1
|
He C, Li Q, Xiao H, Sun X, Gao Z, Cai Y, Zhao S. Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms 2025; 13:78. [PMID: 39858846 PMCID: PMC11767403 DOI: 10.3390/microorganisms13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Quinoa is the only single plant that can meet all the nutritional needs of human, and its potential for feed utilization has been continuously explored, becoming a prosperous industry for poverty alleviation. In order to further tap the feeding value of whole quinoa, develop quinoa as a feed substitute for conventional crops such as corn, and improve its comprehensive utilization rate, this experiment analyzed the silage quality and mycotoxin content of mixed silage of whole-plant quinoa (WPQ) with whole-plant corn (WPC) or stevia powder(SP) in different proportions, and further improved the silage quality of mixed silage by using two lactic acid bacteria preparations (Sila-Max and Sila-Mix). The quality, microbial population, and mycotoxin levels of quinoa and corn silage, as well as that of the mixed silage of quinoa and stevia, were evaluated using single-factor analysis of variance. The impact of various lactic acid bacteria preparations on the quality of whole-quinoa and whole-corn mixed silage was investigated through two-factor analysis of variance. WPQ and WPC were mixed at the ratio of 5:5 (QB5), 6:4 (QB6), 7:3 (QB7), 8:2 (QB8), 9:1 (QB9) and 10:0 (QB10). SP was mixed with WPQ at the supplemental levels of 0.2% (QB10S2), 0.4% (QB10S4), 0.6% (QB10S6), 0.8% (QB10S8) and 1.0% (QB10S10). After 60 days of silage, the silage indexes, the number of harmful microorganisms, and the mycotoxin levels were measured, to explore the appropriate ratio of mixed silage. The membership function analysis showed that the quality of mixed silage of WPQ with SP was better, and the optimal addition amount of SP was 0.6%. The results of Max and Mix on the quality improvement test of WPQ with WPC mixed silage showed that the two lactic acid bacteria formulations increased CP and AA content, and reduced NH3-N/TN; pH was significantly lower than the control group (p < 0.01), and LA was significantly higher than the control group (p < 0.01). The microbial count results showed that the addition of lactic acid bacteria preparation significantly reduced the number of molds and aerobic bacteria, and the effect of Mix was better than that of Max. When the mixing ratio was between QB7 and QB10, mold was not detected in the lactic-acid-bacteria preparation groups. Max and Mix significantly reduced the levels of mycotoxins, both of which were far below the range of feed safety testing, and 16S rRNA sequencing revealed that the silage microbiota varied with different mixing ratios and whether lactic acid bacteria preparations were used. Max and Mix increased the relative abundance of Firmicutes, with Mix having a more significant effect, especially in the QB6 (65.05%) and QB7 (63.61%) groups. The relative abundance of Lactobacillus was significantly higher than that of the control group (p < 0.05). The relative abundance of Enterobacteriaceae and Streptococcus were negatively and positively correlated with the addition level of quinoa, respectively. Comprehensive analysis showed that adding 0.6% SP to the WPQ and using Mix in mixed silage of WPQ and WPC with the proportion of WPQ no less than 70% had the best silage effect, and was more beneficial to animal health.
Collapse
Affiliation(s)
- Chao He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Qian Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Huaidong Xiao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Xuchun Sun
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Zepeng Gao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| |
Collapse
|
2
|
Gallo A, Catellani A, Ghilardelli F, Lapris M, Mastroeni C. Review: Strategies and technologies in preventing regulated and emerging mycotoxin co-contamination in forage for safeguarding ruminant health. Animal 2024; 18 Suppl 2:101280. [PMID: 39129068 DOI: 10.1016/j.animal.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ruminants are often considered less susceptible to mycotoxins than monogastrics, owing to rumen microflora converting mycotoxins to less toxic compounds or several compounds present in the rumen-reticulum compartment, being able to bind the mycotoxin "mother" molecule that make them unavailable for absorption process in the gastro-intestinal tract of host animals. However, if ruminants consume feed contaminated by mycotoxins for long periods, their growth, development, and fertility can be compromised. Among regulated mycotoxins, the most studied and known for their effects are aflatoxins (AFs) AFB1, AFB2, AFG1 and AFG2, as well as the AFM1 for its high importance in dairy sector, deoxynivalenol (DON) and its metabolites 3/15 acetyl-DON and 3-glucoside DON, T-2 and HT-2 toxins, zearalenone, fumonisins, in particular that belong to the B class, and ochratoxin A. Furthermore, because of the emergence of multiple emerging mycotoxins that are detectable in feed utilised in ruminant diets, such as ensiled forage, there is now a growing focus on investigating these compounds by the scientific community to deepen their toxicity for animal health. Despite the enhancement of research, it is remarkable that there is a paucity of in vivo trials, as well as limited studies on nutrient digestibility and the impact of these molecules on rumen and intestinal functions or milk yield and quality. In this review, recent findings regarding the occurrence of regulated and emerging mycotoxins in forage and their possible adverse effects on dairy cattle are described, with special emphasis on animal performance and on rumen functionality.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy.
| | - A Catellani
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - F Ghilardelli
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - M Lapris
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - C Mastroeni
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| |
Collapse
|
3
|
Huang Y, Fu L, Gan Y, Qi G, Hao L, Xin T, Xu W, Song J. Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value. Int J Mol Sci 2024; 25:8172. [PMID: 39125741 PMCID: PMC11312406 DOI: 10.3390/ijms25158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.
Collapse
Affiliation(s)
- Yuanhao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lianguo Fu
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
4
|
Martins D, Lemos A, Silva J, Rodrigues M, Simões J. Mycotoxins evaluation of total mixed ration (TMR) in bovine dairy farms: An update. Heliyon 2024; 10:e25693. [PMID: 38370215 PMCID: PMC10867658 DOI: 10.1016/j.heliyon.2024.e25693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The total mixed ration (TMR) is currently a widespread method to feed dairy cows. It is a mixture of raw fodder and concentrate feed that can be contaminated by several mycotoxins. The main aim of this paper was to provide a critical review on TMR mycotoxin occurrence and its usefulness to monitor and control them on-farm. Aflatoxins, zearalenone, deoxynivalenol, T-2 toxin and fumonisins (regulated mycotoxins) are the most prevalent mycotoxins evaluated in TMR. Nonetheless, several emerging mycotoxins represent a health risk at the animal level regarding their prevalence and level in TMR. Even when measured at low levels, the co-occurrence of mycotoxins is frequent and synergistic effects on animal health are still underevaluated. Similar to the animal feed industry, on-farm plans monitoring mycotoxin feed contamination can be developed as a herd health management program. The estimated daily intake of mycotoxins should be implemented, but thresholds for each mycotoxin are not currently defined in dairy farms.
