1
|
Das B, Somkuwar BG, Chaudhary SK, Kharlyngdoh E, Pakyntein CL, Basor K, Shukla JK, Bhardwaj PK, Mukherjee PK. Therapeutics of bitter plants from Northeast region of India and their pharmacological and phytochemical perspectives. Pharmacol Res 2025; 212:107626. [PMID: 39875018 DOI: 10.1016/j.phrs.2025.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Natural resources have been used for food and medicine since the beginning of human civilization, and they have always been a low-cost, easily accessible source for individuals. Northeast region of India (NER) represents a significant portion of India's flora and fauna. Marginality, fragility, inaccessibility, ethnicity, and cultural diversity thrived in the region, resulting in the richest reservoir of genetic variation of bioresources. Several bitter plants are used by the locals as both food and medicine to treat a variety of diseases. These medicinal plants are an excellent source of chemically diverse biologically active phytometabolites. There have been few efforts to raise awareness about health benefits of bitter plant resources abound in this region that may provides opportunities for their sustainable utilization. Understanding the structural features of plant derived bitterants in relationship with specific bitter receptor will provide research prospects to identify biomolecules with health benefits. In this context the present review is intended to deliver phyto-pharmacological aspects of bitter plant resources of NER together with detailed understanding of possible association between plant derived phytometabolites as bitter agonists with extraoral bitter receptors.
Collapse
Affiliation(s)
- Bhaskar Das
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur795001, India.
| | | | | | | | | | - Kishor Basor
- BRIC-IBSD, Meghalaya Center, Shillong, Meghalaya 793009, India.
| | | | | | - Pulok Kumar Mukherjee
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur795001, India; BRIC-IBSD, Mizoram Center, Aizawl, Mizoram 796005, India; BRIC-IBSD, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
2
|
Bajgai B, Suri M, Singh H, Hanifa M, Bhatti JS, Randhawa PK, Bali A. Naringin: A flavanone with a multifaceted target against sepsis-associated organ injuries. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155707. [PMID: 38788393 DOI: 10.1016/j.phymed.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Sepsis causes multiple organ dysfunctions and raises mortality and morbidity rates through a dysregulated host response to infection. Despite the growing research interest over the last few years, no satisfactory treatment exists. Naringin, a naturally occurring bioflavonoid with vast therapeutic potential in citrus fruits and Chinese herbs, has received much attention for treating sepsis-associated multiple organ dysfunctions. PURPOSE The review describes preclinical evidence of naringin from 2011 to 2024, particularly emphasizing the mechanism of action mediated by naringin against sepsis-associated specific injuries. The combination therapy, safety profile, drug interactions, recent advancements in formulation, and future perspectives of naringin are also discussed. METHODS In vivo and in vitro studies focusing on the potential role of naringin and its mechanism of action against sepsis-associated organ injuries were identified and summarised in the present manuscript, which includes contributions from 2011 to 2024. All the articles were extracted from the Medline database using PubMed, Science Direct, and Web of Science with relevant keywords. RESULTS Research findings revealed that naringin modulates many signaling cascades, such as Rho/ROCK and PPAR/STAT1, PIP3/AKT and KEAP1/Nrf2, and IkB/NF-kB and MAPK/Nrf2/HO-1, to potentially protect against sepsis-induced intestinal, cardiac, and lung injury, respectively. Furthermore, naringin treatment exhibits anti-inflammatory, anti-apoptotic, and antioxidant action against sepsis harm, highlighting naringin's promising effects in septic settings. Naringin could be employed as a treatment against sepsis, based on studies on combination therapy, synergistic effects, and toxicological investigation that show no reported severe side effects. CONCLUSION Naringin might be a promising therapeutic approach for preventing sepsis-induced multiple organ failure. Naringin should be used alongside other therapeutic therapies with caution despite its great therapeutic potential and lower toxicity. Nonetheless, clinical studies are required to comprehend the therapeutic benefits of naringin against sepsis.
Collapse
Affiliation(s)
- Bivek Bajgai
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Mohd Hanifa
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences, Amritsar Group of Colleges, Amritsar, Punjab, 143001, India; Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
3
|
Cerna-Chávez E, Rodríguez-Rodríguez JF, García-Conde KB, Ochoa-Fuentes YM. Potential of Streptomyces avermitilis: A Review on Avermectin Production and Its Biocidal Effect. Metabolites 2024; 14:374. [PMID: 39057697 PMCID: PMC11278826 DOI: 10.3390/metabo14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Secondary metabolites produced by the fermentation of Streptomyces avermitilis bacterium are powerful antiparasitic agents used in animal health, agriculture and human infection treatments. Avermectin is a macrocyclic lactone with four structural components (A1, A2, B1, B2), each of them containing a major and a minor subcomponent, out of which avermectin B1a is the most effective parasitic control compound. Avermectin B1a produces two homologue avermectins (B1 and B2) that have been used in agriculture as pesticides and antiparasitic agents, since 1985. It has a great affinity with the Cl-channels of the glutamate receptor, allowing the constant flow of Cl- ions into the nerve cells, causing a phenomenon of hyperpolarization causing death by flaccid paralysis. The purpose of this work was to gather information on the production of avermectins and their biocidal effects, with special emphasis on their role in the control of pests and phytopathogenic diseases. The literature showed that S. avermitilis is an important producer of macrocyclic lactones with biocidal properties. In addition, avermectin contributes to the control of ectoparasites and endoparasites in human health care, veterinary medicine and agriculture. Importantly, avermectin is a compound that is harmless to the host (no side effects), non-target organisms and the environment.
Collapse
Affiliation(s)
- Ernesto Cerna-Chávez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - José Francisco Rodríguez-Rodríguez
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Karen Berenice García-Conde
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Yisa María Ochoa-Fuentes
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| |
Collapse
|
4
|
Siwek M, Krupa AJ, Woroń J. Interactions between grapefruit juice and psychotropic medications: an update of the literature and an original case series. Expert Opin Drug Metab Toxicol 2024; 20:333-345. [PMID: 38721667 DOI: 10.1080/17425255.2024.2352468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION There is a large body of preclinical data implicating that grapefruit juice (GJ) inhibits many CYP 450 isoforms. The potential of GJ-to-drug is of high relevance to clinical psychiatry, because a wide range of psychotropic medicines undergo CYP 450 metabolism and P-gp transport. AREAS COVERED Relevant data were identified by searching the electronic databases up to February 2024. This work constitutes a summary of preclinical and clinical data on GJ impact on CYP 450 metabolism, P-glycoprotein, and organic anion-transporting polypeptides (OATPs), with focus on studies that assessed GJ-to-psychotropic drug interactions. Additionally, an unpublished case series of nine patients is provided. EXPERT OPINION The impact of GJ on CYP 3A4 appears to be the critical mechanism for the majority of GJ-to-psychopharmacotherapy interactions described in human studies or case reports. However, there are studies and cases of patients clearly showing that this is not the only route explaining the GJ effect, and at times, this particular is of no relevance and that other CYP 450 isoforms as well as drug transporting proteins might be involved. The risk of GJ-to-psychotropic drugs needs to be further evaluated in a 'real-world' setting and apply not only measures of pharmacokinetics but also treatment effectiveness and safety.
