1
|
Cillo M, Buonomo V, Vainshtein A, Grumati P. Autophagy, ER-phagy and ER Dynamics During Cell Differentiation. J Mol Biol 2025:169151. [PMID: 40222412 DOI: 10.1016/j.jmb.2025.169151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for protein and lipid synthesis, ion transport and inter-organelle communication. It comprises a highly dynamic network of membranes that continuously reshape to support a wide range of cellular processes. During cellular differentiation, extensive remodelling of both ER architecture and its proteome is required to accommodate alterations in cell morphology and function. Autophagy, and ER-phagy in particular, plays a pivotal role in reshaping the ER, enabling cells to meet their evolving needs and adapt to developmental cues. Despite the ER's critical role in cellular differentiation, the mechanisms responsible for regulating its dynamics are not fully understood. Emerging evidence suggests that transcriptional and post-translational regulation play a role in fine-tuning ER-phagy and the unfolded protein response (UPR). This review explores the molecular basis of autophagy and ER-phagy, highlighting their role in ER remodelling during cellular differentiation. A deeper understanding of these processes could open new avenues for targeted therapeutic approaches in conditions where ER remodelling is impaired.
Collapse
Affiliation(s)
- Michele Cillo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
| |
Collapse
|
2
|
Cui F, Deng S, Fu Y, Xu T, Bao S, Wang S, Lin Y, Wang X, Zhao F, Zhang T, Xu S, Zhang Z, Li W, Yang GY, Tang H, Wang J, Sheng X, Tang Y. Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway. Cell Rep 2025; 44:115126. [PMID: 39752254 DOI: 10.1016/j.celrep.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear. Here, we demonstrate that maternal exposure to MBP enhances neural stem cell (NSC) differentiation into astrocytes with highly expressed C3 and LCN2 in mouse offspring, resulting in increased synapse phagocytosis and cognitive dysfunction. Mechanistically, we find that MBP exposure activates the IRE1α/XBP1s (spliced XBP1) stress response pathway, which regulates key genes involved in astrocyte differentiation (SOX9 and ATF3) and reactivity (C3 and LCN2). Conditional knockout or pharmacological inhibition of IRE1α markedly inhibits NSC differentiation into astrocytes and astrocyte reactivity, attenuates synapse phagocytosis, and improves cognitive function. This phenotype is further recapitulated in a human brain organoid model. Together, these findings unveil the molecular mechanism underlying the neurodevelopmental deficits caused by a widespread environmental pollutant.
Collapse
Affiliation(s)
- Fengzhen Cui
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shiyu Deng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Yan Fu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Tongtong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Shuangshuang Bao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Siyi Wang
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Xianghui Wang
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Faming Zhao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shunqing Xu
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Wanlu Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jixian Wang
- Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Xia Sheng
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China.
| |
Collapse
|
3
|
Hunt M, Wang N, Pupinyo N, Curman P, Torres M, Jebril W, Chatzinikolaou M, Lorent J, Silberberg G, Bansal R, Burner T, Zhou J, Kimeswenger S, Hoetzenecker W, Choate K, Bachar-Wikstrom E, Wikstrom JD. Dantrolene corrects cellular disease features of Darier disease and may be a novel treatment. EMBO Mol Med 2024; 16:1986-2001. [PMID: 39060641 PMCID: PMC11392931 DOI: 10.1038/s44321-024-00104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Darier disease (DD) is a rare severe acantholytic skin disease caused by mutations in the ATP2A2 gene that encodes for the sarco/endoplasmic reticulum calcium ATPase isoform 2 (SERCA2). SERCA2 maintains endoplasmic reticulum calcium homeostasis by pumping calcium into the ER, critical for regulating cellular calcium dynamics and cellular function. To date, there is no treatment that specifically targets the disease mechanisms in DD. Dantrolene sodium (Dl) is a ryanodine receptor antagonist that inhibits calcium release from ER to increase ER calcium levels and is currently used for non-dermatological indications. In this study, we first identified dysregulated genes and molecular pathways in DD patient skin, demonstrating downregulation of cell adhesion and calcium homeostasis pathways, as well as upregulation of ER stress and apoptosis. We then show in various in vitro models of DD and SERCA2 inhibition that Dl aided in the retention of ER calcium and promoted cell adhesion. In addition, Dl treatment reduced ER stress and suppressed apoptosis. Our findings suggest that Dl specifically targets pathogenic mechanisms of DD and may be a potential treatment.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nuoqi Wang
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Naricha Pupinyo
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Philip Curman
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - William Jebril
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Chatzinikolaou
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Julie Lorent
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gilad Silberberg
- Bioinformatics & Computational Biology Research Operations, Champions Oncology Inc, Rehovot, Israel
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Teresa Burner
- Johannes Kepler University Linz, Kepler University Hospital Linz, Department of Dermatology, Linz, Austria
| | - Jing Zhou
- Department of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Susanne Kimeswenger
- Johannes Kepler University Linz, Kepler University Hospital Linz, Department of Dermatology, Linz, Austria
| | - Wolfram Hoetzenecker
- Johannes Kepler University Linz, Kepler University Hospital Linz, Department of Dermatology, Linz, Austria
| | - Keith Choate
- Department of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Wang Y, Zhao A, Zhou N, Wang X, Pan C, Zhou S, Huang H, Yang Y, Yang J, Yang Y, Zhang J, Chen F, Cao Q, Zhao J, Zhang S, Li M, Li M. OSBPL2 compound heterozygous variants cause dyschromatosis, ichthyosis, deafness and atopic disease syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167207. [PMID: 38701954 DOI: 10.1016/j.bbadis.2024.167207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE In this study, we identified and diagnosed a novel inherited condition called Dyschromatosis, Ichthyosis, Deafness, and Atopic Disease (DIDA) syndrome. We present a series of studies to clarify the pathogenic variants and specific mechanism. METHODS Exome sequencing and Sanger sequencing was conducted in affected and unaffected family members. A variety of human and cell studies were performed to explore the pathogenic process of keratosis. RESULTS Our finding indicated that DIDA syndrome was caused by compound heterozygous variants in the oxysterol-binding protein-related protein 2 (OSBPL2) gene. Furthermore, our findings revealed a direct interaction between OSBPL2 and Phosphoinositide phospholipase C-beta-3 (PLCB3), a key player in hyperkeratosis. OSBPL2 effectively inhibits the ubiquitylation of PLCB3, thereby stabilizing PLCB3. Conversely, OSBPL2 variants lead to enhanced ubiquitination and subsequent degradation of PLCB3, leading to epidermal hyperkeratosis, characterized by aberrant proliferation and delayed terminal differentiation of keratinocytes. CONCLUSIONS Our study not only unveiled the association between OSBPL2 variants and the newly identified DIDA syndrome but also shed light on the underlying mechanism.
