1
|
Guo X, Yang Y, Li Y, Chen B, Li H, Zhang C, Ma J, Zhao M, Zhu J. Nitrogen-dependent regulation of extracellular and intracellular polysaccharide content in Ganoderma lucidum via the transcription factor AreA. Microbiol Res 2025; 297:128197. [PMID: 40315552 DOI: 10.1016/j.micres.2025.128197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Fungal polysaccharides serve as vital components and hold significant value in food and medicinal applications. Nitrogen plays a crucial role in the biosynthesis of fungal polysaccharides, yet our comprehension of its specific influence on fungal polysaccharides biosynthesis remains limited. In this study, we analyzed the transcriptomic profiles of Ganoderma lucidum cultured under ammonium or nitrate sources, revealing an enrichment of the polysaccharide synthesis pathway. Further studies revealed that ammonium nitrogen promotes the synthesis of extracellular polysaccharides (EPS), while nitrate enhances that of intracellular polysaccharides (IPS). Subsequently, the role of AreA, a key transcription factor in nitrogen metabolism, in polysaccharide synthesis was investigated. Under nitrate conditions, compared to the wild-type (WT), EPS content increased by approximately 33 %, whereas IPS, chitin, and β-1,3-glucan content in the areA-silenced strains were significantly reduced by 24 %, 20 %, and 20 %-25 %, respectively. Changes in the content of chitin and β-1,3-glucan affect the cell wall's structure and integrity. Compared to ammonium conditions, under nitrate conditions, the cell wall thinned by approximately 23 % following areA silencing, and sensitivity to cell wall perturbing agents increased by approximately 20 %-30 %. In summary, this study elucidates the impact of nitrogen sources on polysaccharide synthesis, providing valuable insights into strategies for enhancing polysaccharide content in G.lucidum.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuzhen Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanqiu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bin Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Huajun Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chen Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, PR China
| | - Jiping Ma
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, PR China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
2
|
Hu F, Fang Y, Khan Z, Xing L. Optimization of triterpenoids biosynthesis in Athelia termitophila as a source of natural products. AMB Express 2025; 15:61. [PMID: 40186813 PMCID: PMC11972269 DOI: 10.1186/s13568-025-01840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 04/07/2025] Open
Abstract
Triterpenoids exhibit considerable potential and are extensively utilized in both food and pharmaceutical industries. However, Athelia termitophila (TMB) naturally harbors only trace amounts of these compounds. Consequently, this study sought to optimize the composition of the culture medium and its cultivation parameters to augment both triterpenoids biosynthesis and TMB biomass. To this end, a series of systematic experiments were carried out. At the outset, a One Factor at a Time (OFAT) approach was employed to identify key culture components and conditions. Based on the OFAT findings, six factors were selected for further investigation using the Plackett-Burman design (PBD) to assess their influence on triterpenoids production and biomass yield. The PBD outcomes pinpointed three critical factors-cultural duration, yeast extract powder, and KH2PO4-each of which was subjected to further optimization through the Box-Behnken design (BBD). The BBD analysis determined the optimal culture medium and conditions: 30 g/L corn starch, 13.44 g/L yeast extract powder, 4.74 g/L KH2PO4, a liquid-to-volume ratio of 130/250 mL, 6% inoculum volumes, and a cultivation period of 7.8 days. Upon optimization, both triterpenoids yield (1.9-fold increase) and mycelial biomass (1.66-fold increase) were significantly enhanced compared to the unoptimized medium. This study not only provides a robust methodology for enhancing triterpenoids content and mycelial biomass in TMB, but also contributes novel insights into the biosynthesis of triterpenoids.
Collapse
Affiliation(s)
- Fangcheng Hu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yonggang Fang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zahid Khan
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Zoology Department, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory for Animal Conservation (Northwest University), Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, 710069, Xi'an, China.
| |
Collapse
|
3
|
Prathyusha AMVN, Bramhachari PV. Statistical Optimization of Exopolysaccharide and Biomass Production by Mangrove Fungi Fusarium equiseti ANP2 and its Potential Application as Bioemulsifier and Chelator. Curr Microbiol 2025; 82:190. [PMID: 40080213 DOI: 10.1007/s00284-025-04129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
The rationale of the study is to explore the bio functional industrial potential and optimized culture conditions of a Manno glucan heteropolysaccharide MF-1 (purified EPS fraction) produced by a newly discovered mangrove derived fungi Fusarium equiseti ANP2, isolated from the Krishna River delta mangrove sediments. Response surface methodology (RSM) was employed to optimize fungal EPS and Biomass production, achieving a significant 1.4-fold increase to 6.94 g/L in EPS yield and a 2.1-fold increase in biomass production. RSM identified optimal levels of glucose, NH₄NO₃, NaCl, leucine, temperature, and pH, while minimizing the required glucose and nitrogen content compared to conventional methods. Notably, MF-1 exhibited promising emulsification potential (69.5% n-hexadecane emulsification), suggesting its prospective role as a novel emulsifier, particularly for n-hexadecane-based applications. Additionally, MF-1 also displayed a chelating activity for Fe2⁺ ions, suggesting its applicability as a natural chelating agent. The current study optimized the EPS production using RSM design and explored its potential for industrial applications as emulsification and chelating properties of the purified EPS fraction. Future research could explore the structural modifications of the fungal EPS to enhance its functionalities and delve deeper into the mechanisms governing EPS and biomass for large-scale, sustainable industrial production.
