1
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
2
|
Zeyn Y, Hobernik D, Wilk U, Pöhmerer J, Hieber C, Medina-Montano C, Röhrig N, Strähle CF, Thoma-Kress AK, Wagner E, Bros M, Berger S. Transcriptional Targeting of Dendritic Cells Using an Optimized Human Fascin1 Gene Promoter. Int J Mol Sci 2023; 24:16938. [PMID: 38069260 PMCID: PMC10706967 DOI: 10.3390/ijms242316938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Dominika Hobernik
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Caroline F. Strähle
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| |
Collapse
|
3
|
Nakagami H, Matsumoto T, Takazawa K, Sekino H, Matsuoka O, Inoue S, Furuie H, Morishita R. Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19). Vaccines (Basel) 2023; 11:1535. [PMID: 37896939 PMCID: PMC10611071 DOI: 10.3390/vaccines11101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Pharmacological studies have demonstrated antibody production and infection prevention with an intradermal coronavirus disease 2019 (COVID-19) DNA vaccine (AG0302-COVID-19). This clinical trial aimed to investigate the safety and immunogenicity of high doses of AG0302-COVID19 when injected intramuscularly and intradermally. Healthy adults were randomly divided into three intramuscular vaccination groups (2 mg, three times at 2-week intervals; 4 mg, twice at 4-week intervals; and 8 mg, twice at 4-week intervals) and two intradermal groups (1 mg, three times at 2-week intervals or twice at 4-week intervals). After a one-year follow-up, no serious adverse events were related to AG0302-COVID-19. At Week 52, the changes in the geometric mean titer (GMT) ratios of the anti-S antibodies were 2.5, 2.4, and 3.2 in the 2, 4, and 8 mg intramuscular groups, respectively, and 3.2 and 5.1 in the three times and twice injected intradermal groups, respectively. The number of INF-γ-producing cells responsive to S protein increased after the first dose and was sustained for several months. AG0302-COVID-19 showed an acceptable safety profile, but the induction of a humoral immune response was insufficient to justify progressing to a Phase 3 program.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita Hospital, 852 Hatakeda Narita, Chiba 286-0124, Japan;
| | - Kenji Takazawa
- Medical Corporation Shinanokai Shinanozaka Clinic, 20 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| | - Hisakuni Sekino
- Sekino Clinical Pharmacology Clinic, 3-28-3 Ikebukuro, Toshima-Ku, Tokyo 171-0014, Japan
| | - Osamu Matsuoka
- Medical Corporation Heishinkai ToCROM Clinic, 4-9, Yotsuyasanei-cho, Shinjuku-ku, Tokyo 160-0008, Japan
| | - Satoshi Inoue
- Medical Corporation Heishinkai OCROM Clinic, 4-12-11, Kasuga, Suita 565-0853, Japan;
| | - Hidetoshi Furuie
- Osaka Pharmacology Clinical Research Hospital, 4-1-29, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan;
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan;
| |
Collapse
|
4
|
Greenfield EA, DeCaprio J, Brahmandam M. Selecting the Antigen. Cold Spring Harb Protoc 2021; 2021:2021/12/pdb.top099945. [PMID: 34853124 DOI: 10.1101/pdb.top099945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classical method for generating polyclonal or monoclonal antibodies relies on the in vivo humoral response of animals. Here we describe the factors that antigens can have that might influence the strength and quality of an antibody response. This introduction is divided into three sections: (1) an overview of immunogenicity, (2) choosing the best form for the immunogen, and (3) methods for modifying antigens to make them more immunogenic.
Collapse
|
5
|
Nakagami H. Development of COVID-19 vaccines utilizing gene therapy technology. Int Immunol 2021; 33:521-527. [PMID: 33772572 PMCID: PMC8083619 DOI: 10.1093/intimm/dxab013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
There is currently an outbreak of respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus disease 2019 (COVID-19) is caused by infection with SARS-CoV-2. Individuals with COVID-19 have symptoms that are usually asymptomatic or mild in most initial cases. However, in some cases, moderate and severe symptoms have been observed with pneumonia. Many companies are developing COVID-19 vaccine candidates using different technologies that are classified into four groups (intact target viruses, proteins, viral vectors and nucleic acids). For rapid development, RNA vaccines and adenovirus vector vaccines have been urgently approved, and their injection has already started across the world. These types of vaccine technologies have been developed over more than 20 years using translational research for use against cancer or diseases caused by genetic disorders but the COVID-19 vaccines are the first licensed drugs to prevent infectious diseases using RNA vaccine technology. Although these vaccines are highly effective in preventing COVID-19 for a short period, safety and efficiency evaluations should be continuously monitored over a long time period. As the time of writing, more than 10 projects are now in phase 3 to evaluate the prevention of infection in double-blind studies. Hopefully, several projects may be approved to ensure high-efficiency and safe vaccines.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka, Japan
| |
Collapse
|
6
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021; 60:13225-13243. [PMID: 32893932 PMCID: PMC8247987 DOI: 10.1002/anie.202010282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.