Collapse
Affiliation(s)
- Yumeng Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Anqi Zhao
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Naihui Zhou
- Department of Dermatology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Suzhou, China
| | - Xiaoxiao Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Chaolan Pan
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Shengru Zhou
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Haisheng Huang
- Anhui University of Science and Technology School of Medicine, 232001, Anhui, China
| | - Yijun Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Jianqiu Yang
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Yifan Yang
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Jingwen Zhang
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Fuying Chen
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Jingjun Zhao
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China.
| | - Min Li
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China.
| |
Collapse
|
5
|
Celli A, Pitchford M, Lu N, Mayes AE, Evans RL, Mauro TM. Restoring Endoplasmic Reticulum Calcium Stores in Aged Epidermis Improves the Epidermal Calcium Gradient and Enhances FLG Expression. J Invest Dermatol 2024; 144:1169-1172.e1. [PMID: 38036290 DOI: 10.1016/j.jid.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Anna Celli
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Northern California Institute for Research and Education, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Marquel Pitchford
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Northern California Institute for Research and Education, San Francisco, California, USA
| | - Nandou Lu
- Unilever R&D, Trumbull, Connecticut, USA
| | | | - Richard L Evans
- Unilever R&D Port Sunlight Laboratory, Bebington, United Kingdom
| | - Theodora M Mauro
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
6
|
Shao S, Sun Z, Chu M, Chen J, Cao T, Swindell WR, Bai Y, Li Q, Ma J, Zhu Z, Schuler A, Helfrich Y, Billi AC, Li Z, Hao J, Xiao C, Dang E, Gudjonsson JE, Wang G. Formylpeptide receptor 1 contributes to epidermal barrier dysfunction-induced skin inflammation through NOD-like receptor C4-dependent keratinocyte activation. Br J Dermatol 2024; 190:536-548. [PMID: 37979162 DOI: 10.1093/bjd/ljad455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Skin barrier dysfunction may both initiate and aggravate skin inflammation. However, the mechanisms involved in the inflammation process remain largely unknown. OBJECTIVES We sought to determine how skin barrier dysfunction enhances skin inflammation and molecular mechanisms. METHODS Skin barrier defect mice were established by tape stripping or topical use of acetone on wildtype mice, or filaggrin deficiency. RNA-Seq was employed to analyse the differentially expressed genes in mice with skin barrier defects. Primary human keratinocytes were transfected with formylpeptide receptor (FPR)1 or protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) small interfering RNA to examine the effects of these gene targets. The expressions of inflammasome NOD-like receptor (NLR)C4, epidermal barrier genes and inflammatory mediators were evaluated. RESULTS Mechanical (tape stripping), chemical (acetone) or genetic (filaggrin deficiency) barrier disruption in mice amplified the expression of proinflammatory genes, with transcriptomic profiling revealing overexpression of formylpeptide receptor (Fpr1) in the epidermis. Treatment with the FPR1 agonist fMLP in keratinocytes upregulated the expression of the NLRC4 inflammasome and increased interleukin-1β secretion through modulation of ER stress via the PERK-eIF2α-C/EBP homologous protein pathway. The activation of the FPR1-NLRC4 axis was also observed in skin specimens from old healthy individuals with skin barrier defect or elderly mice. Conversely, topical administration with a FPR1 antagonist, or Nlrc4 silencing, led to the normalization of barrier dysfunction and alleviation of inflammatory skin responses in vivo. CONCLUSIONS In summary, our findings show that the FPR1-NLRC4 inflammasome axis is activated upon skin barrier disruption and may explain exaggerated inflammatory responses that are observed in disease states characterized by epidermal dysfunction. Pharmacological inhibition of FPR1 or NLRC4 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital
| | | | | | | | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital
| | | | - Jingyi Ma
- Department of Dermatology, Xijing Hospital
| | | | - Andrew Schuler
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yolanda Helfrich
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital
| | | | | | - Erle Dang
- Department of Dermatology, Xijing Hospital
| | | | - Gang Wang
- Department of Dermatology, Xijing Hospital
| |
Collapse
|
7
|
Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Campamà Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. J Cell Biol 2023; 222:e202302095. [PMID: 37102999 PMCID: PMC10140546 DOI: 10.1083/jcb.202302095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.
Collapse
Affiliation(s)
- Jessica L. Moore
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dhananjay Bhaskar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shuangshuang Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachael Norris
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Andy Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bastian Rieck
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
- Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Lee YB, Hwang HJ, Kim E, Lim SH, Chung CH, Choi EH. Hyperglycemia-activated 11β-hydroxysteroid dehydrogenase type 1 increases endoplasmic reticulum stress and skin barrier dysfunction. Sci Rep 2023; 13:9206. [PMID: 37280272 PMCID: PMC10244460 DOI: 10.1038/s41598-023-36294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
The diabetes mellitus (DM) skin shows skin barrier dysfunction and skin lipid abnormality, similar to conditions induced by systemic or local glucocorticoid excess and aged skin. Inactive glucocorticoid (GC) is converted into active glucocorticoid by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Hyperglycemia in DM and excessive GC are known to increase endoplasmic reticulum (ER) stress. We hypothesized that hyperglycemia affects systemic GC homeostasis and that the action of skin 11β-HSD1 and GC contributes to increased ER stress and barrier defects in DM. We compared 11β-HSD1, active GC, and ER stress between hyperglycemic and normoglycemic conditions in normal human keratinocytes and db/db mice. 11β-HSD1 and cortisol increased with time in keratinocyte culture under hyperglycemic conditions. 11β-HSD1 siRNA-transfected cells did not induce cortisol elevation in hyperglycemic condition. The production of 11β-HSD1 and cortisol was suppressed in cell culture treated with an ER stress-inhibitor. The 14-week-old db/db mice showed higher stratum corneum (SC) corticosterone, and skin 11β-HSD1 levels than 8-week-old db/db mice. Topical 11β-HSD1 inhibitor application in db/db mice decreased SC corticosterone levels and improved skin barrier function. Hyperglycemia in DM may affect systemic GC homeostasis, activate skin 11β-HSD1, and induce local GC excess, which increases ER stress and adversely affects skin barrier function.
Collapse
Affiliation(s)
- Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Choon Hee Chung
- Department of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea.
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
9
|
Zhang L, Piipponen M, Liu Z, Li D, Bian X, Niu G, Geara J, Toma MA, Sommar P, Xu Landén N. Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death Differ 2023; 30:1334-1348. [PMID: 36869179 PMCID: PMC10154349 DOI: 10.1038/s41418-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
After a skin injury, keratinocytes switch from a state of homeostasis to one of regeneration leading to the reconstruction of the epidermal barrier. The regulatory mechanism of gene expression underpinning this key switch during human skin wound healing is enigmatic. Long noncoding RNAs (lncRNAs) constitute a new horizon in the understanding of the regulatory programs encoded in the mammalian genome. By comparing the transcriptome of an acute human wound and skin from the same donor as well as keratinocytes isolated from these paired tissue samples, we generated a list of lncRNAs showing changed expression in keratinocytes during wound repair. Our study focused on HOXC13-AS, a recently evolved human lncRNA specifically expressed in epidermal keratinocytes, and we found that its expression was temporally downregulated during wound healing. In line with its enrichment in suprabasal keratinocytes, HOXC13-AS was found to be increasingly expressed during keratinocyte differentiation, but its expression was reduced by EGFR signaling. After HOXC13-AS knockdown or overexpression in human primary keratinocytes undergoing differentiation induced by cell suspension or calcium treatment and in organotypic epidermis, we found that HOXC13-AS promoted keratinocyte differentiation. Moreover, RNA pull-down assays followed by mass spectrometry and RNA immunoprecipitation analysis revealed that mechanistically HOXC13-AS sequestered the coat complex subunit alpha (COPA) protein and interfered with Golgi-to-endoplasmic reticulum (ER) molecular transport, resulting in ER stress and enhanced keratinocyte differentiation. In summary, we identified HOXC13-AS as a crucial regulator of human epidermal differentiation.
Collapse
Affiliation(s)
- Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden. .,Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
10
|
Lyu C, Sun Y. Immunometabolism in the pathogenesis of vitiligo. Front Immunol 2022; 13:1055958. [PMID: 36439174 PMCID: PMC9684661 DOI: 10.3389/fimmu.2022.1055958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Vitiligo is a common depigmenting skin disorder characterized by the selective loss of melanocytes. Autoimmunity, genetic, environmental, and biochemical etiology have been proposed in vitiligo pathogenesis. However, the exact molecular mechanisms of vitiligo development and progression are unclear, particularly for immunometabolism. Sporadic studies have suggested mitochondrial dysfunction, enhanced oxidative stress, and specific defects in other metabolic pathways can promote dysregulation of innate and adaptive immune responses in vitiligo. These abnormalities appear to be driven by genetic and epigenetic factors modulated by stochastic events. In addition, glucose and lipid abnormalities in metabolism have been associated with vitiligo. Specific skin cell populations are also involved in the critical role of dysregulation of metabolic pathways, including melanocytes, keratinocytes, and tissue-resident memory T cells in vitiligo pathogenesis. Novel therapeutic treatments are also raised based on the abnormalities of immunometabolism. This review summarizes the current knowledge on immunometabolism reprogramming in the pathogenesis of vitiligo and novel treatment options.
