1
|
Xu S, Lee I, Kwon SJ, Kim E, Nevo L, Straight L, Murata H, Matyjaszewski K, Dordick JS. Split fluorescent protein-mediated multimerization of cell wall binding domain for highly sensitive and selective bacterial detection. N Biotechnol 2024; 82:54-64. [PMID: 38750815 DOI: 10.1016/j.nbt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.
Collapse
Affiliation(s)
- Shirley Xu
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Eunsol Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Liv Nevo
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Lorelli Straight
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | | | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA.
| |
Collapse
|
2
|
Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. Front Bioeng Biotechnol 2023; 11:1215773. [PMID: 37795173 PMCID: PMC10546327 DOI: 10.3389/fbioe.2023.1215773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
B. anthracis is one of the most often weaponized pathogens. States had it in their bioweapons programs and criminals and terrorists have used or attempted to use it. This study is motivated by the narrative that emerging and developing technologies today contribute to the amplification of danger through greater easiness, accessibility and affordability of steps in the making of an anthrax weapon. As states would have way better preconditions if they would decide for an offensive bioweapons program, we focus on bioterrorism. This paper analyzes and assesses the possible bioterrorism threat arising from advances in synthetic biology, genome editing, information availability, and other emerging, and converging sciences and enabling technologies. Methodologically we apply foresight methods to encourage the analysis of contemporary technological advances. We have developed a conceptual six-step foresight science framework approach. It represents a synthesis of various foresight methodologies including literature review, elements of horizon scanning, trend impact analysis, red team exercise, and free flow open-ended discussions. Our results show a significant shift in the threat landscape. Increasing affordability, widespread distribution, efficiency, as well as ease of use of DNA synthesis, and rapid advances in genome-editing and synthetic genomic technologies lead to an ever-growing number and types of actors who could potentially weaponize B. anthracis. Understanding the current and future capabilities of these technologies and their potential for misuse critically shapes the current and future threat landscape and underlines the necessary adaptation of biosecurity measures in the spheres of multi-level political decision making and in the science community.
Collapse
Affiliation(s)
- Dunja Manal Sabra
- Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Bogenallee, Hamburg, Germany
| | | | | | | | | |
Collapse
|
3
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
4
|
Specific Isolation of Clostridium botulinum Group I Cells by Phage Lysin Cell Wall Binding Domain with the Aid of S-Layer Disruption. Int J Mol Sci 2022; 23:ijms23158391. [PMID: 35955526 PMCID: PMC9368847 DOI: 10.3390/ijms23158391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Clostridium botulinum is a notorious pathogen that raises health and food safety concerns by producing the potent botulinum neurotoxin and causing botulism, a potentially fatal neuroparalytic disease in humans and animals. Efficient methods for the identification and isolation of C. botulinum are warranted for laboratory diagnostics of botulism and for food safety risk assessment. The cell wall binding domains (CBD) of phage lysins are recognized by their high specificity and affinity to distinct types of bacteria, which makes them promising for the development of diagnostic tools. We previously identified CBO1751, which is the first antibotulinal phage lysin showing a lytic activity against C. botulinum Group I. In this work, we assessed the host specificity of the CBD of CBO1751 and tested its feasibility as a probe for the specific isolation of C. botulinum Group I strains. We show that the CBO1751 CBD specifically binds to C. botulinum Group I sensu lato (including C. sporogenes) strains. We also demonstrate that some C. botulinum Group I strains possess an S-layer, the disruption of which by an acid glycine treatment is required for efficient binding of the CBO1751 CBD to the cells of these strains. We further developed CBO1751 CBD-based methods using flow cytometry and magnetic separation to specifically isolate viable cells of C. botulinum Group I. These methods present potential for applications in diagnostics and risk assessment in order to control the botulism hazard.