Collapse
Affiliation(s)
- Marcin Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Julia Krupa
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Jarosław Woroń
- Department of Clinical Pharmacology, Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Department of Anesthesiology and Intensive Care, University Hospital in Krakow, Krakow, Poland
- University Center for Monitoring and Research on Adverse Drug Effects in Krakow, Krakow, Poland
| |
Collapse
|
5
|
King S, Nystrom P, Wajert J, Ferguson M. A Case Study and Literature Review of Local Anesthetic Systemic Toxicity During Placement of a Dual-chamber Pacemaker. J Innov Card Rhythm Manag 2024; 15:5744-5748. [PMID: 38304087 PMCID: PMC10829409 DOI: 10.19102/icrm.2024.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/28/2023] [Indexed: 02/03/2024] Open
Abstract
Local anesthetics are commonly deployed for a variety of medical procedures across many disciplines. Systemic toxicity is rarely seen in clinical practice, and quick recognition and how to manage this syndrome are crucial. The development of systemic toxicity is influenced by the site of administration, the type of anesthetic used, and the total dose administered. Local anesthetic systemic toxicity (LAST) syndrome is used as a diagnosis to encompass the cardiovascular and pulmonary adverse effects associated with the intradermal and subcutaneous use of local anesthetics-in our case, lidocaine. We present a case of a 37-year-old man who experienced dysarthria, bilateral arm shaking, and sinus tachycardia following the administration of 70 mL of lidocaine 2% during surgery for dual-chamber pacemaker placement. While some form of allergic reaction remained a possibility, the strongest clinical correlation and diagnosis were attributed to LAST.
Collapse
Affiliation(s)
- Sara King
- Dayton VA Medical Center, Dayton, OH, USA
| | | | | | | |
Collapse
|
6
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Hermann R, Rostami-Hodjegan A, Zhao P, Ragueneau-Majlessi I. Seeing what is behind the smokescreen: A systematic review of methodological aspects of smoking interaction studies over the last three decades and implications for future clinical trials. Clin Transl Sci 2023; 16:742-758. [PMID: 36752279 PMCID: PMC10175975 DOI: 10.1111/cts.13494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Smoking drug interaction studies represent a common approach for the clinical investigation of CYP1A2 induction. Despite this important role, they remain an "orphan topic" in the existing regulatory framework of drug interaction studies, and important methodological aspects remain unaddressed. The University of Washington Drug Interaction Database (DIDB) was used to systematically review the published literature on dedicated smoking pharmacokinetic interaction studies in healthy subjects (1990 to 2021, inclusive). Various methodological aspects of identified studies were reviewed. A total of 51 studies met all inclusion criteria and were included in the analysis. Our review revealed that methods applied in smoking interaction studies are heterogeneous and often fall short of established methodological standards of other interaction trials. Methodological deficiencies included incomplete description of study populations, poor definition and lack of objective confirmation of smoker and nonsmoker characteristics, under-representation of female subjects, small sample sizes, frequent lack of statistical sample size planning, frequent lack of use of existing markers of nicotine exposure and CYP1A2 activity measurements, and frequent lack of control of extrinsic CYP1A2 inducing or inhibiting factors. The frequent quality issues in the assessment and reporting of smoking interaction trials identified in this review call for a concerted effort in this area, if the results of these studies are meant to be followed by actionable decisions on dose optimization, when needed, for the effects of smoking on CYP1A2 victim drugs in smokers.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Gelnhausen, Germany
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK.,Certara Inc, Princeton, New Jersey, USA
| | - Ping Zhao
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | |
Collapse
|
9
|
Alehaideb Z. Prediction of herb-drug interactions involving consumption of furanocoumarin-mixtures and cytochrome P450 1A2-mediated caffeine metabolism inhibition in humans. Saudi Pharm J 2023; 31:444-452. [PMID: 37026048 PMCID: PMC10071362 DOI: 10.1016/j.jsps.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Herb-drug interactions (HDI) has become important due to the increasing popularity of natural health product consumption worldwide. HDI is difficult to predict as botanical drugs usually contain complex phytochemical-mixtures, which interact with drug metabolism. Currently, there is no specific pharmacological tool to predict HDI since almost all in vitro-in vivo-extrapolation (IVIVE) Drug-Drug Interaction (DDI) models deal with one inhibitor-drug and one victim-drug. The objectives were to modify-two IVIVE models for the prediction of in vivo interaction between caffeine and furanocoumarin-containing herbs, and to confirm model predictions by comparing the DDI predictive results with actual human data. The models were modified to predict in vivo herb-caffeine interaction using the same set of inhibition constants but different integrated dose/concentration of furanocoumarin mixtures in the liver. Different hepatic inlet inhibitor concentration ([I]H) surrogates were used for each furanocoumarin. In the first (hybrid) model, the [I]H was predicted using the concentration-addition model for chemical-mixtures. In the second model, the [I]H was calculated by adding individual furanocoumarins together. Once [I]H values were determined, the models predicted an area-under-curve-ratio (AUCR) value of each interaction. The results indicate that both models were able to predict the experimental AUCR of herbal products reasonably well. The DDI model approaches described in this study may be applicable to health supplements and functional foods also.
Collapse
Affiliation(s)
- Zeyad Alehaideb
- King Abdullah International Medical Research Center, Riyadh city, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh city, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Ma C, Liu C, Ren M, Cui L, Xi X, Kang W. Inhibitory effect of quercetin-3-O-α-rhamnoside, p-coumaric acid, phloridzin and 4-O-β-glucopyranosyl-cis-coumaric acid on rats liver microsomes cytochrome P450 enzyme activities. Food Chem Toxicol 2023; 172:113583. [PMID: 36577462 DOI: 10.1016/j.fct.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
P-coumaric acid, phloridzin, quercetin-3-O-α-rhamnoside and 4-O-β-glucopyranosyl-cis-coumaric acid isolated in Malus micromalus Makino fruit were investigated the inhibitory activity of cytochrome CYP450 enzyme by the probe test method of rat liver microsomes in vitro, and determined the role in drug metabolism and/or toxicology. Enzymatic kinetics method was used to determine the inhibition type of these components and corresponding inhibition constants. The results demonstrated that all the 4 compounds had no significance to inhibit the activities of CYP2E1 and CYP2C11. P-coumaric acid, phloridzin and quercetin-3-O-α-rhamnoside had a weak inhibitory effect on CYP3A4, which belonged to the competitive inhibitory type with inhibitory constants of 10.56, 30.79 and 40.29 μmol L-1, respectively. 4-O-β-glucopyranosyl-cis-coumaric acid had a moderate inhibitory effect on CYP3A4, which belonged to the anti-competitive inhibition type and the inhibition constant was 5.56 μmol L-1. The CYP1A2 could be weakly inhibited by p-coumaric acid in the competitive type, and the inhibition constant is 25.20 μmol L-1 4-O-β-glucopyranosyl-cis-coumaric acid exhibited anti-competitive inhibition of CYP1A2 with an inhibition constant of 19.91 μmol L-1, and the inhibition effect was weak. The results will be useful to optimize the clinical dosage regimen and avoid drug-drug interactions when it is utilized comminating with other medicines in the clinic.