Collapse
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Luise Fanslau
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Puneet Tyagi
- Dosage Form Design and DevelopmentBioPharmaceuticals DevelopmentR&DAstra ZenecaGaithersburgMD20878USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
7
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Puneet Tyagi
- Dosage Form Design and Development BioPharmaceuticals Development R&D Astra Zeneca Gaithersburg MD 20878 USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
8
|
Passerini L, Gregori S. Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Front Immunol 2020; 11:2194. [PMID: 33133064 PMCID: PMC7550404 DOI: 10.3389/fimmu.2020.02194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
The development of novel approaches to control unwanted immune responses represents an ambitious goal in the management of a number of clinical conditions, including autoimmunity, autoinflammatory diseases, allergies and replacement therapies, in which the T cell response to self or non-harmful antigens threatens the physiological function of tissues and organs. Current treatments for these conditions rely on the use of non-specific immunosuppressive agents and supportive therapies, which may efficiently dampen inflammation and compensate for organ dysfunction, but they require lifelong treatments not devoid of side effects. These limitations induced researchers to undertake the development of definitive and specific solutions to these disorders: the underlying principle of the novel approaches relies on the idea that empowering the tolerogenic arm of the immune system would restore the immune homeostasis and control the disease. Researchers effort resulted in the development of cell-free strategies, including gene vaccination, protein-based approaches and nanoparticles, and an increasing number of clinical trials tested the ability of adoptive transfer of regulatory cells, including T and myeloid cells. Here we will provide an overview of the most promising approaches currently under development, and we will discuss their potential advantages and limitations. The field is teaching us that the success of these strategies depends primarily on our ability to dampen antigen-specific responses without impairing protective immunity, and to manipulate directly or indirectly the immunomodulatory properties of antigen presenting cells, the ultimate in vivo mediators of tolerance.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
10
|
Inhibition of antigen-specific immune responses by co-application of an indoleamine 2,3-dioxygenase (IDO)-encoding vector requires antigen transgene expression focused on dendritic cells. Amino Acids 2020; 52:411-424. [PMID: 32008091 DOI: 10.1007/s00726-020-02817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
We have previously shown that particle-mediated epidermal delivery (PMED) of plasmids encoding β-galactosidase (βGal) under control of the fascin-1 promoter (pFascin-βGal) yielded selective production of the protein in skin dendritic cells (DCs), and suppressed Th2 responses in a mouse model of type I allergy by inducing Th1/Tc1 cells. However, intranasal challenge of mice immunized with pFascin-βGal induced airway hyperreactivity (AHR) and neutrophilic inflammation in the lung. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. Here we investigated the consequences of co-application of an IDO-encoding vector on the modulatory effect of DNA vaccination by PMED using pFascin-βGal in models of eosinophilic allergic and non-eosinophilic intrinsic airway inflammation. IDO-encoding plasmids and pFascin-βGal or pCMV-βGal were co-applied to abdominal skin of BALB/c mice without, before or after sensitization with βGal protein. Immune responses in the lung were analysed after intranasal provocation and airway reactivity was determined by whole body plethysmography. Co-application of pCMV-IDO with pFascin-βGal, but not pCMV-βGal inhibited the Th1/Tc1 immune response after PMED. Moreover, AHR in those mice was attenuated following intranasal challenge. Therapeutic vaccination of βGal-sensitized mice with pFascin-βGal plus pCMV-IDO slightly suppressed airway inflammation and AHR after provocation with βGal protein, while prophylactic vaccination was not effective. Altogether, our data suggest that only the combination of DC-restricted antigen and ubiquitous IDO expression attenuated asthma responses in mice, most probably by forming a tryptophan-depleted and kynurenine-enriched micromilieu known to affect neutrophils and T cells.