Collapse
|
11
|
Turishcheva E, Vildanova M, Onishchenko G, Smirnova E. The Role of Endoplasmic Reticulum Stress in Differentiation of Cells of Mesenchymal Origin. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:916-931. [PMID: 36180988 PMCID: PMC9483250 DOI: 10.1134/s000629792209005x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 05/23/2023]
Abstract
Endoplasmic reticulum (ER) is a multifunctional membrane-enclosed organelle. One of the major ER functions is cotranslational transport and processing of secretory, lysosomal, and transmembrane proteins. Impaired protein processing caused by disturbances in the ER homeostasis results in the ER stress. Restoration of normal ER functioning requires activation of an adaptive mechanism involving cell response to misfolded proteins, the so-called unfolded protein response (UPR). Besides controlling protein folding, UPR plays a key role in other physiological processes, in particular, differentiation of cells of connective, muscle, epithelial, and neural tissues. Cell differentiation is induced by the physiological levels of ER stress, while excessive ER stress suppresses differentiation and can result in cell death. So far, it remains unknown whether UPR activation induces cell differentiation or if UPR is initiated by the upregulated synthesis of secretory proteins during cell differentiation. Cell differentiation is an important stage in the development of multicellular organisms and is tightly controlled. Suppression or excessive activation of this process can lead to the development of various pathologies in an organism. In particular, impairments in the differentiation of connective tissue cells can result in the development of fibrosis, obesity, and osteoporosis. Recently, special attention has been paid to fibrosis as one of the major complications of COVID-19. Therefore, studying the role of UPR in the activation of cell differentiation is of both theoretical and practical interest, as it might result in the identification of molecular targets for selective regulation of cell differentiation stages and as well as the potential to modulate the mechanisms involved in the development of various pathological states.
Collapse
Affiliation(s)
| | - Mariya Vildanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina Onishchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022; 9:895814. [PMID: 35573736 PMCID: PMC9095829 DOI: 10.3389/fmolb.2022.895814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) channels are polymodal channels capable of sensing environmental stimuli, which are widely expressed on the plasma membrane of cells and play an essential role in the physiological or pathological processes of cells as sensors. TRPs often form functional homo- or heterotetramers that act as cation channels to flow Na+ and Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein expression levels, channel attributes, and regulatory factors. Under normal circumstances, various TRP channels respond to intracellular and extracellular stimuli such as temperature, pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves. As cation transport channels and physical and chemical stimulation receptors, TRPs play an important role in regulating secretion, interfering with cell proliferation, and affecting neural activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the specific regulatory mechanisms of various TRP channels in some common glands (pancreas, salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
Collapse
|
13
|
Ni Q, Zhang P, Li Q, Han Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front Cell Dev Biol 2022; 10:849985. [PMID: 35321240 PMCID: PMC8937033 DOI: 10.3389/fcell.2022.849985] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ping Zhang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zheyi Han
- Department of Gastroenterology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- *Correspondence: Zheyi Han,
| |
Collapse
|
14
|
Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng 2021; 5:041509. [PMID: 34849444 PMCID: PMC8604566 DOI: 10.1063/5.0064529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Skin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function. In contrast, the effective skin barrier is the major obstacle for transdermal delivery and detection. Changes in the electrical properties of skin, such as impedance and ionic activity, is a practical indicator that reflects the structures and functions of the skin. For example, the impedance that reflects the hydration of the skin is measured for quantitative assessment in skincare, and the current generated across a wound is used for the evaluation and control of wound healing. Furthermore, the electrically charged structure of the skin enables transdermal drug delivery and chemical extraction. This paper provides an overview of the electrical aspects of the skin and summarizes current advances in the development of devices based on these features.
Collapse
Affiliation(s)
- Yuina Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
15
|
Jadeja SD, Mayatra JM, Vaishnav J, Shukla N, Begum R. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Front Immunol 2021; 11:624566. [PMID: 33613564 PMCID: PMC7890234 DOI: 10.3389/fimmu.2020.624566] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is characterized by circumscribed depigmented macules in the skin resulting due to the autoimmune destruction of melanocytes from the epidermis. Both humoral as well as cell-mediated autoimmune responses are involved in melanocyte destruction. Several studies including ours have established that oxidative stress is involved in vitiligo onset, while autoimmunity contributes to the disease progression. However, the underlying mechanism involved in programing the onset and progression of the disease remains a conundrum. Based on several direct and indirect evidences, we suggested that endoplasmic reticulum (ER) stress might act as a connecting link between oxidative stress and autoimmunity in vitiligo pathogenesis. Oxidative stress disrupts cellular redox potential that extends to the ER causing the accumulation of misfolded proteins, which activates the unfolded protein response (UPR). The primary aim of UPR is to resolve the stress and restore cellular homeostasis for cell survival. Growing evidences suggest a vital role of UPR in immune regulation. Moreover, defective UPR has been implicated in the development of autoimmunity in several autoimmune disorders. ER stress-activated UPR plays an essential role in the regulation and maintenance of innate as well as adaptive immunity, and a defective UPR may result in systemic/tissue level/organ-specific autoimmunity. This review emphasizes on understanding the role of ER stress-induced UPR in the development of systemic and tissue level autoimmunity in vitiligo pathogenesis and its therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
16
|
TRPV4 Increases the Expression of Tight Junction Protein-Encoding Genes via XBP1 in Mammary Epithelial Cells. Animals (Basel) 2020; 10:ani10071174. [PMID: 32664312 PMCID: PMC7401603 DOI: 10.3390/ani10071174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Mammary glands are exocrine tissue, capable of secreting adequate amounts of milk protein during lactation. Each mammary gland is occupied by numerous alveoli. Each alveolus is composed of a single layer of mammary epithelial cells, adipose tissue, and ducts. Recent studies indicate that mild heat treatment of mammary epithelial cells at 39 °C has activated milk production. These results suggest that temperature may influence the physiological functions of mammary epithelial cells. In this study, we found that the temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) was involved in the increase of β-casein and TJ protein-encoding gene expression in response to mild heat treatment. On the other hand, severe heat treatment (41 °C) reduced the cell viability. Moreover, the Trpv4 mRNA level was significantly increased at Day 15 of gestation when the mammary alveoli are formed. TRPV4 is activated not only by temperature but also by mechanical forces that guide mammary epithelial development in the normal mammary gland. Our data suggest that TRPV4 has a possible function in mammary gland development. Abstract Mild heat stress (39 °C–40 °C) can positively regulate cell proliferation and differentiation. Indeed, mild heat treatment at 39 °C enhances the less-permeable tight junctions (TJs) formation and milk production in mammary epithelial cells. However, the molecular mechanisms of this response have not yet been delineated. In this study, the involvement of temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) in the increase of β-casein and TJ protein-encoding gene expression in response to mild heat treatment (39 °C) has been explored using HCll mouse mammary epithelial cells. Severe heat treatment (41 °C) induced the transcriptional level of Chop (C/EBP homologous protein; proapoptotic marker) and reduced the cell viability. It is speculated that the difference in unfolded protein response (UPR) gene expression upon stimulation at 39 °C vs. 41 °C controls cell survival vs. cell death. The accumulation of Trpv4 mRNA was significantly higher in 39 °C heat treatment cells. The β-casein, Zo-1 (zona occludens-1), Ocln (occludin), and Cldn3 (claudin 3) transcript levels were significantly increased in response to the addition of a selective TRPV4 channel agonist (GSK1016790A) at 37 °C. TRPV4 stimulation with GSK1016790A also increased the X-box-binding protein 1 splicing form (Xbp1s) at the transcript level. The increase in the mRNA levels of β-casein, Zo-1, Ocln, and Cldn3 in response to 39 °C heat treatment was suppressed by XBP1 knockdown. Moreover, the transcript level of Trpv4 was significantly increased at Day 15 of gestation, and its expression declined after 1 day of lactation. TRPV4 is activated not only by temperature but also by mechanical forces, such as cell stretching and shear stress, which guide mammary epithelial development in a normal mammary gland. These findings provide new insights of the possible function of TRPV4 in mammary gland development.