Collapse
|
5
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
6
|
Costa SP, Cunha AP, Freitas PP, Carvalho CM. A Phage Receptor-Binding Protein as a Promising Tool for the Detection of Escherichia coli in Human Specimens. Front Microbiol 2022; 13:871855. [PMID: 35722298 PMCID: PMC9202026 DOI: 10.3389/fmicb.2022.871855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli is a problematic pathogen that causes life-threatening diseases, being a frequent causative agent of several nosocomial infections such as urinary tract and bloodstream infections. Proper and rapid bacterial identification is critical for allowing prompt and targeted antimicrobial therapy. (Bacterio)phage receptor-binding proteins (RBPs) display high specificity for bacterial surface epitopes and, therefore, are particularly attractive as biorecognition elements, potentially conferring high sensitivity and specificity in bacterial detection. In this study, we elucidated, for the first time, the potential of a recombinant RBP (Gp17) to recognize E. coli at different viability states, such as viable but not culturable cells, which are not detected by conventional techniques. Moreover, by using a diagnostic method in which we combined magnetic and spectrofluorimetric approaches, we demonstrated the ability of Gp17 to specifically detect E. coli in various human specimens (e.g., whole blood, feces, urine, and saliva) in about 1.5 h, without requiring complex sample processing.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
7
|
Nakonieczna A, Rutyna P, Fedorowicz M, Kwiatek M, Mizak L, Łobocka M. Three Novel Bacteriophages, J5a, F16Ba, and z1a, Specific for Bacillus anthracis, Define a New Clade of Historical Wbeta Phage Relatives. Viruses 2022; 14:213. [PMID: 35215807 PMCID: PMC8878798 DOI: 10.3390/v14020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus anthracis is a potent biowarfare agent, able to be highly lethal. The bacteria dwell in the soil of certain regions, as natural flora. Bacteriophages or their lytic enzymes, endolysins, may be an alternative for antibiotics and other antibacterials to fight this pathogen in infections and to minimize environmental contamination with anthrax endospores. Upon screening environmental samples from various regions in Poland, we isolated three new siphophages, J5a, F16Ba, and z1a, specific for B. anthracis. They represent new species related to historical anthrax phages Gamma, Cherry, and Fah, and to phage Wbeta of Wbetavirus genus. We show that the new phages and their closest relatives, phages Tavor_SA, Negev_SA, and Carmel_SA, form a separate clade of the Wbetavirus genus, designated as J5a clade. The most distinctive feature of J5a clade phages is their cell lysis module. While in the historical phages it encodes a canonical endolysin and a class III holin, in J5a clade phages it encodes an endolysin with a signal peptide and two putative holins. We present the basic characteristic of the isolated phages. Their comparative genomic analysis indicates that they encode two receptor-binding proteins, of which one may bind a sugar moiety of B. anthracis cell surface.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Paweł Rutyna
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Magdalena Fedorowicz
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Magdalena Kwiatek
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Lidia Mizak
- Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, 24-100 Pulawy, Poland; (P.R.); (M.F.); (M.K.); (L.M.)
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|
9
|
Sozhamannan S, Hofmann ER. The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going. Viruses 2020; 12:v12121393. [PMID: 33291831 PMCID: PMC7762055 DOI: 10.3390/v12121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Accurate pathogen detection and diagnosis is paramount in clinical success of treating patients. There are two general paradigms in pathogen detection: molecular and immuno-based, and phage-based detection is a third emerging paradigm due to its sensitivity and selectivity. Molecular detection methods look for genetic material specific for a given pathogen in a sample usually by polymerase chain reaction (PCR). Immuno-methods look at the pathogen components (antigens) by antibodies raised against that pathogen specific antigens. There are different variations and products based on these two paradigms with advantages and disadvantages. The third paradigm at least for bacterial pathogen detection entails bacteriophages specific for a given bacterium. Sensitivity and specificity are the two key parameters in any pathogen detection system. By their very nature, bacteriophages afford the best sensitivity for bacterial detection. Bacteria and bacteriophages form the predator-prey pair in the evolutionary arms race and has coevolved over time to acquire the exquisite specificity of the pair, in some instances at the strain level. This specificity has been exploited for