Collapse
|
11
|
Pouriayevali MH, Bamdad T, Sadat SM, Sadeghi SA, Sabahi F, Mahdavi M, Aghasadeghi MR. Listeriolysin O immunogenetic adjuvant enhanced potency of hepatitis C virus NS3 DNA vaccine. IUBMB Life 2019; 71:1645-1652. [PMID: 31298809 DOI: 10.1002/iub.2109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a major health problem all over the world. Among HCV proteins, nonstructural protein 3 (NS3) is one of the most promising target for anti-HCV therapy and a candidate for vaccine design. DNA vaccine is an efficient approach to stimulate antigen-specific immunity but the main problem with that is less immunogenic efficiency in comparison with traditional vaccines. Several approaches have been applied to enhance the immunogenicity of DNA. Recently, bacteria-derived substances are considered as one of the most attractive adjuvants for vaccines, which among them, Listeriolysin O (LLO) of Listeria monocytogenes is a toxin with an extremely immunogenic feature. We investigated detoxified form of LLO gene as genetic adjuvant to modulate NS3 DNA vaccine potency. Immunogenic truncated NS3 gene sequence of HCV (1095-1380aa) and detoxified LLO gene region (5-441aa) were amplified by PCR and cloned into the pcDNA3.1 plasmid separately. The expression of recombinant proteins (pc-NS3, pLLO) was confirmed in HEK293T cell line by western blotting. BALB/c mice models received three doses of different formula of plasmids in two-week intervals and two weeks after the final immunization, the immune responses were evaluated by specific total antibody level, lymphocyte proliferation, cytotoxicity, and cytokine levels assays. To evaluate in vivo cytotoxic activity, tumor challenge was performed. The recombinant plasmids were successfully expressed in mammalian cell line, and coadministration of pc-NS3 with pLLO induced the highest titer of total IgG against NS3 antigen compared with other controls. Determination of IgG subclasses confirmed the efficient increase in mixed responses with Th1 dominancy. Furthermore, significant levels of cytokines (p < .05) and lymphocyte proliferation responses (p < .05) indicated the superiority of this regimen. The findings may have important implication for LLO gene application as genetic adjuvant in immune response against HCV.
Collapse
Affiliation(s)
- Mohammad H Pouriayevali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed M Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed A Sadeghi
- Department of Research and Development of Hepatitis A vaccine, Pasteur Institute of Iran, Alborz, Iran
| | - Farzaneh Sabahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
12
|
Collins C, Lorenzen N, Collet B. DNA vaccination for finfish aquaculture. FISH & SHELLFISH IMMUNOLOGY 2019; 85:106-125. [PMID: 30017931 DOI: 10.1016/j.fsi.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
In fish, DNA vaccines have been shown to give very high protection in experimental facilities against a number of viral diseases, particularly diseases caused by rhabdoviruses. However, their efficacy in generating protection against other families of fish viral pathogens is less clear. One DNA vaccine is currently in use commercially in fish farms in Canada and the commercialisation of another was authorised in Europe in 2017. The mechanism of action of DNA vaccines, including the role of the innate immune responses induced shortly after DNA vaccination in the activation of the adaptive immunity providing longer term specific protection, is still not fully understood. In Europe the procedure for the commercialisation of a veterinary DNA vaccine requires the resolution of certain concerns particularly about safety for the host vaccinated fish, the consumer and the environment. Relating to consumer acceptance and particularly environmental safety, a key question is whether a DNA vaccinated fish is considered a Genetically Modified Organism (GMO). In the present opinion paper these key aspects relating to the mechanisms of action, and to the development and the use of DNA vaccines in farmed fish are reviewed and discussed.
Collapse
Affiliation(s)
| | | | - Bertrand Collet
- Marine Scotland, Aberdeen, United Kingdom; Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
13
|
Hobernik D, Bros M. DNA Vaccines-How Far From Clinical Use? Int J Mol Sci 2018; 19:ijms19113605. [PMID: 30445702 PMCID: PMC6274812 DOI: 10.3390/ijms19113605] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Two decades ago successful transfection of antigen presenting cells (APC) in vivo was demonstrated which resulted in the induction of primary adaptive immune responses. Due to the good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize our current knowledge on the course of action of DNA vaccines, and which factors are responsible for the poor immunogenicity in human so far. Important optimization steps that improve DNA transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA. Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector backbone. Successful clinical use of DNA vaccines may require combined employment of all of these parameters, and combination treatment with additional drugs.