Collapse
|
17
|
Snoeck HW. Calcium regulation of stem cells. EMBO Rep 2020; 21:e50028. [PMID: 32419314 DOI: 10.15252/embr.202050028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Pluripotent and post-natal, tissue-specific stem cells share functional features such as the capacity to differentiate into multiple lineages and to self-renew, and are endowed with specific cell maintenance mechanism as well as transcriptional and epigenetic signatures that determine stem cell identity and distinguish them from their progeny. Calcium is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Specific roles of calcium in stem cell niches and stem cell maintenance mechanisms are only beginning to be explored, however. In this review, I discuss stem cell-specific regulation and roles of calcium, focusing on its potential involvement in the intertwined metabolic and epigenetic regulation of stem cells.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY, USA.,Division of Pulmonary Medicine, Allergy and Critical Care, Columbia University Irving Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Seo SH, Kim SE, Lee SE. ER stress induced by ER calcium depletion and UVB irradiation regulates tight junction barrier integrity in human keratinocytes. J Dermatol Sci 2020; 98:41-49. [PMID: 32376153 DOI: 10.1016/j.jdermsci.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) calcium depletion-induced ER stress is a crucial signal for keratinocyte differentiation and barrier homeostasis, but its effects on the epidermal tight junction (TJ) have not been characterized. Ultraviolet B (UVB) causes ER calcium release in keratinocytes and disrupts epidermal TJ, however, the involvement of ER stress in the UVB-induced TJ alterations remains unknown. OBJECTIVES To investigate the effect of ER stress by pharmacological ER calcium depletion or UVB on the TJ integrity in normal human epidermal keratinocytes (NHEK). METHODS NHEK were exposed to ER calcium pump inhibitor thapsigargin (Tg) or UVB. ER stress markers and TJ molecules expression, TJ and F-actin structures, and TJ barrier function were analyzed. RESULTS Tg or UVB exposure dose-dependently triggered unfolded protein response (UPR) in NHEK. Low dose Tg induced the IRE1α-XBP1 pathway and strengthened TJ barrier. Contrary, high dose Tg activated PERK phosphorylation and disrupted TJ by F-actin disorganization. UVB disrupted TJ and F-actin structures dose dependently. IRE1α RNase inhibition induced or exacerbated TJ and F-actin disruption in the presence of low dose Tg or UVB. High dose Tg increased RhoA activity. 4-PBA or Rho kinase (ROCK) inhibitor partially prevented the disruption of TJ and F-actin following high dose Tg or UVB. CONCLUSIONS ER stress has bimodal effects on the epidermal TJ depending on its intensity. The IRE1α pathway is critical for the maintenance of TJ integrity during mild ER stress. Severe ER stress-induced UPR or ROCK signalling mediates the disruption of TJ through cytoskeletal disorganization during severe ER stress.
Collapse
Affiliation(s)
- Seong Hoon Seo
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song-Ee Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
20
|
Vildanova MS, Saidova AA, Fokin AI, Potashnikova DM, Onishchenko GE, Smirnova EA. Jasmonic Acid Induces Endoplasmic Reticulum Stress with Different Outcome in Cultured Normal and Tumor Epidermal Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:1047-1056. [PMID: 31693464 DOI: 10.1134/s0006297919090074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plant hormones produce cytotoxic effect on human cells and can trigger the processes unrelated to cell death, e.g., biosynthetic system stress. The goal of this study was to investigate activation of the endoplasmic reticulum (ER) stress by jasmonic acid (JA) and to distinguish between the responses of cultured immortalized non-tumorigenic HaCaT cells and epidermoid carcinoma A431 cells to this plant hormone. JA was used in the concentration of 2 mM, as it suppressed cell proliferation in both cell lines. We analyzed expression of genes associated with the activation of ER stress (GRP78, ATF4, CHOP), the structure of the ER and Golgi complex, and synthetic processes in the HaCaT and A431 cell lines. JA induced expression of genes responsible for the activation of ER stress and caused hypertrophic changes in the Golgi complex in both cell lines. However, the patterns of gene expression in the HaCaT and A431 cells were different, and higher levels of involucrin synthesis were observed in A431 but not in HaCaT cells, suggesting that JA activated differentiation of the tumor A431 cells only. Therefore, JA induced ER stress in both cell lines, but the consequences of ER stress were different for the epidermal immortalized non-tumorigenic and tumor cells.
Collapse
Affiliation(s)
- M S Vildanova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | - A A Saidova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A I Fokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - D M Potashnikova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - G E Onishchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - E A Smirnova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
21
|
Park K, Lee SE, Shin KO, Uchida Y. Insights into the role of endoplasmic reticulum stress in skin function and associated diseases. FEBS J 2019; 286:413-425. [PMID: 30586218 DOI: 10.1111/febs.14739] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum (ER) stress is a mechanism that allows the protection of normal cellular functions in response to both internal perturbations, such as accumulation of unfolded proteins, and external perturbations, for example redox stress, UVB irradiation, and infection. A hallmark of ER stress is the accumulation of misfolded and unfolded proteins. Physiological levels of ER stress trigger the unfolded protein response (UPR) that is required to restore normal ER functions. However, the UPR can also initiate a cell death program/apoptosis pathway in response to excessive or persistent ER stress. Recently, it has become evident that chronic ER stress occurs in several diseases, including skin diseases such as Darier's disease, rosacea, vitiligo and melanoma; furthermore, it is suggested that ER stress is directly involved in the pathogenesis of these disorders. Here, we review the role of ER stress in skin function, and discuss its significance in skin diseases.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Sang Eun Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Korea
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California, San Francisco, CA, USA.,Northern California Institute for Research and Education, Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
22
|
Abstract
Inborn errors of immunity usually not only result in immunodeficiency but may also manifest as immune dysregulation in the form of autoinflammation, autoimmunity, or sometimes malignancy. One of the most recently discovered monogenic disorder of immune dysregulation is COPA syndrome. COPA syndrome is an inherited autoimmune disorder caused by mutations in COPA gene. COPA gene encodes for α subunit of the COP1 protein, which is involved in the reverse vesicular protein transport from Golgi apparatus to the endoplasmic reticulum (ER). The inheritance pattern of COPA syndrome is autosomal dominant, and the patients typically present with interstitial lung disease with pulmonary hemorrhage and subsequently develop arthritis. Immunological features involve autoantibody formation, elevated expression of IL-1β and IL-6, and increase in the number of Th17 cells. Molecular pathophysiology of COPA syndrome is not clearly understood. However, it is known that accumulation of unfolded proteins in ER leads to ER stress, which is an indirect result of aberrant vesicular transport of proteins from Golgi apparatus to ER and defective cellular autophagy. ER stress induces inflammation and is responsible for pathogenesis of a large number of chronic inflammatory diseases. Unfolded protein response process responds to improperly folded proteins and defends against stress in ER to ensure the fidelity of the protein folding. It maintains the expression of stress-response genes and causes initiation of inflammatory signaling pathways essential for the innate immunity. Mutation in COPA gene associated with defective protein sorting to ER has unearthed a new primary immunodeficiency disease with a unique clinical phenotype. This review highlights the clinical and molecular aspects of COPA syndrome.
