1
|
Shi C, Huang X, Wang D, Chu C, Shi Y, Yan B, Shan F, Zhang J, Zhang Z, Peng C, Tang BZ. Lipophilic AIEgens as the "Trojan Horse" with Discrepant Efficacy in Tracking and Treatment of Mycobacterial Infection. Adv Healthc Mater 2024; 13:e2301746. [PMID: 37747232 DOI: 10.1002/adhm.202301746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Indexed: 09/26/2023]
Abstract
The highly contagious tuberculosis is a leading infectious killer, which urgently requires effective diagnosis and treatment methods. To address these issues, three lipophilic aggregation-induced emission (AIE) photosensitizers (TTMN, TTTMN, and MeOTTMN) are selected to evaluate their labeling and antimicrobial properties in vitro and in vivo. These three lipophilic AIEgens preserve low cytotoxicity and achieve real-time and non-invasive visualization of the process of mycobacteria infection in vitro and in vivo. More importantly, these AIEgens can be triggered by white light to produce reactive oxygen species (ROS), which is a highly efficient antibacterial reagent. Among these AIEgens, the TTMN photosensitizer has an outstanding antibacterial efficacy over the clinical first-line drug rifampicin at the same therapeutic concentration. Interestingly, this study also finds that TTMN can increase the expression of pro-inflammatory cytokines in the early stage of infection after light irradiation, indicating an additional pro-inflammatory role of TTMN. This work provides some feasibility basis for developing AIEgens-based agents for effectively destroying mycobacterium.
Collapse
Affiliation(s)
- Chunzi Shi
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Xueni Huang
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chengshengze Chu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yuxin Shi
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Bo Yan
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Fei Shan
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Jiulong Zhang
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Zhiyong Zhang
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Chen Peng
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, 266500, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
2
|
Zheng YD, Huang BW, Zhang X, Liu CF, Xin LS, Wang CM, Bai CM. The Probiotic Bacillus hwajinpoensis Colonizes the Digestive System of Crassostrea gigas Larvae and Protects Them from Vibrio alginolyticus Infection. Microorganisms 2023; 11:2918. [PMID: 38138062 PMCID: PMC10745402 DOI: 10.3390/microorganisms11122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The Pacific oyster Crassostrea gigas is one of the most important cultured marine species around the world. Production of Pacific oysters in China has depended primarily on hatchery produced seeds since 2016, with the successful introduction and development of triploid oysters. However, the seed supply of Pacific oysters is threatened by recurring mass mortality events in recent years. Vibriosis is the most commonly encountered disease associated with intensive oyster culture in hatcheries and nurseries. Vibrio alginolyticus and Bacillus hwajinpoensis were the two strains with pathogenic and probiotic effects, respectively, identified during the Pacific oyster larvae production. To monitor their colonization process in Pacific oyster larvae, green fluorescent protein (GFP) and red fluorescent protein (RFP) were labeled to the pathogenic V. alginolyticus and the probiotic B. hwajinpoensis stain, respectively. The pathogenic and probiotic effects of the two strains during the colonization process were then assessed. Stabile expression of GFP and RFP were observed in corresponding stains, and the capabilities of growth, biofilm formation and in vitro adhesion of GFP- and RFP- tagged stains were not significantly different from those of the wild-type strains. Usage of probiotics of 105 CFU/mL significantly inhibited the growth of pathogenic V. alginolyticus and reduced the mortality of D-sharped larvae. Both the pathogenic and probiotic strains employed a similar route to enter and colonize the oyster larvae, which indicates that competing with pathogens for binding and spreading sites were one of the mechanisms of B. hwajinpoensis to provide the probiotic effects to oyster larvae. In summary, employment of fluorescence-tagged pathogenic and probiotic strains simultaneously provides us with an excellent bioassay model to investigate the potential mechanisms of probiotics.