Collapse
Affiliation(s)
- A M V N Prathyusha
- Department of Biosciences & Biotechnology, Krishna University, Machilipatnam, 521004, India
| | | |
Collapse
|
4
|
Xv W, Zheng Q, Ye ZW, Wei T, Guo LQ, Lin JF, Zou Y. Submerged Culture of Edible and Medicinal Mushroom Mycelia and Their Applications in Food Products: A Review. Int J Med Mushrooms 2024; 26:1-13. [PMID: 38505899 DOI: 10.1615/intjmedmushrooms.2023052039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.
Collapse
Affiliation(s)
| | - Qianwang Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, P.R. China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, P.R. China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- South China Agricultural University
| |
Collapse
|
5
|
Dutta D, Singh NS, Aggarwal R, Verma AK. Cordyceps militaris: A Comprehensive Study on Laboratory Cultivation and Anticancer Potential in Dalton's Ascites Lymphoma Tumor Model. Anticancer Agents Med Chem 2024; 24:668-690. [PMID: 38305294 DOI: 10.2174/0118715206282174240115082518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Cancer, a predominant cause of mortality, poses a formidable challenge in our pursuit of elevating life expectancy. Throughout history, individuals have sought natural remedies with minimal side effects as an appealing substitute for chemotherapeutic drugs. One such remedy is Cordyceps militaris, a renowned medicinal mushroom deeply entrenched in Asian ethnomedicine. Revered for its rejuvenating and curative attributes, it relied upon for ages. OBJECTIVE The mushroom's soaring demand outpaced natural availability, necessitating controlled laboratory cultivation as the core focus and exploring the potential of methanolic extracts from harvested Cordyceps militaris fruiting bodies against Dalton's Lymphoma Ascites (DLA) cells in vitro, with a specific emphasis on its anticancer traits. METHODS For cultivation, we employed a diverse range of rice substrates, among which bora rice showed promising growth of C. militaris fruiting bodies. To assess DLA cell cytotoxicity, several assays, including trypan blue exclusion assay, MTT assay, and LDH assay, were employed at different time points (24-96 h), which provided valuable insights on DLA cell viability and proliferation, shedding light on its therapeutic potential against cancer. RESULTS Our studies unveiled that methanolic extract prompts apoptosis in DLA cells via AO/EB dual staining, manifesting consistent apoptosis indicators such as membrane blebbing, chromatin condensation, nuclei fragmentation, and cellular shrinkage at 48-96 h of treatment. Furthermore, these striking repercussions of apoptosis were comprehended by an in silico approach having molecular docking simulation against antiapoptotic proteins like BCL-2, BCL-XL, MCL-1, BFL-1 & HSP100. CONCLUSION Methanolic C. militaris extracts exhibited cytotoxicity and apoptotic alterations in DLA cells.
Collapse
Affiliation(s)
- Diksha Dutta
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India
| | - Namram Sushindrajit Singh
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India
| | - Rohit Aggarwal
- Cosmic Cordycep Farms, Badarpur Said Tehsil, Faridabad, 121101, Haryana, India
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India
| |
Collapse
|
6
|
Sinharoy A, Lens PNL. Selenite and tellurite reduction by Aspergillus niger fungal pellets using lignocellulosic hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129333. [PMID: 35728327 DOI: 10.1016/j.jhazmat.2022.129333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The performance of Aspergillus niger pellets to remove selenite and tellurite from wastewater using batch and continuous fungal pelleted bioreactors was investigated. The acid hydrolysate of brewer's spent grain (BSG) was utilized by A. niger as the electron donor for selenite and tellurite reduction. The dilution of BSG hydrolysate using mineral medium had a positive effect on the selenite and tellurite removal efficiency with a 1:3 ratio giving the best efficiency. However, selenite and tellurite inhibited fungal growth with a 40.9% and 27.3% decrease in the A. niger biomass yield in the presence of 50 mg/L selenite and tellurite, respectively. The maximum selenite and tellurite removal efficiency using 25% BSG hydrolysate in batch incubations amounted to 72.8% and 99.5% Two fungal pelleted bioreactors were operated in continuous mode using BSG hydrolysate as the substrate. Both the selenite and tellurite removal efficiencies during steady state operation were > 80% with tellurite showing a maximum removal efficiency of 98.5% at 10 mg/L influent concentration. Elemental Se nanospheres for selenite and both Te nanospheres and nanorods for tellurite were formed within the fungal pellets. This study demonstrates the suitability BSG hydrolysate as a low cost carbon source for removal of selenite and tellurite using fungal pellet bioreactors.
Collapse
Affiliation(s)
- Arindam Sinharoy
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland.
