1
|
Ding K, Xu Q, Zhao L, Li Y, Li Z, Shi W, Zeng Q, Wang X, Zhang X. Chromosome-level genome provides insights into environmental adaptability and innate immunity in the common dolphin (delphinus delphis). BMC Genomics 2024; 25:373. [PMID: 38627659 PMCID: PMC11022445 DOI: 10.1186/s12864-024-10268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The common dolphin (Delphinus delphis) is widely distributed worldwide and well adapted to various habitats. Animal genomes store clues about their pasts, and can reveal the genes underlying their evolutionary success. Here, we report the first high-quality chromosome-level genome of D. delphis. The assembled genome size was 2.56 Gb with a contig N50 of 63.85 Mb. Phylogenetically, D. delphis was close to Tursiops truncatus and T. aduncus. The genome of D. delphis exhibited 428 expanded and 1,885 contracted gene families, and 120 genes were identified as positively selected. The expansion of the HSP70 gene family suggested that D. delphis has a powerful system for buffering stress, which might be associated with its broad adaptability, longevity, and detoxification capacity. The expanded IFN-α and IFN-ω gene families, as well as the positively selected genes encoding tripartite motif-containing protein 25, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, and p38 MAP kinase, were all involved in pathways for antiviral, anti-inflammatory, and antineoplastic mechanisms. The genome data also revealed dramatic fluctuations in the effective population size during the Pleistocene. Overall, the high-quality genome assembly and annotation represent significant molecular resources for ecological and evolutionary studies of Delphinus and help support their sustainable treatment and conservation.
Collapse
Affiliation(s)
- Kui Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liyuan Zhao
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wenge Shi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Qianhui Zeng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xianyan Wang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China.
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi'an, China.
| |
Collapse
|
2
|
Ecomorphology of toothed whales (Cetacea, Odontoceti) as revealed by 3D skull geometry. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractExtant odontocetes (toothed whales) exhibit differences in body size and brain mass, biosonar mode, feeding strategies, and diving and habitat adaptations. Strong selective pressures associated with these factors have likely contributed to the morphological diversification of their skull. Here, we used 3D landmark geometric morphometric data from the skulls of 60 out of ~ 72 extant odontocete species and a well-supported phylogenetic tree to test whether size and shape variation are associated with ecological adaptations at an interspecific scale. Odontocete skull morphology exhibited a significant phylogenetic signal, with skull size showing stronger signal than shape. After accounting for phylogeny, significant associations were detected between skull size and biosonar mode, body length, brain and body mass, maximum and minimum prey size, and maximum peak frequency. Brain mass was also strongly correlated with skull shape together with surface temperature and average and minimum prey size. When asymmetric and symmetric components of shape were analysed separately, a significant correlation was detected between sea surface temperature and both symmetric and asymmetric components of skull shape, and between diving ecology and the asymmetric component. Skull shape variation of odontocetes was strongly influenced by evolutionary allometry but most of the associations with ecological variables were not supported after phylogenetic correction. This suggests that ecomorphological feeding adaptations vary more between, rather than within, odontocete families, and functional anatomical patterns across odontocete clades are canalised by size constraints.
Collapse
|
3
|
Seascape genomics of common dolphins (Delphinus delphis) reveals adaptive diversity linked to regional and local oceanography. BMC Ecol Evol 2022; 22:88. [PMID: 35818031 PMCID: PMC9275043 DOI: 10.1186/s12862-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia.
Results
We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.
Conclusion
To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.
Collapse
|
4
|
Gillet A, Frédérich B, Pierce SE, Parmentier E. Iterative Habitat Transitions are Associated with Morphological Convergence of the Backbone in Delphinoids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
do Amaral KB, Barragán-Barrera DC, Mesa-Gutiérrez RA, Farías-Curtidor N, Caballero Gaitán SJ, Méndez-Fernandez P, Santos MCO, Rinaldi C, Rinaldi R, Siciliano S, Martín V, Carrillo M, de Meirelles ACO, Franco-Trecu V, Fagundes NJR, Moreno IB, Lacey Knowles L, Amaral AR. Seascape Genetics of the Atlantic Spotted Dolphin (Stenella frontalis) Based on Mitochondrial DNA. J Hered 2021; 112:646-662. [PMID: 34453543 DOI: 10.1093/jhered/esab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
The Atlantic spotted dolphin (Stenella frontalis) is endemic to tropical, subtropical, and warm temperate waters of the Atlantic Ocean. Throughout its distribution, both geographic distance and environmental variation may contribute to population structure of the species. In this study, we follow a seascape genetics approach to investigate population differentiation of Atlantic spotted dolphins based on a large worldwide dataset and the relationship with marine environmental variables. The results revealed that the Atlantic spotted dolphin exhibits population genetic structure across its distribution based on mitochondrial DNA control region (mtDNA-CR) data. Analyses based on the contemporary landscape suggested, at both the individual and population level, that the population genetic structure is consistent with the isolation-by-distance model. However, because geography and environmental matrices were correlated, and because in some, but not all analyses, we found a significant effect for the environment, we cannot rule out the addition contribution of environmental factors in structuring genetic variation. Future analyses based on nuclear data are needed to evaluate whether local processes, such as social structure and some level of philopatry within populations, may be contributing to the associations among genetic structure, geographic, and environmental distance.