diagnostic purposes of various pathogens of concern in clinical and other settings. Many recent reviews focus on phage-based detection and sensor technologies. In this review, we focus on a very special group of pathogens that are of concern in biodefense because of their potential misuse in bioterrorism and their extremely virulent nature and as such fall under the Centers for Disease and Prevention (CDC) Category A pathogen list. We describe the currently available phage methods that are based on the usual modalities of detection from culture, to molecular and immuno- and fluorescent methods. We further highlight the gaps and the needs for more modern technologies and sensors drawing from technologies existing for detection and surveillance of other pathogens of clinical relevance.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- National Security Science & Technology, Management Advisory Services, Logistics Management Institute, 7940 Jones Branch Drive, Tysons, VA 22102, USA;
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office (JPEO) for Chemical, Biological, Radiological and Nuclear Defense (CBRND) Joint Project Lead (JPL) CBRND Enabling Biotechnologies (EB), 110 Thomas Johnson Drive, Suite 250, Frederick, MD 21702, USA
| | - Edward R. Hofmann
- EXCET, Inc., 6225 Brandon Ave #360, Springfield, VA 22150, USA
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8908 Guard St, E3831, Edgewood, MD 21010, USA
- Correspondence:
| |
Collapse
|
10
|
Rapid Microscopic Detection of Bacillus anthracis by Fluorescent Receptor Binding Proteins of Bacteriophages. Microorganisms 2020; 8:microorganisms8060934. [PMID: 32575866 PMCID: PMC7356292 DOI: 10.3390/microorganisms8060934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax disease, is typically diagnosed by immunological and molecular methods such as polymerase chain reaction (PCR). Alternatively, mass spectrometry techniques may aid in confirming the presence of the pathogen or its toxins. However, because of the close genetic relationship between B. anthracis and other members of the Bacillus cereus sensu lato group (such as Bacillus cereus or Bacillus thuringiensis) mis- or questionable identification occurs frequently. Also, bacteriophages such as phage gamma (which is highly specific for B. anthracis) have been in use for anthrax diagnostics for many decades. Here we employed host cell-specific receptor binding proteins (RBP) of (pro)-phages, also known as tail or head fibers, to develop a microscopy-based approach for the facile, rapid and unambiguous detection of B. anthracis cells. For this, the genes of (putative) RBP from Bacillus phages gamma, Wip1, AP50c and from lambdoid prophage 03 located on the chromosome of B. anthracis were selected. Respective phage genes were heterologously expressed in Escherichia coli and purified as fusions with fluorescent proteins. B. anthracis cells incubated with either of the reporter fusion proteins were successfully surface-labeled. Binding specificity was confirmed as RBP fusion proteins did not bind to most isolates of a panel of other B. cereus s.l. species or to more distantly related bacteria. Remarkably, RBP fusions detected encapsulated B. anthracis cells, thus RBP were able to penetrate the poly-γ-d-glutamate capsule of B. anthracis. From these results we anticipate this RBP-reporter assay may be useful for rapid confirmative identification of B. anthracis.
Collapse
|
11
|
Complete Genome Sequence of Bacillus cereus Bacteriophage vB_BceS_KLEB30-3S. Microbiol Resour Announc 2020; 9:9/20/e00348-20. [PMID: 32409544 PMCID: PMC7225543 DOI: 10.1128/mra.00348-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we present the genomic characterization of the temperate bacteriophage vB_BceS_KLEB30-3S (KLEB30-3S), which was induced from Bacillus cereus strain KR3M-30, isolated from a gypsum karst lake ecosystem in Lithuania. The 37,134-bp genome of KLEB30-3S contains 58 predicted protein-encoding genes and no tRNA genes. In this study, we present the genomic characterization of the temperate bacteriophage vB_BceS_KLEB30-3S (KLEB30-3S), which was induced from Bacillus cereus strain KR3M-30, isolated from a gypsum karst lake ecosystem in Lithuania. The 37,134-bp genome of KLEB30-3S contains 58 predicted protein-encoding genes and no tRNA genes.
Collapse
|
12
|
Kunstmann S, Scheidt T, Buchwald S, Helm A, Mulard LA, Fruth A, Barbirz S. Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens. Viruses 2018; 10:E431. [PMID: 30111705 PMCID: PMC6116271 DOI: 10.3390/v10080431] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Tom Scheidt
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Saskia Buchwald
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Alexandra Helm
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Roux, 75015 Paris, France.
- CNRS UMR 3523, Institut Pasteur, 75015 Paris, France.
| | - Angelika Fruth
- National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, 38855 Wernigerode, Germany.