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
7
|
Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Dulay RMR, Cabrera EC, Kalaw SP, Reyes RG. Optimization of submerged culture conditions for mycelial biomass production of fourteen Lentinus isolates from Luzon Island, Philippines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Selvasekaran P, Mahalakshmi, Roshini F, Angalene LA, Chandini, Sunil T, Chidambaram R. Fungal Exopolysaccharides: Production and Biotechnological Industrial Applications in Food and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Evaluation of nutritional requirements of medicinal fungus, Pyrofomes demidoffii under submerged fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Yousef RH, Baothman OAS, Abdulaal WH, Abo-Golayel MK, Darwish AA, Moselhy SS, Ahmed YM, Hakeem KR. Potential antitumor activity of exopolysaccharide produced from date seed powder as a carbon source for Bacillus subtilis. J Microbiol Methods 2020; 170:105853. [PMID: 31978532 DOI: 10.1016/j.mimet.2020.105853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
The major functions of Exopolysaccharide (EPS) include, preventing bacterial cells from desiccating and biofilm production to increase the colonization of bacterial cells. In the current study, a bacterial strain was isolated to produce EPS. Phylogenetic analysis of the isolated strain indicated it was related to Bacillus subtilis. The bacterium showed the ability to produce a new EPS using very cheap date seeds as a carbon source. Different conditions were studied to enhance exopolysaccharide production. Maximum total sugars (exopolysaccharide) were reached to 0.87 mM) at 20 g/lAjwadates seed (ADS). The maximum production was found to be 3.46 mM by addition of peptone as the main source of nitrogen with a concentration of 1.5 g/L. The optimal parameter values were temperature 37 °C, pH 6, incubation time 72 h and inoculum concentration 1 mL. The crude exopolysaccharide was purified by removing the cells, then the protein, then dialysis and finally ethanol precipitation of the exopolysaccharide. This method modification increased exopolysaccharide production to 0.6 g/L. The exopolysaccharide produced showed antitumor activity against Erlich tumor cells. It is promising for application on a large scale for different types of cancer cell lines.
Collapse
Affiliation(s)
- Rakan H Yousef
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman A S Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Head of the Central Lab of Microbial Toxicology & Natural Products Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H Abdulaal
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed K Abo-Golayel
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Research Centre, Ain Shams University Hospitals, Faculty of Medicine, Ain Shams University, Egypt
| | - Anas A Darwish
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Youssri M Ahmed
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Head of Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, KSA, Saudi Arabia; Microbial Biotechnology Dep., Genetic Engineering and Biotechnology Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80203, Jeddah, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
Jiang LX, Han LL, Wang HP, Xu JW, Xiao JH. Improved production of jiangxienone in submerged fermentation of Cordyceps jiangxiensis under nitrogen deficiency. Bioprocess Biosyst Eng 2018; 41:1417-1423. [PMID: 29948214 DOI: 10.1007/s00449-018-1970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
Abstract
Jiangxienone produced by Cordyceps jiangxiensis exhibits significant cytotoxicity and good selectivity against various human cancer cells, especially gastric cancer cells. In this work, the effect of nitrogen deficiency on the accumulation of jiangxienone and the transcription levels of jiangxienone biosynthesis genes was studied in submerged fermentation of C. jiangxiensis. Results showed that accumulation of jiangxienone was improved under nitrogen deficiency condition. A maximal jiangxienone content of 3.2 µg/g cell dry weight was reached at 5 mM glutamine, and it was about 8.9-fold higher than that obtained at 60 mM glutamine (control). The transcription levels of the biosynthetic pathway genes hmgr and sqs and the nitrogen regulatory gene areA were upregulated by 7-, 14-, and 28-fold, respectively, in culture with 5 mM glutamine compared to the control. It was hypothesized that the jiangxienone biosynthesis may involve the mevalonate pathway in C. jiangxiensis. Taken together, our study indicated that nitrogen deficiency is an efficient strategy for enhancing jiangxienone accumulation in submerged fermentation of C. jiangxiensis, which is useful for further understanding the regulation of jiangxienone biosynthesis.
Collapse
Affiliation(s)
- Lu-Xi Jiang
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Li-Liang Han
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hui-Ping Wang
- Department of Neurology, Kunming Children's Hospital, Kunming Medical University, Kunming, 650228, People's Republic of China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Jian-Hui Xiao
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| |
Collapse
|
13
|
Nguyen VB, Nguyen TH, Doan CT, Tran TN, Nguyen AD, Kuo YH, Wang SL. Production and Bioactivity-Guided Isolation of Antioxidants with α-Glucosidase Inhibitory and Anti-NO Properties from Marine Chitinous Materials. Molecules 2018; 23:E1124. [PMID: 29747410 PMCID: PMC6100624 DOI: 10.3390/molecules23051124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Natural and bioactive products have been of great interest due to their benefit as health foods and drugs to prevent various diseases. The aim of this study is to efficiently reuse marine chitinous materials (CMs), abundant and low-cost fishery by-products, for the bio-synthesis, isolation, and identification of antioxidant compounds possessing some other beneficial bioactivities. Paenibacillus sp. was used to convert CMs to antioxidants. Among various tested CMs, squid pen powder (SPP) gave the best results when used as the sole carbon/nitrogen source. Fermented SPP (FSPP) had comparable antioxidant activity (IC50 = 124 µg/mL) to that of α-tocopherol (IC50 = 30 µg/mL). The antioxidant productivity increased 1.83-fold after culture optimization. The use of multiple techniques, including Diaion, silica, and preparative HPLC columns coupled with a bioassay resulted in the isolation of two major antioxidants characterized as exopolysaccharides and homogentisic acid. These isolated compounds showed great maximum activity and low IC50 values (96%, 30 µg/mL and 99%, 5.4 µg/mL, respectively) which were comparable to that of α-tocopherol (95%, 24 µg/mL). The crude sample, fractions, and isolated compounds also demonstrated α-glucosidase inhibition and anti⁻inflammatory activity. Notably, homogentisic acid was found as a non-sugar-based moiety α-glucosidase inhibitor which show much higher inhibition (IC50 = 215 µg/mL) than that of acarbose (IC50 = 1324 µg/mL) and also possessed acceptable anti⁻inflammatory activity (IC50 = 9.8 µg/mL). The results highlighted the value of using seafood processing by-products, like squid pens, for the production of several compounds possessing multi-benefit bioactivities and no cytotoxicity.