Collapse
Affiliation(s)
- Rajni Kumrah
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India,
| | - Babu Mathew
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India,
| | - Pandiarajan Vignesh
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India,
| | - Surjit Singh
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India,
| | - Amit Rawat
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India,
| |
Collapse
|
23
|
Sato E, Hiromatsu K, Murata K, Imafuku S. Loss of ATP2A2 Allows Herpes Simplex Virus 1 Infection of a Human Epidermis Model by Disrupting Innate Immunity and Barrier Function. J Invest Dermatol 2018; 138:2540-2549. [PMID: 29870688 DOI: 10.1016/j.jid.2018.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/16/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022]
Abstract
Destruction of epidermal barrier function associated with atopic dermatitis or Darier's disease often causes severe secondary skin infections. Patients with skin barrier disorders often repeatedly acquire Kaposi varicelliform eruption, which is caused by herpes simplex virus, but the underlying mechanisms and effective preventive methods have yet to be found. Viral infection through an impaired epidermal barrier can be prevented by enhancing innate immunity and/or inhibiting viral entry. In this study, we established a three-dimensional skin barrier dysfunction model by silencing ATP2A2, which is mutated in some Darier's disease patients. We confirmed the loss of desmosomes and presence of histopathological clefts in the suprabasal layer. Herpes simplex virus 1 applied to the stratum corneum infected the deep epidermis. An innate immune reaction was assessed by evaluating the expression of IFNB1 and related genes. Pretreatment with polyinosinic-polycytidylic acid alone or plus the antimicrobial peptide, LL37 enhanced IFN-β production and suppressed viral replication. Furthermore, topical application of a white petrolatum ointment containing heparin, which binds viral glycoproteins related to virus entry, strongly inhibited viral replication, probably by inhibiting invasion. Our human barrier-dysfunctional model will have future application for identifying the mechanism of Kaposi varicelliform eruption onset, preventive methods, and therapies.
Collapse
Affiliation(s)
- Emi Sato
- Department of Microbiology and Immunology, Fukuoka University Faculty of Medicine, Fukuoka, Japan; Department of Dermatology, Fukuoka University Hospital, Fukuoka, Japan.
| | - Kenji Hiromatsu
- Department of Microbiology and Immunology, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Kunihiko Murata
- The Center for Electron Microscopy, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Fukuoka University Faculty of Medicine, Fukuoka, Japan; Department of Dermatology, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
24
|
Murata T, Honda T, Egawa G, Yamamoto Y, Ichijo R, Toyoshima F, Dainichi T, Kabashima K. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification. Sci Rep 2018; 8:6610. [PMID: 29700333 PMCID: PMC5919969 DOI: 10.1038/s41598-018-24899-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca2+]i) is one of the factors predicted to regulate cornification, the dynamics of [Ca2+]i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca2+]i in mouse skin. [Ca2+]i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca2+]i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca2+]i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca2+]i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.
Collapse
Affiliation(s)
- Teruasa Murata
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuo Yamamoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Central Pharmaceutical Research Institute, Japan Tobacco, Tokyo, Japan
| | - Ryo Ichijo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building #3-4, Biopolis, 138648, Singapore.
| |
Collapse
|
25
|
Abstract
Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca2+) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca2+ release from intracellular stores, such as the ER and Ca2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Subclinical cutaneous inflammation remained after permeability barrier disruption enhances UV sensitivity by altering ER stress responses and topical pseudoceramide prevents them. Arch Dermatol Res 2017. [PMID: 28631090 DOI: 10.1007/s00403-017-1753-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stratum corneum forms the UV barrier. The effect of ultraviolet B (UVB) on normal skin was extensively studied; however, its effect on barrier perturbed skin remains undefined. Both barrier perturbation and UVB irradiation induce endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in keratinocytes. Mild ER stress activates homeostatic UPR, while severe ER stress leads to abnormal UPR, promoting apoptosis and inflammation. Here, we investigated UV sensitivity and UVB-induced UPR in barrier-disrupted human skin and the effects of pseudoceramide-dominant emollient on UVB-induced skin responses. Tape-stripped skin of healthy volunteers showed enhanced susceptibility to erythema and augmented proinflammatory cytokines induction following suberythemal UVB irradiation. Suberythemal UVB activated XBP1 in normal skin, while increased CHOP transcription in barrier perturbed skin. After tape stripping, pseudoceramide-dominant emollient was applied for 3 days, and then, the areas were irradiated with suberythemal UVB. Pretreatment with topical pseudoceramide protected against UVB-induced upregulation of IL-1β, IL-6, and TNF-α transcription and reduced susceptibility to erythema following UVB. Topical pseudoceramide also suppressed suberythemal UVB-induced CHOP transcription in barrier-disrupted skin. Taken together, these data indicate that permeability barrier disruption increases UV sensitivity in human skin, partly via switch the UVB-induced UPR, from homeostatic signals to pro-apoptotic and proinflammatory signals. In addition, we conclude that pseudoceramide-dominant emollient suppresses excessive ER stress induction and CHOP activation following UVB in barrier damaged skin, providing evidence that pseudoceramide-dominant emollients can be promising strategies for photoprotection of the barrier damaged skin.
Collapse
|
27
|
|
28
|
Wires ES, Henderson MJ, Yan X, Bäck S, Trychta KA, Lutrey MH, Harvey BK. Longitudinal monitoring of Gaussia and Nano luciferase activities to concurrently assess ER calcium homeostasis and ER stress in vivo. PLoS One 2017; 12:e0175481. [PMID: 28403212 PMCID: PMC5389830 DOI: 10.1371/journal.pone.0175481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is essential to many cellular processes including protein processing, lipid metabolism and calcium storage. The ability to longitudinally monitor ER homeostasis in the same organism would offer insight into progressive molecular and cellular adaptations to physiologic or pathologic states, but has been challenging. We recently described the creation of a Gaussia luciferase (GLuc)-based secreted ER calcium-modulated protein (SERCaMP or GLuc-SERCaMP) to longitudinally monitor ER calcium homeostasis. Here we describe a complementary tool to measure the unfolded protein response (UPR), utilizing a UPRE-driven secreted Nano luciferase (UPRE-secNLuc) to examine the activating transcription factor-6 (ATF6) and inositol-requiring enzyme 1 (IRE1) pathways of the UPR. We observed an upregulation of endogenous ATF6- and XBP1-regulated genes following pharmacologically-induced ER stress that was consistent with responsiveness of the UPRE sensor. Both GLuc and NLuc-based reporters have favorable properties for in vivo studies, however, they are not easily used in combination due to overlapping substrate activities. We describe a method to measure the enzymatic activities of both reporters from a single sample and validated the approach using culture medium and rat blood samples to measure GLuc-SERCaMP and UPRE-secNLuc. Measuring GLuc and NLuc activities from the same sample allows for the robust and quantitative measurement of two cellular events or cell populations from a single biological sample. This study is the first to describe the in vivo measurement of UPRE activation by sampling blood, using an approach that allows concurrent interrogation of two components of ER homeostasis.