Collapse
Affiliation(s)
- Yu-Dong Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chen-Feng Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lu-Sheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Chong-Ming Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| |
Collapse
|
3
|
Can only one physiological trait determinate the adverse effect of green fluorescent protein (GFP) incorporation on Vibrio virulence? Appl Microbiol Biotechnol 2021; 105:7899-7912. [PMID: 34559285 DOI: 10.1007/s00253-021-11556-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Green fluorescent protein (GFP) has been used extensively for in situ animal studies that follow up bacterial infection under epifluorescence microscopy. It is assumed that GFP is acting as a "neutral" protein with no influence on the bacterial physiology. To verify this hypothesis, the virulence of Vibrio splendidus ME9, Vibrio anguillarum NB10, and their respective GFP-tagged strains ME9-GFP and NB10-GFP (transconjugants) was compared in vitro and tested in vivo towards blue mussel (Mytilus edulis) larvae. Results showed that the incorporation of GFP negatively impacted the growth and swimming motility of NB10 in vitro. Correspondingly, the mRNA levels of genes involved in bacterial swimming motility (flaA, flaE, and cheR) were significantly down-regulated in NB10-GFP. As for the strain ME9 on the other hand, GFP incorporation only had a negative effect on swimming motility. However, both the strains NB10-GFP and ME9-GFP showed almost the same virulence as their respective parental strain towards mussel larvae in vivo. Overall, the data presented here demonstrated that incorporation of GFP may cause modifications in cell physiology and highlight the importance of preliminary physiological tests to minimize the negative influence of GFP tagging when it is used to monitor the target localization. The study also supports the idea that the virulence of Vibrio species is determined by complex regulatory networks. Notwithstanding the change of a single physiological trait, especially growth or swimming motility, the GFP-tagged Vibrio strain can thus still be considered usable in studies mainly focusing on the virulence of the strain. KEY POINTS: • The effect of GFP incorporation on physiological trait of Vibrio strains. • The virulence in vibrios could be multifactorial. • The stable virulence of Vibrio strains after GFP incorporation.
Collapse
|
4
|
Wang D, Loor A, Bels LD, Stappen GV, den Broeck WV, Nevejan N. Dynamic Immune Response to Vibriosis in Pacific Oyster Crassostrea gigas Larvae during the Infection Process as Supported by Accurate Positioning of GFP-Tagged Vibrio Strains. Microorganisms 2021; 9:microorganisms9071523. [PMID: 34361958 PMCID: PMC8303456 DOI: 10.3390/microorganisms9071523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
As the immune system is not fully developed during the larval stage, hatchery culture of bivalve larvae is characterized by frequent mass mortality caused by bacterial pathogens, especially Vibrio spp. However, the knowledge is limited to the pathogenesis of vibriosis in oyster larvae, while the immune response to pathogenic microorganisms in this early life stage is still far from being fully elucidated. In this study, we combined green fluorescent protein (GFP)-tagging, histological and transcriptomic analyses to clarify the pathogenesis of experimental vibriosis and the mechanisms used by the host Pacific oyster Crassostrea gigas larvae to resist infection. The Vibrio strains first colonized the digestive system and rapidly proliferated, while only the transcription level of IκB kinase (IKK) and nuclear factor κB (NF-κB) associated with signaling transduction were up-regulated in oyster at 18 h post challenge (hpc). The mRNA levels for integrin β-1, peroxinectin, and heat shock protein 70 (HSP70), which are associated with phagocytosis, cell adhesion, and cytoprotection, were not upregulated until 30 hpc when the necrosis already happened in the larval digestive system. This suggested that the immunity in the early stages of C. gigas is not strong enough to prevent vibriosis and future research may focus on the strengthening of the gastrointestinal immune ability to defend vibriosis in bivalve larvae.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
- Correspondence: or
| | - Alfredo Loor
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| | - Lobke De Bels
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.D.B.); (W.V.d.B.)
| | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.D.B.); (W.V.d.B.)
| | - Nancy Nevejan
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| |
Collapse
|
5
|
Dai T, Xie J, Zhu Q, Kamariza M, Jiang K, Bertozzi CR, Rao J. A Fluorogenic Trehalose Probe for Tracking Phagocytosed Mycobacterium tuberculosis. J Am Chem Soc 2020; 142:15259-15264. [DOI: 10.1021/jacs.0c07700] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tingting Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Qihua Zhu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Ke Jiang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
6
|
Jost APT, Waters JC. Designing a rigorous microscopy experiment: Validating methods and avoiding bias. J Cell Biol 2019; 218:1452-1466. [PMID: 30894402 PMCID: PMC6504886 DOI: 10.1083/jcb.201812109] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/06/2023] Open
Abstract
Images generated by a microscope are never a perfect representation of the biological specimen. Microscopes and specimen preparation methods are prone to error and can impart images with unintended attributes that might be misconstrued as belonging to the biological specimen. In addition, our brains are wired to quickly interpret what we see, and with an unconscious bias toward that which makes the most sense to us based on our current understanding. Unaddressed errors in microscopy images combined with the bias we bring to visual interpretation of images can lead to false conclusions and irreproducible imaging data. Here we review important aspects of designing a rigorous light microscopy experiment: validation of methods used to prepare samples and of imaging system performance, identification and correction of errors, and strategies for avoiding bias in the acquisition and analysis of images.