Collapse
Affiliation(s)
- Daniela Martins
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Ana Lemos
- Animal Nutrition, DSM-Firmenich, the Netherlands
| | - João Silva
- CapêloVet, Lda, 4755-252, Barcelos, Portugal
| | | | - João Simões
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
5
|
Kintl A, Vítěz T, Huňady I, Sobotková J, Hammerschmiedt T, Vítězová M, Brtnický M, Holátko J, Elbl J. Effect of Mycotoxins in Silage on Biogas Production. Bioengineering (Basel) 2023; 10:1387. [PMID: 38135978 PMCID: PMC10740816 DOI: 10.3390/bioengineering10121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Mycotoxins can pose a threat to biogas production as they can contaminate the feedstock used in biogas production, such as agricultural crops and other organic materials. This research study evaluated the contents of deoxynivalenol (DON), zearalenone (ZEA), fumonisin (FUM), and aflatoxin (AFL) mycotoxins in maize silage prior to it being processed in a biogas plant and in digestate produced at the end of the anaerobic digestion (AD) process. In the experiment, three samples of silage were collected from one silage warehouse: Variant 1 = low contamination, Variant 2 = medium contamination, and Variant 3 = heavy contamination, which were subjected to investigation. A significantly reduced biogas production was recorded that was proportional to the increasing contamination with molds, which was primarily due to the AD of silage caused by technologically erroneous silage treatment. The AD was connected with changes in silage composition expressed by the values of VS content, sugar content, lactic acid content, acetic acid content, and the ratio of lactic acid content to acetic acid content. The production of biogas and methane decreased with the increasing contents of NDF, ADF, CF, and lignin. The only exception was Variant 2, in which the content of ADF, CF, and lignin was lower (by 8-11%) than that in Variant 1, and only the content of NDF was higher (by 9%) than that in Variant 1. A secondary factor that also correlated with changes in the composition of the substrate was the development of undesirable organisms, which further contributed to its degradation and to the production of mycotoxins. It was also demonstrated in this study that during the AD process, the tested mycotoxins were degraded, and their content was reduced by 27-100%. Only the variant with low mold contamination showed a DON concentration increase of 27.8%.
Collapse
Affiliation(s)
- Antonín Kintl
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
| | - Tomáš Vítěz
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Igor Huňady
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
| | - Julie Sobotková
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (T.H.); (M.B.); (J.H.)
| | - Monika Vítězová
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (T.H.); (M.B.); (J.H.)
| | - Jiří Holátko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (T.H.); (M.B.); (J.H.)
- Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Jakub Elbl
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
6
|
Wang Z, Tan Z, Wu G, Wang L, Qin G, Wang Y, Pang H. Investigation on Fermentation Characteristics and Microbial Communities of Wheat Straw Silage with Different Proportion Artemisia argyi. Toxins (Basel) 2023; 15:toxins15050330. [PMID: 37235364 DOI: 10.3390/toxins15050330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Mycotoxins, secondary metabolites of fungi, are a major obstacle to the utilization of animal feed for various reasons. Wheat straw (WS) is hollow, and miscellaneous bacteria can easy attach to its surface; the secondary fermentation frequency after silage is high, and there is a risk of mycotoxin poisoning. In this study, a storage fermentation process was used to preserve and enhance fermentation quality in WS through the addition of Artemisia argyi (AA), which is an effective method to use WS resources and enhance aerobic stability. The storage fermentation of WS treated with AA had lower pH and mycotoxin (AFB1 and DON) values than the control due to rapid changes in microbial counts, especially in the 60% AA groups. Meanwhile, the addition of 60% AA improved anaerobic fermentation profiles, showing higher lactic acid contents, leading to increased efficiency of lactic acid fermentation. A background microbial dynamic study indicated that the addition of 60% AA improved the fermentation and aerobic exposure processes, decreased microbial richness, enriched Lactobacillus abundance, and reduced Enterobacter and Aspergillus abundances. In conclusion, 60% AA treatment could improve the quality by increase fermentation quality and improve the aerobic stability of WS silage by enhancing the dominance of desirable Lactobacillus, inhibiting the growth of undesirable microorganisms, especially fungi, and reducing the content of mycotoxins.
Collapse
Affiliation(s)
- Zhenyu Wang
- Henan Key Laboratory Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhongfang Tan
- Henan Key Laboratory Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Guangyong Qin
- Henan Key Laboratory Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yanping Wang
- Henan Key Laboratory Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Huili Pang
- Henan Key Laboratory Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Sharif S, Hanif NQ, Ghazanfar S, Imran M, Naiel MAE, Alagawany M. Dominance of bacillus sp. alter microbiological and nutritional quality and improve aerobic stability of the corn silage. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023; 34:283-293. [DOI: 10.1007/s12210-022-01130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
|
8
|
Brito VD, Achimón F, Zunino MP, Zygadlo JA, Pizzolitto RP. Fungal diversity and mycotoxins detected in maize stored in silo-bags: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2640-2650. [PMID: 35076089 DOI: 10.1002/jsfa.11756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 01/08/2021] [Indexed: 06/14/2023]
Abstract
Silo-bags are hermetic storage systems that inhibit fungal growth because of their atmosphere with low humidity, as well as low pH and O2 concentrations, and a high CO2 concentration. If a silo-bag with stored maize loses its hermetic nature, it favors the development of fungi and the production of mycotoxins. To the best of our knowledge, this is the first review on the diversity of fungal species and mycotoxins that were reported in maize stored under the environmental conditions provided by silo-bags. The genera Penicillium, Aspergillus and Fusarium were found more frequently, whereas Acremonium spp., Alternaria sp., Candida sp., Cladosporium sp., Debaryomyces spp., Epiconum sp., Eupenicillium spp., Eurotium sp., Eurotium amstelodami, Hyphopichia spp., Hyphopichia burtonii, Moniliella sp., Wallemia sp. and genera within the orden Mucorales were reported less recurrently. Despite finding a great fungal diversity, all of the studies focused their investigations on a small group of toxins: fumonisins (FBs), aflatoxins (AFs), deoxynivalenol (DON), zearalenone (ZEA), patulin (PAT), toxin T2 (T2) and ochratoxin (OT). Of the FBs, fumonisin B1 and fumonisin B2 presented higher incidence percentages, followed by fumonisin B3 . Of the AFs, the only one reported was aflatoxin B1. The mycotoxins DON, ZEA and OT were found with lower incidences, whereas PAT and T2 were not detected. Good management practices of the silo-bags are necessary to achieve a hermetically sealed environment, without exchange of gases and water with the external environment during the storage period. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vanessa D Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int J Food Microbiol 2022; 365:109556. [DOI: 10.1016/j.ijfoodmicro.2022.109556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
|
10
|
Succession of Microbial Communities of Corn Silage Inoculated with Heterofermentative Lactic Acid Bacteria from Ensiling to Aerobic Exposure. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To further explore the effects of heterofermentative lactic acid bacteria (LAB) on silage fermentation and aerobic stability, whole-plant corn at around the 1/2 milk-line stage was freshly chopped and ensiled in laboratory silos with deionized water (control), Lactobacillus buchneri (LB), or L. rhamnosus (LR). Each treatment was prepared in triplicate for 3, 14, and 60 d of fermentation, followed by 3 and 7 days of aerobic exposure. The dynamic changes in microbial community were studied by single molecule real-time (SMRT) sequencing. The results showed that the two LAB inoculants altered the microbial communities in different ways. Succession from L. plantarum to L. buchneri and L. rhamnosus was observed in LB- and LR-treated silage, respectively. Both silages improved aerobic stability (82 and 78 h vs. 44 h) by occupying the microbial niche to produce higher levels of acetic acid at terminal fermentation. Because Acetobacter fabarum dominated in the silages after aerobic exposure, beta diversity dramatically decreased. In this study, a. fabarum was reported for the first time in silage and was related to aerobic spoilage. The two heterofermentative LAB produced acetic acid and improved the aerobic stability of the corn silage by occupying the microbial niche at terminal fermentation. Inoculated L. rhamnosus had a greater pH for a longer period of time after opening and less DM loss at day 7.