| | - Stefanie Barbirz
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
13
|
Kolton CB, Podnecky NL, Shadomy SV, Gee JE, Hoffmaster AR. Bacillus anthracis gamma phage lysis among soil bacteria: an update on test specificity. BMC Res Notes 2017; 10:598. [PMID: 29145870 PMCID: PMC5691394 DOI: 10.1186/s13104-017-2919-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, which causes anthrax in humans and animals, is enzootic in parts of the U.S. state of Texas where cases are typically reported in animals annually. The gamma phage lysis assay is a common diagnostic method for identification of B. anthracis and is based on the bacterium's susceptibility to lysis. This test has been shown to be 97% specific for B. anthracis, as a small number of strains of other Bacillus spp. are known to be susceptible. In this study, we evaluated the performance of a combination of B. anthracis diagnostic assays on 700 aerobic, spore-forming isolates recovered from soil collected in Texas. These assays include phenotypic descriptions, gamma phage susceptibility, and real-time polymerase chain reaction specific for B. anthracis. Gamma phage-susceptible isolates were also tested using cell wall and capsule direct fluorescent-antibody assays specific for B. anthracis. Gamma phage-susceptible isolates that were ruled out as B. anthracis were identified by 16S rRNA gene sequencing. FINDINGS We identified 29 gamma phage-susceptible isolates. One was confirmed as B. anthracis, while the other 28 isolates were ruled out for B. anthracis by the other diagnostic tests. Using 16S rRNA gene sequencing results, we identified these isolates as members of the B. cereus group, Bacillus sp. (not within B. cereus group), Lysinibacillus spp., and Solibacillus silvestris. Based on these results, we report a specificity of 96% for gamma phage lysis as a diagnostic test for B. anthracis, and identified susceptible isolates outside the Bacillus genus. CONCLUSIONS In this study we found gamma phage susceptibility to be consistent with previously reported results. However, we identified non-B. anthracis environmental isolates (including isolates from genera other than Bacillus) that are susceptible to gamma phage lysis. To date, susceptibility to gamma phage lysis has not been reported in genera other than Bacillus. Though these isolates are not of clinical origin, description of unexpected positives is important, especially as new diagnostic assays for B. anthracis are being developed based on gamma phage lysis or gamma phage proteins.
Collapse
Affiliation(s)
- Cari B Kolton
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.
| | - Nicole L Podnecky
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.,Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Tromsø, Hansine Hansens veg 18, Tromsø, Norway
| | - Sean V Shadomy
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.,One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.,Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Jay E Gee
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Alex R Hoffmaster
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| |
Collapse
|
14
|
Fujinami Y, Hosokawa-Muto J, Mizuno N. Evaluation of tools for environmental sampling of Bacillus anthracis spores. Forensic Sci Int 2015; 257:376-378. [PMID: 26528669 DOI: 10.1016/j.forsciint.2015.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
This study describes the validation of sampling techniques used to detect biological warfare agents used in terror attacks. For this purpose, we tested the efficiencies of different sampling media and extraction solutions for the recovery of bacterial pathogens. We first used Bacillus cereus ATCC 4342 spores as a surrogate for highly pathogenic B. anthracis to compare recovery efficiencies of spores from four different surfaces. We used three different types of sampling swabs and four different solutions to extract spores from the swabs. The most effective sampling method employed rayon swabs moistened with water. The efficencies of the four extraction solutions did not differ significantly, although yields were highest using phosphate-buffered saline containing Tween 80 (PBS-T). Using rayon swabs and sterile water, we recovered B. cereus ATCC 4342 and B. anthracis spores with equivalent efficiencies. These findings indicate that because of its reduced pathogenicity and relative ease in handling (Biosafety Level 1), use of B. cereus ATCC 4342 will facilitate further optimization of techniques to detect B. anthracis.
Collapse
Affiliation(s)
| | | | - Natsuko Mizuno
- National Research Institute of Police Science, Kashiwa 277-0882, Japan.
| |
Collapse
|
15
|
van der Merwe RG, van Helden PD, Warren RM, Sampson SL, Gey van Pittius NC. Phage-based detection of bacterial pathogens. Analyst 2015; 139:2617-26. [PMID: 24658771 DOI: 10.1039/c4an00208c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial pathogens cause significant morbidity and mortality annually to both humans and animals. With the rampant spread of drug resistance and the diminishing effectiveness of current antibiotics, there is a pressing need for effective diagnostics for detection of bacterial pathogens and their drug resistances. Bacteriophages offer several unique opportunities for bacterial detection. This review highlights the means by which bacteriophages have been utilized to achieve and facilitate specific bacterial detection.
Collapse
Affiliation(s)
- R G van der Merwe
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
16
|
Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 2015; 176:957-77. [PMID: 25987133 DOI: 10.1007/s12010-015-1625-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.