Collapse
Affiliation(s)
- Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
| | - Thi Hanh Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Chien Thang Doan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Thi Ngoc Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
14
|
Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris. Appl Microbiol Biotechnol 2018; 102:4523-4533. [DOI: 10.1007/s00253-018-8899-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/16/2023]
|
15
|
Gamage S, Nakayama J, Fuyuno Y, Ohga S. The Effect of the Hot Water Extracts of the <i>Paecilomyces hepiali </i>and <i>Cordyceps militaris</i> Mycelia on the Growth of Gastrointestinal Bacteria. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.87034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Liang TW, Tseng SC, Wang SL. Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar Drugs 2016; 14:md14020040. [PMID: 26907304 PMCID: PMC4771993 DOI: 10.3390/md14020040] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 11/30/2022] Open
Abstract
Natural polysaccharides have received much attention due to their wide range of applications. Although most microbial exopolysaccharides (EPSs) use sugars as the major carbon source, such as glucose or sucrose, in this study, EPSs were induced from a squid pen powder (SPP)-containing medium by Paenibacillus mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil. Under the optimal culture conditions, the maximum EPS yield (14.8 g/L) was obtained. MALDI-TOF MS analysis of an EPS fraction purified by gel filtration revealed two mass peaks with molecular weights of ∼1.05 × 104 and ∼1.35 × 104 Da, respectively. The analysis of the hydrolysates of TKU032 EPS with cellulase, pectinase or α-amylase indicated that the glycosidic bond of TKU032 EPS is most likely an α-1,4 glycosidic bond and the hydrolysates are similar to those of starch. In addition, the purified EPS demonstrated strong antioxidant abilities.
Collapse
Affiliation(s)
- Tzu-Wen Liang
- Life Science Development Center, Tamkang University, No. 151, Yingchuan Rd., Tamsui, New Taipei City 25137, Taiwan.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Shih-Chun Tseng
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - San-Lang Wang
- Life Science Development Center, Tamkang University, No. 151, Yingchuan Rd., Tamsui, New Taipei City 25137, Taiwan.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
17
|
Zhu ZY, Liu XC, Dong FY, Guo MZ, Wang XT, Wang Z, Zhang YM. Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris. Appl Microbiol Biotechnol 2015; 100:3909-21. [DOI: 10.1007/s00253-015-7235-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
|
18
|
Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K. Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. 3 Biotech 2015; 5:1067-1073. [PMID: 28324414 PMCID: PMC4624145 DOI: 10.1007/s13205-015-0308-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Statistical experimental designs were applied to optimize the fermentation medium for exopolysaccharide (EPS) production. Plackett–Burman design was applied to identify the significance of seven medium variables, in which sweet potato and yeast extract were found to be the significant variables for EPS production. Central composite design was applied to evaluate the optimum condition of the selected variables. Maximum EPS production of 9.3 g/L was obtained with the predicted optimal level of sweet potato 10 %, yeast extract 0.75 %, 5.5 pH, and time 100 h. The determined (R2) value was 0.97, indicating a good fitted model for EPS production. Results of this study showed that sweet potato can be utilized as a low-cost effective substrate for pullulan production in submerged fermentation.
Collapse
|
19
|
Recent advances in exopolysaccharides from Paenibacillus spp.: production, isolation, structure, and bioactivities. Mar Drugs 2015; 13:1847-63. [PMID: 25837984 PMCID: PMC4413190 DOI: 10.3390/md13041847] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
This review provides a comprehensive summary of the most recent developments of various aspects (i.e., production, purification, structure, and bioactivity) of the exopolysaccharides (EPSs) from Paenibacillus spp. For the production, in particular, squid pen waste was first utilized successfully to produce a high yield of inexpensive EPSs from Paenibacillus sp. TKU023 and P. macerans TKU029. In addition, this technology for EPS production is prevailing because it is more environmentally friendly. The Paenibacillus spp. EPSs reported from various references constitute a structurally diverse class of biological macromolecules with different applications in the broad fields of pharmacy, cosmetics and bioremediation. The EPS produced by P. macerans TKU029 can increase in vivo skin hydration and may be a new source of natural moisturizers with potential value in cosmetics. However, the relationships between the structures and activities of these EPSs in many studies are not well established. The contents and data in this review will serve as useful references for further investigation, production, structure and application of Paenibacillus spp. EPSs in various fields.
Collapse
|
20
|
Li Y, Li Q, Hao D, Jiang D, Luo Y, Liu Y, Zhao Z. Production, Purification, and Antibiofilm Activity of a Novel Exopolysaccharide fromArthrobactersp. B4. Prep Biochem Biotechnol 2014; 45:192-204. [DOI: 10.1080/10826068.2014.907180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Reis CER, Zhang J, Hu B. Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate. Appl Biochem Biotechnol 2014; 174:411-23. [PMID: 25080382 DOI: 10.1007/s12010-014-1112-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.