Collapse
|
11
|
Farm Silage Facilities and Their Management for the Prevention of Anaerobic Bacteria Spore Contamination in Raw Milk. DAIRY 2021. [DOI: 10.3390/dairy2030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
At feed-out, aerobic spoilage of silage enables an increase in anaerobic spore-forming bacteria (ANSB) that may enter the total mixed ration (TMR). The aim of our study was to understand whether in hot summers the silage structures and management may affect the level of ANSB in milk for long-ripening cheese production. A survey of silage facilities, management, and their relationships with silage, TMR, feces, and milk ANSB most probable number (MPN) content was conducted in the Po Valley during summer months. Silo type did not affect the mean ANSB, but only the wideness of their value distributions, with a narrow range for bags and a wider range for bunkers. The unloading equipment affected the ANSB count; the front-end loader with cutter was associated with a lower ANSB count—probably as a result of the reduced surface left after daily silage removal. Silo length and daily removed face width were the main factors affecting contamination of silage by spore-forming bacteria during summer, with longer silos and wider surface removal reducing ANSB contamination—probably as a consequence of reduced aerobic spoilage at the silage surface. The silage contamination by spore-forming bacteria within a log10 2 MPN g−1 allowed a low concentration of spore-forming bacteria at the farm bulk milk tank level. Fecal ANSB levels did not factor into the regression that explains the ANSB in farm milk. It has been found that silage facilities’ features and their management are an important first step to reduce the extent of ANSB contamination at the farm level.
Collapse
|
12
|
Mitiku AA, Vandeweyer D, Lievens B, Bossaert S, Crauwels S, Aernouts B, Kechero Y, Van Campenhout L. Microbial profile during fermentation and aerobic stability of ensiled mixtures of maize stover and banana pseudostem in South Ethiopia. J Appl Microbiol 2021; 132:126-139. [PMID: 34133817 DOI: 10.1111/jam.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study evaluated pH reduction and microbial growth during fermentation of maize stover (MS) mixed with banana pseudostem (BPS) under South Ethiopian conditions. MATERIALS AND RESULTS The MS and BPS were chopped and mixed into six treatments (T): 80% BPS plus 20% DMS (T1), 70% BPS plus 30% DMS (T2), 40% BPS plus 60% FMS (fresh MS) (T3), 20% BPS plus 80% FMS (T4), 100% FMS (T5), and 95% BPS plus 5% molasses (T6). At 0, 7, 14, 30, 60, and 90 days, pH and dry matter were determined. Microbiological quality was assessed using plate counts and Illumina MiSeq sequencing. On day 60 and 90, aerobic stability was investigated. The results showed a significant reduction in pH in all mixtures, except in T1 and T2. Lactic acid bacteria counts reached a maximum in all treatments within 14 days. Sequencing showed marked changes in dominant bacteria, such as Buttiauxella and Acinetobacter to Lactobacillus and Bifidobacterium. CONCLUSIONS The fresh MS and BPS mixtures and fresh maize showed significant pH reduction and dominance of desirable microbial groups. SIGNIFICANCE AND IMPACT OF THE STUDY The study enables year-round livestock feed supplementation to boost milk and meat production in South Ethiopia.
Collapse
Affiliation(s)
- Ashenafi A Mitiku
- Department of Microbial and Molecular Systems, Lab4Food, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Department of Animal Science, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dries Vandeweyer
- Department of Microbial and Molecular Systems, Lab4Food, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sofie Bossaert
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Ben Aernouts
- Department of Biosystems, Livestock Technology, KU Leuven, Leuven, Belgium
| | - Yisehak Kechero
- Department of Animal Science, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Leen Van Campenhout
- Department of Microbial and Molecular Systems, Lab4Food, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Zhang Y, Wu D, Su Y, Xie B. Occurrence, influence and removal strategies of mycotoxins, antibiotics and microplastics in anaerobic digestion treating food waste and co-digestive biosolids: A critical review. BIORESOURCE TECHNOLOGY 2021; 330:124987. [PMID: 33757678 DOI: 10.1016/j.biortech.2021.124987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Food waste anaerobic digestion (FWAD) can be assisted with the co-digestion of manures, agricultural waste, and sewage sludge. Nevertheless, contaminants like mycotoxins, antibiotics, and microplastics (MPs) could be introduced and negatively affect the AD system. Over 180 literatures involved the occurrence, influence and removal strategies of these three types of pollutants in AD were summarized in this review. Aflatoxin B1(AFB1) as the most concerned mycotoxins were poorly degraded and brought about inhibitions in short-term. Considering methanogenesis inhibition and occurrence concentration, the risk of oxytetracycline and norfloxacin were identified as priority among antibiotics. Leaching toxic additives from MPs could be responsible for the AD inhibition, while their materials and sizes could also prolong the acidification and methanation processes in FWAD. Strategies of bioaugmentation technologies and bioreactors to enhance the removal were suggested. Perspectives were provided for a better understanding of the fates of reviewed contaminants and their elimination in FWAD systems.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
14
|
Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities. Toxins (Basel) 2021; 13:toxins13030232. [PMID: 33806727 PMCID: PMC8004697 DOI: 10.3390/toxins13030232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.