Collapse
|
17
|
Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez B, Rodríguez A, García P. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol 2015; 36:542-52. [PMID: 25603721 DOI: 10.3109/07388551.2014.993587] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most bacteriophages encode two types of cell wall lytic proteins: endolysins (lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability to degrade the peptidoglycan of Gram-positive bacteria resulting in cell lysis when they are applied externally. Bacteriophage lytic proteins have a demonstrated potential in treating animal models of infectious diseases. There has also been an increase in the study of these lytic proteins for their application in areas such as food safety, pathogen detection/diagnosis, surfaces disinfection, vaccine development and nanotechnology. This review summarizes the more recent developments, outlines the full potential of these proteins to develop new biotechnological tools and discusses the feasibility of these proposals.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - Diana Gutiérrez
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - David M Donovan
- b Animal Biosciences and Biotechnology Laboratory , BARC, ARS, USDA , Beltsville , MD , USA
| | - Beatriz Martínez
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - Ana Rodríguez
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| | - Pilar García
- a DairySafe Group, Department of Technology and Biotechnology of Dairy Products , Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Villaviciosa , Asturias , Spain and
| |
Collapse
|
18
|
Sorokulova I, Olsen E, Vodyanoy V. Bacteriophage biosensors for antibiotic-resistant bacteria. Expert Rev Med Devices 2014; 11:175-86. [DOI: 10.1586/17434440.2014.882767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Investigations on the interactions of λphage-derived peptides against the SrtA mechanism in Bacillus anthracis. Appl Biochem Biotechnol 2013; 172:1790-806. [PMID: 24264995 DOI: 10.1007/s12010-013-0641-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023]
Abstract
Bacillus anthracis is a well-known bioweapon pathogen, which coordinates the expression of its virulence factors in response to a specific environmental signal by its protein architecture. Absences of sortase signal functioning may fail to assemble the surface linked proteins and so B. anthracis cannot sustain an infection with host cells. Targeting the signaling mechanism of B. anthracis can be achieved by inhibition of SrtA enzyme through λphage-derived plyG. The lysin enzyme plyG is experimentally proven as bacteriolytic agent, specifically kill's B. anthracis by inhibiting the SrtA. Here, we have screened the peptides from λphage lysin, and these peptides are having the ability as LPXTG competitive inhibitors. In comparison to the activator peptide LPXTG binding motif, λphage lysin based inhibitor peptides are having much supremacy towards binding of SrtA. Finally, peptide structures extracted from PlyG are free from toxic, allergic abilities and also have the ability to terminate the signal transduction mechanism in B. anthracis.
Collapse
|
20
|
Ganguly J, Low LY, Kamal N, Saile E, Forsberg LS, Gutierrez-Sanchez G, Hoffmaster AR, Liddington R, Quinn CP, Carlson RW, Kannenberg EL. The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG. Glycobiology 2013; 23:820-32. [PMID: 23493680 DOI: 10.1093/glycob/cwt019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endolysins are bacteriophage enzymes that lyse their bacterial host for phage progeny release. They commonly contain an N-terminal catalytic domain that hydrolyzes bacterial peptidoglycan (PG) and a C-terminal cell wall-binding domain (CBD) that confers enzyme localization to the PG substrate. Two endolysins, phage lysin L (PlyL) and phage lysin G (PlyG), are specific for Bacillus anthracis. To date, the cell wall ligands for their C-terminal CBD have not been identified. We recently described structures for a number of secondary cell wall polysaccharides (SCWPs) from B. anthracis and B. cereus strains. They are covalently bound to the PG and are comprised of a -ManNAc-GlcNAc-HexNAc- backbone with various galactosyl or glucosyl substitutions. Surface plasmon resonance (SPR) showed that the endolysins PlyL and PlyG bind to the SCWP from B. anthracis (SCWPBa) with high affinity (i.e. in the μM range with dissociation constants ranging from 0.81 × 10(-6) to 7.51 × 10(-6) M). In addition, the PlyL and PlyG SCWPBa binding sites reside with their C-terminal domains. The dissociation constants for the interactions of these endolysins and their derived C-terminal domains with the SCWPBa were in the range reported for other protein-carbohydrate interactions. Our findings show that the SCWPBa is the ligand that confers PlyL and PlyG lysin binding and localization to the PG. PlyL and PlyG also bound the SCWP from B. cereus G9241 with comparable affinities to SCWPBa. No detectable binding was found to the SCWPs from B. cereus ATCC (American Type Culture Collection) 10987 and ATCC 14579, thus demonstrating specificity of lysin binding to SCWPs.