Collapse
Affiliation(s)
- Dominika Hobernik
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Pérez-Trujillo JJ, Robles-Rodríguez OA, Garza-Morales R, García-García A, Rodríguez-Rocha H, Villanueva-Olivo A, Segoviano-Ramírez JC, Esparza-González SC, Saucedo-Cárdenas O, Montes-de-Oca-Luna R, Loera-Arias MJ. Antitumor Response by Endoplasmic Reticulum-Targeting DNA Vaccine Is Improved by Adding a KDEL Retention Signal. Nucleic Acid Ther 2018; 28:252-261. [DOI: 10.1089/nat.2017.0717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- José J. Pérez-Trujillo
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Olivia A. Robles-Rodríguez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Rodolfo Garza-Morales
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Humberto Rodríguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Juan C. Segoviano-Ramírez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
- Unidad de Bioimagen, Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | - Odila Saucedo-Cárdenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
- Division de Genetica, Centro de Investigacion Biomedica del Noreste, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - María J. Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| |
Collapse
|
15
|
Castor T, Yogev N, Blank T, Barwig C, Prinz M, Waisman A, Bros M, Reske-Kunz AB. Inhibition of experimental autoimmune encephalomyelitis by tolerance-promoting DNA vaccination focused to dendritic cells. PLoS One 2018; 13:e0191927. [PMID: 29408931 PMCID: PMC5800700 DOI: 10.1371/journal.pone.0191927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
In this study we analysed the effects of prophylactic biolistic DNA vaccination with plasmids encoding the encephalitogenic protein myelin oligodendrocyte glycoprotein (MOG) on the severity of a subsequently MOGp35-55-induced EAE and on the underlying immune response. We compared the outcome of vaccination with MOG-encoding plasmids alone or in combination with vectors encoding the regulatory cytokines IL-10 and TGF-ß1, respectively. MOG expression was restricted to skin dendritic cells (DCs) by the use of the DC-specific promoter of the fascin1 gene (pFscn-MOG). For comparison, the strong and ubiquitously active CMV promoter was employed (pCMV-MOG), which allows MOG expression in all transfected cells. Expression of IL-10 and TGF-ß1 was controlled by the CMV promoter to yield maximal synthesis (pCMV-IL10, pCMV-TGFß). Co-application of pFscn-MOG and pCMV-IL10 significantly ameliorated EAE pathology, while vaccination with pCMV-MOG plus pCMV-IL10 did not affect EAE outcome. In contrast, vaccination with either of the two MOG-encoding plasmids in combination with pCMV-TGFß significantly attenuated the clinical EAE symptoms. Mechanistically, we observed diminished infiltration of Th17 and Th1 cells as well as macrophages/DCs into the CNS, which correlated with decreased MOGp35-55-specific production of IL-17 and IFN-ϫ by spleen cells and reduced peptide-specific T cell proliferation. Our findings suggest deletion of or anergy induction in MOG-specific CD4+ T cells by the suppressive vaccination platform employed. MOG expression driven by the DC-specific fascin1 promoter yielded similar inhibitory effects on EAE progression as the ubiquitously active viral CMV promoter, when coapplying pCMV-TGFß. Our finding that pCMV-IL10 promoted tolerogenic effects only, when coapplied with pFscn-MOG, but not pCMV-MOG suggests that IL-10 affected only directly transfected DCs (pFscn-MOG), but not neighbouring DCs that engulfed MOG-containing vesicles derived from transfected keratinocytes (pCMV-MOG). Thus, due to its DC-restricted expression, the fascin1 promoter might be an interesting alternative to ubiquitously expressed promoters for vaccination strategies.