Collapse
Affiliation(s)
- Cristiano E R Reis
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 316 BAE, 1390 Eckles Ave, Saint Paul, MN, 55108-6005, USA
| | | | | |
Collapse
|
22
|
Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. ScientificWorldJournal 2014; 2014:510627. [PMID: 25054182 PMCID: PMC4094858 DOI: 10.1155/2014/510627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/08/2014] [Indexed: 12/02/2022] Open
Abstract
Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes.
Collapse
|
23
|
Lü YH, Pan WD, Xiao JH, Sun ZH, Zhong JJ. Cytotoxic mechanism of novel compound jiangxienone from Cordyceps jiangxiensis against cancer cells involving DNA damage response pathway. Process Biochem 2014; 49:697-705. [DOI: 10.1016/j.procbio.2014.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Sun X, Hao L, Ma H, Li T, Zheng L, Ma Z, Zhai G, Wang L, Gao S, Liu X, Jia M, Jia L. Extraction and in vitro antioxidant activity of exopolysaccharide by Pleurotus eryngii SI-02. Braz J Microbiol 2014; 44:1081-8. [PMID: 24688496 PMCID: PMC3958172 DOI: 10.1590/s1517-83822013000400009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 11/13/2012] [Indexed: 11/22/2022] Open
Abstract
The extraction parameters for Pleurotus eryngii SI-02 exopolysaccharide (EPS) produced during submerged culture were optimized using response surface methodology (RSM). The optimum conditions for EPS extraction were predicted to be, precipitation time 20.24 h, ethanol concentration 89.62% and pH 8.17, and EPS production was estimated at 7.27 g/L. The actual yield of EPS under these conditions was 7.21 g/L. The in vitro antioxidant results of the EPS showed that the inhibition effects of EPS at a dosage of 400 mg/L on hydroxyl, superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals were 59.63 ± 3.72%, 38.69 ± 2.59%, and 66.36 ± 4.42%, respectively, which were 12.74 ± 1.03%, 8.01 ± 0.56%, and 12.19 ± 1.05% higher than that of butylated hydroxytoluene (BHT), respectively. The reducing power of EPS of P. eryngii SI-02 was 0.98 ± 0.05, 60.66 ± 5.14% higher than that of BHT. The results provide a reference for large-scale production of EPS by P. eryngii SI-02 in industrial fermentation and the EPS can be used as a potential antioxidant which enhances adaptive immune responses.
Collapse
Affiliation(s)
- Xinyi Sun
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Long Hao
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hua Ma
- The Central Hospital of Taian, Shandong, PR China
| | - Tong Li
- College of Mathematics and Applied Mathematics, Fudan University, Shanghai, PR China
| | - Lan Zheng
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhao Ma
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guoyin Zhai
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Liqin Wang
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shanglong Gao
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xiaonan Liu
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Mengshi Jia
- The Second High of Taian, Shandong, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
25
|
Xiao JH, Sun ZH, Pan WD, Lü YH, Chen DX, Zhong JJ. Jiangxienone, a new compound with potent cytotoxicity against tumor cells from traditional Chinese medicinal mushroom Cordyceps jiangxiensis. Chem Biodivers 2012; 9:1349-1355. [PMID: 22782880 DOI: 10.1002/cbdv.201100244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new compound, named jiangxienone, has been isolated from a culture of the traditional Chinese medicinal mushroom Cordyceps jiangxiensis, and its chemical structure was established on the basis of spectroscopic and chemical techniques. Jiangxienone showed potent cytotoxic effects against human gastric adenocarcinoma SGC-7901 cell and human lung carcinoma A549 cell with IC(50) values ranging from 1.38 to 2.93 μM, i.e., with at least approximately six-fold stronger cytotoxicity than cisplatin, a first-line chemotherapy drug for cancer patients.
Collapse
Affiliation(s)
- Jian-Hui Xiao
- Division of Applied Mycology and Biochemical Pharmacy, Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi 563000, PR China.