Collapse
|
15
|
Viegas C, Caetano LA, Viegas S. Occupational exposure to Aspergillus section Fumigati: Tackling the knowledge gap in Portugal. ENVIRONMENTAL RESEARCH 2021; 194:110674. [PMID: 33440201 DOI: 10.1016/j.envres.2020.110674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Aspergillus section Fumigati is one of the sections of the Aspergillus genus most often associated with respiratory symptoms. The azole-resistant clinical isolates in this section have been widely described worldwide. More recently, the environmental origin of azole resistance has been correlated with the development of fungal diseases and therapeutic failure. This paper presents a review of several studies performed in Portuguese occupational environments focusing on occupational exposure to this section and give guidance to exposure assessors and industrial hygienists to ensure an accurate exposure assessment. Future studies should tackle the limitations concerning the assessment of occupational exposure to the Fumigati section, in order to allow the implementation of adequate risk management measures. In the light of the results of previous studies, the following approach is proposed to ensure an accurate exposure assessment: a) a combination of active and passive sampling methods appropriate to each occupational environment; b) the use, in parallel, of culture-based methods and molecular tools to overcome the limitations of each method; c) evaluation of the mycobiota azole resistance profile; and d) consider the possible simultaneous presence of mycotoxins produced by this section when assessing workers occupational exposure. In sum, preventing the development of fungal strains resistant to azoles will only be achieved with a holistic approach. An adequate "One Health approach" can contribute positively to concerted actions in different sectors, by reducing the use of fungicides through the introduction of crops and agricultural practices that prevent fungal colonization, and by promoting the rational use of antifungal drugs in human and animal health.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| |
Collapse
|
16
|
Impacts of Low Temperature and Ensiling Period on the Bacterial Community of Oat Silage by SMRT. Microorganisms 2021; 9:microorganisms9020274. [PMID: 33525587 PMCID: PMC7910925 DOI: 10.3390/microorganisms9020274] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to investigate how storage temperatures influence the bacterial community of oat silage during the ensiling process via PacBio single molecule, real-time sequencing technology (SMRT). Forage oat was ensiled at four different temperatures (5 °C, 10 °C, 15 °C, and 25 °C) and ensiling days (7, 14, 30, and 60 days). With the rise in storage temperature, the lactic acid content showed an increased trend. Acetic acid production was observed highest in silage fermented at 5 °C compared with other treatments, and Enterococcus mundtii was also the dominant bacterial species. Lactiplantibacillus pentosus and Loigolactobacillus rennini were exclusively detected in silages at 10 °C, 15 °C, and 25 °C, and dominated the fermentation after 60 days of ensiling at 10 °C and 25 °C, respectively. In addition, L. pentosus, L. rennini, and E. mundtii may be related to changes in the fermentation products due to the differences in ensiling temperature. In conclusion, results of this study improve our understanding of the complicated microbial composition underlying silage fermentation at low temperatures, which might contribute to target-based regulation methods for enhancing silage quality and developing new inoculants.
Collapse
|
17
|
Mitiku AA, Andeta AF, Borremans A, Lievens B, Bossaert S, Crauwels S, Aernouts B, Kechero Y, Van Campenhout L. Silage making of maize stover and banana pseudostem under South Ethiopian conditions: evolution of pH, dry matter and microbiological profile. Microb Biotechnol 2020; 13:1477-1488. [PMID: 32705812 PMCID: PMC7415364 DOI: 10.1111/1751-7915.13626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/24/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022] Open
Abstract
The study was conducted to evaluate the microbial dynamics during silage of maize stover and banana pseudostem in the environmental conditions of southern Ethiopia. To meet this objective, microsilos containing either maize stover or banana pseudostem, both with and without molasses, were prepared. Subsequently, samples were analysed on day 0, 7, 14, 30, 60 and 90 of the fermentation process. As a result, on day 7, all treatments except banana pseudostem without molasses showed a significant reduction in pH. It was also this silage type that supported the growth of Enterobacteriaceae longer than three other silage types, i.e. until 30 days. The yeasts and moulds and the Clostridum endospore counts also showed a reducing trend in early fermentation and afterwards remained constant until day 90. Illumina MiSeq sequencing revealed that Leuconostoc, Buttiauxella species and Enterobacteriaceae were the most abundant bacteria in the initial phases of the fermentation. Later on, Buttiauxella, Lactobacillus, Weissella and Bifidobacterium species were found to be dominant. In conclusion, silage of the two crop by-products is possible under South Ethiopian conditions. For banana pseudostem, the addition of molasses is crucial for a fast fermentation, in contrast to maize. Upscaling needs to be investigated for the two by-products.
Collapse
Affiliation(s)
- Ashenafi Azage Mitiku
- Department of Microbial and Molecular SystemsLab4FoodKU LeuvenGeel CampusGeelBelgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium
- Department of Animal SciencesCollege of Agricultural SciencesArba Minch UniversityArba MinchEthiopia
| | - Addisu Fekadu Andeta
- Department of BiologyCollege of Natural SciencesArba Minch UniversityArba MinchEthiopia
| | - An Borremans
- Department of Microbial and Molecular SystemsLab4FoodKU LeuvenGeel CampusGeelBelgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium
| | - Bart Lievens
- Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME and BIM)Department of Microbial and Molecular SystemsKU LeuvenDe Nayer CampusSint‐Katelijne WaverBelgium
| | - Sofie Bossaert
- Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME and BIM)Department of Microbial and Molecular SystemsKU LeuvenDe Nayer CampusSint‐Katelijne WaverBelgium
| | - Sam Crauwels
- Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME and BIM)Department of Microbial and Molecular SystemsKU LeuvenDe Nayer CampusSint‐Katelijne WaverBelgium
| | - Ben Aernouts
- Department of BiosystemsLivestock TechnologyKU LeuvenGeel CampusGeelBelgium
| | - Yisehak Kechero
- Department of Animal SciencesCollege of Agricultural SciencesArba Minch UniversityArba MinchEthiopia
| | - Leen Van Campenhout
- Department of Microbial and Molecular SystemsLab4FoodKU LeuvenGeel CampusGeelBelgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium
| |
Collapse
|
18
|
Li J, Zhong H, Ramayo-Caldas Y, Terrapon N, Lombard V, Potocki-Veronese G, Estellé J, Popova M, Yang Z, Zhang H, Li F, Tang S, Yang F, Chen W, Chen B, Li J, Guo J, Martin C, Maguin E, Xu X, Yang H, Wang J, Madsen L, Kristiansen K, Henrissat B, Ehrlich SD, Morgavi DP. A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment. Gigascience 2020; 9:5849033. [PMID: 32473013 PMCID: PMC7260996 DOI: 10.1093/gigascience/giaa057] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Background The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen. Results Using deep metagenome sequencing we identified 13,825,880 non-redundant prokaryote genes from the bovine rumen. Compared to human, pig, and mouse gut metagenome catalogs, the rumen is larger and richer in functions and microbial species associated with the degradation of plant cell wall material and production of methane. Genes encoding enzymes catalyzing the breakdown of plant polysaccharides showed a particularly high richness that is otherwise impossible to infer from available genomes or shallow metagenomics sequencing. The catalog expands the dataset of carbohydrate-degrading enzymes described in the rumen. Using an independent dataset from a group of 77 cattle fed 4 common dietary regimes, we found that only <0.1% of genes were shared by all animals, which contrast with a large overlap for functions, i.e., 63% for KEGG functions. Different diets induced differences in the relative abundance rather than the presence or absence of genes, which explains the great adaptability of cattle to rapidly adjust to dietary changes. Conclusions These data bring new insights into functions, carbohydrate-degrading enzymes, and microbes of the rumen to complement the available information on microbial genomes. The catalog is a significant biological resource enabling deeper understanding of phenotypes and biological processes and will be expanded as new data are made available.