Collapse
Affiliation(s)
- Timo Castor
- Department of Dermatology University Medical Center, Mainz, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Thomas Blank
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Christina Barwig
- Department of Dermatology University Medical Center, Mainz, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology University Medical Center, Mainz, Germany
| | | |
Collapse
|
16
|
Heller P, Hobernik D, Lächelt U, Schinnerer M, Weber B, Schmidt M, Wagner E, Bros M, Barz M. Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their application as pDNA vaccines. J Control Release 2017; 258:146-160. [DOI: 10.1016/j.jconrel.2017.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023]
|
17
|
Tappertzhofen K, Beck S, Montermann E, Huesmann D, Barz M, Koynov K, Bros M, Zentel R. Bioreducible Poly-l-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT-Polymerization as Efficient Polyplex-Transfection Reagents. Macromol Biosci 2015. [DOI: 10.1002/mabi.201500212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristof Tappertzhofen
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Simone Beck
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
- MAINZ Graduate School of Excellence (Materials Science in Mainz); Johannes Gutenberg-University; Staudingerweg 9 55128 Mainz Germany
| | - Evelyn Montermann
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - David Huesmann
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Matthias Bros
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
18
|
Tappertzhofen K, Weiser F, Montermann E, Reske-Kunz A, Bros M, Zentel R. Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT Polymerization as Polyplex-Transfection Reagents with Minimal Toxicity. Macromol Biosci 2015; 15:1159-73. [PMID: 25974845 DOI: 10.1002/mabi.201500022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/24/2015] [Indexed: 12/28/2022]
Abstract
Herein we describe the synthesis of poly-L-lysine-b-poly[N-(2-hydroxypropyl)-metha-crylamide)] (poly[HPMA]) block copolymers by combination of solid phase peptide synthesis or polymerization of α-amino acid-N-carboxy-anhydrides (NCA-polymerization) with the reversible addition-fragmentation chain transfer polymerization (RAFT). In the presence of p-DNA, these polymers form polyplex micelles with a size of 100-200 nm in diameter (monitored by SDS-PAGE and FCS). Primary in vitro studies with HEK-293T cells reveal their cellular uptake (FACS studies and CLSM) and proof successful transfection with efficiencies depending on the length of polylysine. Moreover, these polyplexes display minimal toxicity (MTT-assay and FACS-measurements) featuring a p[HPMA] corona for efficient extracellular shielding and the potential ligation with antibodies.
Collapse
Affiliation(s)
- Kristof Tappertzhofen
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Franziska Weiser
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Angelika Reske-Kunz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
19
|
Stein J, Maxeiner JH, Montermann E, Höhn Y, Raker V, Taube C, Sudowe S, Reske-Kunz AB. Non-eosinophilic airway hyper-reactivity in mice, induced by IFN-γ producing CD4(+) and CD8(+) lung T cells, is responsive to steroid treatment. Scand J Immunol 2015; 80:327-38. [PMID: 25124713 DOI: 10.1111/sji.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023]
Abstract
Non-eosinophilic asthma is characterized by infiltration of neutrophils into the lung and variable responsiveness to glucocorticoids. The pathophysiological mechanisms have not been characterized in detail. Here, we present an experimental asthma model in mice associated with non-eosinophilic airway inflammation and airway hyper-responsiveness (AHR). For this, BALB/c mice were sensitized by biolistic DNA immunization with a plasmid encoding the model antigen β-galactosidase (pFascin-βGal mice). For comparison, eosinophilic airway inflammation was induced by subcutaneous injection of βGal protein (βGal mice). Intranasal challenge of mice in both groups induced AHR to a comparable extent as well as recruitment of inflammatory cells into the airways. In contrast to βGal mice, which exhibited extensive eosinophilic infiltration in the lung, goblet cell hyperplasia and polarization of CD4(+) T cells into Th2 and Th17 cells, pFascin-βGal mice showed considerable neutrophilia, but no goblet cell hyperplasia and a predominance of Th1 and Tc1 cells in the airways. Depletion studies in pFascin-βGal mice revealed that CD4(+) and CD8(+) cells cooperated to induce maximum inflammation, but that neutrophilic infiltration was not a prerequisite for AHR induction. Treatment of pFascin-βGal mice with dexamethasone before intranasal challenge did not affect neutrophilic infiltration, but significantly reduced AHR, infiltration of monocytes and lymphocytes as well as content of IFN-γ in the bronchoalveolar fluid. Our results suggest that non-eosinophilic asthma associated predominantly with Th1/Tc1 cells is susceptible to glucocorticoid treatment. pFascin-βGal mice might represent a mouse model to study pathophysiological mechanisms proceeding in the subgroup of asthmatics with non-eosinophilic asthma that respond to inhaled steroids.