Collapse
Affiliation(s)
- Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Mengjie Ren
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China
| | - Xuefeng Xi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; College of Physical Education, Henan University, Henan, Kaifeng, 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China; Henan Province Functional Food Engineering Technology Research Center, Kaifeng, Henan, 475004, China.
| |
Collapse
|
11
|
Srivastava S, Dubey AK, Madaan R, Bala R, Gupta Y, Dhiman BS, Kumar S. Emergence of nutrigenomics and dietary components as a complementary therapy in cancer prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89853-89873. [PMID: 36367649 DOI: 10.1007/s11356-022-24045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cancer is an illness characterized by abnormal cell development and the capability to infiltrate or spread to rest of the body. A tumor is the term for this abnormal growth that develops in solid tissues like an organ, muscle, or bone and can spread to other parts of the body through the blood and lymphatic systems. Nutrition is a critical and immortal environmental component in the development of all living organisms encoding the relationship between a person's nutrition and their genes. Nutrients have the ability to modify gene expression and persuade alterations in DNA and protein molecules which is researched scientifically in nutrigenomics. These interactions have a significant impact on the pharmacokinetic properties of bioactive dietary components as well as their site of action/molecular targets. Nutrigenomics encompasses nutrigenetics, epigenetics, and transcriptomics as well as other "omic" disciplines like proteomics and metabolomics to explain the vast disparities in cancer risk among people with roughly similar life style. Clinical trials and researches have evidenced that alternation of dietary habits is potentially one of the key approaches for reducing cancer risk in an individual. In this article, we will target how nutrigenomics and functional food work as preventive therapy in reducing the risk of cancer.
Collapse
Affiliation(s)
| | - Ankit Kumar Dubey
- Institute of Scholars, Bengaluru, 577102, Karnataka, India.
- iGlobal Research and Publishing Foundation, New Delhi, 110059, India.
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yugam Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| |
Collapse
|
12
|
Lü J, Zhang D, Zhang X, Sa R, Wang X, Wu H, Lin Z, Zhang B. Network Analysis of the Herb-Drug Interactions of Citrus Herbs Inspired by the "Grapefruit Juice Effect". ACS OMEGA 2022; 7:35911-35923. [PMID: 36249376 PMCID: PMC9558717 DOI: 10.1021/acsomega.2c04579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study was performed to investigate the herb-drug interactions (HDIs) of citrus herbs (CHs), which was inspired by the "grapefruit (GF) juice effect". Based on network analysis, a total of 249 components in GF and 159 compounds in CHs exhibited great potential as active ingredients. Moreover, 360 GF-related genes, 422 CH-related genes, and 111 genes associated with drug transport and metabolism were collected, while 25 and 26 overlapping genes were identified. In compound-target networks, the degrees of naringenin, isopimpinellin, apigenin, sinensetin, and isoimperatorin were higher, and the results of protein-protein interaction indicated the hub role of UGT1A1 and CYP3A4. Conventional drugs such as erlotinib, nilotinib, tamoxifen, theophylline, venlafaxine, and verapamil were associated with GF and CHs via multiple drug transporters and drug-metabolizing enzymes. Remarkably, GF and CHs shared 48 potential active compounds, among which naringenin, tangeretin, nobiletin, and apigenin possessed more interactions with targets. Drug metabolism by cytochrome P450 stood out in the mutual mechanism of GF and CHs. Molecular docking was utilized to elevate the protein-ligand binding potential of naringenin, tangeretin, nobiletin, and apigenin with UGT1A1 and CYP3A4. Furthermore, in vitro experiments demonstrated their regulating effect. Overall, this approach provided predictions on the HDIs of CHs, and they were tentatively verified through molecular docking and cell tests. Moreover, there is a demand for clinical and experimental evidence to support the prediction.
Collapse
Affiliation(s)
- Jintao Lü
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaomeng Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rina Sa
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
- Gansu
Province Hospital, Lanzhou 730000, China
| | - Xiaofang Wang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huanzhang Wu
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijian Lin
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Beijing 102488, China
- Center
for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
Grzegorzewski J, Bartsch F, Köller A, König M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Front Pharmacol 2022; 12:752826. [PMID: 35280254 PMCID: PMC8914174 DOI: 10.3389/fphar.2021.752826] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Caffeine is by far the most ubiquitous psychostimulant worldwide found in tea, coffee, cocoa, energy drinks, and many other beverages and food. Caffeine is almost exclusively metabolized in the liver by the cytochrome P-450 enzyme system to the main product paraxanthine and the additional products theobromine and theophylline. Besides its stimulating properties, two important applications of caffeine are metabolic phenotyping of cytochrome P450 1A2 (CYP1A2) and liver function testing. An open challenge in this context is to identify underlying causes of the large inter-individual variability in caffeine pharmacokinetics. Data is urgently needed to understand and quantify confounding factors such as lifestyle (e.g., smoking), the effects of drug-caffeine interactions (e.g., medication metabolized via CYP1A2), and the effect of disease. Here we report the first integrative and systematic analysis of data on caffeine pharmacokinetics from 141 publications and provide a comprehensive high-quality data set on the pharmacokinetics of caffeine, caffeine metabolites, and their metabolic ratios in human adults. The data set is enriched by meta-data on the characteristics of studied patient cohorts and subjects (e.g., age, body weight, smoking status, health status), the applied interventions (e.g., dosing, substance, route of application), measured pharmacokinetic time-courses, and pharmacokinetic parameters (e.g., clearance, half-life, area under the curve). We demonstrate via multiple applications how the data set can be used to solidify existing knowledge and gain new insights relevant for metabolic phenotyping and liver function testing based on caffeine. Specifically, we analyzed 1) the alteration of caffeine pharmacokinetics with smoking and use of oral contraceptives; 2) drug-drug interactions with caffeine as possible confounding factors of caffeine pharmacokinetics or source of adverse effects; 3) alteration of caffeine pharmacokinetics in disease; and 4) the applicability of caffeine as a salivary test substance by comparison of plasma and saliva data. In conclusion, our data set and analyses provide important resources which could enable more accurate caffeine-based metabolic phenotyping and liver function testing.
Collapse
|
14
|
Gomes JVD, Herz C, Helmig S, Förster N, Mewis I, Lamy E. Drug-Drug Interaction Potential, Cytotoxicity, and Reactive Oxygen Species Production of Salix Cortex Extracts Using Human Hepatocyte-Like HepaRG Cells. Front Pharmacol 2021; 12:779801. [PMID: 34867410 PMCID: PMC8636986 DOI: 10.3389/fphar.2021.779801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Herbal preparations of willow bark (Salix cortex) are available in many countries as non-prescription medicines for pain and inflammation, and also as dietary supplements. Currently only little information on toxicity and drug interaction potential of the extracts is available. This study now evaluated the effects of two Salix cortex extracts on human hepatocyte-like HepaRG cells, in view of clinically relevant CYP450 enzyme activity modulation, cytotoxicity and production of reactive oxygen species (ROS). Drug metabolism via the CYP450 enzyme system is considered an important parameter for the occurrence of drug-drug interactions, which can lead to toxicity, decreased pharmacological activity, and adverse drug reactions. We evaluated two different bark extracts standardized to 10 mg/ml phenolic content. Herein, extract S6 (S. pentandra, containing 8.15 mg/ml total salicylates and 0.08 mg/ml salicin) and extract B (industrial reference, containing 5.35 mg/ml total salicylates and 2.26 mg/ml salicin) were tested. Both Salix cortex extracts showed no relevant reduction in cell viability or increase in ROS production in hepatocyte-like HepaRG cells. However, they reduced CYP1A2 and CYP3A4 enzyme activity after 48 h at ≥25 μg/ml, this was statistically significant only for S6. CYP2C19 activity inhibition (0.5 h) was also observed at ≥25 μg/ml, mRNA expression inhibition by 48 h treatment with S6 at 25 μg/ml. In conclusion, at higher concentrations, the tested Salix cortex extracts showed a drug interaction potential, but with different potency. Given the high prevalence of polypharmacy, particularly in the elderly with chronic pain, further systematic studies of Salix species of medical interest should be conducted in the future to more accurately determine the risk of potential drug interactions.
