1
|
Ali I, Qaiser H, Abdullah R, Kaleem A, Iqtedar M, Iqbal I, Chen X. Prospective Roles of Extremophilic Fungi in Climate Change Mitigation Strategies. J Fungi (Basel) 2024; 10:385. [PMID: 38921371 PMCID: PMC11204837 DOI: 10.3390/jof10060385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Climate change and the resultant environmental deterioration signify one of the most challenging problems facing humankind in the 21st century. The origins of climate change are multifaceted and rooted in anthropogenic activities, resulting in increasing greenhouse gases in the environment and leading to global warming and weather drifts. Extremophilic fungi, characterized by their exceptional properties to survive extreme habitats, harbor great potential in mitigating climate change effects. This review provides insight into the potential applications of extremophilic fungi in climate change mitigation strategies. They are able to metabolize organic biomass and degrade carbon compounds, thereby safely sequestering carbon and extenuating its release into the environment as noxious greenhouse gases. Furthermore, they possess extremozymes, which break down recalcitrant organic species, including lignocellulosic biomass and hydrocarbons. Enzymatic machinery equips these extremophilic fungi to perform the bioremediation of polluted environments. Extremophilic fungi can also be exploited for various biological interventions, such as biofuels, bioplastics, and other bioprocessing applications. However, these fungi characterize a valued but underexplored resource in the arsenal of climate change mitigation strategies.
Collapse
Affiliation(s)
- Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Hina Qaiser
- Department of Biology, Lahore Garrison University, Lahore 54000, Pakistan;
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Irfana Iqbal
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
2
|
Yurkov AP, Kryukov AA, Gorbunova AO, Kudriashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Laktionov YV, Zhurbenko PM, Mikhaylova YV, Puzanskiy RK, Bagrova TN, Yakhin OI, Rodionov AV, Shishova MF. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. J Fungi (Basel) 2023; 10:11. [PMID: 38248921 PMCID: PMC10817546 DOI: 10.3390/jof10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Investigations that are focused on arbuscular mycorrhizal fungus (AMF) biodiversity is still limited. The analysis of the AMF taxa in the North Caucasus, a temperate biodiversity hotspot, used to be limited to the genus level. This study aimed to define the AMF biodiversity at the species level in the North Caucasus biotopes. METHODS The molecular genetic identification of fungi was carried out with ITS1 and ITS2 regions as barcodes via sequencing using Illumina MiSeq, the analysis of phylogenetic trees for individual genera, and searches for operational taxonomic units (OTUs) with identification at the species level. Sequences from MaarjAM and NCBI GenBank were used as references. RESULTS We analyzed >10 million reads in soil samples for three biotopes to estimate fungal biodiversity. Briefly, 50 AMF species belonging to 20 genera were registered. The total number of the AM fungus OTUs for the "Subalpine Meadow" biotope was 171/131, that for "Forest" was 117/60, and that for "River Valley" was 296/221 based on ITS1/ITS2 data. The total number of the AM fungus species (except for virtual taxa) for the "Subalpine Meadow" biotope was 24/19, that for "Forest" was 22/13, and that for "River Valley" was 28/24 based on ITS1/ITS2 data. Greater AMF diversity, as well as number of OTUs and species, in comparison with that of forest biotopes, characterized valley biotopes (disturbed ecosystems; grasslands). The correlation coefficient between "Percentage of annual plants" and "Glomeromycota total reads" r = 0.76 and 0.81 for ITS1 and ITS2, respectively, and the correlation coefficient between "Percentage of annual plants" and "OTUs number (for total species)" was r = 0.67 and 0.77 for ITS1 and ITS2, respectively. CONCLUSION High AMF biodiversity for the river valley can be associated with a higher percentage of annual plants in these biotopes and the active development of restorative successional processes.
Collapse
Affiliation(s)
- Andrey P Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Alexey A Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Anastasiia O Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Tatyana R Kudriashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina M Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yuri V Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Peter M Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Yulia V Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Tatyana N Bagrova
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Oleg I Yakhin
- Institute of Biochemistry and Genetics, The Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Alexander V Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Alaux PL, Mison C, Senés-Guerrero C, Moreau V, Manssens G, Foucart G, Cranenbrouck S, Declerck S. Diversity and species composition of arbuscular mycorrhizal fungi across maize fields in the southern part of Belgium. MYCORRHIZA 2021; 31:265-272. [PMID: 33211191 DOI: 10.1007/s00572-020-01007-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are key actors among soil microbial inhabitants, forming beneficial associations with most horticultural plants and crops (e.g., maize). For maize, the world most cultivated cereal, data on AMF species diversity in fields is sparse and even totally nonexistent in the southern part of Belgium where maize represents 8% of the cultivated area. In the present study, 14 maize fields in South Belgium under conventional, conversion, or organic management were analyzed for AMF diversity and species composition using 454 pyrosequencing. A large part (54%) of the 49 AMF species observed were unknown or have not been described in the literature. AMF diversity highly varied among fields, with the number of species ranging between 1 and 37 according to the field. A statistically significant effect of management was measured on AMF diversity, with the highest Hill index values (diversity and richness) under the organic management system compared with conventional management or conversion. Our results suggest a positive effects of organic management on AMF diversity in maize. They also highlight the rather high diversity or richness of AMF and the large portion of sequences not yet ascribed to species, thereby emphasizing a need to intensify AMF identification in cropping systems.