| | | | | | | | | | | |
Collapse
|
26
|
Lin R, Liu H, Wu S, Pang L, Jia M, Fan K, Jia S, Jia L. Production and in vitro antioxidant activity of exopolysaccharide by a mutant, Cordyceps militaris SU5-08. Int J Biol Macromol 2012; 51:153-7. [DOI: 10.1016/j.ijbiomac.2012.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/30/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
27
|
XU Q, LIU Z, SUN Y, DING Z, LÜ L, LI Y. Optimization for Production of Intracellular Polysaccharide from Cordyceps ophioglossoides L2 in Submerged Culture and Its Antioxidant Activities in vitro. Chin J Chem Eng 2012. [DOI: 10.1016/s1004-9541(12)60391-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Yang ML, Kuo PC, Hwang TL, Wu TS. Anti-inflammatory principles from Cordyceps sinensis. JOURNAL OF NATURAL PRODUCTS 2011; 74:1996-2000. [PMID: 21848266 DOI: 10.1021/np100902f] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In order to explore the anti-inflammatory principles of the mycelia of Cordyceps sinensis, the crude extract and partially purified fractions were examined for their inhibition of superoxide anion generation and elastase release. Further chemical investigation of the bioactive fractions has resulted in the identification of 50 compounds, including five constituents, cordysinins A-E (1-5), reported from a natural source for the first time. In addition, compounds were examined for their anti-inflammatory activity. 1-(5-Hydroxymethyl-2-furyl)-β-carboline displayed the most significant inhibition of superoxide anion generation and elastase release with IC50 values of 0.45±0.15 and 1.68±0.32 μM, respectively.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | | | | | | |
Collapse
|
29
|
A study of mycelial growth and exopolysaccharide production from a submerged culture of Mycoleptodonoides aitchisonii in an air-lift bioreactor. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Sayyed RZ, Jamadar DD, Patel PR. Production of Exo-polysaccharide by Rhizobium sp. Indian J Microbiol 2011; 51:294-300. [PMID: 22754006 DOI: 10.1007/s12088-011-0115-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/17/2010] [Indexed: 11/25/2022] Open
Abstract
Two fold increase in the yield of glucose and maltose containing exo-polysaccharide (EPS) by Rhizobium sp. was observed during its growth in modified YEMB. EPS production, plant growth promotion activity and root colonization of Rhizobium sp. studies showed enhanced EPS synthesis, more seed germination and over all improvement in plant growth over control and R. meliloti treatment. Groundnut seeds bacterized with Rhizobium sp. resulted in 69.75% more root length, 49.51% more shoot height, 13.75% more number of branches and 13.60% more number of pods over the control and R. meliloti treatment. Bacterization of wheat seeds increased the dry matter yield of roots (1.7-fold), and roots adhering soil (RAS) (1.5) and shoot mass (1.9-fold). Rhizobium sp. inoculation also increased the population density of EPS-producing bacteria on the rhizoplane. Roots of plants inoculated with Rhizobium sp. maintained a higher K(+)/Na(+) ratio and K(+)-Na(+) selectivity.
Collapse
Affiliation(s)
- R Z Sayyed
- Department of Microbiology, Shri S I Patil Arts, G B Patel Science and STSKVS Commerce College, Shahada Dist, Nandurbar, 425 409 Maharashtra India
| | | | | |
Collapse
|
31
|
Extraction and in vitro antioxidant activity of intracellular polysaccharide by Pholiota adiposa SX-02. J Biosci Bioeng 2011; 111:50-4. [DOI: 10.1016/j.jbiosc.2010.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022]
|
32
|
Fan K, Meng G, Zhou B, Deng P, Liu X, Jia L, Wang G, Wang L, Zhang J. Intracellular polysaccharide and its antioxidant activity by Cordyceps militaris SU-08. J Appl Polym Sci 2010. [DOI: 10.1002/app.33367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Dong CH, Yao YJ. On the reliability of fungal materials used in studies on Ophiocordyceps sinensis. J Ind Microbiol Biotechnol 2010; 38:1027-35. [PMID: 20922458 DOI: 10.1007/s10295-010-0877-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
Abstract
Ophiocordyceps sinensis (≡Cordyceps sinensis) is one of the best known traditional Chinese medicines, with great benefits to human health and huge economic value. The reliability of fungal materials used in studies of the species is particularly important because contradictory results have been found in various studies in the past decades. Examination of fungal materials specified in reports on O. sinensis showed great variation in both sources and culture conditions of living strains. To test the reliability of the materials used, experiments were carried out to study the effect of culture conditions on the growth of living strains of O. sinensis by using six reliable strains representing the major production regions of the fungus on the Tibetan Plateau. The results showed that O. sinensis is a slow-growing fungus at comparatively low temperature, and that temperature and growth period are crucial factors which can be verified by experiment. Analyses of fungal materials used in 152 papers on O. sinensis from PubMed since 1998 showed that 41 papers lacked detailed information on the fungal materials; 26 used natural products, 11 used artificially cultivated fruit bodies, and 80 used fermentation products from living strains. Of the latter category (using fermentation products), 64 of the papers were found to use unreliable (45) or uncertain (19) strains for fermentation products based on the temperature and growth period for O. sinensis strains verified in this study. Apart from the natural products of O. sinensis, which require scientific identification, a total of at least 116 papers (over three-quarters) used unreliable, uncertain or unspecified materials, including so-called cultivated fruit bodies which were apparently from other species. The reliability of materials or living strains used in studies on O. sinensis is discussed in this paper, and suggestions are made for use of reliable fungal materials in further studies of this fungus.