Collapse
Affiliation(s)
- João Victor Dutra Gomes
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine—University of Freiburg, Freiburg, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine—University of Freiburg, Freiburg, Germany
| | - Simone Helmig
- Institute for Occupational and Social Medicine and Department of Anesthesiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Nadja Förster
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Inga Mewis
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine—University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Determination of benchmark doses for linear furanocoumarin consumption associated with inhibition of cytochrome P450 1A2 isoenzyme activity in healthy human adults. Toxicol Rep 2021; 8:1437-1444. [PMID: 34377680 PMCID: PMC8329502 DOI: 10.1016/j.toxrep.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Millions of individuals globally consume traditional herbal medicines (THMs), which contain abundant amounts of linear furanocoumarins. Linear furanocoumarins (i.e., 8-methoxypsoralen, 5-methoxypsoralen, and isopimpinellin) are inhibitors of cytochrome P450 (CYP) isoenzymes including 1A2, a major enzyme involved in drug metabolism and carcinogen bioactivation. Despite the high consumption of furanocoumarin-containing THMs, no studies have measured the furanocoumarin consumption level that triggers an inhibition to CYP1A2 activity in humans. The first objective was to verify if the potencies of the three furanocoumarins are additive towards the inhibition of CYP1A2 activity in vitro using concentration-addition and whole-mixture chemical-mixture-assessment models. A second objective was to determine the benchmark dose (BMD) with the mixtures of furanocoumarin oral doses, expressed as 8-MOP equivalents, and to assess the in vivo CYP1A2 activity, expressed as inhibition percentages. The in vitro results indicated that the three furanocoumarin inhibitory potencies were additive in the THM extracts, validating the use of the concentration-addition model in total furanocoumarin dose-equivalent calculations. Using the USEPA BMD software, the BMD was 18.9 μg 8-MOP equivalent/kg body weight. This information is crucial for furanocoumarin-related health-assessment studies and the regulation of THMs. Further studies should be performed for the remaining major metabolic enzymes to complete the safety profile of furanocoumarin-containing THMs and to provide accurate warning labelling.
Collapse
Key Words
- 5-MOP, 5-methoxypsoralen
- 8-MOP, 8-methoxypsoralen
- AIC, Akaike’s information criterion
- BMD, benchmark dose
- BMDL, BMD lower bound
- BMDS, BMD software
- BMDU, BMD upper bound
- BMR, benchmark response
- Benchmark dose
- CA, concentration-addition model
- CYP, cytochrome P450
- Caffeine
- Cytochrome 1A2 enzyme
- DMSO, dimethyl sulfoxide
- Furanocoumarin
- HLM, human liver microsomes
- HPLC, high-performance liquid chromatography
- IC50, concentration at 50 % inhibition
- ISOP, isopimpinellin
- LOAEL, lowest-observed-adverse-effect level
- Metabolism
- NADPH, β-nicotinamide adenine dinucleotide phosphate hydrogen
- NOAEL, no-observed-adverse-effect level
- POD, point-of-departure
- RPF, relative potency factor
- SD, standard deviation
- TCL, treated clearance
- THM, traditional herbal medicine
- Traditional herbal medicines
- UCL, untreated clearance
- USEPA, United States Environmental Protection Agency
- WM, whole-mixture model
- log10, common log
Collapse
|
16
|
Suroowan S, Abdallah HH, Mahomoodally MF. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches. Food Chem Toxicol 2021; 156:112432. [PMID: 34293424 DOI: 10.1016/j.fct.2021.112432] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/05/2023]
Abstract
Herbals in the form of medicine are employed extensively around the world. Herbal and conventional medicine combination is a potentially dangerous practice mainly in comorbid, hepato insufficient and frail patients leading to perilous herb-drug interactions (HDI) and toxicity. This study features potential HDI of 15 globally famous plant species through data mining and computational methods. Several plant species were found to mimic warfarin. Phytochemicals from M. charantia induced hypoglycemica. M. chamomila and G. biloba possessed anticoagulant activities. S. hispanica reduces postprandial glycemia. R. officinalis has been reported to inhibit the efflux of anticancer substrates while A. sativum can boost the clearance of anticancer agents. P. ginseng can alter blood coagulation. A cross link of the biological and in silico data revealed that a plethora of herbal metabolites such as ursolic and rosmarinic acid among others are possible/probable inhibitors of specific CYP450 enzymes. Consequently, plant species/metabolites with a given pharmacological property/metabolizing enzyme should not be mixed with drugs having the same pharmacological property/metabolizing enzyme. Even if combined with drugs, herbal medicines must be used at low doses for a short period of time and under the supervision of a healthcare professional to avoid potential adverse and toxic effects.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Hassan Hadi Abdallah
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbīl, Iraq
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
17
|
Lajin B, Schweighofer N, Goessler W, Obermayer-Pietsch B. The determination of the Paraxanthine/Caffeine ratio as a metabolic biomarker for CYP1A2 activity in various human matrices by UHPLC-ESIMS/MS. Talanta 2021; 234:122658. [PMID: 34364467 DOI: 10.1016/j.talanta.2021.122658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
The Cytochrome P450 CYP1A2 is a central enzyme in the metabolism of drugs and xenobiotics. The overall activity of this enzyme is influenced by a complex array of biochemical, dietary, and genetic factors. One of the simplest ways to probe the overall output of CYP1A2 is to measure the ratio between the concentration of a precursor and a product of its activity. With the growing interest in the Paraxanthine/Caffeine ratio, the need arises to develop improved analytical methods specifically optimized for the rapid and sensitive determination of paraxanthine and caffeine in biological samples. We report a new optimized method for the determination of caffeine and paraxanthine in various human matrices. The method involved direct determination following protein precipitation based on ultra high performance liquid chromatographic separation with tandem mass spectrometric detection (UHPLC-ESIMS/MS). The method offers an improvement in the detection limit over previously published methods by at least 10-fold (0.1 pg), rapid chromatographic separation (ca. 5 min), the utilization of a green chromatographic solvent (5% v/v ethanol), direct determination with little sample preparation, and the employment of isotopically labeled internal standards and qualifier ions to ensure accuracy. Method validation in urine, saliva, and plasma was performed by spiking at various concentration levels where the recovery and repeatability were within ±15% and ±10%, respectively. The method was applied to investigate the levels of caffeine and paraxanthine in volunteers following controlled caffeine administration and to investigate the inter- and intra-individual variability in the paraxanthine/caffeine ratio in volunteers following an unrestricted caffeine diet. In conclusion, the developed UHPLC-ESIMS/MS method is optimized specifically for the simultaneous determination of the paraxanthine/caffeine ratio in multiple biological matrices, offers several advantages over the current methods, and is well suitable for application in large clinical studies.
Collapse
Affiliation(s)
- Bassam Lajin
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Natascha Schweighofer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria; CBmed, Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| |
Collapse
|
18
|
Wang Y, Wu H, Chen P, Su W, Peng W, Li P. Fertility and early embryonic development toxicity assessment of naringin in Sprague-Dawley rats. Regul Toxicol Pharmacol 2021; 123:104938. [PMID: 33933549 DOI: 10.1016/j.yrtph.2021.104938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022]
Abstract
Naringin is a dihydroflavonoid abundantly existed in grapefruit and related citrus species. The double directional adjusting function of estrogenic and anti-estrogenic activities of naringin and its aglycone naringenin has raised concern about possible risks of unwanted interference with endocrine regulation. Herein we assessed the safety of naringin on fertility and early embryonic development toxicity in Sprague-Dawley rats. Twenty-two male and 22 female rats per group were orally given naringin at 0, 50, 250, and 1250 mg/kg/day. Male rats were administered beginning 9 weeks prior to mating and continued until necropsy. Dosing to female began 2 weeks before mating and continued until gestation day 7. There were no obvious effects of naringin on physical signs, animal behavior, and survival rate, although female and male rats from 1250 mg/kg group had lower body weight and tended to have less food consumption. Importantly, no treatment-related effects of naringin were found in relation to fertility and early embryonic development. Under these experimental conditions, it was concluded that the no-observed-adverse-effect levels (NOAEL) of naringin were at least 1250 mg/kg/day for fertility and early embryonic development in rats.