Collapse
Affiliation(s)
- Emily S. Wires
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Mark J. Henderson
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Xiaokang Yan
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Susanne Bäck
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Kathleen A. Trychta
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Molly H. Lutrey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Li N, Park M, Xiao S, Liu Z, Diaz LA. ER-to-Golgi blockade of nascent desmosomal cadherins in SERCA2-inhibited keratinocytes: Implications for Darier's disease. Traffic 2017; 18:232-241. [PMID: 28156030 DOI: 10.1111/tra.12470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
Darier's disease (DD) is an autosomal dominantly inherited skin disorder caused by mutations in sarco/endoplasmic reticulum Ca2+ -ATPase 2 (SERCA2), a Ca2+ pump that transports Ca2+ from the cytosol to the endoplasmic reticulum (ER). Loss of desmosomes and keratinocyte cohesion is a characteristic feature of DD. Desmosomal cadherins (DC) are Ca2+ -dependent transmembrane adhesion proteins of desmosomes, which are mislocalized in the lesional but not perilesional skin of DD. We show here that inhibition of SERCA2 by 2 distinct inhibitors results in accumulation of DC precursors in keratinocytes, indicating ER-to-Golgi transport of nascent DC is blocked. Partial loss of SERCA2 by siRNA has no such effect, implicating that haploinsufficiency is not sufficient to affect nascent DC maturation. However, a synergistic effect is revealed between SERCA2 siRNA and an ineffective dose of SERCA2 inhibitor, and between an agonist of the ER Ca2+ release channel and SERCA2 inhibitor. These results suggest that reduction of ER Ca2+ below a critical level causes ER retention of nascent DC. Moreover, colocalization of DC with ER calnexin is detected in SERCA2-inhibited keratinocytes and DD epidermis. Collectively, our data demonstrate that loss of SERCA2 impairs ER-to-Golgi transport of nascent DC, which may contribute to DD pathogenesis.
Collapse
Affiliation(s)
- Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Moonhee Park
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shengxiang Xiao
- Department of Dermatology, The Second Hospital, Xi-An Jiaotong University, People's Republic of China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Nellen RGL, Steijlen PM, van Steensel MAM, Vreeburg M, Frank J, van Geel M. Mendelian Disorders of Cornification Caused by Defects in Intracellular Calcium Pumps: Mutation Update and Database for Variants in ATP2A2 and ATP2C1 Associated with Darier Disease and Hailey-Hailey Disease. Hum Mutat 2017; 38:343-356. [PMID: 28035777 DOI: 10.1002/humu.23164] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 10/30/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022]
Abstract
The two disorders of cornification associated with mutations in genes coding for intracellular calcium pumps are Darier disease (DD) and Hailey-Hailey disease (HHD). DD is caused by mutations in the ATP2A2 gene, whereas the ATP2C1 gene is associated with HHD. Both are inherited as autosomal-dominant traits. DD is mainly defined by warty papules in seborrheic and flexural areas, whereas the major symptoms of HHD are vesicles and erosions in flexural skin. Both phenotypes are highly variable. In 12%-40% of DD patients and 12%-55% of HHD patients, no mutations in ATP2A2 or ATP2C1 are found. We provide a comprehensive review of clinical variability in DD and HHD and a review of all reported mutations in ATP2A2 and ATP2C1. Having the entire spectrum of ATP2A2 and ATP2C1 variants allows us to address the question of a genotype-phenotype correlation, which has not been settled unequivocally in DD and HHD. We created a database for all mutations in ATP2A2 and ATP2C1 using the Leiden Open Variation Database (LOVD v3.0), for variants reported in the literature and future inclusions. This data may be of use as a reference tool in further research on treatment of DD and HHD.
Collapse
Affiliation(s)
- Ruud G L Nellen
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peter M Steijlen
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maurice A M van Steensel
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maaike Vreeburg
- Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | -
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Michel van Geel
- Departments of Dermatology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW Research School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
31
|
Kumamoto J, Goto M, Nagayama M, Denda M. Real-time imaging of human epidermal calcium dynamics in response to point laser stimulation. J Dermatol Sci 2017; 86:13-20. [PMID: 28119009 DOI: 10.1016/j.jdermsci.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/24/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Changes of epidermal calcium ion concentration are involved in regulation of barrier homeostasis and keratinocyte differentiation. Moreover, intracellular calcium dynamics might play a role in skin sensation. But, although calcium dynamics of cultured keratinocytes in response to mechanical stresses has been well studied, calcium propagation in stimulated human epidermis is still poorly understood. OBJECTIVE The aim of this study was to demonstrate a novel method for real-time measurement of calcium dynamics in response to point stimulation of human epidermis at the single-cell level. METHODS We examined calcium propagation in cross-sectional samples of living human epidermis ex vivo, as well as in cultured human keratinocytes, by means of two-photon microscopy after stimulating cells in stratum granulosum with the emission laser of a two-photon microscope. RESULTS Cells in different epidermal layers showed different responses, and those in stratum basale showed the greatest elevation of intracellular calcium. Calcium propagation in epidermis was inhibited in the presence of apyrase (which degrades adenosine triphosphate; ATP) or gap-junction blockers. In cultured keratinocytes, on the other hand, calcium propagated in a simple concentric wave-like manner from the stimulation site, and propagation was strongly suppressed by apyrase. CONCLUSION Our results suggested that ATP and gap junctions play important roles in calcium propagation induced by point laser stimulation of the uppermost layer of epidermis. Our method should be broadly useful to study calcium dynamics, epidermal physiological mechanisms, and mechanisms of skin sensation at the single-cell level.
Collapse
Affiliation(s)
- Junichi Kumamoto
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Makiko Goto
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Shiseido Global Innovation Center, Yokohama, Japan.
| | - Masaharu Nagayama
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Shiseido Global Innovation Center, Yokohama, Japan
| |
Collapse
|
32
|
Celli A, Crumrine D, Meyer JM, Mauro TM. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure. J Invest Dermatol 2016; 136:1840-1847. [PMID: 27255610 PMCID: PMC5070468 DOI: 10.1016/j.jid.2016.05.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/15/2022]
Abstract
Ca(2+) fluxes direct keratinocyte differentiation, cell-to-cell adhesion, migration, and epidermal barrier homeostasis. We previously showed that intracellular Ca(2+) stores constitute a major portion of the calcium gradient especially in the stratum granulosum. Loss of the calcium gradient triggers epidermal barrier homeostatic responses. In this report, using unfixed ex vivo epidermis and human epidermal equivalents we show that endoplasmic reticulum (ER) Ca(2+) is released in response to barrier perturbation, and that this release constitutes the major shift in epidermal Ca(2+) seen after barrier perturbation. We find that ER Ca(2+) release correlates with a transient increase in extracellular Ca(2+). Lastly, we show that ER calcium release resulting from barrier perturbation triggers transient desmosomal remodeling, seen as an increase in extracellular space and a loss of the desmosomal intercellular midline. Topical application of thapsigargin, which inhibits the ER Ca(2+) ATPase activity without compromising barrier integrity, also leads to desmosomal remodeling and loss of the midline structure. These experiments establish the ER Ca(2+) store as a master regulator of the Ca(2+) gradient response to epidermal barrier perturbation, and suggest that ER Ca(2+) homeostasis also modulates normal desmosomal reorganization, both at rest and after acute barrier perturbation.
Collapse
Affiliation(s)
- Anna Celli
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA.
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Jason M Meyer
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
33
|
Imiquimod induces ER stress and Ca(2+) influx independently of TLR7 and TLR8. Biochem Biophys Res Commun 2016; 473:789-794. [PMID: 27003259 DOI: 10.1016/j.bbrc.2016.03.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Endoplasmic reticulum (ER) stress is a physiological response to protein overload or misfolded proteins in the ER. Certain anti-cancer drugs, e.g. bortezomib and nelfinavir, induce ER stress implying that this could be a successful therapeutic strategy against several forms of cancer. To find novel ER-stress inducers we screened a panel of natural and synthetic Toll-like receptor (TLR) agonists against human keratinocytes and identified the anti-cancer drug imiquimod (IMQ) as a potent inducer of ER stress. Other TLR7 and TLR8 agonists, including resiquimod and gardiquimod, did not induce ER stress, demonstrating that IMQ induces ER stress independently of TLR7 and TLR8. We further confirmed this by showing that IMQ could still induce ER stress in mouse Tlr7(-/-) cells. IMQ also induced a rapid and transient influx of extracellular Ca(2+) together with the release of Ca(2+) from internal stores. Depletion of Ca(2+) from the ER is a known cause of ER stress suggesting that IMQ induces ER stress via depletion of ER Ca(2+). The ER-stress inducing property of IMQ is possibly of importance for its efficacy in treating basal cell carcinoma, in situ melanoma, and squamous cell carcinoma. Our data could potentially be harnessed for rational design of even more potent ER-stress inducers and new anti-cancer drugs.