Collapse
Affiliation(s)
- Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huanzi Zhong
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Yuliaxis Ramayo-Caldas
- INRAE, Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Nicolas Terrapon
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France
| | - Vincent Lombard
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France
| | | | - Jordi Estellé
- INRAE, Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - Ziyi Yang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hui Zhang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Fang Li
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Bing Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiyang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jing Guo
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Cécile Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| | - Emmanuelle Maguin
- INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Lise Madsen
- BGI-Shenzhen, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark.,Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRAE, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stanislav D Ehrlich
- BGI-Shenzhen, Shenzhen 518083, China.,MGP MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy en Josas, France.,Centre for Host Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Diego P Morgavi
- BGI-Shenzhen, Shenzhen 518083, China.,Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France
| |
Collapse
|
19
|
Xu R, Karrow NA, Shandilya UK, Sun LH, Kitazawa H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins (Basel) 2020; 12:E146. [PMID: 32120954 PMCID: PMC7150844 DOI: 10.3390/toxins12030146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic secondary fungal metabolites that commonly contaminate crops and food by-products and thus, animal feed. Ingestion of mycotoxins can lead to mycotoxicosis in both animals and humans, and at subclinical concentrations may affect animal production and adulterate feed and animal by-products. Mycotoxicity mechanisms of action (MOA) are largely unknown, and co-contamination, which is often the case, raises the likelihood of mycotoxin interactions. Mitigation strategies for reducing the risk of mycotoxicity are diverse and may not necessarily provide protection against all mycotoxins. These factors, as well as the species-specific risk of toxicity, collectively make an assessment of exposure, toxicity, and risk mitigation very challenging and costly; thus, in-vitro cell culture models provide a useful tool for their initial assessment. Since ingestion is the most common route of mycotoxin exposure, the intestinal epithelial barrier comprised of epithelial cells (IECs) and immune cells such as macrophages, represents ground zero where mycotoxins are absorbed, biotransformed, and elicit toxicity. This article aims to review different in-vitro IEC or co-culture models that can be used for assessing mycotoxin exposure, toxicity, and risk mitigation, and their suitability and limitations for the safety assessment of animal foods and food by-products.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Lv-hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
20
|
Ávila C, Carvalho B. Silage fermentation—updates focusing on the performance of micro‐organisms. J Appl Microbiol 2019; 128:966-984. [DOI: 10.1111/jam.14450] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- C.L.S. Ávila
- Department of Animal Science Federal University of Lavras Lavras MG Brazil
| | - B.F. Carvalho
- Department of Biology Federal University of Lavras Lavras MG Brazil
| |
Collapse
|
21
|
Rodríguez-Blanco M, Ramos AJ, Sanchis V, Marín S. Mycotoxins occurrence and fungal populations in different types of silages for dairy cows in Spain. Fungal Biol 2019; 125:103-114. [PMID: 33518200 DOI: 10.1016/j.funbio.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022]
Abstract
Silages constitute a major component of the feed ration for dairy cows, being a potential source of mycotoxins due to the possible contamination by filamentous fungi capable of producing these toxic compounds. In this study, samples of different kinds of silages collected from farms located in four regions of Spain, were analysed to evaluate the occurrence of aflatoxins (AFs) and Fusarium mycotoxins. Lactic acid bacteria and fungal populations as well as pH and water activity were also studied. Penicillium, Geotrichum and Monascus were the main fungi identified in all the silages examined. The incidence of AFs was low (10 % of positive samples). Fusarium mycotoxins were detected in 40 % of the samples and fumonisins (FBs) were the most commonly detected. Maize silage was the most heavily contaminated type of silage. Levels of mycotoxins detected in positive samples did not exceed the EU guidance values. The lack of relationship between Fusarium counts and its mycotoxin concentrations suggested that mycotoxin production possibly occurred pre-ensiling or immediately post-ensiling. Outcomes showed that mould growth and mycotoxin contamination in silages should be regularly monitored in order to minimize the exposure of dairy cows to contaminated feed.
Collapse
Affiliation(s)
- M Rodríguez-Blanco
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - A J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - V Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - S Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
22
|
Ogunade IM, Martinez-Tuppia C, Queiroz OCM, Jiang Y, Drouin P, Wu F, Vyas D, Adesogan AT. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J Dairy Sci 2018; 101:4034-4059. [PMID: 29685276 DOI: 10.3168/jds.2017-13788] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023]
Abstract
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins.
Collapse
Affiliation(s)
- I M Ogunade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - C Martinez-Tuppia
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - O C M Queiroz
- Chr Hansen, Animal Health and Nutrition, Chr. Hansen, Buenos Aires 1107, Argentina
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - P Drouin
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - F Wu
- Department of Food Science and Human Nutrition, Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing 48824
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
23
|
Wang JP, Yu J, Shu Y, Shi YX, Luo P, Cai L, Ding ZT. Peniroquesines A–C: Sesterterpenoids Possessing a 5–6–5–6–5-Fused Pentacyclic Ring System from Penicillium roqueforti YJ-14. Org Lett 2018; 20:5853-5856. [DOI: 10.1021/acs.orglett.8b02534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Peng Wang
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Jing Yu
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Yan Shu
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Ya-Xian Shi
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Ping Luo
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Le Cai
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology, Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, China
| |
Collapse
|
24
|
Dubey MK, Aamir M, Kaushik MS, Khare S, Meena M, Singh S, Upadhyay RS. PR Toxin - Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges. Front Pharmacol 2018; 9:288. [PMID: 29651243 PMCID: PMC5885497 DOI: 10.3389/fphar.2018.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics, toxicological aspects, control and prevention strategies, and other management aspects of PR toxin with paying special attention on economic impacts with intended legislations for avoiding PR toxin contamination with respect to food security and other biosafety purposes.
Collapse
Affiliation(s)
- Manish K. Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mohd Aamir
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish S. Kaushik
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saumya Khare
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukesh Meena
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, Faculty of Science, Hamdard University, New Delhi, India
| | - Surendra Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ram S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Eskola M, van Manen M, Edler L. Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J 2018; 16:e05082. [PMID: 32625822 PMCID: PMC7009678 DOI: 10.2903/j.efsa.2018.5082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Moniliformin (MON) is a mycotoxin with low molecular weight primarily produced by Fusarium fungi and occurring predominantly in cereal grains. Following a request of the European Commission, the CONTAM Panel assessed the risk of MON to human and animal health related to its presence in food and feed. The limited information available on toxicity and on toxicokinetics in experimental and farm animals indicated haematotoxicity and cardiotoxicity as major adverse health effects of MON. MON causes chromosome aberrations in vitro but no in vivo genotoxicity data and no carcinogenicity data were identified. Due to the limitations in the available toxicity data, human acute or chronic health‐based guidance values (HBGV) could not be established. The margin of exposure (MOE) between the no‐observed‐adverse‐effect level (NOAEL) of 6.0 mg/kg body weight (bw) for cardiotoxicity from a subacute study in rats and the acute upper bound (UB) dietary exposure estimates ranged between 4,000 and 73,000. The MOE between the lowest benchmark dose lower confidence limit (for a 5% response ‐ BMDL05) of 0.20 mg MON/kg bw per day for haematological hazards from a 28‐day study in pigs and the chronic dietary human exposure estimates ranged between 370 and 5,000,000 for chronic dietary exposures. These MOEs indicate a low risk for human health but were associated with high uncertainty. The toxicity data available for poultry, pigs, and mink indicated a low or even negligible risk for these animals from exposure to MON in feed at the estimated exposure levels under current feeding practices. Assuming similar or lower sensitivity as for pigs, the CONTAM Panel considered a low or even negligible risk for the other animal species for which no toxicity data suitable for hazard characterisation were identified. Additional toxicity studies are needed and depending on their outcome, the collection of more occurrence data on MON in food and feed is recommended to enable a comprehensive human risk assessment.