Collapse
|
7
|
Song YS, Stewart D, Reineke K, Wang L, Ma C, Lu Y, Shazer A, Deng K, Tortorello ML. Effects of Package Atmosphere and Storage Conditions on Minimizing Risk of Escherichia coli O157:H7 in Packaged Fresh Baby Spinach. J Food Prot 2019; 82:844-853. [PMID: 31013167 DOI: 10.4315/0362-028x.jfp-18-337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Packaged fresh spinach has been associated with outbreaks of illness caused by Escherichia coli O157:H7. The purpose of this study was to assess the behavior of E. coli O157:H7 in packaged baby spinach in response to storage conditions of temperature and package atmosphere and including effects of inoculation level, spinach leaf damage (cut leaves), internalized or leaf surface contamination, exposure to hypochlorite sanitizer, and package size. Behavior of E. coli O157:H7 inoculated at 2 and 4 log CFU/g on spinach packaged in polymer bags composed of a two-layer laminate (polypropylene and polyethylene) and stored under atmospheres of 20% O2-3% CO2 and 0% O2-15% CO2 (aerobic and anaerobic, respectively) was assessed at 5, 7, 12, and 15°C for up to 14 days. Growth kinetics were calculated using DMFit software. Temperature decreases progressively diminished growth or survival of the pathogen, and an aerobic package atmosphere resulted in longer lag times (4 to 6 days) and lower population levels (0.2 to 1.4 log CFU/g) compared with the anaerobic atmosphere at 15°C. Internalized contamination, leaf cuts, or exposure to 100 ppm of hypochlorite did not result in changes in pathogen behavior compared with controls; however, a growth minimization trend consisting of longer lag times and lower population levels was repeatedly observed in the aerobic compared with the anaerobic package atmospheres. In contrast, growth of indigenous mesophiles and Enterobacteriaceae was unaffected by package atmosphere. Spinach stored at 5 to 7°C in two sizes (5 and 16 oz) of polyethylene terephthalate clamshell packages with ambient air atmospheres was more likely to progress to lower-oxygen conditions in 16-oz compared with 5-oz packages after 7 days of storage (P < 0.05). Practices to maintain aerobic conditions within the package, as well as storage of the package at low temperature, are ways to limit growth of E. coli O157:H7 in packaged spinach.
Collapse
Affiliation(s)
- Yoon Seok Song
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Diana Stewart
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Karl Reineke
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Liao Wang
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Chong Ma
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Yin Lu
- 2 Illinois Institute of Technology, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| | - Arlette Shazer
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Kaiping Deng
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| | - Mary Lou Tortorello
- 1 U.S. Food and Drug Administration, Division of Food Processing Science and Technology
| |
Collapse
|
8
|
Zhang Q, Ding A, Yue Q, Li W, Zu Y, Zhang Q. Dynamic interaction of neutrophils and RFP-labelled Vibrio parahaemolyticus in zebrafish ( Danio rerio ). AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Persad AK, Williams ML, LeJeune JT. Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7. AIMS Microbiol 2017; 3:872-884. [PMID: 31294194 PMCID: PMC6604956 DOI: 10.3934/microbiol.2017.4.872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022] Open
Abstract
Plasmids encoding green fluorescent protein (GFP) are frequently used to label bacteria, allowing the identification and differentiation from background flora during experimental studies. Because of its common use in survival studies of the foodborne pathogen Escherichia coli O157:H7, it is important to know the extent to which the plasmid is retained in this host system. Herein, the stability of a pGFPuv (Clontech Laboratories Inc) plasmid in six Escherichia coli O157:H7 isolates was assessed in an oligotrophic environment (phosphate buffered saline, PBS) without antibiotic selective pressure. The six test isolates were recovered from a variety of animal and human sources (cattle, sheep, starlings, water buffalo, and human feces). GFP labeling of the bacteria was accomplished via transfer electroporation. The stability of the GFP plasmid in the different E. coli O157:H7 isolates was variable: in one strain, GFP plasmid loss was rapid, as early as one day and complete plasmid loss was exhibited by four of the six strains within 19 days. In one of the two isolates retaining the GFP plasmid beyond 19 days, counts of GFP-labeled E. coli O157:H7 were significantly lower than the total cell population (P < 0.001). In contrast, in the other isolate after 19 days, total E. coli O157:H7 counts and GFP-labeled E. coli counts were equivalent. These results demonstrate strain-to-strain variability in plasmid stability. Consequently the use of GFP-labeled E.coli O157:H7 in prolonged survival studies may result in the underestimation of survival time due to plasmid loss.