Collapse
|
34
|
Kato M, Shimizu A, Yokoyama Y, Kaira K, Shimomura Y, Ishida-Yamamoto A, Kamei K, Tokunaga F, Ishikawa O. An Autosomal Recessive Mutation of DSG4 Causes Monilethrix through the ER Stress Response. J Invest Dermatol 2015; 135:1253-1260. [DOI: 10.1038/jid.2015.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 02/03/2023]
|
35
|
Abstract
Desmosomes serve as intercellular junctions in various tissues including the skin and the heart where they play a crucial role in cell-cell adhesion, signalling and differentiation. The desmosomes connect the cell surface to the keratin cytoskeleton and are composed of a transmembranal part consisting mainly of desmosomal cadherins, armadillo proteins and desmoplakin, which form the intracytoplasmic desmosomal plaque. Desmosomal genodermatoses are caused by mutations in genes encoding the various desmosomal components. They are characterized by skin, hair and cardiac manifestations occurring in diverse combinations. Their classification into a separate and distinct clinical group not only recognizes their common pathogenesis and facilitates their diagnosis but might also in the future form the basis for the design of novel and targeted therapies for these occasionally life-threatening diseases.
Collapse
|
36
|
Melnik BC. Endoplasmic reticulum stress: key promoter of rosacea pathogenesis. Exp Dermatol 2014; 23:868-73. [DOI: 10.1111/exd.12517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück Germany
| |
Collapse
|
37
|
Rinnerthaler M, Streubel MK, Bischof J, Richter K. Skin aging, gene expression and calcium. Exp Gerontol 2014; 68:59-65. [PMID: 25262846 DOI: 10.1016/j.exger.2014.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
38
|
Lemound J, Stucki-Koch A, Stoetzer M, Kokemüller H, Gellrich NC, Kreipe H, Hussein K. Aberrant expression of caspase 14 in salivary gland carcinomas. J Oral Pathol Med 2014; 44:444-8. [PMID: 25257949 DOI: 10.1111/jop.12253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Caspase 14 is reduced in adenocarcinomas of the stomach and colon. In contrast, breast and lung adenocarcinomas frequently show an overexpression of caspase 14. Salivary gland adenocarcinomas have not been evaluated for potential aberrant caspase 14 expression. MATERIALS AND METHODS Samples from salivary gland carcinomas (n = 43) were analysed by immunohistochemistry (caspase 14, filaggrin, GATA3 and Ki67) and fluorescence in situ hybridization. RESULTS Caspase 14 is not expressed in normal salivary glands, while in a subfraction of carcinomas (32%) an aberrant expression was found. Filaggrin could not be detected. Caspase 14 staining was not associated with tumour dedifferentiation, GATA3 expression or amplification of gene locus 19p13. CONCLUSION In summary, aberrant expression of caspase 14 can be found in a subfraction of salivary gland carcinomas but could not be used as a biomarker for a specific carcinoma subtype of the salivary gland.
Collapse
Affiliation(s)
- Juliana Lemound
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | | | - Marcus Stoetzer
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Horst Kokemüller
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | | | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Abstract
Darier's disease (DD) is caused by mutations in the endoplasmic reticulum (ER) Ca2+ ATPase ATP2A2 (protein SERCA2). Current treatment modalities are ineffective for many patients. This report shows that impaired SERCA2 function, both in DD keratinocytes and in normal keratinocytes treated with the SERCA2-inhibitor thapsigargin, depletes ER Ca2+ stores, leading to constitutive ER stress and increased sensitivity to ER stressors. ER stress, in turn, leads to abnormal cell-to-cell adhesion via impaired redistribution of desmoplakin, desmoglein 3, desmocollin 3, and E-cadherin to the plasma membrane. This report illustrates how ER Ca2+ depletion and the resulting ER stress are central to the pathogenesis of the disease. Additionally, the authors introduce a possible new therapeutic agent, miglustat.
Collapse
|
40
|
Takada H, Furuya K, Sokabe M. Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes. J Cell Sci 2014; 127:4159-71. [PMID: 25097230 DOI: 10.1242/jcs.147314] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing is accelerated by exogenous mechanical forces and is impaired in TRPC6-knockout mice. Therefore, we designed experiments to determine how mechanical force and TRPC6 channels contribute to wound healing using HaCaT keratinocytes. HaCaT cells were pretreated with hyperforin, a major component of a traditional herbal medicine for wound healing and also a TRPC6 activator, and cultured in an elastic chamber. At 3 h after scratching the confluent cell layer, the ATP release and intracellular Ca(2+) increases in response to stretching (20%) were live-imaged. ATP release was observed only in cells at the frontier facing the scar. The diffusion of released ATP caused intercellular Ca(2+) waves that propagated towards the rear cells in a P2Y-receptor-dependent manner. The Ca(2+) response and wound healing were inhibited by ATP diphosphohydrolase apyrase, the P2Y antagonist suramin, the hemichannel blocker CBX and the TRPC6 inhibitor diC8-PIP2. Finally, the hemichannel-permeable dye calcein was taken up only by ATP-releasing cells. These results suggest that stretch-accelerated wound closure is due to the ATP release through mechanosensitive hemichannels from the foremost cells and the subsequent Ca(2+) waves mediated by P2Y and TRPC6 activation.
Collapse
Affiliation(s)
- Hiroya Takada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Kishio Furuya
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| |
Collapse
|
41
|
Abstract
Ca(2+) influx controls essential epidermal functions, including proliferation, differentiation, cell migration, itch, and barrier homeostasis. The Orai1 ion channel allows capacitive Ca(2+) influx after Ca(2+) release from the endoplasmic reticulum, and it has now been shown to modulate epidermal atrophy. These findings reveal new interactions among various Ca(2+) signaling pathways and uncover novel functions for Ca(2+) signaling via the Orai1 channel.
Collapse
|
42
|
SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat. J Invest Dermatol 2014; 134:1961-1970. [PMID: 24390139 DOI: 10.1038/jid.2014.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/31/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Darier disease (DD) is a severe dominant genetic skin disorder characterized by the loss of cell-to-cell adhesion and abnormal keratinization. The defective gene, ATP2A2, encodes sarco/endoplasmic reticulum (ER) Ca2+ -ATPase isoform 2 (SERCA2), a Ca2+ -ATPase pump of the ER. Here we show that Darier keratinocytes (DKs) display biochemical and morphological hallmarks of constitutive ER stress with increased sensitivity to ER stressors. Desmosome and adherens junctions (AJs) displayed features of immature adhesion complexes: expression of desmosomal cadherins (desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3)) and desmoplakin was impaired at the plasma membrane, as well as E-cadherin, β-, α-, and p120-catenin staining. Dsg3, Dsc3, and E-cadherin showed perinuclear staining and co-immunostaining with ER markers, indicative of ER retention. Consistent with these abnormalities, intercellular adhesion strength was reduced as shown by a dispase mechanical dissociation assay. Exposure of normal keratinocytes to the SERCA2 inhibitor thapsigargin recapitulated these abnormalities, supporting the role of loss of SERCA2 function in impaired desmosome and AJ formation. Remarkably, treatment of DKs with the orphan drug Miglustat, a pharmacological chaperone, restored mature AJ and desmosome formation, and improved adhesion strength. These results point to an important contribution of ER stress in DD pathogenesis and provide the basis for future clinical evaluation of Miglustat in Darier patients.
Collapse
|
43
|
Ilic D, Bollinger JM, Gelb M, Mauro TM. sPLA2 and the epidermal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:416-21. [PMID: 24269828 DOI: 10.1016/j.bbalip.2013.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022]
Abstract
The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F(-/-) mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College London School of Medicine, London, UK.
| | - James M Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA.