Collapse
Affiliation(s)
- Pierre-Louis Alaux
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Coralie Mison
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Carolina Senés-Guerrero
- Escuela de Ingeniería Y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Virginie Moreau
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Gilles Manssens
- Centre Indépendant de Promotion Fourragère (CIPF), Croix du Sud, 2 L7.05.11, Louvain-la-Neuve, Belgium
| | - Guy Foucart
- Centre Indépendant de Promotion Fourragère (CIPF), Croix du Sud, 2 L7.05.11, Louvain-la-Neuve, Belgium
| | - Sylvie Cranenbrouck
- Earth and Life Institute, Applied Microbiology, Mycology, Mycothèque de L'Université Catholique de Louvain (BCCM/MUCL), Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Rodríguez-Yon Y, Maistro-Patreze C, Saggin-Junior OJ, Rivera RA, Quiñones M, Haesaert G, van Tuinen D. Development of a taxon-discriminating molecular marker to trace and quantify a mycorrhizal inoculum in roots and soils of agroecosystems. Folia Microbiol (Praha) 2021; 66:371-384. [PMID: 33534036 DOI: 10.1007/s12223-020-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022]
Abstract
Crop inoculation with Glomus cubense isolate (INCAM-4, DAOM-241198) promotes yield in banana, cassava, forages, and others. Yield improvements range from 20 to 80% depending on crops, nutrient supply, and edaphoclimatic conditions. However, it is difficult to connect yield effects with G. cubense abundance in roots due to the lack of an adequate methodology to trace this taxon in the field. It is necessary to establish an accurate evaluation framework of its contribution to root colonization separated from native arbuscular mycorrhizal fungi (AMF). A taxon-discriminating primer set was designed based on the ITS nrDNA marker and two molecular approaches were optimized and validated (endpoint PCR and quantitative real-time PCR) to trace and quantify the G. cubense isolate in root and soil samples under greenhouse and environmental conditions. The detection limit and specificity assays were performed by both approaches. Different 18 AMF taxa were used for endpoint PCR specificity assay, showing that primers specifically amplified the INCAM-4 isolate yielding a 370 bp-PCR product. In the greenhouse, Urochloa brizantha plants inoculated with three isolates (Rhizophagus irregularis, R. clarus, and G. cubense) and environmental root and soil samples were successfully traced and quantified by qPCR. The AMF root colonization reached 41-70% and the spore number 4-128 per g of soil. This study demonstrates for the first time the feasibility to trace and quantify the G. cubense isolate using a taxon-discriminating ITS marker in roots and soils. The validated approaches reveal their potential to be used for the quality control of other mycorrhizal inoculants and their relative quantification in agroecosystems.
Collapse
Affiliation(s)
- Yakelin Rodríguez-Yon
- Arbuscular Mycorrhizal Group, Department Biofertilizers and Plant Nutrition, Instituto Nacional de Ciencias Agrícolas (INCA) Gaveta Postal No 1 San José de Las Lajas, 32700, Mayabeque, Cuba.
| | - Camila Maistro-Patreze
- Department of Botany, Center for Life Science and Health, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, 22290-255, Brazil
| | - Orivaldo Jose Saggin-Junior
- Mycorrhiza Laboratory, Embrapa Agrobiologia, BR 464, km 07, Bairro Ecologia, Seropédica, RJ, 23891-000, Brazil
| | - Ramón Antonio Rivera
- Arbuscular Mycorrhizal Group, Department Biofertilizers and Plant Nutrition, Instituto Nacional de Ciencias Agrícolas (INCA) Gaveta Postal No 1 San José de Las Lajas, 32700, Mayabeque, Cuba
| | - Madelaine Quiñones
- Plant Pathology Group, Centro Nacional de Sanidad Agropecuaria (CENSA), Mayabeque, Cuba
| | - Geert Haesaert
- Department of Applied Sciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Université Bourgogne, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| |
Collapse
|
5
|
Enhanced soil quality with reduced tillage and solid manures in organic farming - a synthesis of 15 years. Sci Rep 2020; 10:4403. [PMID: 32157154 PMCID: PMC7064577 DOI: 10.1038/s41598-020-61320-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Demands upon the sustainability of farming are increasing in step with climate change and diversity loss. Organic farming offers a viable approach. To further improve organic management, three strategies with potential to enhance soil quality are being tested in a long-term trial since 2002 on a clay loam in temperate Switzerland: reduced tillage vs. ploughing, solid vs. liquid manures and biodynamic preparations. A synthesis of 15 years reveals an increase in topsoil organic carbon (SOC, +25%), microbial biomass (+32%) and activity (+34%) and a shift in microbial communities with conversion from ploughing to reduced tillage. Soils under reduced tillage are more stratified in SOC and nutrients. Additional application of composted manure has increased SOC by 6% compared to pure slurry application, with little impact on soil microbes. Biodynamic preparations have had a minor impact on soil quality. Fertilisation and biodynamic preparations did not affect yields. Both higher and lower yields were harvested in the reduced tillage system in relation to ploughing. The main yield determinants were N supply and higher weed infestation under reduced tillage. Continuously reduced tillage in organic farming has been proven to enhance soil quality at this site, while also presenting more challenges in management.