Collapse
Affiliation(s)
- C-H Dong
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, P.O. Box 2714, Beijing, 100101, China
| | | |
Collapse
|
34
|
Xiao JH, Xiao DM, Xiong Q, Liang ZQ, Zhong JJ. Nutritional requirements for the hyperproduction of bioactive exopolysaccharides by submerged fermentation of the edible medicinal fungus Cordyceps taii. Biochem Eng J 2010; 49:241-249. [DOI: 10.1016/j.bej.2009.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Kim HG, Song H, Yoon DH, Song BW, Park SM, Sung GH, Cho JY, Park HI, Choi S, Song WO, Hwang KC, Kim TW. Cordyceps pruinosa extracts induce apoptosis of HeLa cells by a caspase dependent pathway. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:342-351. [PMID: 20138133 DOI: 10.1016/j.jep.2010.01.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/14/2010] [Accepted: 01/22/2010] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Cordyceps is a parasitic fungus and has long been used as a traditional Chinese medicine to treat illnesses, promote longevity, increase athletic power, and relieve exhaustion and cancer. In this study, we reveal the mechanisms underlying apoptosis induced by Cordyceps pruinosa butanol fraction (CPBF) in the human cervical adenocarcinoma cell line, HeLa. MATERIALS AND METHODS Proliferation and apoptosis of cells were examined by MTT assay, DNA fragmentation, phosphatidyl serine distribution assay, Western blot analysis, and immunocytochemistry. To determine the association between CPBF related apoptosis and ROS, electron spin resonance (ESR) trapping experiments were used. RESULTS CPBF inhibited proliferation and induced apoptosis in HeLa cells in a dose-dependent manner using a MTT assay, DNA fragmentation, and a phosphatidyl serine distribution assay. Western blot analysis showed that apoptosis in HeLa cells was caspase-3- and -9-dependent. Proteolytic cleavage of PARP and the release of cytochrome c from the mitochondria into the cytosol were significantly increased and the Bcl-2/Bax protein ratio was decreased. Apoptosis induced by CPBF was not prevented by various antioxidants. CONCLUSIONS These results indicate that apoptotic effects of CPBF on HeLa cells are mediated by mitochondria-dependent death-signaling pathway independent of reactive oxygen species, suggesting that CPBF might be effective as an anti-proliferative agent for cancer.
Collapse
Affiliation(s)
- Ho Gyoung Kim
- Department of Biochemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Abstract
Cordyceps species, including C. sinensis, C. militaris, C. pruinosa and C. ophioglossoides, are prized traditional medicinal materials. The aim of this article is to review the chemical constituents and pharmacological actions of Cordyceps species. The chemical constituents include cordycepin (3′-deoxyadenosine) and its derivatives, ergosterol, polysaccharides, a glycoprotein and peptides containing α-aminoisobutyric acid. They include anti-tumour, anti-metastatic, immunomodulatory, antioxidant, anti-inflammatory, insecticidal, antimicrobial, hypolipidaemic, hypoglycaemic, anti-ageing, neuroprotective and renoprotective effects. Polysaccharide accounts for the anti-inflammatory, antioxidant, anti-tumour, anti-metastatic, immunomodulatory, hypoglycaemic, steroidogenic and hypolipidaemic effects. Cordycepin contributes to the anti-tumour, insecticidal and antibacterial activity. Ergosterol exhibits anti-tumour and immunomodulatory activity. A DNase has been characterized.
Collapse
Affiliation(s)
- T B Ng
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
37
|
Production of polysaccharides by submerged mycelial culture of entomopathogenic fungus Cordyceps takaomontana and their apoptotic effects on human neuroblastoma cells. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-009-0179-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Meng F, Liu X, Jia L, Song Z, Deng P, Fan K. Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2009.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Statistical optimization of cultivation conditions for exopolysacchride production and mycelia growth by Stropharia rugosoannulata. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-009-0006-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Hu FL, He YQ, Huang B, Li CR, Fan MZ, Li ZZ. Secondary metabolites in a soybean fermentation broth of Paecilomyces militaris. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.02.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
XU Q, LÜ L, CHEN S, ZHENG J, ZHENG G, LI Y. Isolation of Cordyceps ophioglossoides L2 from Fruit Body and Optimization of Fermentation Conditions for Its Mycelial Growth. Chin J Chem Eng 2009. [DOI: 10.1016/s1004-9541(08)60206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Zhu Y, Pan J, Qiu J, Guan X. Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber. Braz J Microbiol 2008; 39:770-5. [PMID: 24031305 PMCID: PMC3768485 DOI: 10.1590/s1517-838220080004000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/11/2008] [Accepted: 11/02/2008] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to investigate the optimal nutritional requirements for mycelial growth and sporulation of entomopathogenic fungus Aschersonia aleyrodis Webber by orthogonal layout methods. Herein the order of effects of nutrient components on mycelial growth was tryptone > Ca2+ > soluble starch > folacin, corresponding to the following optimal concentrations: 1.58% Soluble Starch, 3.16% Tryptone, 0.2 mmol l-1 Ca2+ and 0.005% Folacin. The optimal concentration of each factors for sporulation was 1.16% lactose, 0.394% tryptone, 0.4 mmol l-1 Fe2+ and 0.00125% VB1, and the effects of medium components on sporulation were found to be in the order lactose > VB1 > Fe2+ > tryptone. Under the optimal culture conditions, the maximum production of mycelial growth achieved 20.05 g l-1 after 7 days of fermentation, while the maximum spore yield reached 5.23 ×1010 spores l-1 after 22 days of cultivation. This is the first report on optimization of nutritional requirements and design of simplified semi-synthetic media for mycelial growth and sporulation of A. aleyrodis.