Collapse
Affiliation(s)
- Jhuma Ganguly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2013; 7:1147-71. [PMID: 23030422 DOI: 10.2217/fmb.12.97] [Citation(s) in RCA: 524] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition & Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
22
|
|
23
|
Abstract
Peptidoglycan (PG) is the major structural component of the bacterial cell wall. Bacteria have autolytic PG hydrolases that allow the cell to grow and divide. A well-studied group of PG hydrolase enzymes are the bacteriophage endolysins. Endolysins are PG-degrading proteins that allow the phage to escape from the bacterial cell during the phage lytic cycle. The endolysins, when purified and exposed to PG externally, can cause "lysis from without." Numerous publications have described how this phenomenon can be used therapeutically as an effective antimicrobial against certain pathogens. Endolysins have a characteristic modular structure, often with multiple lytic and/or cell wall-binding domains (CBDs). They degrade the PG with glycosidase, amidase, endopeptidase, or lytic transglycosylase activities and have been shown to be synergistic with fellow PG hydrolases or a range of other antimicrobials. Due to the coevolution of phage and host, it is thought they are much less likely to invoke resistance. Endolysin engineering has opened a range of new applications for these proteins from food safety to environmental decontamination to more effective antimicrobials that are believed refractory to resistance development. To put phage endolysin work in a broader context, this chapter includes relevant studies of other well-characterized PG hydrolase antimicrobials.
Collapse
|
24
|
Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells. Antimicrob Agents Chemother 2012; 56:5031-9. [PMID: 22802245 DOI: 10.1128/aac.00891-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As a potential antimicrobial, the bacteriophage lysin PlyG has been reported to specifically recognize Bacillus anthracis vegetative cells only and to kill B. anthracis vegetative cells and its germinating spores. However, how PlyG interacts with B. anthracis spores remains unclear. Herein, a 60-amino-acid domain in PlyG (residues 106 to 165), located mainly in the previously identified catalytic domain, was found able to specifically recognize B. anthracis spores but not vegetative cells. The exosporium of the spores was found to be the most probable binding target of this domain. This is the first time that a lysin for spore-forming bacteria has been found to have separate domains to recognize spores and vegetative cells, which might help in understanding the coevolution of phages with spore-forming bacteria. Besides providing new biomarkers for developing better assays for identifying B. anthracis spores, the newly found domain may be helpful in developing PlyG as a preventive antibiotic to reduce the threat of anthrax in suspected exposures to B. anthracis spores.
Collapse
|
25
|
Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. BACTERIOPHAGE 2012; 2:105-283. [PMID: 23050221 PMCID: PMC3442824 DOI: 10.4161/bact.19274] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteriophages (phages) have been utilized for decades as a means for uniquely identifying their target bacteria. Due to their inherent natural specificity, ease of use, and straightforward production, phage possess a number of desirable attributes which makes them particularly suited as bacterial detectors. As a result, extensive research has been conducted into the development of phage, or phage-derived products to expedite the detection of human pathogens. However, very few phage-based diagnostics have transitioned from the research lab into a clinical diagnostic tool. Herein we review the phage-based platforms that are currently used for the detection of Mycobacterium tuberculosis, Yersinia pestis, Bacillus anthracis and Staphylococcus aureus in the clinical field. We briefly describe the disease, the current diagnostic options, and the role phage diagnostics play in identifying the cause of infection, and determining antibiotic susceptibility.
Collapse
Affiliation(s)
| | | | - Caroline Westwater
- Department of Craniofacial Biology; Medical University of South Carolina; Charleston, SC USA
| |
Collapse
|
26
|
Brovko LY, Anany H, Griffiths MW. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:241-288. [PMID: 23034118 DOI: 10.1016/b978-0-12-394598-3.00006-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food.