Collapse
|
6
|
Thioye B, van Tuinen D, Kane A, de Faria SM, Ndiaye C, Duponnois R, Sylla SN, Bâ AM. Tracing Rhizophagus irregularis isolate IR27 in Ziziphus mauritiana roots under field conditions. MYCORRHIZA 2019; 29:77-83. [PMID: 30460497 DOI: 10.1007/s00572-018-0875-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a major role as biofertilizer for sustainable agriculture. Nevertheless, it is still poorly documented whether inoculated AMF can successfully establish in field soils as exotic AMF and improve plant growth and productivity. Further, the fate of an exogenous inoculum is still poorly understood. Here, we pre-inoculated two cultivars (Tasset and Gola) of the fruit tree Ziziphus mauritiana (jujube) with the exotic AM fungus Rhizophagus irregularis isolate IR27 before transplantation in the field. In two experiments, tracking and quantification of R. irregularis IR27 were assessed in a 13-month-old jujube and an 18-month-old jujube in two fields located in Senegal. Our results showed that the inoculant R. irregularis IR27 was quantitatively traced and discriminated from native R. irregularis isolates in roots by using a qPCR assay targeting a fragment of the RNA polymerase II gene (RPB1), and that the inoculum represented only fractions ranging from 11 to 15% of the Rhizophagus genus in the two plantations 13 and 18 months after transplantation, respectively. This study validates the use of the RPB1 gene as marker for a relative quantification of a mycorrhizal inoculant fungus isolate in the field.
Collapse
Affiliation(s)
- Babacar Thioye
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Senegal.
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113 INRA/AGRO-M/CIRAD/IRD/UM2-TA10/J, Campus International de Baillarguet, 34398, Montpellier, France.
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Aboubacry Kane
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Senegal
| | | | - Cheikh Ndiaye
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Senegal
| | - Robin Duponnois
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113 INRA/AGRO-M/CIRAD/IRD/UM2-TA10/J, Campus International de Baillarguet, 34398, Montpellier, France
| | - Samba Ndao Sylla
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Senegal
| | - Amadou Mustapha Bâ
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113 INRA/AGRO-M/CIRAD/IRD/UM2-TA10/J, Campus International de Baillarguet, 34398, Montpellier, France
- Laboratoire de Biologie et Physiologie Végétales, Faculté des Sciences Exactes et Naturelles, Université des Antilles, BP 592, 97159, Pointe-à-Pitre, Guadeloupe, France
| |
Collapse
|
7
|
Ryan MH, Graham JH. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. THE NEW PHYTOLOGIST 2018; 220:1092-1107. [PMID: 29987890 DOI: 10.1111/nph.15308] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/30/2018] [Indexed: 05/11/2023]
Abstract
Contents Summary 1092 I. Introduction 1093 II. Investigating activity of AMF in agroecosystems 1093 III. Crop benefit from AMF: agronomic and mycorrhizal literature differ 1094 IV. Flawed methodology leads to benefits of mycorrhizas being overstated 1094 V. Rigorous methodology suggests low colonisation by AMF can sometimes reduce crop yield 1095 VI. Predicting when mycorrhizas matter for crop yield 1096 VII. Crop genotype 1099 VIII. Fungal genotype 1100 IX. Complex interactions between the mycorrhizal fungal and soil microbial communities 1102 X. Phosphorus-efficient agroecosystems 1102 XI. Conclusions 1103 Acknowledgements 1104 References 1104 SUMMARY: Arbuscular mycorrhizal fungi (AMF) are ubiquitous in agroecosystems and often stated to be critical for crop yield and agroecosystem sustainability. However, should farmers modify management to enhance the abundance and diversity of AMF? We address this question with a focus on field experiments that manipulated colonisation by indigenous AMF and report crop yield, or investigated community structure and diversity of AMF. We find that the literature presents an overly optimistic view of the importance of AMF in crop yield due, in part, to flawed methodology in field experiments. A small body of rigorous research only sometimes reports a positive impact of high colonisation on crop yield, even under phosphorus limitation. We suggest that studies vary due to the interaction of environment and genotype (crop and mycorrhizal fungal). We also find that the literature can be overly pessimistic about the impact of some common agricultural practices on mycorrhizal fungal communities and that interactions between AMF and soil microbes are complex and poorly understood. We provide a template for future field experiments and a list of research priorities, including phosphorus-efficient agroecosystems. However, we conclude that management of AMF by farmers will not be warranted until benefits are demonstrated at the field scale under prescribed agronomic management.
Collapse
Affiliation(s)
- Megan H Ryan
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - James H Graham
- Department of Soil and Water Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| |
Collapse
|
8
|
Janoušková M, Krak K, Vosátka M, Püschel D, Štorchová H. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS One 2017; 12:e0181525. [PMID: 28738069 PMCID: PMC5524347 DOI: 10.1371/journal.pone.0181525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.