Collapse
Affiliation(s)
- Anil K Persad
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Michele L Williams
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Jeffrey T LeJeune
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
10
|
Studies in vitro on infectivity and sensitivity to antileishmanial drugs in New World Leishmania species transfected with the green fluorescent protein [pIR3(-)-eGFP]. Parasitology 2017; 144:1718-1725. [PMID: 28831945 DOI: 10.1017/s0031182017000671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Current chemotherapeutic agents for leishmaniasis have several disadvantages interfering with the effective treatment and therefore more and better antileishmanial drugs are needed. Discovery of candidates for leishmaniasis treatment requires not only accurate and precise methodologies but also well-known biological system to measure infectivity of parasites and antileishmanial activity of the new compounds. Significant variation in the in vitro and in vivo infectivity and sensitivity to established and experimental drugs in Leishmania strains are reported. This work reports the in vitro biological behavior and antileishmanial drugs sensitivity of different green fluorescent protein transfectant Leishmanias strains. The in vitro growth kinetic and infectivity to U937 cells vary slightly in the Leishmania transfectant strains in comparison with their correspondant wild-type. However, the insertion of the pIR3(-)-eGFP may affect the sensitivity of the parasites to meglumine antimoniate (MA) and miltefosine but not to amphotericin B (AMB) and pentamidine isethionate. In consequence, AMB or pentamidine isethionate but not MA or miltefosine should be used as antileishmanial control drugs during in vitro assays of antileishmanial activity. Furthermore, is recommended to test compounds against more than one Leishmania strain in order to verify that the antileihmanial activity of these compound is similar among species.
Collapse
|
11
|
Sabuquillo P, Gea A, Matas IM, Ramos C, Cubero J. The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris. Arch Microbiol 2016; 199:581-590. [PMID: 27995281 DOI: 10.1007/s00203-016-1327-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/20/2016] [Accepted: 12/07/2016] [Indexed: 01/23/2023]
Abstract
Fluorescent proteins have been used to track plant pathogens to understand their host interactions. To be useful, the transgenic pathogens must present similar behaviour than the wild-type isolates. Herein, a GFP marker was used to transform two plant pathogenic bacteria, Agrobacterium and Xanthomonas, to localize and track the bacteria during infection. The transgenic bacteria were evaluated to determine whether they showed the same fitness than the wild-type strains or whether the expression of the GFP protein interfered in the bacterial activity. In Agrobacterium, the plasmid used for transformation was stable in the bacteria and the strain kept the virulence, while Xanthomonas was not able to conserve the plasmid and transformed strains showed virulence variations compared to wild-type strains. Although marking bacteria with GFP to track infection in plants is a common issue, works to validate the transgenic strains and corroborate their fitness are not usual. Results, presented here, confirm the importance of proper fitness tests on the marked strains before performing localization assays, to avoid underestimation of the microbe population or possible artificial effects in its interaction with the plant.
Collapse
Affiliation(s)
- Pilar Sabuquillo
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Adela Gea
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Isabel M Matas
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.,Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, 31192, Mutilva, Navarra, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jaime Cubero
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
12
|
M. R. Sinaga Y, Dewanti-Hariyadi R, - S. Cronobacter sakazakii MEMASUKI KONDISI VIABLE BUT NONCULTURABLE SELAMA PEMBENTUKAN BIOFILM. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2016. [DOI: 10.6066/jtip.2016.27.2.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Koutsoumanis KP, Aspridou Z. Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a "noisy" world. Int J Food Microbiol 2016; 240:3-10. [PMID: 27412586 DOI: 10.1016/j.ijfoodmicro.2016.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
Gene expression is a fundamentally noisy process giving rise to a significant cell to cell variability at the phenotype level. The phenotypic noise is manifested in a wide range of microbial traits. Heterogeneous behavior of individual cells is observed at the growth, survival and inactivation responses and should be taken into account in the context of Predictive Food Microbiology (PMF). Recent methodological advances can be employed for the study and modeling of single cell dynamics leading to a new generation of mechanistic models which can provide insight into the link between phenotype, gene-expression, protein and metabolic functional units at the single cell level. Such models however, need to deal with an enormous amount of interactions and processes that influence each other, forming an extremely complex system. In this review paper, we discuss the importance of noise and present the future challenges in predicting the "noisy" microbial responses in foods.