Collapse
Affiliation(s)
- J Stein
- Clinical Research Unit Allergology, Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Heller P, Birke A, Huesmann D, Weber B, Fischer K, Reske-Kunz A, Bros M, Barz M. Introducing PeptoPlexes: Polylysine-block-Polysarcosine Based Polyplexes for Transfection of HEK 293T Cells. Macromol Biosci 2014; 14:1380-95. [DOI: 10.1002/mabi.201400167] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/14/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Philipp Heller
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Alexander Birke
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - David Huesmann
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Benjamin Weber
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Karl Fischer
- Institute for Physical Chemistry, Johannes Gutenberg-Universität; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Angelika Reske-Kunz
- Department of Dermatology; University Hospital, Johannes Gutenberg-University Mainz; Obere Zahlbacher Straße 63 55131 Mainz Germany
| | - Matthias Bros
- Department of Dermatology; University Hospital, Johannes Gutenberg-University Mainz; Obere Zahlbacher Straße 63 55131 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| |
Collapse
|
21
|
The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther 2014; 21:225-32. [PMID: 24385146 DOI: 10.1038/gt.2013.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
Abstract
In DNA vaccination, CD4(+) T-cell help can be enhanced by fusion of a gene encoding an immunization protein with a foreign gene or its part providing T(h) epitopes. To study the effect of helper epitope localization in a protein molecule, the influence of the vicinity of the helper epitope, and the impact of chimeric protein cellular localization, we fused the helper epitope p30 from tetanus toxin (TT, aa 947-967) with the N- or C-terminus of the mutated E7 oncoprotein (E7GGG) of human papillomavirus type 16, enlarged the p30 epitope with the flanking residues containing potential protease-sensitive sites and altered the cellular localization of the fusion constructs by signal sequences. The p30 epitope enhanced the E7-specific response, but only in constructs without added signal sequences. After localization of the fusion proteins into the endoplasmic reticulum and endo/lysosomal compartment, the TT-specific T(h)2 response was increased. The synthetic Pan DR epitope (PADRE) induced a stronger E7-specific response than the p30 epitope and its stimulatory effect was not limited to nuclear/cytoplasmic localization of the E7 antigen. These results suggest that in the optimization of immune responses by adding helper epitopes to DNA vaccines delivered by the gene gun, the cellular localization of the antigen needs to be taken into account.
Collapse
|
22
|
Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccines (Basel) 2013; 1:262-77. [PMID: 26344112 PMCID: PMC4494234 DOI: 10.3390/vaccines1030262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022] Open
Abstract
Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.
Collapse
|
23
|
Raker V, Maxeiner J, Reske-Kunz AB, Sudowe S. Efficiency of biolistic DNA vaccination in experimental type I allergy. Methods Mol Biol 2013; 940:357-370. [PMID: 23104354 DOI: 10.1007/978-1-62703-110-3_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gene gun-mediated delivery of allergen-encoding plasmid DNA has been in focus for many years now as being a needle-free alternative to the protein-based desensitization regimen used in specific immunotherapy. Biolistic immunization with the Helios gene gun has proven to be potent in the induction of antigen-specific CD4(+) and CD8(+) T cells. Here we describe biolistic vaccination in experimental mouse models of IgE-mediated type I allergy as well as allergen-induced airway inflammation.
Collapse
Affiliation(s)
- Verena Raker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | |
Collapse
|
24
|
Höhn Y, Sudowe S, Reske-Kunz AB. Dendritic cell-specific biolistic transfection using the fascin gene promoter. Methods Mol Biol 2013; 940:199-213. [PMID: 23104345 DOI: 10.1007/978-1-62703-110-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The transcriptional targeting of gene expression to selected cells by cell type-specific promoters displays a fundamental tool in gene therapy. In immunotherapy, dendritic cells (DCs) are pivotal for the elicitation of antigen-specific immune responses following gene gun-mediated biolistic transfection. Here we report on transcriptional targeting of murine skin DCs using plasmids which include the promoter of the gene of the cytoskeletal protein fascin to control antigen production. Fascin, which is mandatory for the formation of dendrites, is synthesized among the hematopoietic cells exclusively by activated DCs. The activity of the promoter of the fascin gene reflects the endogenous production of the protein, being high in mature DCs but almost absent in immature DCs or other cutaneous cells. Here we describe the analysis of transgene-specific immune responses after DC-focused biolistic transfection. In conclusion, the murine fascin promoter can be readily used to target DCs in DNA immunization approaches and thus offers new opportunities for gene therapy.
Collapse
Affiliation(s)
- Yvonne Höhn
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen, Aachen, Germany.
| | | | | |
Collapse
|
25
|
Stoecklinger A, Eticha TD, Mesdaghi M, Kissenpfennig A, Malissen B, Thalhamer J, Hammerl P. Langerin+ Dermal Dendritic Cells Are Critical for CD8+ T Cell Activation and IgH γ-1 Class Switching in Response to Gene Gun Vaccines. THE JOURNAL OF IMMUNOLOGY 2010; 186:1377-83. [DOI: 10.4049/jimmunol.1002557] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|