Collapse
Affiliation(s)
- Martina Janoušková
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Karol Krak
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - David Püschel
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Helena Štorchová
- Institute of Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
9
|
Furze JR, Martin AR, Nasielski J, Thevathasan NV, Gordon AM, Isaac ME. Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem. Ecol Evol 2017; 7:3443-3454. [PMID: 28515880 PMCID: PMC5433968 DOI: 10.1002/ece3.2900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 11/23/2022] Open
Abstract
Understanding crop resilience to environmental stress is critical in predicting the consequences of global climate change for agricultural systems worldwide, but to date studies addressing crop resiliency have focused primarily on plant physiological and molecular responses. Arbuscular mycorrhizal fungi (AMF) form mutualisms with many crop species, and these relationships are key in mitigating the effects of abiotic stress in many agricultural systems. However, to date there is little research examining whether (1) fungal community structure in agroecosystems is resistant to changing environmental conditions, specifically water limitation and (2) resilience of fungal community structure is moderated by agricultural management systems, namely the integration of trees into cropping systems. Here, we address these uncertainties through a rainfall reduction field experiment that manipulated short-term water availability in a soybean-based (Glycine max L. Merr.) agroforest in Southern Ontario, Canada. We employed terminal restriction fragment length polymorphism analysis to determine the molecular diversity of both general fungal and AMF communities in soybean roots under no stress, stress (rainfall shelters added), and poststress (rainfall shelters removed). We found that general fungal and AMF communities sampled from soybean roots were resistant to rainfall reduction in a monoculture, but not in an agroforest. While AMF communities were unchanged after stress removal, general fungal communities were significantly different poststress in the agroforest, indicating a capacity for resiliency. Our study indicates that generalist fungi and AMF are responsive to changes in environmental conditions and that agroecosystem management plays a key role in the resistance and resilience of fungal communities to water limitation.
Collapse
Affiliation(s)
- Jessie R. Furze
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Adam R. Martin
- Department of Physical and Environmental Sciences and the Centre for Critical Development StudiesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Joshua Nasielski
- Department of GeographyUniversity of TorontoTorontoOntarioCanada
| | | | - Andrew M. Gordon
- School of Environmental SciencesUniversity of GuelphGuelphOntarioCanada
| | - Marney E. Isaac
- Department of Physical and Environmental Sciences and the Centre for Critical Development StudiesUniversity of Toronto ScarboroughTorontoOntarioCanada
- Department of GeographyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
10
|
Bouffaud ML, Bragalini C, Berruti A, Peyret-Guzzon M, Voyron S, Stockinger H, van Tuinen D, Lumini E, Wipf D, Plassart P, Lemanceau P, Bianciotto V, Redecker D, Girlanda M. Arbuscular mycorrhizal fungal community differences among European long-term observatories. MYCORRHIZA 2017; 27:331-343. [PMID: 27942957 DOI: 10.1007/s00572-016-0753-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungal (AMF) communities have been demonstrated to respond to a variety of biotic and abiotic factors, including various aspects of land management. Numerous studies have specifically addressed the impact of land use on AMF communities, but usually have been confined to one or a few sites. In this study, soil AMF assemblages were described in four different long-term observatories (LTOs) across Europe, each of which included a site-specific high-intensity and a low-intensity land use. AMF communities were characterized on the basis of 454 sequencing of the internal transcribed spacer 2 (ITS2) rDNA region. The primary goals of this study were (i) to determine the main factors that shape AMF communities in differentially managed sites in Europe and (ii) to identify individual AMF taxa or combinations of taxa suitable for use as biomarkers of land use intensification. AMF communities were distinct among LTOs, and we detected significant effects of management type and soil properties within the sites, but not across all sites. Similarly, indicator species were identified for specific LTOs and land use types but not universally for high- or low-intensity land uses. Different subsets of soil properties, including several chemical and physical variables, were found to be able to explain an important fraction of AMF community variation alone or together with other examined factors in most sites. The important factors were different from those for other microorganisms studied in the same sites, highlighting particularities of AMF biology.
Collapse
Affiliation(s)
- M-L Bouffaud
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
- Helmholtz Center for Environmental Research - UFZ, Halle, Germany, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - C Bragalini
- Department of Life Sciences and System Biology (DBios), University of Torino, 25 Viale Mattioli, 10125, Torino, Italy
- Université Claude Bernard Lyon1, Lyon, France
| | - A Berruti
- CNR-Istituto per la Protezione Sostenibile delle Piante, UOS Turin (CNR-IPSP), Torino, Italy
| | - M Peyret-Guzzon
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - S Voyron
- Department of Life Sciences and System Biology (DBios), University of Torino, 25 Viale Mattioli, 10125, Torino, Italy
| | - H Stockinger
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - D van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - E Lumini
- CNR-Istituto per la Protezione Sostenibile delle Piante, UOS Turin (CNR-IPSP), Torino, Italy
| | - D Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - P Plassart
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - P Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - V Bianciotto
- CNR-Istituto per la Protezione Sostenibile delle Piante, UOS Turin (CNR-IPSP), Torino, Italy
| | - D Redecker
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - M Girlanda
- Department of Life Sciences and System Biology (DBios), University of Torino, 25 Viale Mattioli, 10125, Torino, Italy.