Collapse
Affiliation(s)
- Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pan Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wei Peng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
19
|
Alehaideb Z, Sheriffdeen M, Law FCP. Inhibition of Caffeine Metabolism by Apiaceous and Rutaceae Families of Plant Products in Humans: In Vivo and In Vitro Studies. Front Pharmacol 2021; 12:641090. [PMID: 33995046 PMCID: PMC8116649 DOI: 10.3389/fphar.2021.641090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Daily consumption of caffeinated beverages is considered safe but serious health consequences do happen in some individuals. The Apiaceous and Rutaceae families of plant (ARFP) products are popular foods and medicines in the world. We previously reported significant amounts of furanocoumarin bioactive such as 8-methoxypsoralen, 5-methoxypsoralen, and isopimpinellin in ARFP products. As both caffeine and furanocoumarin bioactive are metabolized by the same hepatic CYP1A1/2 isozyme in humans, caffeine/ARFP product interactions may occur after co-administration. The objectives of the present study were to study in vivo loss of caffeine metabolizing activity by comparing the pharmacokinetics of caffeine in volunteers before and after pre-treatment with an ARFP extract, study the correlation between the decrease in hepatic CYP1A2 activity and the content of furanocoumarin bioactive in ARFP extracts, characterize CYP1A2 inactivation using in vitro incubations containing 14C-caffeine, a furanocoumarin bioactive, and human liver microsomes (HLMs), and provide a mechanistic explanation for both in vivo and in vitro data using the irreversible inhibition mechanism. The study results showed pre-treatment of volunteers with four ARFP extracts increased the area-under-the-concentration-time-curve (AUC0-inf) ratio of caffeine in the plasma ranging from 1.3 to 4.3-fold compared to the untreated volunteers indicating significant caffeine metabolism inhibition. The increases in AUC0-inf ratio also were linearly related to the effect-based doses of the furanocoumarins in the ARFP extracts, a finding which indicated caffeine metabolism inhibition was related to the content of furanocoumarin bioactive in an ARFP product. In vitro incubation studies also showed individual furanocoumarin bioactive were potent inhibitors of caffeine-N-demethylation; the IC50 for 8-methoxypsoralen 5-methoxypsoralen, and isopimpinellin were 0.09, 0.13, and 0.29 µM, respectively. In addition, CYP1A2 inactivation by individual furanocoumarin bioactive was concentration- and time-dependent involving the irreversible inhibition mechanism. The proposed irreversible inhibition mechanism was investigated further using 14C-labeled 8-methoxypsoralen and HLMs. The formation of 14C-adducts due to 14C-8-MOP-derived radioactivity bound to HLMs confirmed the irreversible inhibition of CYP1A2 activity. Thus, furanocoumarin bioactive metabolism in humans would result in reactive metabolite(s) formation inactivating CYP1A2 isozyme and inhibiting caffeine metabolism. Once the CYP1A2 isozyme was deactivated, the enzymic activity could only be regained by isozyme re-synthesis which took a long time. As a result, a single oral dose of ARFP extract administered to the human volunteers 3.0 h before still was able to inhibit caffeine metabolism.
Collapse
Affiliation(s)
- Zeyad Alehaideb
- Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | | | - Francis C P Law
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
20
|
Gougis P, Hilmi M, Geraud A, Mir O, Funck-Brentano C. Potential Cytochrome P450-mediated pharmacokinetic interactions between herbs, food, and dietary supplements and cancer treatments. Crit Rev Oncol Hematol 2021; 166:103342. [PMID: 33930533 DOI: 10.1016/j.critrevonc.2021.103342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022] Open
Abstract
Herbs, food and dietary supplements (HFDS), can interact significantly with anticancer drug treatments via cytochrome p450 isoforms (CYP) CYP3A4, CYP2D6, CYP1A2, and CYP2C8. The objective of this review was to assess the influence of HFDS compounds on these cytochromes. Interactions with CYP activities were searched for 189 herbs and food products, 72 dietary supplements in Web of Knowledge® databases. Analyses were made from 140 of 3,125 clinical trials and 236 of 3,374 in vitro, animal model studies or case reports. 18 trials were found to report direct interactions between 9 HFDS with 8 anticancer drugs. 21 HFDS were found to interact with CYP3A4, a major metabolic pathway for many anticancer drugs. All 261 HFDS were classified for their interaction with the main cytochromes P450 involved in the metabolism of anticancer drugs. We provided an easy-to-use colour-coded table to easily match potential interactions between 261 HFDS and 117 anticancer drugs.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; CLIP² Galilée, Department of Medical Oncology Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Marc Hilmi
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| | - Arthur Geraud
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| |
Collapse
|
21
|
Alifarsangi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M. The citrus flavanone naringenin prevents the development of morphine analgesic tolerance and conditioned place preference in male rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:43-51. [PMID: 33006902 DOI: 10.1080/00952990.2020.1813296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Opioids are effective analgesics in the management of chronic pain. However, their clinical use is hindered by adverse side effects such as addiction and analgesic tolerance. Naringenin is a common polyphenolic constituent of the citrus fruits and is one of the most commonly consumed flavonoids within our regular diet. However, its influences on opioid tolerance and addiction have not yet been clarified. OBJECTIVES To examine the effect of different doses of naringenin on analgesic tolerance, conditioned place preference and neuroinflammation in morphine-exposed rats. METHODS Analgesic tolerance was induced by the injection of 10 mg/kg morphine twice daily for 8 days in 70 male Wistar rats. To evaluate the effect of naringenin on the development of morphine tolerance, different doses (10, 25 and 50 mg/kg i.p.) were injected 15 min before morphine. The tail-flick test was used to assess nociceptive threshold. Conditioned place preference test was used to evaluate morphine-seeking behaviors. The lumbar spinal cord was assayed to determine glial fibrillary acidic protein (GFAP) and cyclooxygenase-2 (COX-2) levels by Western blotting. RESULTS The data showed that naringenin could significantly prevent morphine tolerance (p < .001) and conditioned place preference. In addition, chronic morphine-induced GFAP and COX-2 overexpression was significantly reversed by 50 mg/kg naringenin (p < .05 and p < .01, respectively). CONCLUSION Our results suggest that naringenin may have a potential anti-tolerant/anti-addiction property against chronic morphine misuse and that this preventive effect is associated with its anti-neuroinflammatory effects.
Collapse
Affiliation(s)
- Atena Alifarsangi
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
23
|
Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. PLANTS 2020; 9:plants9121784. [PMID: 33339267 PMCID: PMC7766900 DOI: 10.3390/plants9121784] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.