Collapse
Affiliation(s)
- Yanping Zhu
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | | | | | | |
Collapse
|
43
|
Effect of Constant Glucose Feeding on the Production of Exopolysaccharides by Tremella fuciformis Spores. Appl Biochem Biotechnol 2008; 152:366-71. [DOI: 10.1007/s12010-008-8236-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 03/31/2008] [Indexed: 11/26/2022]
|
44
|
pH control strategy in a shaken minibioreactor for polysaccharide production by medicinal mushroom Phellinus linteus and its anti-hyperlipemia activity. Bioprocess Biosyst Eng 2008; 32:277-81. [DOI: 10.1007/s00449-008-0241-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 06/11/2008] [Indexed: 01/21/2023]
|
45
|
Paterson RRM. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? PHYTOCHEMISTRY 2008; 69:1469-95. [PMID: 18343466 PMCID: PMC7111646 DOI: 10.1016/j.phytochem.2008.01.027] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 05/06/2023]
Abstract
Traditional Chinese medicines (TCM) are growing in popularity. However, are they effective? Cordyceps is not studied as systematically for bioactivity as another TCM, Ganoderma. Cordyceps is fascinating per se, especially because of the pathogenic lifestyle on Lepidopteron insects. The combination of the fungus and dead insect has been used as a TCM for centuries. However, the natural fungus has been harvested to the extent that it is an endangered species. The effectiveness has been attributed to the Chinese philosophical concept of Yin and Yang and can this be compatible with scientific philosophy? A vast literature exists, some of which is scientific, although others are popular myth, and even hype. Cordyceps sinensis is the most explored species followed by Cordyceps militaris. However, taxonomic concepts were confused until a recent revision, with undefined material being used that cannot be verified. Holomorphism is relevant and contamination might account for some of the activity. The role of the insect has been ignored. Some of the analytical methodologies are poor. Data on the "old" compound cordycepin are still being published: ergosterol and related compounds are reported despite being universal to fungi. There is too much work on crude extracts rather than pure compounds with water and methanol solvents being over-represented in this respect (although methanol is an effective solvent). Excessive speculation exists as to the curative properties. However, there are some excellent pharmacological data and relating to apoptosis. For example, some preparations are active against cancers or diabetes which should be fully investigated. Polysaccharides and secondary metabolites are of particular interest. The use of genuine anamorphic forms in bioreactors is encouraged.
Collapse
Affiliation(s)
- R Russell M Paterson
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Campus de Gualtar, University of Minho, Braga, Portugal.
| |
Collapse
|
46
|
Lin YW, Chiang BH. Anti-tumor activity of the fermentation broth of Cordyceps militaris cultured in the medium of Radix astragali. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Fazenda ML, Seviour R, McNeil B, Harvey LM. Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:33-103. [DOI: 10.1016/s0065-2164(07)00002-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
|
49
|
Madla S, Kittakoop P, Wongsa P. Optimization of culture conditions for production of antimalarial menisporopsin A by the seed fungusMenisporopsis theobromaeBCC 4162. Lett Appl Microbiol 2006; 43:548-53. [PMID: 17032230 DOI: 10.1111/j.1472-765x.2006.01994.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this work was to optimize the production of a novel antimaralial menisporopsin A by the seed fungus Menisporopsis theobromae BCC 4162. METHODS AND RESULTS Fungal cultures were grown in shake flasks at 25 degrees C in the basal medium with varying carbon and nitrogen sources, aeration rates and initial pH levels. The optimal carbon and nitrogen sources that improved the production of menisporopsin A were 1% fructose and 2.5% meat extract respectively. The production was further enhanced when the culture incubated on a shaker at 200 rev min(-1) with an initial pH of 8. The yield of menisporopsin A cultured under the optimized conditions was increased from 348.30 (obtained from basal medium) to 889.02 mg l(-1), and the cultivation time was reduced from 28 to only 4 days. As a result, the productivity of menisporopsin A was greatly enhanced to 222.26 mg l(-1) day(-1) which is 18-fold higher than that of basal conditions. Larger scale production in a fermenter was also achieved, yielding menisporopsin A at a maximal level of 594.32 mg l(-1) in 4 days. CONCLUSIONS The optimized culture conditions for menisporopsin A production by M. theobromae BCC 4162 was the cultivation under shaking or agitation at 25 degrees C in fructose-meat extract medium with an initial pH of 8. SIGNIFICANCE AND IMPACT OF THE STUDY The production of menisporopsin A in a fermenter with a relatively short incubation period could be valuable for further utilization for chemical structure modification and derivatization.
Collapse
Affiliation(s)
- S Madla
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | | | | |
Collapse
|
50
|
Severgnini M, Pattini L, Consolandi C, Rizzi E, Battaglia C, De Bellis G, Cerutti S. Application of the Taguchi Method to the Analysis of the Deposition Step in Microarray Production. IEEE Trans Nanobioscience 2006; 5:164-72. [PMID: 16999241 DOI: 10.1109/tnb.2006.880851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Every microarray experiment is affected by many possible sources of variability that may even corrupt biological evidence on analyzed sequences. We applied a "Taguchi method" strategy, based on the use of orthogonal arrays to optimize the deposition step of oligonucleotide sequences on glass slides. We chose three critical deposition parameters (humidity, surface, and buffer) at two levels each, in order to establish optimum settings. A L8 orthogonal array was used in order to monitor both the main effects and interactions on the deposition of a 25 mer oligonucleotide hybridized to its fluorescent-labeled complementary. Signal-background ratio and deposition homogeneity in terms of mean intensity and spot diameter were considered as significant outputs. An analysis of variance (ANOVA) was applied to raw data and to mean results for each slide and experimental run. Finally we calculated an overall evaluation coefficient to group together important outputs in one number. Environmental humidity and surface-buffer interaction were recognized as the most critical factors, for which a 50% humidity, associated to a chitosan-covered slide and a sodium phosphate + 25% dimethyl sulfoxide (DMSO) buffer gave best performances. Our results also suggested that Taguchi methods can be efficiently applied in optimization of microarray procedures.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies of the National Research Council, 20090 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|