- Université Claude Bernard Lyon1, Lyon, France.
| |
Collapse
|
11
|
Loján P, Senés-Guerrero C, Suárez JP, Kromann P, Schüßler A, Declerck S. Potato field-inoculation in Ecuador with Rhizophagus irregularis: no impact on growth performance and associated arbuscular mycorrhizal fungal communities. Symbiosis 2016. [DOI: 10.1007/s13199-016-0471-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Wyss T, Masclaux FG, Rosikiewicz P, Pagni M, Sanders IR. Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. THE ISME JOURNAL 2016; 10:2514-26. [PMID: 26953600 PMCID: PMC5030683 DOI: 10.1038/ismej.2016.29] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/15/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance.
Collapse
Affiliation(s)
- Tania Wyss
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pawel Rosikiewicz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Jacquiod S, Stenbæk J, Santos SS, Winding A, Sørensen SJ, Priemé A. Metagenomes provide valuable comparative information on soil microeukaryotes. Res Microbiol 2016; 167:436-50. [DOI: 10.1016/j.resmic.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 02/02/2023]
|
14
|
Peyret-Guzzon M, Stockinger H, Bouffaud ML, Farcy P, Wipf D, Redecker D. Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. MYCORRHIZA 2016; 26:33-46. [PMID: 26023005 DOI: 10.1007/s00572-015-0644-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Short-term effects of soil physical disturbance by ploughing and nitrogen and phosphate fertilisation on arbuscular mycorrhizal fungal (AMF) communities and on intraspecific populations of Rhizophagus irregularis in a buffer strip surrounded by arable fields were studied. Pre-grown Plantago lanceolata plantlets were transplanted into fertilised and/or ploughed experimental plots. After 3 months, the glomeromycotan communities in the roots of these trap plants were analysed using 454 pyrosequencing of a fragment of the RNA polymerase II gene (RPB1). Intraspecific populations of R. irregularis were studied by restriction fragment length polymorphism (RFLP) analysis of the mitochondrial large ribosomal subunit (mtLSU) gene. Soil disturbance significantly increased the diversity of species-level molecular taxa (MTs) and altered community structure, whilst fertilisation alone had no significant effect, unless coupled with ploughing. At the population level, the expected shift from genotypes of R. irregularis typically found in grasslands to those usually found in arable sites was only partially observed. In conclusion, in the short-term, physical soil disturbance, as well as nitrogen fertilisation when coupled with physical soil disturbance, affected AMF community and to a smaller extent population composition.
Collapse
Affiliation(s)
- M Peyret-Guzzon
- INRA, UMR 1347 Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - H Stockinger
- INRA, UMR 1347 Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - M-L Bouffaud
- INRA, UMR 1347 Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - P Farcy
- Domaine Expérimental d'Epoisses, UE 0115 INRA, Dijon, 21110, Bretenières, France
| | - D Wipf
- Université de Bourgogne, UMR 1347 Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - D Redecker
- Université de Bourgogne, UMR 1347 Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France.
| |
Collapse
|
15
|
Błaszkowski J, Furrazola E, Chwat G, Góralska A, Lukács AF, Kovács GM. Three new arbuscular mycorrhizal Diversispora species in Glomeromycota. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1122-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. MYCORRHIZA 2015; 25:533-46. [PMID: 25708401 DOI: 10.1007/s00572-015-0631-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/02/2015] [Indexed: 05/20/2023]
Abstract
Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.
Collapse
Affiliation(s)
- Jerry A Mensah
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Alexander M Koch
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| | - Pedro M Antunes
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada
| | - E Toby Kiers
- Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Miranda Hart
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
17
|
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. THE NEW PHYTOLOGIST 2015; 205:1406-1423. [PMID: 25639293 DOI: 10.1111/nph.13288] [Citation(s) in RCA: 802] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/30/2014] [Indexed: 05/04/2023]
Abstract
Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, 8046, Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057, Zürich, Switzerland
- Plant-microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Francis M Martin
- INRA, Lab of Excellence ARBRE, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, 54280, Champenoux, France
| | - Marc-André Selosse
- Département Systématique et Evolution (UMR 7205 ISYEB), Muséum national d'Histoire naturelle, CP 50, 45 rue Buffon, 75005, Paris, France
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D. The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS One 2014; 9:e107783. [PMID: 25275381 PMCID: PMC4183475 DOI: 10.1371/journal.pone.0107783] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
Due to the potential of arbuscular mycorrhizal fungi (AMF, Glomeromycota) to improve plant growth and soil quality, the influence of agricultural practice on their diversity continues to be an important research question. Up to now studies of community diversity in AMF have exclusively been based on nuclear ribosomal gene regions, which in AMF show high intra-organism polymorphism, seriously complicating interpretation of these data. We designed specific PCR primers for 454 sequencing of a region of the largest subunit of RNA polymerase II gene, and established a new reference dataset comprising all major AMF lineages. This gene is known to be monomorphic within fungal isolates but shows an excellent barcode gap between species. We designed a primer set to amplify all known lineages of AMF and demonstrated its applicability in combination with high-throughput sequencing in a long-term tillage experiment. The PCR primers showed a specificity of 99.94% for glomeromycotan sequences. We found evidence of significant shifts of the AMF communities caused by soil management and showed that tillage effects on different AMF taxa are clearly more complex than previously thought. The high resolving power of high-throughput sequencing highlights the need for quantitative measurements to efficiently detect these effects.