Collapse
|
26
|
Hymery N, Puel O, Tadrist S, Canlet C, Le Scouarnec H, Coton E, Coton M. Effect of PR toxin on THP1 and Caco-2 cells: an in vitro study. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Penicillium roqueforti produces mycotoxins including PR toxin, which is a food and feed contaminant. In this study, PR toxin was purified from culture material of the Penicillium roqueforti F43-1 strain. Toxic effects were evaluated in undifferentiated human Caco-2 intestinal epithelial cells and THP-1 monocytic immune cells. To understand the mechanisms involved in PR-toxin toxicity, cell death and pro-inflammatory gene expression were studied. In addition, PR toxin degradation was assessed. Cytotoxicity studies showed a dose-dependent effect of PR toxin and the calculated mean cytotoxic concentration (IC50) concentrations were for Caco-2 and THP-1 cells >12.5 and 0.83 μM, respectively. Gene expression studies showed that tumour necrosis factor-α expression was significantly increased after 24 h exposure to 312 μM PR toxin. PR toxin induced necrosis on THP-1 cells after 3 h exposure. In the cell culture system, the PR toxin showed a 10-fold reduction in PR toxin concentration within 48 h, indicating that PR toxin was degraded by THP-1. To conclude, PR toxin appears to be one of the most cytotoxic P. roqueforti mycotoxins on Caco-2 and/or THP-1 cells and induces in THP-1 cells both necrosis and an inflammatory response.
Collapse
Affiliation(s)
- N. Hymery
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - O. Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - S. Tadrist
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - C. Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 31027 Toulouse Cedex, France
| | - H. Le Scouarnec
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - E. Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - M. Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
27
|
Hidalgo PI, Poirier E, Ullán RV, Piqueras J, Meslet-Cladière L, Coton E, Coton M. Penicillium roqueforti PR toxin gene cluster characterization. Appl Microbiol Biotechnol 2016; 101:2043-2056. [PMID: 27921136 DOI: 10.1007/s00253-016-7995-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/30/2022]
Abstract
PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.
Collapse
Affiliation(s)
- Pedro I Hidalgo
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Elisabeth Poirier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Ricardo V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros s/n, Armunia, 24009, León, Spain
| | - Justine Piqueras
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Laurence Meslet-Cladière
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France
| | - Monika Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, Plouzané, 29280, Brest, France.
| |
Collapse
|
28
|
Del Palacio A, Mionetto A, Bettucci L, Pan D. Evolution of fungal population and mycotoxins in sorghum silage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1864-1872. [PMID: 27700537 DOI: 10.1080/19440049.2016.1244732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Silage, one of the most important feed sources for cattle, is vulnerable to contamination by spoilage moulds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of this study was to identify the mycobiota of sorghum silages, to determine the presence of aflatoxins and fumonisins, and to correlate these results with physical parameters of the silage. A total of 275 samples of sorghum were collected from dairy farms in the south-west region of Uruguay were silage practices are developed. The presence of fungi was observed in all of the sorghum samples with values varying from 0.2 × 104 to 4085 × 104 UFC g-1. Significant difference were detected in the total number of fungi during the storage period; at six months there is a high risk of fungal spoilage. The most frequent genera isolated from sorghum samples were Penicillium (70%), Aspergillus (65%), Absidia (40%), Fusarium (35%), Paecilomyces (35%) and Alternaria, Cladosporium, Gliocadium and Mucor (30%). The toxigenic species most frequently found were Penicillium citrinum, Aspergillus flavus and Fusarium nygamai. Only two samples were contaminated by AFB1 with levels of 1 and 14 µg kg-1. Fumonisin was detected in 40% of freshly harvest samples with levels ranged from 533 µg kg-1 to 933 µg kg-1. The use of silo bags seems to be an effective tool to store sorghum. However, the presence of toxigenic fungi show that regular screening for mycotoxins levels in silages must be performed to avoid the exposure of animals to contaminated feed and the introduction of these compounds into the food chain.
Collapse
Affiliation(s)
- Agustina Del Palacio
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| | - Ana Mionetto
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| | - Lina Bettucci
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| | - Dinorah Pan
- a Facultad de Ciencias-Facultad de Ingeniería , Universidad de la república , Montevideo , Uruguay
| |
Collapse
|
29
|
Gillot G, Jany JL, Dominguez-Santos R, Poirier E, Debaets S, Hidalgo PI, Ullán RV, Coton E, Coton M. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. Food Microbiol 2016; 62:239-250. [PMID: 27889155 DOI: 10.1016/j.fm.2016.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022]
Abstract
Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.
Collapse
Affiliation(s)
- Guillaume Gillot
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Rebeca Dominguez-Santos
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León (INBIOTEC), Avenida Real n°1, Parque Científico de León, 24006 León, Spain
| | - Elisabeth Poirier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Stella Debaets
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Pedro I Hidalgo
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Ricardo V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros s/n, Armunia, 24009, León, Spain
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Monika Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
30
|
Kosicki R, Błajet-Kosicka A, Grajewski J, Twarużek M. Multiannual mycotoxin survey in feed materials and feedingstuffs. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Wambacq E, Vanhoutte I, Audenaert K, De Gelder L, Haesaert G. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2284-2302. [PMID: 26676761 DOI: 10.1002/jsfa.7565] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Ruminants are considered to be less sensitive towards mycotoxins than monogastric animals because rumen microbiota have mycotoxin-detoxifying capacities. Therefore the effect of mycotoxins towards ruminants has been studied to a lesser extent compared with monogastric animals. Worldwide, a high proportion of the ruminant diet consists of silages made of forage crops (i.e. all parts of the crop above the stubble are harvested). In practice, silages are often contaminated with multiple mycotoxins. Exposure to a cocktail of mycotoxins can hamper animal production and have severe health consequences. In this article the different aspects associated with mycotoxin contamination of silage are reviewed 'from seed to feed'. An overview is given on the occurrence of toxigenic fungal species and their concomitant mycotoxins in forage crops before and after ensiling. The mycotoxin load of visually non-mouldy samples and mouldy hot spots within the same silo is also compared. Subsequently, this review delves into different problem-solving strategies. A logical first step is prevention of mould growth and mycotoxin production in the field, during harvest and during ensiling. If prevention should fail, several remediation strategies are available. These are listed, mainly focusing on the possibilities of microbial degradation of mycotoxins in vivo in silage. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva Wambacq
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Ilse Vanhoutte
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Leen De Gelder
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
32
|
Gallo A, Bertuzzi T, Giuberti G, Moschini M, Bruschi S, Cerioli C, Masoero F. New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:437-448. [PMID: 25641648 DOI: 10.1002/jsfa.7109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND A survey on 68 dairy farms was carried out to evaluate the ensiling procedures adopted to store corn silage. Samples from core, lateral and apical zones of the feed-out face of silos were analysed. A principal factor analysis (PFA) was carried out on the entire database (196 silage samples and 36 variables) and 11 principal factor components (PCs) were retained and interpreted. RESULTS Ensiling procedures influenced the area exposed to risk of air penetration. Cores had higher dry matter, starch and lactic acid content or lower pH, fibre, propionate and butyrate concentrations than peripheral samples (P < 0.05). The highest (P < 0.05) mycophenolic acid and roquefortina C concentrations were detected in lateral samples. Chemical and digestibility variables loaded on two PCs; four PCs were characterized by end-products associated with clostridia, heterolactic, homolactic and aerobic fermentations; two PCs were associated with mycotoxins, whereas three PCs explained ensiling procedures. CONCLUSION The main quality traits of corn silages differed throughout the entire silo face. Minimization of the area exposed to risk of air penetration represents the best strategy to preserve the nutritional value and safety of corn silages. PFA allowed a clusterization of original variables into 11 PCs, appearing able to discriminate well and poorly preserved corn silages.
