
- Department of Microbiology, Nagoya City University Medical School, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maeyama JI, Isaka M, Yasuda Y, Matano K, Taniguchi T, Morokuma K, Ohkuma K, Tochikubo K, Goto N. Effects of recombinant cholera toxin B subunit on IL-1beta production by macrophages in vitro. Microbiol Immunol 2003; 46:593-9. [PMID: 12437026 DOI: 10.1111/j.1348-0421.2002.tb02740.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant cholera toxin B subunit (rCTB) is a safe and potent mucosal adjuvant. As a clue to the mechanism of the adjuvant effect of rCTB, the profile of cytokines secreted in vitro by the mouse peritoneal macrophage (Mphi) treated with rCTB was examined. IL-1beta secretion, intracellular production, and expression of its mRNA of LPS-stimulated Mphi was greatly enhanced by treatment with rCTB. IL-1beta production in response to other microbial stimulators, such as Pansorbin, Sansorbin, insoluble peptidoglycan, and Taxol, was also potentiated by rCTB. Mphi pretreated with rCTB before 24 hr could maintain the ability to produce a high level of IL-1beta, suggesting that this ability may be involved in the adjuvant activity of rCTB on Mphi stimulation. The possibility of close association between rCTB and signal transduction of a Toll-like receptor family in Mphi is discussed.
Collapse
Affiliation(s)
- Jun-ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Usherwood EJ. A new approach to epitope confirmation by sampling effector/memory T cells migrating to the lung. J Immunol Methods 2002; 266:135-42. [PMID: 12133630 DOI: 10.1016/s0022-1759(02)00106-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identification of T cell epitopes that elicit a weak T cell response is technically challenging due to the relatively low resolution of many available screening assays. Peptide immunization can confirm the immunogenicity of a given peptide, however, this also often induces a low frequency response in lymphoid organs. In this report, we use the murine gammaherpesvirus-68 model system to describe a novel technique to enrich for antigen-experienced T cells in vivo as an aid to epitope mapping. Mice are immunized with peptides containing putative epitopes then effector/memory cells which migrate to the lungs are washed out and tested for specificity using intracellular staining for interferon gamma (IFN-gamma). We show that the lung is a site where there are elevated numbers of antigen-experienced T cells and this can be exploited to confirm otherwise low frequency T cell responses. In addition, we identify two novel T cell epitopes in the ORF65 protein of MHV-68 which will be valuable tools in the dissection of the immune response to this model gammaherpesvirus.
Collapse
Affiliation(s)
- Edward J Usherwood
- Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03755, USA.
| |
Collapse
|
16
|
Burkart V, Kim YE, Hartmann B, Ghiea I, Syldath U, Kauer M, Fingberg W, Hanifi-Moghaddam P, Müller S, Kolb H. Cholera toxin B pretreatment of macrophages and monocytes diminishes their proinflammatory responsiveness to lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1730-7. [PMID: 11823504 DOI: 10.4049/jimmunol.168.4.1730] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cholera toxin B chain (CTB) has been reported to suppress T cell-dependent autoimmune diseases and to potentiate tolerance of the adaptive immune system. We have analyzed the effects of CTB on macrophages in vitro and have found that preincubation with CTB (10 microg/ml) suppresses the proinflammatory reaction to LPS challenge, as demonstrated by suppressed production of TNF-alpha, IL-6, IL-12(p70), and NO (p < 0.01) in cells of macrophage lines. Pre-exposure to CTB also suppresses LPS-induced TNF-alpha and IL-12(p70) formation in human PBMC. Both native and recombinant CTB exhibited suppressive activity, which was shared by intact cholera toxin. In cells of the human monocyte line Mono Mac 6, exposure to CTB failed to suppress the production of IL-10 in response to LPS. Control experiments excluded a role of possible contamination of CTB by endotoxin or intact cholera toxin. The suppression of TNF-alpha production occurred at the level of mRNA formation. Tolerance induction by CTB was dose and time dependent. The suppression of TNF-alpha and IL-6 production could be counteracted by the addition of Abs to IL-10 and TGF-beta. IFN-gamma also antagonized the actions of CTB on macrophages. In contrast to desensitization by low doses of LPS, tolerance induction by CTB occurred silently, i.e., in the absence of a measurable proinflammatory response. These findings identify immune-deviating properties of CTB at the level of innate immune cells and may be relevant to the use of CTB in modulating immune-mediated diseases.
Collapse
Affiliation(s)
- Volker Burkart
- German Diabetes Research Institute, University of Dusseldorf, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|