Collapse
Affiliation(s)
- Herbert Stockinger
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France
- INRA, UMR1347 Agroécologie, Dijon, France
| | | | | | | | - Dirk Redecker
- Université de Bourgogne, UMR1347 Agroécologie, Dijon, France
- * E-mail:
| |
Collapse
|
19
|
Carter KA, Smith JF, White MM, Serpe MD. Assessing the diversity of arbuscular mycorrhizal fungi in semiarid shrublands dominated by Artemisia tridentata ssp. wyomingensis. MYCORRHIZA 2014; 24:301-314. [PMID: 24249492 DOI: 10.1007/s00572-013-0537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/27/2013] [Indexed: 06/02/2023]
Abstract
Variation in the abiotic environment and host plant preferences can affect the composition of arbuscular mycorrhizal (AMF) assemblages. This study analyzed the AMF taxa present in soil and seedlings of Artemisia tridentata ssp. wyomingensis collected from sagebrush steppe communities in southwestern Idaho, USA. Our aims were to determine the AMF diversity within and among these communities and the extent to which preferential AMF-plant associations develop during seedling establishment. Mycorrhizae were identified using molecular methods following DNA extraction from field and pot culture samples. The extracted DNA was amplified using Glomeromycota specific primers, and identification of AMF was based on phylogenetic analysis of sequences from the large subunit-D2 rDNA region. The phylogenetic analyses revealed seven phylotypes, two within the Claroideoglomeraceae and five within the Glomeraceae. Four phylotypes clustered with known species including Claroideoglomus claroideum, Rhizophagus irregularis, Glomus microaggregatum, and Funneliformis mosseae. The other three phylotypes were similar to several published sequences not included in the phylogenetic analysis, but all of these were from uncultured and unnamed glomeromycetes. Pairwise distance analysis revealed some phylotypes with high genetic variation. The most diverse was the phylotype that included R. irregularis, which contained sequences showing pairwise differences up to 12 %. Most of the diversity in AMF sequences occurred within sites. The smaller genetic differentiation detected among sites was correlated with differences in soil texture. In addition, multiplication in pot cultures led to differentiation of AMF communities. Comparison of sequences obtained from the soil with those from A. tridentata roots revealed no significant differences between the AMF present in these samples. Overall, the sites sampled were dominated by cosmopolitan AMF taxa, and young seedlings of A. tridentata ssp. wyomingensis were colonized in relation to the abundance of these taxa in the soil.
Collapse
Affiliation(s)
- Keith A Carter
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725-1515, USA
| | | | | | | |
Collapse
|
20
|
Borriello R, Bianciotto V, Orgiazzi A, Lumini E, Bergero R. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Mol Phylogenet Evol 2014; 75:1-10. [PMID: 24569015 DOI: 10.1016/j.ympev.2014.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/16/2022]
Abstract
Arbuscular Mycorrhizal Fungi (AMF) are well known for their ecological importance and their positive influence on plants. The genetics and phylogeny of this group of fungi have long been debated. Nuclear markers are the main tools used for phylogenetic analyses, but they have sometimes proved difficult to use because of their extreme variability. Therefore, the attention of researchers has been moving towards other genomic markers, in particular those from the mitochondrial DNA. In this study, 46 sequences of different AMF isolates belonging to two main clades Gigasporaceae and Glomeraceae have been obtained from the mitochondrial gene coding for the Cytochrome c Oxidase I (COI), representing the largest dataset to date of AMF COI sequences. A very low level of divergence was recorded in the COI sequences from the Gigasporaceae, which could reflect either a slow rate of evolution or a more recent evolutionary divergence of this group. On the other hand, the COI sequence divergence between Gigasporaceae and Glomeraceae was high, with synonymous divergence reaching saturated levels. This work also showed the difficulty in developing valuable mitochondrial markers able to effectively distinguish all Glomeromycota species, especially those belonging to Gigasporaceae, yet it represents a first step towards the development of a full mtDNA-based dataset which can be used for further phylogenetic investigations of this fungal phylum.
Collapse
Affiliation(s)
- Roberto Borriello
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy
| | - Valeria Bianciotto
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi, 2749, Ispra, VA I-21027, Italy
| | - Erica Lumini
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy.
| | - Roberta Bergero
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| |
Collapse
|
21
|
Roger A, Colard A, Angelard C, Sanders IR. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. THE ISME JOURNAL 2013; 7:2137-46. [PMID: 23823490 PMCID: PMC3806264 DOI: 10.1038/ismej.2013.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts.