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco Veterans Medical Center, San Francisco, CA, USA.
| |
Collapse
|
44
|
Sugiura K. Unfolded protein response in keratinocytes: impact on normal and abnormal keratinization. J Dermatol Sci 2013; 69:181-6. [PMID: 23352280 DOI: 10.1016/j.jdermsci.2012.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/29/2012] [Accepted: 12/08/2012] [Indexed: 12/19/2022]
Abstract
The unfolded protein response (UPR) is a signaling pathway from the endoplasmic reticulum (ER) to the nucleus that protects cells from stress caused by misfolded or unfolded proteins. As such, ER stress is an ongoing challenge for all cells, given the central biologic importance of secretion as part of normal physiologic functions. Mild UPR is activated by mild ER stress, which occurs under normal conditions. Abnormal UPR is activated by severe ER stress, which occurs under pathological conditions. Abnormal UPR activation is associated with a number of diseases, including diabetes mellitus and Alzheimer's disease. Within skin tissues, keratinocytes in the epidermis are especially dependent upon a mild UPR for normal differentiation in the course of their differentiation into secretory cells in the uppermost granular layers. Association between abnormal UPR activation and hereditary keratoses, including Darier's disease, keratosis linearis with ichthyosis congenita and keratoderma syndrome, erythrokeratoderma variabilis, and ichthyosis follicularis with atrichia and photophobia syndrome, have been elucidated recently. This review describes the UPR in normal and abnormal keratinization and discusses the regulation of abnormal UPR activation by chemical chaperones as a potential treatment for one of the hereditary keratoses.
Collapse
Affiliation(s)
- Kazumitsu Sugiura
- Department of Dermatology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
45
|
Lopez-Pajares V, Yan K, Zarnegar BJ, Jameson KL, Khavari PA. Genetic pathways in disorders of epidermal differentiation. Trends Genet 2013; 29:31-40. [PMID: 23141808 PMCID: PMC5477429 DOI: 10.1016/j.tig.2012.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
More than 100 human genetic skin diseases, impacting over 20% of the population, are characterized by disrupted epidermal differentiation. A significant proportion of the 90 genes identified in these disorders to date are concentrated within several functional pathways, suggesting the emergence of organizing themes in epidermal differentiation. Among these are the Notch, transforming growth factor β (TGFβ), IκB kinase (IKK), Ras/mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), p63, and Wnt signaling pathways, as well as core biological processes mediating calcium homeostasis, tissue integrity, cornification, and lipid biogenesis. Here, we review recent results supporting the central role of these pathways in epidermal differentiation, highlighting the integration of genetic information with functional studies to illuminate the biological actions of these pathways in humans as well as to guide development of future therapeutics to correct their dysfunction.
Collapse
Affiliation(s)
| | - Karen Yan
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305
| | - Brian J. Zarnegar
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305
| | | | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
46
|
A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. Mol Cell Biol 2012; 33:752-62. [PMID: 23230267 DOI: 10.1128/mcb.01103-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of external perturbations can induce endoplasmic reticulum (ER) stress, followed by stimulation of epithelial cells to produce an innate immune element, the cathelicidin antimicrobial peptide (CAMP). ER stress also increases production of the proapoptotic lipid ceramide and its antiapoptotic metabolite, sphingosine-1-phosphate (S1P). We demonstrate here that S1P mediates ER stress-induced CAMP generation. Cellular ceramide and S1P levels rose in parallel with CAMP levels following addition of either exogenous cell-permeating ceramide (C2Cer), which increases S1P production, or thapsigargin (an ER stressor), applied to cultured human skin keratinocytes or topically to mouse skin. Knockdown of S1P lyase, which catabolizes S1P, enhanced ER stress-induced CAMP production in cultured cells and mouse skin. These and additional inhibitor studies show that S1P is responsible for ER stress-induced upregulation of CAMP expression. Increased CAMP expression is likely mediated via S1P-dependent NF-κB-C/EBPα activation. Finally, lysates of both ER-stressed and S1P-stimulated cells blocked growth of virulent Staphylococcus aureus in vitro, and topical C2Cer and LL-37 inhibited invasion of Staphylococcus aureus into murine skin. These studies suggest that S1P generation resulting in increased CAMP production comprises a novel regulatory mechanism of epithelial innate immune responses to external perturbations, pointing to a new therapeutic approach to enhance antimicrobial defense.
Collapse
|
47
|
Regulatory role for the profilaggrin N-terminal domain in epidermal homeostasis. J Invest Dermatol 2012; 132:2376-2385. [PMID: 22622429 DOI: 10.1038/jid.2012.174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is well known that profilaggrin, after its release from keratohyalin granules through dephosphorylation, becomes enzymatically processed into individual filaggrin monomers. The roles for filaggrin monomers in aggregating keratin filaments, as a component of the cornified cell envelope, and as a source of natural moisturizing factor are well established. A specific N-terminal fragment, called the PF-AB domain, becomes proteolytically released as well, but much less is known about its functional role in epidermal development. Here, the functional role of profilaggrin N-terminal (PF-N) domain was addressed by overexpressing three overlapping fragments from a lentiviral expression vector in the epidermis of living skin equivalents. The PF-N domain expression impaired the epidermal development through reducing keratinocyte proliferation and impairing differentiation. The expression of well-known differentiation markers profilaggrin, loricrin, and keratin 10 was considerably downregulated in PF-N domain overexpressing-skin equivalents. The activation of caspase 14 was also substantially affected. In contrast, total silencing of profilaggrin expression, obtained with a lentiviral miR vector, resulted in a hyperproliferative epidermis. We propose a hypothesis that profilaggrin AB domain provides a key feedback mechanism that controls epidermal homeostasis.
Collapse
|
48
|
SERCA2-controlled Ca²+-dependent keratinocyte adhesion and differentiation is mediated via the sphingolipid pathway: a therapeutic target for Darier's disease. J Invest Dermatol 2012; 132:1188-95. [PMID: 22277942 PMCID: PMC3305850 DOI: 10.1038/jid.2011.447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Darier’s Disease (DD), caused by mutations in the endoplasmic reticulum (ER) Ca2+ ATPase ATP2A2 (SERCA2b), is a skin disease that exhibits impaired epidermal cell-to-cell adhesion and altered differentiation. Although previous studies have shown that keratinocyte Ca2+ sequestration and fluxes are controlled by sphingolipid signaling, the role of this signaling pathway in DD previously has not been investigated. We show here that sphingosine levels increase and sphingosine kinase (SPHK1) expression decreases after inactivating SERCA2b with the specific SERCA2 inhibitors thapsigargin (TG) or siRNA to SERCA2b. Conversely, inhibiting sphingosine lyase rescues the defects in keratinocyte differentiation, E-cadherin localization, Desmoplakin (DP) translocation, and ER Ca2+ sequestration seen in TG-treated keratinocytes. To our knowledge, it was previously unreported that the keratinocyte sphingolipid and Ca2+ signaling pathways intersect in ATP2A2- controlled ER Ca2+ sequestration, E-cadherin and desmoplakin localization and Ca2+ - controlled differentiation, and thus may be important mediators in DD.
Collapse
|
49
|
Behne MJ, Jensen JM. Calcium in epidermis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:945-53. [PMID: 22453978 DOI: 10.1007/978-94-007-2888-2_43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Martin J Behne
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, Martinistr. 52, 20246, Hamburg, Germany.
| | | |
Collapse
|
50
|
Ryanodine Receptors Are Expressed in Epidermal Keratinocytes and Associated with Keratinocyte Differentiation and Epidermal Permeability Barrier Homeostasis. J Invest Dermatol 2012; 132:69-75. [DOI: 10.1038/jid.2011.256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|