Collapse
Affiliation(s)
- Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
14
|
Teh BS, Apel J, Shao Y, Boland W. Colonization of the Intestinal Tract of the Polyphagous Pest Spodoptera littoralis with the GFP-Tagged Indigenous Gut Bacterium Enterococcus mundtii. Front Microbiol 2016; 7:928. [PMID: 27379058 PMCID: PMC4906056 DOI: 10.3389/fmicb.2016.00928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
The alkaline gut of Lepidopterans plays a crucial role in shaping communities of bacteria. Enterococcus mundtii has emerged as one of the predominant gut microorganisms in the gastrointestinal tract of the major agricultural pest, Spodoptera littoralis. Therefore, it was selected as a model bacterium to study its adaptation to harsh alkaline gut conditions in its host insect throughout different stages of development (larvae, pupae, adults, and eggs). To date, the mechanism of bacterial survival in insects' intestinal tract has been unknown. Therefore, we have engineered a GFP-tagged species of bacteria, E. mundtii, to track how it colonizes the intestine of S. littoralis. Three promoters of different strengths were used to control the expression of GFP in E. mundtii. The promoter ermB was the most effective, exhibiting the highest GFP fluorescence intensity, and hence was chosen as our main construct. Our data show that the engineered fluorescent bacteria survived and proliferated in the intestinal tract of the insect at all life stages for up to the second generation following ingestion.
Collapse
Affiliation(s)
- Beng-Soon Teh
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Johanna Apel
- Clinic for Internal Medicine II, Department of Haematology and Medical Oncology University Hospital Jena, Germany
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
15
|
Ben Cheikh Y, Travers MA, Morga B, Godfrin Y, Rioult D, Le Foll F. First evidence for a Vibrio strain pathogenic to Mytilus edulis altering hemocyte immune capacities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:107-119. [PMID: 26719026 DOI: 10.1016/j.dci.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Bacterial isolates were obtained from mortality events affecting Mytilus edulis and reported by professionals in 2010-2013 or from mussel microflora. Experimental infections allowed the selection of two isolates affiliated to Vibrio splendidus/Vibrio hemicentroti type strains: a virulent 10/068 1T1 (76.6% and 90% mortalities in 24 h and 96 h) and an innocuous 12/056 M24T1 (0% and 23.3% in 24 h and 96 h). These two strains were GFP-tagged and validated for their growth characteristics and virulence as genuine models for exposure. Then, host cellular immune responses to the microbial invaders were assessed. In the presence of the virulent strain, hemocyte motility was instantaneously enhanced but markedly slowed down after 2 h exposure. By contrast, hemocyte velocity increased in the presence of the innocuous 12/056 M24T1. At the same time interval, 10/068 1T1 invaded hemocytes and was more rapidly internalized than the innocuous strain. Extracellular products (ECPs) prepared from 10/068 1T1 cultures significantly inhibited phagocytic activity while 12/056 M24T1 ECPs had no effect. Furthermore, the pathogenic strain and its ECPs inhibited oxidative burst unlike 12/056 M24T1 strain/ECPs which enhanced ROS production. Taken together, our results suggest that the mussel pathogen 10/068 1T1 may escape immune response by altering hemocytes functions.
Collapse
Affiliation(s)
- Yosra Ben Cheikh
- Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Le Havre, F-76063, Le Havre Cedex, France
| | - Marie-Agnès Travers
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Yoann Godfrin
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Damien Rioult
- Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Reims Champagne Ardenne, Campus Moulin de la House, F-51100, Reims, France
| | - Frank Le Foll
- Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Le Havre, F-76063, Le Havre Cedex, France.