Collapse
Affiliation(s)
- Lubov Y Brovko
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
27
|
García P, Rodríguez L, Rodríguez A, Martínez B. Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol 2010. [DOI: 10.1016/j.tifs.2010.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Detection technologies for Bacillus anthracis: Prospects and challenges. J Microbiol Methods 2010; 82:1-10. [DOI: 10.1016/j.mimet.2010.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/20/2023]
|
29
|
Klumpp J, Calendar R, Loessner MJ. Complete Nucleotide Sequence and Molecular Characterization of Bacillus Phage TP21 and its Relatedness to Other Phages with the Same Name. Viruses 2010; 2:961-971. [PMID: 21994663 PMCID: PMC3185655 DOI: 10.3390/v2040961] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/20/2022] Open
Abstract
Three different Bacillus bacteriophages designated TP21 are known from the literature. We have determined the sequence and structure of the TP21-L genome, and compared it to the other phages. The genome is 37.5 kb in size, possesses fixed invariable genome ends and features the typical modular organization of a temperate siphovirus. TP21-L is neither identical to TP21 isolated by Thorne (TP21-T), as shown by a PCR-based approach nor to TP21 isolated by He et al. (TP21-H), as estimated from phage dimensions. For reasons of clarity, we suggest renaming the different TP21 isolates.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; E-Mail:
| | - Richard Calendar
- University of California, 510 Barker Hall, Berkeley, CA 94720, USA; E-Mail:
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; E-Mail:
| |
Collapse
|
30
|
Kim J, Yoon MY. Recent advances in rapid and ultrasensitive biosensors for infectious agents: lesson from Bacillus anthracis diagnostic sensors. Analyst 2010; 135:1182-90. [PMID: 20498871 DOI: 10.1039/c0an00030b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we review the cumulative efforts to develop rapid and ultrasensitive diagnostic systems, especially for the infectious agent, Bacillus anthracis, as a model system. This Minireview focuses on demonstrating the features of various probes for target molecule detection and recent methods of signal generation within the biosensors. Also, we discuss the possibility of using peptides as next-generation probe molecules.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | | |
Collapse
|
31
|
Schofield D, Westwater C. Phage-mediated bioluminescent detection ofBacillus anthracis. J Appl Microbiol 2009; 107:1468-78. [DOI: 10.1111/j.1365-2672.2009.04332.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health. Appl Environ Microbiol 2009; 75:6331-9. [PMID: 19648357 DOI: 10.1128/aem.00288-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Used for decades for biological warfare, Bacillus anthracis (category A agent) has proven to be highly stable and lethal. Quantitative risk assessment modeling requires descriptive statistics of the limit of detection to assist in defining the exposure. Furthermore, the sensitivities of various detection methods in environmental matrices are vital information for first responders. A literature review of peer-reviewed journal articles related to methods for detection of B. anthracis was undertaken. Articles focused on the development or evaluation of various detection approaches, such as PCR, real-time PCR, immunoassay, etc. Real-time PCR and PCR were the most sensitive methods for the detection of B. anthracis, with median instrument limits of detection of 430 and 440 cells/ml, respectively. There were very few peer-reviewed articles on the detection methods for B. anthracis in the environment. The most sensitive limits of detection for the environmental samples were 0.1 CFU/g for soil using PCR-enzyme-linked immunosorbent assay (ELISA), 17 CFU/liter for air using an ELISA-biochip system, 1 CFU/liter for water using cultivation, and 1 CFU/cm(2) for stainless steel fomites using cultivation. An exponential dose-response model for the inhalation of B. anthracis estimates of risk at concentrations equal to the environmental limit of detection determined the probability of death if untreated to be as high as 0.520. Though more data on the environmental limit of detection would improve the assumptions made for the risk assessment, this study's quantification of the risk posed by current limitations in the knowledge of detection methods should be considered when employing those methods in environmental monitoring and cleanup strategies.
Collapse
|
33
|
Sainathrao S, Mohan KVK, Atreya C. Gamma-phage lysin PlyG sequence-based synthetic peptides coupled with Qdot-nanocrystals are useful for developing detection methods for Bacillus anthracis by using its surrogates, B. anthracis-Sterne and B. cereus-4342. BMC Biotechnol 2009; 9:67. [PMID: 19624851 PMCID: PMC2722591 DOI: 10.1186/1472-6750-9-67] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous reports of site-directed deletion analysis on gamma (gamma)-phage lysin protein (PlyG) have demonstrated that removal of a short amino acid sequence in the C-terminal region encompassing a 10-amino acid motif (190LKMTADFILQ199) abrogates its binding activity specific to the cell wall of Bacillus anthracis. Whether short synthetic peptides representing the10-amino acid PlyG putative binding motif flanked by surrounding N- and C-terminal residues also selectively bind to the bacterial cell wall has not been evaluated. If such peptides do demonstrate selective binding to the cell wall, they could serve as bio-probes towards developing detection technologies for B. anthracis. Furthermore, by using B. anthracis (Sterne, 34F2), an animal vaccine and B. cereus-4342, a gamma-phage susceptible rare strain as surrogates of B. anthracis, development of proof-of-concepts for B. anthracis are feasible. RESULTS Using four different methods, we evaluated six synthetic peptides representing the putative binding motif including flanking sequences (PlyG-P1 through P6) for the bacterial cell wall binding capacity. Our analysis identified PlyG-P1, PlyG-P3 and PlyG-P5 to have binding capability to both B. anthracis (Sterne, 34F2) and B. cereus-4342. The peptides however did not bind to B. cereus-11778, B. thuringiensis, and B. cereus-10876 suggesting their specificity for B. anthracis-Sterne and B. cereus-4342. PlyG-P3 in combination with fluorescent light microscopy detected even a single bacterium in plasma spiked with the bacteria. CONCLUSION Overall, these studies illustrate that the short 10-amino acid sequence 'LKMTADFILQ' in fact is a stand-alone bacterial cell wall-binding motif of PlyG. In principle, synthetic peptides PlyG-P1, PlyG-P3 and PlyG-P5, especially PlyG-P3 coupled with Qdot-nanocrystals are useful as high-sensitivity bio-probes in developing detection technologies for B. anthracis.