Collapse
Affiliation(s)
- Antonio Gallo
- Feed and Food Science and Nutrition Institute, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Terenzio Bertuzzi
- Feed and Food Science and Nutrition Institute, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Gianluca Giuberti
- Feed and Food Science and Nutrition Institute, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Maurizio Moschini
- Feed and Food Science and Nutrition Institute, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Sara Bruschi
- Feed and Food Science and Nutrition Institute, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | | | - Francesco Masoero
- Feed and Food Science and Nutrition Institute, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
33
|
Zhang Q, Wu B, Nishino N, Wang X, Yu Z. Fermentation and microbial population dynamics during the ensiling of native grass and subsequent exposure to air. Anim Sci J 2015; 87:389-97. [PMID: 26950516 DOI: 10.1111/asj.12427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
To study the microbial population and fermentation dynamics of large needlegrass (LN) and Chinese leymus (CL) during ensiling and subsequent exposure to air, silages were sampled and analyzed using culture-based techniques and denaturing gradient gel electrophoresis (DGGE). A total of 112 lactic acid bacteria (LAB) strains were isolated and identified using the 16S rRNA sequencing method. Lactic acid was not detected in the first 20 days in LN silage and the pH decreased to 6.13 after 45 days of ensiling. The temperature of the LN silage increased after approximately 30 h of air exposure and the CL silage showed a slight temperature variation. Enterococcus spp. were mainly present in LN silage. The proportion of Lactobacillus brevis in CL silage increased after exposure to air. LN silage with a higher proportion of Enterococcus spp. and propionic acid concentration did not show higher fermentation quality or aerobic stability than CL silage, which had a higher concentration of acetic acid, butyric acid and increased proportion of L. brevis after exposure to air.
Collapse
Affiliation(s)
- Qing Zhang
- Institute of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baiyila Wu
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naoki Nishino
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Xianguo Wang
- Institute of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhu Yu
- Institute of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Dell’Orto V, Baldi G, Cheli F. Mycotoxins in silage: checkpoints for effective management and control. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has a substantial role in ruminant nutrition. Silages as a source of mycotoxigenic fungi and mycotoxins merit attention. Fungal growth and mycotoxin production before and during storage are a well-known phenomenon, resulting in reduced nutritional value and a possible risk factor for animal health. Mycotoxin co-contamination seems to be unavoidable under current agricultural and silage-making practices. Multi-mycotoxin contamination in silages is of particular concern due to the potential additive or synergistic effects on animals. In regard to managing the challenge of mycotoxins in silages, there are many factors with pre- and post-harvest origins to take into account. Pre-harvest events are predominantly dictated by environmental factors, whereas post-harvest events can be largely controlled by the farmer. An effective mycotoxin management and control programme should be integrated and personalised to each farm at an integrative level throughout the silage production chain. Growing crops in the field, silage making practices, and the feed out phase must be considered. Economical and straightforward silage testing is critical to reach a quick and sufficiently accurate diagnosis of silage quality, which allows for ‘in field decision-making’ with regard to the rapid diagnosis of the quality of given forage for its safe use as animal feed. Regular sampling and testing of silage allow picking up any variations in mycotoxin contamination. The use of rapid methods in the field represents future challenges. Moreover, a proper nutritional intervention needs to be considered to manage mycotoxin-contaminated silages. At farm level, animals are more often exposed to moderate amounts of several mycotoxins rather than to high levels of a single mycotoxin, resulting more frequently in non-specific digestive and health status impairment. Effective dietary strategies to promote rumen health, coupled with the administration of effective and broad-spectrum mycotoxin detoxifiers, are essential to minimise the negative impact of mycotoxins.
Collapse
Affiliation(s)
- V. Dell’Orto
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - G. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| |
Collapse
|
35
|
Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins (Basel) 2015; 7:3057-111. [PMID: 26274974 PMCID: PMC4549740 DOI: 10.3390/toxins7083057] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/10/2023] Open
Abstract
Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.
Collapse
Affiliation(s)
- Antonio Gallo
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Gianluca Giuberti
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Jens C Frisvad
- Department of Systems Biology, Technical University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark.
| | - Terenzio Bertuzzi
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
36
|
Spadaro D, Bustos-Lopez MP, Gullino ML, Piano S, Tabacco E, Borreani G. Evolution of fungal populations in corn silage conserved under polyethylene or biodegradable films. J Appl Microbiol 2015; 119:510-20. [PMID: 25976243 DOI: 10.1111/jam.12852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022]
Abstract
AIMS To identify cultivable filamentous fungi before ensiling, after silage conservation, in farm-silos covered with two different plastic films (polyethylene (PE) vs biodegradable (MB)), as well as after aerobic exposure of whole-crop corn silage. METHODS AND RESULTS Molecular techniques coupled with traditional microbial counting were utilized to identify the predominant fungal species. The cultivable fungal population changed remarkably from harvesting to silo opening. Anaerobiosis and low pH reduced mould count and the presence of Fusarium species both under PE and MB film. However, in the peripheral areas of the silo, where air penetration could not be completely prevented, the fungal population did not decrease. The predominant fungal species after aerobic exposure of silage was Aspergillus fumigatus, without differences between the two plastic films. CONCLUSIONS Maintenance of anaerobiosis and a low pH also in the upper layer of the silo reduce the risk of mould growth during corn silage feed-out. SIGNIFICANCE AND IMPACT OF THE STUDY Even if the new MB plastic film did not completely maintain the anaerobiosis in the upper layer of silage, the overall silage quality was not compromised and was similar to that observed under PE, indicating that the development and use of MB film to cover silage is promising, but needs some improvement.