Collapse
|
24
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
26
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Cheng K, Zeng X, Wu H, Su W, Fan W, Bai Y, Yao H, Li P. Effects of Naringin on the Activity and mRNA Expression of CYP Isozymes in Rats. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19894180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Naringin (NRG) is a common dietary flavonoid in citrus fruits and has been documented to possess multiple pharmacological activities, including anti-oxidant, anti-inflammatory, and neuroprotective effects. Naringin is frequently consumed in combination with common clinical drugs. To date, the effects of NRG on cytochrome P450 enzymes have not been fully investigated yet. In this study, the activities of hepatic CYP1A2, CYP2D2, CYP2C9, CYP2C19, and CYP2E1 in rats after the continuous oral administration of NRG (50 and 500 mg/kg) were evaluated using cocktail probe-drug method. The concentrations of 5 probe drugs (phenacetin, dextromethorphan, diclofenac sodium, omeprazole, and chlorzoxazone) in rat plasma were simultaneously determined with a validated HPLC-MS/MS (high performance liquid chromatography-tandem mass spectrometry) method and then used to calculate corresponding pharmacokinetic parameters. Compared with the control group, the AUC(0- t), AUC(0-∞), t 1/2, and C max of each probe drug in treatment groups showed no significant differences. Meanwhile, fluorescence quantitative polymerase chain reaction (FQ-PCR) analysis revealed that NRG did not significantly affect the mRNA expressions of genes CYP1a2, CYP2d2, CYP2c6, CYP2c11, and CYP2e1 in rat liver. Based on these results, it could be concluded that NRG showed no significant effects on the activities and mRNA expressions of tested CYP450 in rats.
Collapse
Affiliation(s)
- Keling Cheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiyang Fan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yang Bai
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, People’s Republic of China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
29
|
Abstract
The intake of flavanones, the predominant flavonoid in the Citrus genus in human diets is variable but considerable. It is thus unsurprising that they have attracted interest for their claimed positive effects on health. However, to substantiate any purported impact on health and decipher the underlying mechanism(s), knowledge of pharmacokinetics is crucial. The aim of this article is to review currently known aspects of the fate of flavanones in the organism including absorption, metabolism, distribution, and excretion as well as possible kinetic interactions with clinically used drugs. There are three principal keynotes: (1) The level of parent flavanones in plasma is negligible. The major reason for this is that although flavanones are absorbed into enterocytes after oral intake, they are rapidly metabolized, in particular, into conjugates, sulfates and glucuronides, which are the major forms circulating in plasma. (2) A large fraction reaches the colon where it is efficiently metabolized into small absorbable phenolics. (3) The form (aglycone vs. glycoside) and species (e.g. human vs. rat) have important impact. In conclusion, knowledge of the pharmacokinetics of flavanones, in particular of metabolites, their achievable plasma concentration and half-lives, should be borne in mind when their biological effects are investigated.
Collapse
Affiliation(s)
- Iveta Najmanová
- Faculty of Pharmacy, Department of Biological and Medical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Marie Vopršalová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Charles University, Hradec Králové, Czech Republic
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Přemysl Mladěnka
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
30
|
Sheriffdeen MM, Alehaideb ZI, Law FCP. Caffeine/Angelica dahurica and caffeine/Salvia miltiorrhiza metabolic inhibition in humans: In vitro and in vivo studies. Complement Ther Med 2019; 46:87-94. [PMID: 31519293 DOI: 10.1016/j.ctim.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND caffeine is a major constituent in numerous foods, beverages, dietary supplements and medications.Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, and Salvia miltiorrhiza Bunge are traditional medicines commonly used in Asia. OBJECTIVES to compare the pharmacokinetics of caffeine in humans before and after consuming an aqueous extract of A. dahurica or S. miltiorrhiza, and to propose a mechanistic explanation for in vivo caffeine metabolism inhibition based on in vitro data obtained with human liver microsomes. METHODS Each of the four human volunteers was given a single oral dose of caffeine before and after consuming an A. dahurica or S. miltiorrhiza extract. Saliva samples were collected from the volunteers at pre-determined time points after receiving caffeine. The saliva samples were analyzed for unchanged caffeine using liquid chromatography. RESULTS A. dahurica and S. miltiorrhiza extracts were capable of inhibiting caffeine metabolism in the human volunteers. In a separate study, cytochrome (CYP) 1A2-mediated caffeine demethylase activity was studied in incubation containing human liver microsomes, β-nicotinamide adenine dinucleotide phosphate, and an herbal extract (or a pure bioactive chemical from the herbs). In all cases, CYP1A2 activity was decreased with an increasing inhibitor concentration, confirming the inhibition of caffeine metabolism in vivo. Caffeine metabolism inhibition most likely involved the competitive and/or non-competitive mechanism. CONCLUSION Because a high level of caffeine in the plasma may result in adverse health effects in humans, care must be exercised when caffeine is consumed together with A. dahurica or S. miltiorrhiza.
Collapse
Affiliation(s)
| | - Zeyad I Alehaideb
- Department of Medical Genomics, King Abdullah International Medical Research Center, P.O. Box 3660 Riyadh 11481, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 22490 Riyadh 11426, Saudi Arabia.
| | - Francis C P Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., V5A, Canada.
| |
Collapse
|
31
|
Development of a new, sensitive, and robust analytical and bio-analytical RP-HPLC method for in-vitro and in-vivo quantification of naringenin in polymeric nanocarriers. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Kozłowska J, Grela E, Baczyńska D, Grabowiecka A, Anioł M. Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity. Molecules 2019; 24:molecules24040679. [PMID: 30769816 PMCID: PMC6413393 DOI: 10.3390/molecules24040679] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022] Open
Abstract
In our investigation, we concentrated on naringenin (NG)—a widely studied flavanone that occurs in citrus fruits. As a result of a reaction with a range of alkyl iodides, 7 novel O-alkyl derivatives of naringenin (7a–11a, 13a, 17a) were obtained. Another chemical modification led to 9 oximes of O-alkyl naringenin derivatives (7b–13b, 16b–17b) that were never described before. The obtained compounds were evaluated for their potential antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The results were reported as the standard minimal inhibitory concentration (MIC) values and compared with naringenin and its known O-alkyl derivatives. Compounds 4a, 10a, 12a, 14a, 4b, 10b, 11b, and 14b were described with MIC of 25 µg/mL or lower. The strongest bacteriostatic activity was observed for 7-O-butylnaringenin (12a) against S. aureus (MIC = 6.25 µg/mL). Moreover, the antitumor effect of flavonoids was examined on human colon cancer cell line HT-29. Twenty-six compounds were characterized as possessing an antiproliferative activity stronger than that of naringenin. The replacement of the carbonyl group with an oxime moiety significantly increased the anticancer properties. The IC50 values below 5 µg/mL were demonstrated for four oxime derivatives (8b, 11b, 13b and 16b).