Collapse
Affiliation(s)
- Shilpakala Sainathrao
- Section of Cell biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
Kurosaki Y, Sakuma T, Fukuma A, Fujinami Y, Kawamoto K, Kamo N, Makino SI, Yasuda J. A simple and sensitive method for detection of Bacillus anthracis by loop-mediated isothermal amplification. J Appl Microbiol 2009; 107:1947-56. [PMID: 19493277 DOI: 10.1111/j.1365-2672.2009.04379.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To develop a rapid and simple system for detection of Bacillus anthracis using a loop-mediated isothermal amplification (LAMP) method and determine the suitability of LAMP for rapid identification of B. anthracis infection. METHODS AND RESULTS A specific LAMP assay targeting unique gene sequences in the bacterial chromosome and two virulence plasmids, pXO1 and pXO2, was designed. With this assay, it was possible to detect more than 10 fg of bacterial DNA per reaction and obtain results within 30-40 min under isothermal conditions at 63 degrees C. No cross-reactivity was observed among Bacillus cereus group and other Bacillus species. Furthermore, in tests using blood specimens from mice inoculated intranasally with B. anthracis spores, the sensitivity of the LAMP assay following DNA extraction methods using a Qiagen DNeasy kit or boiling protocol was examined. Samples prepared by both methods showed almost equivalent sensitivities in LAMP assay. The detection limit was 3.6 CFU per test. CONCLUSIONS The LAMP assay is a simple, rapid and sensitive method for detecting B. anthracis. SIGNIFICANCE AND IMPACT OF THE STUDY The LAMP assay combined with boiling extraction could be used as a simple diagnostic method for identification of B. anthracis infection.
Collapse
Affiliation(s)
- Y Kurosaki
- First Department of Forensic Science, National Research Institute of Police Science, Kashiwa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kikkawa H, Fujinami Y, Suzuki SI, Yasuda J. Identification of the amino acid residues critical for specific binding of the bacteriolytic enzyme of γ-phage, PlyG, to Bacillus anthracis. Biochem Biophys Res Commun 2007; 363:531-5. [PMID: 17888883 DOI: 10.1016/j.bbrc.2007.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/04/2007] [Indexed: 11/18/2022]
Abstract
Bacillus anthracis causes anthrax, a lethal disease affecting humans, which has attracted attention due to its bioterrorism potential. gamma-Phage specifically infects B. anthracis, and is used for its detection. gamma-Phage lysin, PlyG, specifically lyses B. anthracis. Mutational analysis of PlyGB (PlyG binding domain; residues 156-233) indicated that positions 190-199 are necessary for binding to B. anthracis. This region is the central part of PlyGB and is predicted to form a beta-sheet. The amino acid residues of this region are also conserved in other lysins specific for B. anthracis. Alanine substitution at position 190 or 199 within this region resulted in significantly reduced binding, suggesting that L190 and Q199 play key roles in binding of PlyGB to B. anthracis. Our observations provide new insight into the mechanism of specific binding of lysin to B. anthracis, and may be useful in establishing new methods for detection of B. anthracis.
Collapse
Affiliation(s)
- Hitomi Kikkawa
- Third Department of Forensic Science, National Research Institute of Police Science, Kashiwa 277-0882, Japan
| | | | | | | |
Collapse
|