Collapse
Affiliation(s)
- D Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy.,Centre of Competence for Innovation in the Agro-environmental Sector (AGROINNOVA), University of Torino, Grugliasco, Italy
| | - M P Bustos-Lopez
- Centre of Competence for Innovation in the Agro-environmental Sector (AGROINNOVA), University of Torino, Grugliasco, Italy
| | - M L Gullino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy.,Centre of Competence for Innovation in the Agro-environmental Sector (AGROINNOVA), University of Torino, Grugliasco, Italy
| | - S Piano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - E Tabacco
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - G Borreani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| |
Collapse
|
37
|
Storm IMLD, Rasmussen RR, Rasmussen PH. Occurrence of pre- and post-harvest mycotoxins and other secondary metabolites in Danish maize silage. Toxins (Basel) 2014; 6:2256-69. [PMID: 25089350 PMCID: PMC4147581 DOI: 10.3390/toxins6082256] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022] Open
Abstract
Maize silage is a widely used feed product for cattle worldwide, which may be contaminated with mycotoxins, pre- and post-harvest. This concerns both farmers and consumers. To assess the exposure of Danish cattle to mycotoxins from maize silage, 99 samples of whole-crop maize (ensiled and un-ensiled) were analyzed for their contents of 27 mycotoxins and other secondary fungal metabolites by liquid chromatography-tandem mass spectrometry. The method specifically targets the majority of common pre- and post-harvest fungi associated with maize silage in Denmark. Sixty-one samples contained one or more of the 27 analytes in detectable concentrations. The most common mycotoxins were zearalenone, enniatin B nivalenol and andrastin A, found in 34%, 28%, 16% and 15% of the samples, respectively. None of the samples contained mycotoxins above the EU recommended maximum concentrations for Fusarium toxins in cereal-based roughage. Thus, the present study does not indicate that Danish maize silage in general is a cause of acute single mycotoxin intoxications in cattle. However, 31 of the samples contained multiple analytes; two samples as much as seven different fungal metabolites. Feed rations with maize silage may therefore contain complex mixtures of fungal secondary metabolites with unknown biological activity. This emphasizes the need for a thorough examination of the effects of chronic exposure and possible synergistic effects.
Collapse
Affiliation(s)
- Ida M L Drejer Storm
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 221, DK-2800 Kgs. Lyngby, Denmark.
| | - Rie Romme Rasmussen
- Department of Food Chemistry, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | - Peter Have Rasmussen
- Department of Food Chemistry, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| |
Collapse
|
38
|
Mohammadzadeh H, Khorvash M, Ghorbani GR. Short- and long-time effects of multispecies lactic acid bacteria inoculant on fermentation characteristics and aerobic stability of corn silages at different maturities and frost killed corn. JOURNAL OF APPLIED ANIMAL RESEARCH 2014. [DOI: 10.1080/09712119.2013.875903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Campagnoli A, Dell'Orto V. Potential application of electronic olfaction systems in feedstuffs analysis and animal nutrition. SENSORS 2013; 13:14611-32. [PMID: 24172280 PMCID: PMC3871081 DOI: 10.3390/s131114611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/19/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022]
Abstract
Electronic Olfaction Systems (EOSs) based on a variety of gas-sensing technologies have been developed to simulate in a simplified manner animal olfactory sensing systems. EOSs have been successfully applied to many applications and fields, including food technology and agriculture. Less information is available for EOS applications in the feed technology and animal nutrition sectors. Volatile Organic Compounds (VOCs), which are derived from both forages and concentrate ingredients of farm animal rations, are considered and described in this review as olfactory markers for feedstock quality and safety evaluation. EOS applications to detect VOCs from feedstuffs (as analytical matrices) are described, and some future scenarios are hypothesised. Furthermore, some EOS applications in animal feeding behaviour and organoleptic feed assessment are also described.
Collapse
Affiliation(s)
- Anna Campagnoli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, Milan 20133, Italy.
| | | |
Collapse
|
40
|
Crowley S, Mahony J, Morrissey JP, van Sinderen D. Transcriptomic and morphological profiling of Aspergillus fumigatus Af293 in response to antifungal activity produced by Lactobacillus plantarum 16. Microbiology (Reading) 2013; 159:2014-2024. [DOI: 10.1099/mic.0.068742-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sarah Crowley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Dunière L, Sindou J, Chaucheyras-Durand F, Chevallier I, Thévenot-Sergentet D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
|
43
|
Cavallarin L, Tabacco E, Antoniazzi S, Borreani G. Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2419-2425. [PMID: 21710665 DOI: 10.1002/jsfa.4481] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Most of the maize silage stored in horizontal silos is exposed to air and can be spoiled by fungi. Potentially toxigenic fungi have been found in maize silage, and about 300 mycotoxins have been detected. Among these mycotoxins, the most harmful for feed and food safety are aflatoxins. The aim of the study was to set up a specific method to detect aflatoxins in maize silage, and to investigate whether aflatoxin contamination in maize silage depends on the level of field contamination of the crop, and whether the occurrence of aerobic spoilage during ensiling has any effect on the final contamination of the silage. RESULTS A method for the determination of aflatoxin B(1), B(2), G(1) and G(2) in maize silage using high-performance liquid chromagraphy with fluorescence detection has been developed and validated. Recoveries of aflatoxin B(1), B(2), G(1), and G(2) spiked over the 0.25 to 5 µg kg(-1) range averaged 74-94%. The results of laboratory scale and farm scale ensiling experiments indicated that aflatoxins could increase when silage is exposed to air during conservation or during the feed-out phase. CONCLUSIONS The method here proposed to detect aflatoxins in silages has proved to be sensitive and is able to detect levels of 0.1 and 0.5 ng mL(-1) for AFB(1) and AFG(1), and between 0.025 and 0.125 ng mL(-1) for AFB(2) and AFG(2). This study also provides evidence of aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure.
Collapse
Affiliation(s)
- Laura Cavallarin
- Istituto di Scienze delle Produzioni Alimentari, CNR, Grugliasco, Italy.
| | | | | | | |
Collapse
|
44
|
Van Pamel E, Verbeken A, Vlaemynck G, De Boever J, Daeseleire E. Ultrahigh-performance liquid chromatographic-tandem mass spectrometric multimycotoxin method for quantitating 26 mycotoxins in maize silage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9747-9755. [PMID: 21888373 DOI: 10.1021/jf202614h] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A multianalyte method was developed to identify and quantitate 26 mycotoxins simultaneously in maize silage by means of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The extraction and cleanup procedure consists of two extraction steps followed by purification on a Waters Oasis HLB column. The method developed was validated with the requirements of Commission Decision 2002/657/EC taken into account. The limit of detection and quantitation ranges were 5-348 and 11-695 ng/g, respectively. Apparent recovery varied between 61 and 116%, whereas repeatability and reproducibility were within the ranges of 3-45 and 5-49%, respectively. The method developed was successfully applied for maize silage samples taken at the cutting surface and 1 m behind that surface. Mainly Fusarium toxins (beauvericin, deoxynivalenol, enniatins, fumonisins, fusaric acid, and zearalenone) were detected, but postharvest toxins such as mycophenolic acid and roquefortine C were identified as well.
Collapse
Affiliation(s)
- Els Van Pamel
- Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Rasmussen R, Rasmussen P, Larsen T, Bladt T, Binderup M. In vitro cytotoxicity of fungi spoiling maize silage. Food Chem Toxicol 2011; 49:31-44. [DOI: 10.1016/j.fct.2010.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/09/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
|