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Ewa Grela
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mirosław Anioł
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
33
|
Asprodini E, Tsiokou V, Begas E, Kilindris T, Kouvaras E, Samara M, Messinis I. Alterations in Xenobiotic-Metabolizing Enzyme Activities across Menstrual Cycle in Healthy Volunteers. J Pharmacol Exp Ther 2019; 368:262-271. [PMID: 30591530 DOI: 10.1124/jpet.118.254284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine whether the in vivo activities of drug-metabolizing enzymes CYP1A2 and CYP2A6, xanthine oxidase (XO), and N-acetyltransferase-2 (NAT2) vary across the menstrual cycle. Forty-two healthy women were studied at early follicular phase (EFP: 2nd to 4th days), late follicular phase (LFP: 10th to 12th days), and luteal phase (LP: 19th to 25th days) of a single menstrual cycle, and blood and urine samples were collected at each phase. Spot urine samples obtained 6 hours following 200-mg caffeine administration were used to determine caffeine metabolite ratios (CMRs); blood samples were used to determine CYP1A2*1F (rs762551) and CYP1A2*1C (rs2069514) polymorphisms and the hormonal profile (estradiol, progesterone, and luteinizing and follicle-stimulating hormones) at EFP, LFP, and LP. CMR and hormone variations were analyzed at three levels (EFP, LFP, LP) using one-way repeated-measures analysis of variance. CYP1A2 activity was lower and that of CYP2A6 and NAT2 were higher at LFP compared with EFP and LP. Enzyme alterations were significant in volunteers (n = 21) whose hormonal profiles at EFP, LFP, and LP corresponded to expected levels, but not in volunteers (n = 15) with presumed early or late sampling around LFP. No significant difference was detected in any enzyme activity in presumed anovulatory volunteers (n = 6). The reduction of CYP1A2 activity at LFP was not associated with smoking or CYP1A2*1F polymorphism. XO and NAT2 (fast acetylators) activities remained unaltered. It is suggested that drug-metabolizing enzyme activities are altered across the menstrual cycle. Selection of appropriate sampling periods verified by hormonal assessment and identification of anovulatory cycles are decisive factors in disclosing altered enzyme activity across the menstrual cycle.
Collapse
Affiliation(s)
- E Asprodini
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - V Tsiokou
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - E Begas
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - T Kilindris
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - E Kouvaras
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - M Samara
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - I Messinis
- Laboratory of Pharmacology (E.A., V.T., E.B., E.K.), Medical Informatics (T.K.), Pathology (M.S.), and Department of Obstetrics and Gynecology (I.M.), Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
34
|
El-Khodary MSM, Hasan SE, Hassan WA, El-Lamie MM, Eissa IAM, Khalil WF, Aly SM. How to Return the Death Programs of Cancer Cells to Work again and Cure Cancer within a Short Time? Cell 2019. [DOI: 10.4236/cellbio.2019.82002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Nutraceutical Oils Produced by Olives and Citrus Peel of Tuscany Varieties as Sources of Functional Ingredients. Molecules 2018; 24:molecules24010065. [PMID: 30585205 PMCID: PMC6337401 DOI: 10.3390/molecules24010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 11/30/2022] Open
Abstract
The essential oils extracted from the peels of two Tuscany Citrus of the Massa province have been characterised. Moreover, the flavedo of these species has been used in the production of two Citrus olive oils (COOs) obtained with an innovative method in which the citrus peels are cryomacerated and then pressed with the olives. The presence of functional compounds, such as carotenoids, naringenin and minor phenolics, classifies these COOs as nutraceuticals with the potential to develop enriched foods able to promote a healthy diet. Moreover, the increased presence of tyrosol and hydroxytyrosol, compared to the unflavoured oil, further highlights the nutritional value to the two COOs, being these phenolic compounds recognized as good possible therapeutic candidates for the inhibition of neurodegenerative diseases as the Parkinson’s disease. In this perspective, the citrus peels, rich in bioactive compounds, have been valued transforming their waste nature in an innovative resource.
Collapse
|
36
|
Willson C. The clinical toxicology of caffeine: A review and case study. Toxicol Rep 2018; 5:1140-1152. [PMID: 30505695 PMCID: PMC6247400 DOI: 10.1016/j.toxrep.2018.11.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
Caffeine is a widely recognized psychostimulant compound with a long history of consumption by humans. While it has received a significant amount of attention there is still much to be learned with respect to its toxicology in humans, especially in cases of overdose. A review of the history of consumption and the clinical toxicology of caffeine including clinical features, pharmacokinetics, toxicokinetics, a thorough examination of mechanism of action and management/treatment strategies are undertaken. While higher (i.e., several grams) quantities of caffeine are known to cause toxicity and potentially lethality, cases of mainly younger individuals who have experienced severe side effects and death despite consuming doses not otherwise known to cause such harm is troubling and deserves further study. An attempted case reconstruction is performed in an effort to shed light on this issue with a focus on the pharmacokinetics and pharmacodynamics of caffeine.
Collapse
|
37
|
Begas E, Kilindris T, Kouvaras E, Tsioutsioumi A, Kouretas D, Asprodini EK. Dietary effects of Sideritis scardica "mountain tea" on human in vivo activities of xenobiotic metabolizing enzymes in healthy subjects. Food Chem Toxicol 2018; 122:38-48. [PMID: 30266316 DOI: 10.1016/j.fct.2018.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Sideritis scardica(S. scardica) is an endemic plant of the Balkan Peninsula traditionally used as herbal tea for inflammation and gastric disorders. Aqueous herbal extracts may affect the activity of Phase I and II enzymes involved in xenobiotic metabolism. The purpose of the present study was to determine whether S. scardica decoction alters the activity of CYP1A2, CYP2A6, XO, NAT2 and UGT1A1/1A6 enzymes in humans. Fourteen healthy subjects consumed S. scardica decoction for six days. Enzyme phenotyping was assessed in saliva and urine using caffeine and paracetamol metabolite ratios as follows: CYP1A2: 17X/137X (saliva) and (AFMU+1U+1X)/17U, CYP2A6: 17U/(17U + 17X), XO: 1U/(1U+1X), NAT2: AFMU/(AFMU+1U+1X) and UGT1A1/1A6: glucuronidated/total paracetamol (urine). After S. scardica intake, CYP1A2 index was reduced by ∼16% and ∼8% in saliva (before: 0.54 ± 0.18, after: 0.46 ± 0.09; p = 0.08) and urine (before: 3.59 ± 0.52, after: 3.67 ± 0.78; p = 0.12), respectively. CYP2A6 index was significantly reduced only in males (before: 0.76 ± 0.08, after: 0.67 ± 0.07; p = 0.004), suggesting sexual dimorphism in CYP2A6 inhibition. There was no effect of Sideritis scardica treatment on XO, NAT2 or UGT1A1/1A6 indices. Usual consumption of the aerial parts of S. scardica decoction is unlikely to result in herb-drug interactions involving the enzymes studied, with the exception of potential herb-CYP2A6 substrate interaction in males.