| |
Collapse
|
16
|
Dubert J, Nelson DR, Spinard EJ, Kessner L, Gomez-Chiarri M, Costa FD, Prado S, Barja JL. Following the infection process of vibriosis in Manila clam (Ruditapes philippinarum) larvae through GFP-tagged pathogenic Vibrio species. J Invertebr Pathol 2016; 133:27-33. [DOI: 10.1016/j.jip.2015.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022]
|
17
|
Webb CC, Erickson MC, Davey LE, Payton AS, Doyle MP. Construction and characterization of outbreak Escherichia coli O157:H7 surrogate strains for use in field studies. Foodborne Pathog Dis 2014; 11:893-9. [PMID: 25268966 DOI: 10.1089/fpd.2014.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7 has been the causative agent of many outbreaks associated with leafy green produce consumption. Elucidating the mechanism by which contamination occurs requires monitoring interactions between the pathogen and the plant under typical production conditions. Intentional introduction of virulent strains into fields is not an acceptable practice. As an alternative, attenuated strains of natural isolates have been used as surrogates of the virulent strains; however, the attachment properties and environmental stabilities of these attenuated isolates may differ from the unattenuated outbreak strains. In this study, the Shiga toxin (stx1, stx2, and/or stx2c) genes as well as the eae gene encoding intimin of two E. coli O157:H7 outbreak isolates, F4546 (1997 alfalfa sprout) and K4492 (2006 lettuce), were deleted. Individual gene deletions were confirmed by polymerase chain reaction (PCR) and DNA sequencing. The mutant strains did not produce Shiga toxin. The growth kinetics of these mutant strains under nutrient-rich and minimal conditions were identical to those of their wild-type strains. Attachment to the surface of lettuce leaves was comparable between wild-type/mutant pairs F4546/MD46 and K4492/MD47. Adherence to soil particles was also comparable between the virulent and surrogate pairs, although the F4546/MD46 pair exhibited statistically greater attachment than the K4492/MD47 pair (p≤0.05). Wild-type and mutant pairs F4546/MD46 and K4492/MD47 inoculated into wet or dry soils had statistically similar survival rates over the 7-day storage period at 20°C. A plasmid, pGFPuv, containing green fluorescent protein was transformed into each of the mutant strains, allowing for ease of identification and detection of surrogate strains on plant material or soil. These pGFPuv-containing surrogate strains will enable the investigation of pathogen interaction with plants and soil in the farm production environment where the virulent pathogen cannot be used.
Collapse
Affiliation(s)
- Cathy C Webb
- Center for Food Safety, Department of Food Science and Technology, University of Georgia , Griffin, Georgia
| | | | | | | | | |
Collapse
|
18
|
Cheng G, Dong X, Wang Y, Peng D, Wang X, Hao H, Xie S, Qu W, Liu Z, Yuan Z. Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods. Anal Bioanal Chem 2014; 406:7899-910. [DOI: 10.1007/s00216-014-8228-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
19
|
Stability and growth characteristics of GFPuv-labeled Cronobacter sakazakii isolated from foods. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Lv Y, Cai H, Yu J, Liu J, Liu Q, Guo C. Biosafety assessment of GFP transplastomic tobacco to rhizosphere microbial community. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:718-25. [PMID: 24429672 DOI: 10.1007/s10646-014-1185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 05/26/2023]
Abstract
Green fluorescent protein (GFP) is one of the most widely studied and exploited proteins in biochemistry, and has many applications as a marker, especially in plant transformation system. Although a number of studies have been conducted to assess the toxify of this protein to specific organisms, little is known about GFP on rhizosphere microbial community, which is regarded as good indicator for environmental risk assessment. Chloroplast genetic engineering has shown superiority over traditional nuclear genetic engineering, and has been used in many aspects of plant genetic engineering. High levels of chloroplast-based protein accumulation make this technology as an ideal strategy to evaluate biosafety of transgenes. In the present study, the effects of field-released GFP transplastomic tobacco (Nicotiana tabacum) on rhizosphere microbes over a whole growth cycle were investigated by using both culture-dependent and culture-independent methods. Compared to wild-type control, transplastomic tobacco had no significant influence on the microbial population at the seedling, vegetative, flowering and senescing stages. However, developmental stages had more influence than ecotypes (GFP-transformed and wild-type). This was confirmed by colony forming unit, Biolog Eco(TM) and PCR-DGGE analysis. Thus, these results suggest chloroplast transformation with a GFP reporter gene has no significant influence on rhizosphere microbial community, and will be potential platform for plant biotechnology in future.