Collapse
Affiliation(s)
- Aurélien Roger
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| | - Alexandre Colard
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| | - Caroline Angelard
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| | - Ian R Sanders
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| |
Collapse
|
22
|
Formey D, Molès M, Haouy A, Savelli B, Bouchez O, Bécard G, Roux C. Comparative analysis of mitochondrial genomes of Rhizophagus irregularis - syn. Glomus irregulare - reveals a polymorphism induced by variability generating elements. THE NEW PHYTOLOGIST 2012; 196:1217-1227. [PMID: 22967288 DOI: 10.1111/j.1469-8137.2012.04283.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are involved in one of the most widespread plant-fungus interactions. A number of studies on the population dynamics of AM fungi have used mitochondrial (mt) DNA sequences, and yet mt AM fungus genomes are poorly known. To date, four mt genomes of three species of AM fungi are available, among which are two from Rhizophagus irregularis. In order to study intra- and interstrain mt genome variability of R. irregularis, we sequenced and de novo assembled four additional mt genomes of this species. We used 454 pyrosequencing and Illumina technologies to directly sequence mt genomes from total genomic DNA. The mt genomes are unique within each strain. Interstrain divergences in genome size, as a result of highly polymorphic intergenic and intronic sequences, were observed. The polymorphism is brought about by three types of variability generating element (VGE): homing endonucleases, DNA polymerase domain-containing open reading frames and small inverted repeats. Based on VGE positioning, mt sequences and nuclear markers, two subclades of R. irregularis were characterized. The discovery of VGEs highlights the great intraspecific plasticity of the R. irregularis mt genome. VGEs allow the design of powerful mt markers for the typing and monitoring of R. irregularis strains in genetic and population studies.
Collapse
Affiliation(s)
- Damien Formey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR5546, BP42617, F-31326, Castanet-Tolosan Cedex, France
- CNRS, UMR5546, BP 42617, F-31326, Castanet-Tolosan Cedex, France
- Agro-Nutrition, Parc Activestre, 3 avenue de l'orchidée, F-31390, Carbonne, France
| | - Marion Molès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR5546, BP42617, F-31326, Castanet-Tolosan Cedex, France
- CNRS, UMR5546, BP 42617, F-31326, Castanet-Tolosan Cedex, France
| | - Alexandra Haouy
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR5546, BP42617, F-31326, Castanet-Tolosan Cedex, France
- CNRS, UMR5546, BP 42617, F-31326, Castanet-Tolosan Cedex, France
| | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR5546, BP42617, F-31326, Castanet-Tolosan Cedex, France
- CNRS, UMR5546, BP 42617, F-31326, Castanet-Tolosan Cedex, France
| | - Olivier Bouchez
- Plateforme Génomique, Campus INRA Chemin de Borde-Rouge, F-31326, Castanet-Tolosan Cedex, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR5546, BP42617, F-31326, Castanet-Tolosan Cedex, France
- CNRS, UMR5546, BP 42617, F-31326, Castanet-Tolosan Cedex, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR5546, BP42617, F-31326, Castanet-Tolosan Cedex, France
- CNRS, UMR5546, BP 42617, F-31326, Castanet-Tolosan Cedex, France
| |
Collapse
|
23
|
Molecular approaches for AM fungal community ecology: A primer. J Microbiol Methods 2012; 90:108-14. [DOI: 10.1016/j.mimet.2012.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
24
|
Krak K, Janoušková M, Caklová P, Vosátka M, Štorchová H. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Appl Environ Microbiol 2012; 78:3630-7. [PMID: 22407684 PMCID: PMC3346362 DOI: 10.1128/aem.00035-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 11/20/2022] Open
Abstract
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.
Collapse
Affiliation(s)
- Karol Krak
- Institute of Botany, Academy of Sciences of the Czech Republic, Prùhonice, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JPW, Giovannetti M. Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. THE NEW PHYTOLOGIST 2012; 194:810-822. [PMID: 22380845 DOI: 10.1111/j.1469-8137.2012.04090.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Inoculation of crop plants by non-native strains of arbuscular mycorrhizal (AM) fungi as bio-enhancers is promoted without clear evidence for symbiotic effectiveness and fungal persistence. To address such gaps, the forage legume Medicago sativa was inoculated in an agronomic field trial with two isolates of Funneliformis mosseae differing in their nuclear rDNA sequences from native strains. • The inoculants were traced by PCR with a novel combination of the universal fungal NS31 and Glomeromycota-specific LSUGlom1 primers which target the nuclear rDNA cistron. The amplicons were classified by restriction fragment length polymorphism and sequencing. • The two applied fungal inoculants were successfully traced and discriminated from native strains in roots sampled from the field up to 2 yr post inoculation. Moreover, field inoculation with inocula of non-native isolates of F. mosseae appeared to have stimulated root colonization and yield of M. sativa. • Proof of inoculation success and sustained positive effects on biomass production and quality of M. sativa crop plants hold promise for the role that AM fungal inoculants could play in agriculture.