Collapse
Affiliation(s)
- Elias Begas
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Thomas Kilindris
- Laboratory of Medical Informatics, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Evangelos Kouvaras
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Agoritsa Tsioutsioumi
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Demetrios Kouretas
- Laboratory of Animal Physiology - Toxicology, Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Eftihia K Asprodini
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| |
Collapse
|
38
|
Chen H, Liu RH. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3260-3276. [PMID: 29498272 DOI: 10.1021/acs.jafc.7b04975] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
- Institute of Edible Fungi , Shanghai Academy of Agriculture Science , Shanghai 201403 , China
| | - Rui Hai Liu
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
| |
Collapse
|
39
|
Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev 2018; 70:384-411. [PMID: 29514871 DOI: 10.1124/pr.117.014407] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|
40
|
El-Khodary MSM. Quranic Verse No. 8 of Surat Al-Jumu’ah Leads us to Describe Cancer and Determine Its True Cause (Part-III). Cell 2018. [DOI: 10.4236/cellbio.2018.73004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Kozłowska J, Potaniec B, Żarowska B, Anioł M. Synthesis and Biological Activity of Novel O-Alkyl Derivatives of Naringenin and Their Oximes. Molecules 2017; 22:molecules22091485. [PMID: 28878189 PMCID: PMC6151618 DOI: 10.3390/molecules22091485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/15/2023] Open
Abstract
O -Alkyl derivatives of naringenin ( 1a - 10a ) were prepared from naringenin using the corresponding alkyl iodides and anhydrous potassium carbonate. The resulting products were used to obtain oximes ( 1b - 10b ). All compounds were tested for antimicrobial activity against Escherichia coli ATCC10536, Staphylococcus aureus DSM799, Candida albicans DSM1386, Alternaria alternata CBS1526, Fusarium linii KB-F1, and Aspergillus niger DSM1957. The resulting biological activity was expressed as the increase in optical density (ΔOD). The highest inhibitory effect against E. coli ATCC10536 was observed for 7,4'-di- O -pentylnaringenin ( 8a ), 7- O -dodecylnaringenin ( 9a ), naringenin oxime ( NG-OX ), 7,4'-di- O -pentylnaringenin oxime ( 8b ), and 7- O -dodecylnaringenin oxime ( 9b ) (ΔOD = 0). 7- O -dodecylnaringenin oxime ( 9b ) also inhibited the growth of S. aureus DSM799 (ΔOD = 0.35) and C. albicans DSM1386 (ΔOD = 0.22). The growth of A. alternata CBS1526 was inhibited as a result of the action of 7,4'-di- O -methylnaringenin ( 2a ), 7- O -ethylnaringenin ( 4a ), 7,4'-di- O -ethylnaringenin ( 5a ), 5,7,4'-tri- O -ethylnaringenin ( 6a ), 7,4'-di- O -pentylnaringenin ( 8a ), and 7- O -dodecylnaringenin ( 9a ) (ΔOD in the range of 0.49-0.42) in comparison to that of the control culture (ΔOD = 1.87). In the case of F. linii KB-F1, naringenin ( NG ), 7,4'-di- O -dodecylnaringenin ( 10a ), 7- O -dodecylnaringenin oxime ( 9b ), and 7,4'-di- O -dodecylnaringenin oxime ( 10b ) showed the strongest effect (ΔOD = 0). 7,4'-Di- O -pentylnaringenin ( 8a ) and naringenin oxime ( NG-OX ) hindered the growth of A. niger DSM1957 (ΔOD = 0).
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Bartłomiej Potaniec
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37/41, 51-630 Wrocław, Poland.
| | - Mirosław Anioł
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
42
|
Liu SY, Zeng J, Peng KJ, Zhang LC, Liu LJ, Luo ZY, Ma DY. Synthesis and antiproliferative properties of novel naringenin derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1966-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology 2017; 375:10-27. [DOI: 10.1016/j.tox.2016.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022]
|
44
|
Steuck M, Hellhake S, Schebb NH. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8973-8976. [PMID: 27933871 DOI: 10.1021/acs.jafc.6b04501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.
Collapse
Affiliation(s)
- Maryvonne Steuck
- Department of Food Chemistry, University of Wuppertal , Wuppertal, Germany
| | - Stefan Hellhake
- Department of Food Chemistry, University of Wuppertal , Wuppertal, Germany
| | - Nils Helge Schebb
- Department of Food Chemistry, University of Wuppertal , Wuppertal, Germany
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover , Hannover, Germany
| |
Collapse
|
45
|
Liu L, Yao Q, Ma Z, Ikeda H, Fushinobu S, Xu LH. Hydroxylation of flavanones by cytochrome P450 105D7 from Streptomyces avermitilis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
In vitro effects of the citrus flavonoids diosmin, naringenin and naringin on the hepatic drug-metabolizing CYP3A enzyme in human, pig, mouse and fish. Biochem Pharmacol 2016; 110-111:109-16. [PMID: 27107807 DOI: 10.1016/j.bcp.2016.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022]
Abstract
Flavonoids are known to have effects on cytochrome P450 enzymatic activity. However, little effort has been made to examine species differences and the relevance of studies on mammalian and fish microsomes so that extrapolations can be made to humans. Therefore, the effects of several naturally occurring flavonoids on the activity of CYP3A-dependent 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) were evaluated in human, pig, mouse, and juvenile rainbow trout sources of hepatic microsomes. Each was exposed to three concentrations (1, 10, and 100μM) of diosmin, naringin, and naringenin. Naringenin competitively inhibited BFCOD activity (Ki values were 24.6μM in human, 15.6μM in pig, and 19.6μM in mouse microsomes). In fish, BFCOD activity was inhibited in a noncompetitive manner (Ki=7μM). Neither diosmin nor naringenin affected BFCOD activity in hepatic microsomes from the studied model organisms. These results suggest that dietary flavonoids potentially inhibit the metabolism of clinical drugs.
Collapse
|
47
|
Pingili R, Vemulapalli S, Mullapudi SS, Nuthakki S, Pendyala S, Kilaru N. Pharmacokinetic interaction study between flavanones (hesperetin, naringenin) and rasagiline mesylate in wistar rats. Drug Dev Ind Pharm 2015; 42:1110-7. [DOI: 10.3109/03639045.2015.1115868] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Hu J, Shang D, Xu X, He X, Ni X, Zhang M, Wang Z, Qiu C, Deng S, Lu H, Zhu X, Huang W, Wen Y. Effect of grapefruit juice and food on the pharmacokinetics of pirfenidone in healthy Chinese volunteers: a diet-drug interaction study. Xenobiotica 2015; 46:516-21. [PMID: 26407124 DOI: 10.3109/00498254.2015.1089365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. Ingestion of grapefruit juice and food could be factors affecting the pharmacokinetics of pirfenidone, a promising drug for treatment of idiopathic pulmonary fibrosis. 2. A randomized, open-label, three-period crossover study was carried out in 12 healthy Chinese male volunteers who were randomized to one of the three treatments: pirfenidone tablets (0.4 g) were orally administered to fasted or fed subjects, or with grapefruit juice. The washout period was 7 d. 3. Significantly reduced maximum plasma concentration (Cmax, 5.0 5 ± 1.39 versus 10.9 0 ± 2.94 mg·L(- 1)), modestly affected area-under-the-plasma concentration-time curve (AUC) from time zero to 12 h post dosing (AUC0-12 h, 21.8 9 ± 6.47 versus 26.1 6 ± 7.32 mg·h·L(- 1)) and delayed time to reach Cmax (Tmax) were observed in fed group compared with fasted group. Similar effects on Cmax (5.8 2 ± 1.23 versus 10.9 0 ± 2.94 mg·L(- 1)) and AUC0-12 h (modest but not statistically significant, 24.4 4 ± 7.40 versus 26.1 6 ± 7.32 mg·h·L(- 1)) were observed for grapefruit juice compared to fasted subjects. 4. Co-administration of pirfenidone with grapefruit juice resulted in modestly reduced overall oral absorption and significantly reduced peak concentrations compared to fasting, which was similar to effect of food ingestion. No adverse events were observed in the study, but relatively dramatic reduction of peak concentrations should raise concerns for clinical efficacy and safety.
Collapse
Affiliation(s)
- Jinqing Hu
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Dewei Shang
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Xinwen Xu
- b Ebang Pharmaceutical Co. Ltd , Zhuhai , China , and
| | - Xiuling He
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China .,c Department of Pharmacy , Xinhui People's Hospital of Jiangmen , Jiangmen , China
| | - Xiaojia Ni
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Ming Zhang
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Zhanzhang Wang
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Chang Qiu
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Shuhua Deng
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Haoyang Lu
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Xiuqing Zhu
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Wencan Huang
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| | - Yuguan Wen
- a Institution of National Drug Clinical Trials, Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University) , Guangzhou , China
| |
Collapse
|
49
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
50
|
De Kesel PMM, Lambert WE, Stove CP. Alternative Sampling Strategies for Cytochrome P450 Phenotyping. Clin Pharmacokinet 2015; 55:169-84. [DOI: 10.1007/s40262-015-0306-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|