Collapse
Affiliation(s)
- Yueping Lv
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
21
|
Aboubaker MH, Sabrié J, Huet M, Koken M. Establishment of stable GFP-tagged Vibrio aestuarianus strains for the analysis of bacterial infection-dynamics in the Pacific oyster, Crassostrea gigas. Vet Microbiol 2013; 164:392-8. [DOI: 10.1016/j.vetmic.2013.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/09/2013] [Accepted: 02/21/2013] [Indexed: 01/25/2023]
|
22
|
Xiong M, Hu Z, Zhang Y, Cheng X, Li C. Survival of GFP-tagged Rhodococcus sp. D310-1 in chlorimuron-ethyl-contaminated soil and its effects on the indigenous microbial community. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:347-354. [PMID: 23542325 DOI: 10.1016/j.jhazmat.2013.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/29/2013] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
The recently isolated bacterial strain Rhodococcus sp. D310-1 can degrade high concentrations of chlorimuron-ethyl (up to 1000 mg L(-1)), indicating its potential for the bioremediation of soil contaminated with high levels of chlorimuron-ethyl. In this study, Rhodococcus sp. D310-1 was tagged with green fluorescent protein gene (gfp) to track its survival in soil. Subsequently, degradation activity of the gfp-tagged strain and its effects on indigenous microbial community were analyzed. Results showed the cell numbers of Rhodococcus sp. D310-1::gfp in non-sterilized soil maintained at 8.5 × 10(4) cells g(-1) dry soil 45 days after inoculation of 7.74 × 10(6) cells g(-1) dry soil and approximately 49% of chlorimuron-ethyl was removed. However, The cell numbers of Rhodococcus sp. D310-1::gfp in sterilized samples increased gradually to 7.85 × 10(7) cells g(-1) dry soil and approximately 78% of chlorimuron-ethyl was removed. PCR-DGGE demonstrated that inoculation of this gfp-tagged strain in chlorimuron-ethyl-contaminated soil has negligible impact on the community structure of bacteria, actinomycetes and fungi. These results indicate that Rhodococcus sp. D310-1 is effective for the remediation of chlorimuron-ethyl-contaminated soil and also provides valuable information about the behavior of the inoculant population during bioremediation, which could be directly used in the risk assessment of inoculant population and optimization of bioremediation process.
Collapse
Affiliation(s)
- Minghua Xiong
- College of Resource and Environment, Northeast Agricultural University, Harbin, China
| | | | | | | | | |
Collapse
|
23
|
Rekecki A, Gunasekara RAYSA, Dierckens K, Laureau S, Boon N, Favoreel H, Cornelissen M, Sorgeloos P, Ducatelle R, Bossier P, Van den Broeck W. Bacterial host interaction of GFP-labelled Vibrio anguillarum HI-610 with gnotobiotic sea bass, Dicentrarchus labrax (L.), larvae. JOURNAL OF FISH DISEASES 2012; 35:265-273. [PMID: 22324372 DOI: 10.1111/j.1365-2761.2011.01342.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The location and cell damage caused by Vibrio anguillarum, the causative agent of classical vibriosis, within the developing gut of the newly hatched sea bass, Dicentrarchus labrax (L.), is unknown. A gnotobiotic sea bass model was used to investigate the early interactions of V. anguillarum with sea bass larvae. In the present study, germ-free sea bass larvae were orally exposed to a V. anguillarum HI-610 pathogen labelled with the green fluorescent protein (GFP-HI-610) and sampled at regular intervals. Pathogenic colonization of gut enterocytes was observed 2 h post-exposure (p.e.) and onwards, whereas bacteria within the swim bladder were visualized 48 h p.e and onwards. Ultrastructural findings demonstrated direct bacterial contact with the host cell in the oesophageal mucosa and putative attachment to microvilli of mid- and hindgut enterocytes. The present findings form a starting point for studies assessing the impact of potential candidates (probiotics, prebiotics, antimicrobial peptides) to mitigate bacterial virulence.