Collapse
Affiliation(s)
- Elisa Pellegrino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.za Martiri della Libertà 33, 56127 Pisa, Italy
- Department of Crop Plant Biology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessandra Turrini
- Department of Crop Plant Biology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hannes A Gamper
- Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
- Group of Plant Nutrition, Institute of Agricultural Sciences, Swiss Federal Institute of Technology Zurich, Eschikon 33, 8315 Lindau (ZH), Switzerland
| | - Giovanni Cafà
- Department of Crop Plant Biology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Enrico Bonari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, P.za Martiri della Libertà 33, 56127 Pisa, Italy
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Manuela Giovannetti
- Department of Crop Plant Biology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
26
|
Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. THE NEW PHYTOLOGIST 2012; 193:970-984. [PMID: 22150759 DOI: 10.1111/j.1469-8137.2011.03962.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although the molecular phylogeny, evolution and biodiversity of arbuscular mycorrhizal fungi (AMF) are becoming clearer, phylotaxonomically reliable sequence data are still limited. To fill this gap, a data set allowing resolution and environmental tracing across all taxonomic levels is provided. Two overlapping nuclear DNA regions, totalling c. 3 kb, were analysed: the small subunit (SSU) rRNA gene (up to 1800 bp) and a fragment spanning c. 250 bp of the SSU rDNA, the internal transcribed spacer (ITS) region (c. 475-520 bp) and c. 800 bp of the large subunit (LSU) rRNA gene. Both DNA regions together could be analysed for 35 described species, the SSU rDNA for c. 76 named and 18 as yet undefined species, and the ITS region or LSU rDNA, or a combination of both, for c. 91 named and 16 as yet undefined species. Present phylogenetic analyses, based on the three rDNA markers, provide reliable and robust resolution from phylum to species level. Altogether, 109 named species and 27 cultures representing as yet undefined species were analysed. This study provides a reference data set for molecular systematics and environmental community analyses of AMF, including analyses based on deep sequencing.
Collapse
Affiliation(s)
- Manuela Krüger
- Department of Biology, Genetics, Ludwig-Maximilians University, Grosshaderner Street 4, 82152 Planegg-Martinsried, Germany
| | - Claudia Krüger
- Department of Biology, Genetics, Ludwig-Maximilians University, Grosshaderner Street 4, 82152 Planegg-Martinsried, Germany
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Herbert Stockinger
- Department of Biology, Genetics, Ludwig-Maximilians University, Grosshaderner Street 4, 82152 Planegg-Martinsried, Germany
| | - Arthur Schüßler
- Department of Biology, Genetics, Ludwig-Maximilians University, Grosshaderner Street 4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Antunes PM, Lehmann A, Hart MM, Baumecker M, Rillig MC. Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2011.01953.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D. Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. MYCORRHIZA 2012; 22:69-80. [PMID: 21526402 DOI: 10.1007/s00572-011-0375-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/15/2011] [Indexed: 05/02/2023]
Abstract
During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.
Collapse
Affiliation(s)
- Zuzana Sýkorová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
Krüger M, Walker C, Schüßler A. Acaulospora brasiliensis comb. nov. and Acaulospora alpina (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and DNA-based detection in roots. MYCORRHIZA 2011; 21:577-587. [PMID: 21336507 DOI: 10.1007/s00572-011-0361-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/13/2011] [Indexed: 05/30/2023]
Abstract
Spores of two supposedly arbuscular mycorrhizal fungal species, new to the United Kingdom and recently described as Acaulospora alpina and Ambispora brasiliensis (Glomeromycota), were discovered in soil samples from moorland in upland Scotland. Soil and plant trap pot cultures were established, but attempts to establish these fungi in single-species pot cultures with Plantago lanceolata as host were unsuccessful. Nevertheless, based on a 1.5-kb DNA fragment spanning part of the small subunit rRNA gene, the internal transcribed spacer region and part of the large subunit rRNA gene, both these species could be detected directly in field-sampled roots, together with one uncultured species each of Scutellospora, Rhizophagus (former Glomus group Ab, or 'Glomus intraradices clade') and Acaulospora. Whereas A. alpina has characteristic morphological similarities to other species in its genus, A. brasiliensis morphologically has little in common with any other species in Ambispora. The molecular phylogeny, DNA barcoding and morphological evidence clearly place A. brasiliensis in the genus Acaulospora. We therefore rename the species, reported from Brazil and Scotland, as Acaulospora brasiliensis comb. nov., and discuss ecological aspects of the very different environments from which A. brasiliensis and A. alpina have been reported.
Collapse
Affiliation(s)
- Manuela Krüger
- Department of Biology, Genetics, Ludwig-Maximilians-University Munich, Grosshaderner Str. 4, 82152, Planegg-Martinsried, Germany
| | - Christopher Walker
- Honorary Research Associate, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
- Honorary Research Fellow, School of Earth Sciences and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Arthur Schüßler
- Department of Biology, Genetics, Ludwig-Maximilians-University Munich, Grosshaderner Str. 4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
30
|
Davison J, Öpik M, Daniell TJ, Moora M, Zobel M. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 2011; 78:103-15. [PMID: 21457278 DOI: 10.1111/j.1574-6941.2011.01103.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- John Davison
- Department of Botany, University of Tartu, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
31
|
Verbruggen E, Toby Kiers E. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 2010; 3:547-60. [PMID: 25567946 PMCID: PMC3352509 DOI: 10.1111/j.1752-4571.2010.00145.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/11/2010] [Indexed: 12/11/2022] Open
Abstract
The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit.
Collapse
Affiliation(s)
- Erik Verbruggen
- Department of Ecological Science, Faculty of Earth of Life Sciences, VU University Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Science, Faculty of Earth of Life Sciences, VU University Amsterdam, The Netherlands ; Department of Plant, Soil and Insect Science, University of Massachusetts at Amherst Amherst, MA, USA
| |
Collapse
|
32
|
Sanders IR. ‘Designer’ mycorrhizas?: Using natural genetic variation in AM fungi to increase plant growth. ISME JOURNAL 2010; 4:1081-3. [DOI: 10.1038/ismej.2010.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|