Collapse
Affiliation(s)
- A Rekecki
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R A Y S A Gunasekara
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - K Dierckens
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Laureau
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - N Boon
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - H Favoreel
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Cornelissen
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Sorgeloos
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Bossier
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium Ecloserie Marine de Gravelines, Voie des Enrochements, Gravelines, France Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium Department of Anatomy, Embryology and Histology, Ghent University, Gent, Belgium Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
24
|
Ma L, Zhang G, Doyle MP. Green fluorescent protein labeling of Listeria, Salmonella, and Escherichia coli O157:H7 for safety-related studies. PLoS One 2011; 6:e18083. [PMID: 21483738 PMCID: PMC3070700 DOI: 10.1371/journal.pone.0018083] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
Abstract
Many food safety-related studies require tracking of introduced foodborne pathogens to monitor their fate in complex environments. The green fluorescent protein (GFP) gene (gfp) provides an easily detectable phenotype so has been used to label many microorganisms for ecological studies. The objectives of this study were to label major foodborne pathogens and related bacteria, including Listeria monocytogenes, Listeria innocua, Salmonella, and Escherichia coli O157:H7 strains, with GFP and characterize the labeled strains for stability of the GFP plasmid and the plasmid's effect on bacterial growth. GFP plasmids were introduced into these strains by a CaCl2 procedure, conjugation or electroporation. Stability of the label was determined through sequential propagation of labeled strains in the absence of selective pressure, and rates of plasmid-loss were calculated. Stability of the GFP plasmid varied among the labeled species and strains, with the most stable GFP label observed in E. coli O157:H7. When grown in nonselective media for two consecutive subcultures (ca. 20 generations), the rates of plasmid loss among labeled E. coli O157:H7, Salmonella and Listeria strains ranged from 0%–30%, 15.8%–99.9% and 8.1%–93.4%, respectively. Complete loss (>99.99%) of the plasmid occurred in some labeled strains after five consecutive subcultures in the absence of selective pressure, whereas it remained stable in others. The GFP plasmid had an insignificant effect on growth of most labeled strains. E. coli O157:H7, Salmonella and Listeria strains can be effectively labeled with the GFP plasmid which can be stable in some isolates for many generations without adversely affecting growth rates.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology and Plant Pathology, National Institute for Microbial Forensics and Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Michael P. Doyle
- Center for Food Safety, University of Georgia, Griffin, Georgia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kirschner AKT, Schauer S, Steinberger B, Wilhartitz I, Grim CJ, Huq A, Colwell RR, Herzig A, Sommer R. Interaction of Vibrio cholerae non-O1/non-O139 with copepods, cladocerans and competing bacteria in the large alkaline lake Neusiedler See, Austria. MICROBIAL ECOLOGY 2011; 61:496-506. [PMID: 21049271 PMCID: PMC3072514 DOI: 10.1007/s00248-010-9764-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/16/2010] [Indexed: 05/30/2023]
Abstract
Vibrio cholerae is a human pathogen and natural inhabitant of aquatic environments. Serogroups O1/O139 have been associated with epidemic cholera, while non-O1/non-O139 serogroups usually cause human disease other than classical cholera. V. cholerae non-O1/non-O139 from the Neusiedler See, a large Central European lake, have caused ear and wound infections, including one case of fatal septicaemia. Recent investigations demonstrated rapid planktonic growth of V. cholerae non-O1/non-O139 and correlation with zooplankton biomass. The aim of this study was to elucidate the interaction of autochthonous V. cholerae with two dominant crustacean zooplankton species in the lake and investigate the influence of the natural bacterial community on this interaction. An existing data set was evaluated for statistical relationships between zooplankton species and V. cholerae and co-culture experiments were performed in the laboratory. A new fluorescence in situ hybridisation protocol was applied for quantification of V. cholerae non-O1/non-O139 cells, which significantly reduced analysis time. The experiments clearly demonstrated a significant relationship of autochthonous V. cholerae non-O1/non-O139 with cladocerans by promoting growth of V. cholerae non-O1/non-O139 in the water and on the surfaces of the cladocerans. In contrast, copepods had a negative effect on the growth of V. cholerae non-O1/non-O139 via competing bacteria from their surfaces. Thus, beside other known factors, biofilm formation by V. cholerae on crustacean zooplankton appears to be zooplankton taxon specific and may be controlled by the natural bacterial community.
Collapse
Affiliation(s)
- Alexander K T Kirschner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University of Vienna, Wien, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen G, Srinivasa Ranga VP, Mao Y, Chen K, Qiao H. Impact of lux gene insertion on bacterial surface properties and transport. Res Microbiol 2008; 159:145-51. [DOI: 10.1016/j.resmic.2007.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/30/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
|
27
|
Profiling of external metabolites during production of hantavirus nucleocapsid protein with recombinant Saccharomyces cerevisiae. Biotechnol Lett 2007; 30:415-20. [PMID: 17985082 PMCID: PMC2757583 DOI: 10.1007/s10529-007-9577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/09/2007] [Indexed: 11/09/2022]
Abstract
Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern, indicative for the physiological state of the producer culture. When the inducer galactose was employed as a growth substrate, the metabolite profile of recombinant yeast cells was different from those of the non-recombinant original strain which excreted considerable amounts of metabolites with this substrate. In contrast, galactose-induced heterologous gene expression was indicated by the absence of excreted intermediary metabolites, except succinate. A model strain expressing a GFP fusion of hantavirus nucleocapsid protein differed in the excretion of metabolites from strains without GFP. In addition, the influence of alkali ions, employed for pH control is also demonstrated.
Collapse
|