Collapse
Affiliation(s)
- Karina Bohrer do Amaral
- Laboratório de Sistemática e Ecologia de Aves e Mamíferos Marinhos (LABSMAR), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-70 Porto Alegre, RS, Brazil
| | - Dalia C Barragán-Barrera
- Centro de Investigaciones Oceanográficas de Hidrográficas del Caribe CIOH-DIMAR, Barrio Bosque, Sector Manzanillo Escuela Naval de Cadetes "Almirante Padilla," Cartagena, Colombia.,Fundación Macuáticos Colombia, Colombia, Medellín, Colombia.,Laboratorio de Ecología Molecular de Vertebrados Acuáticos (LEMVA), Departmento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A-12, Bogotá, Colombia
| | | | | | - Susana Josefina Caballero Gaitán
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos (LEMVA), Departmento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A-12, Bogotá, Colombia
| | - Paula Méndez-Fernandez
- Observatoire PELAGIS, UMS 3462 La Rochelle Université / CNRS, Pôle Analytique, 5 allées de l'Océan, 17000 La Rochelle, France
| | - Marcos C Oliveira Santos
- Laboratório de Biologia da Conservação de Mamíferos Aquáticos (LABCMA), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Sala 145-A, 05508-120 São Paulo, SP, Brazil
| | - Caroline Rinaldi
- Association Evasion Tropicale (AET), 1 Rue des Palétuviers, Pigeon Bouillante, 97125 Guadeloupe, France
| | - Renato Rinaldi
- Association Evasion Tropicale (AET), 1 Rue des Palétuviers, Pigeon Bouillante, 97125 Guadeloupe, France
| | - Salvatore Siciliano
- Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4.365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Vidal Martín
- Sociedad para el Estudio de Cetáceos del Archipélago Canario (SECAC), Casa de los Arroyo, Avda. Coll n.6, 35500 Arrecife, Lanzarote, Spain
| | - Manuel Carrillo
- Tenerife Conservación, C/Maya No. 8, La Laguna, Tenerife, Canary Islands, Spain
| | - Ana Carolina O de Meirelles
- AQUASIS-Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Praia de Iparana, s/no, SESC Iparana, 61600-000 Caucaia, CE, Brazil
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Iguá 4225, 11400, Montevideo, Uruguay
| | - Nelson J R Fagundes
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-70 Porto Alegre, RS, Brazil.,Laboratório de Genética Médica e Evolução, Departamento de Genética, Universidade Federal do Rio Grande do Sul. Avenida Bento Gonçalves 9500, Prédio 43312, sala 113, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco III, Prédio 43312, 91501-970 Porto Alegre, RS, Brazil
| | - Ignacio Benites Moreno
- Laboratório de Sistemática e Ecologia de Aves e Mamíferos Marinhos (LABSMAR), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-70 Porto Alegre, RS, Brazil.,Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Avenida Tramandaí, 976, Imbé, Rio Grande do Sul, 95625-000, Brazil
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI
| | - Ana Rita Amaral
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.,Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024
| |
Collapse
|
6
|
Ben Chehida Y, Thumloup J, Schumacher C, Harkins T, Aguilar A, Borrell A, Ferreira M, Rojas-Bracho L, Robertson KM, Taylor BL, Víkingsson GA, Weyna A, Romiguier J, Morin PA, Fontaine MC. Mitochondrial genomics reveals the evolutionary history of the porpoises (Phocoenidae) across the speciation continuum. Sci Rep 2020; 10:15190. [PMID: 32938978 PMCID: PMC7494866 DOI: 10.1038/s41598-020-71603-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023] Open
Abstract
Historical variation in food resources is expected to be a major driver of cetacean evolution, especially for the smallest species like porpoises. Despite major conservation issues among porpoise species (e.g., vaquita and finless), their evolutionary history remains understudied. Here, we reconstructed their evolutionary history across the speciation continuum. Phylogenetic analyses of 63 mitochondrial genomes suggest that porpoises radiated during the deep environmental changes of the Pliocene. However, all intra-specific subdivisions were shaped during the Quaternary glaciations. We observed analogous evolutionary patterns in both hemispheres associated with convergent evolution to coastal versus oceanic environments. This suggests that similar mechanisms are driving species diversification in northern (harbor and Dall's) and southern species (spectacled and Burmeister's). In contrast to previous studies, spectacled and Burmeister's porpoises shared a more recent common ancestor than with the vaquita that diverged from southern species during the Pliocene. The low genetic diversity observed in the vaquita carried signatures of a very low population size since the last 5,000 years. Cryptic lineages within Dall's, spectacled and Pacific harbor porpoises suggest a richer evolutionary history than previously suspected. These results provide a new perspective on the mechanisms driving diversification in porpoises and an evolutionary framework for their conservation.
Collapse
Affiliation(s)
- Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
| | - Julie Thumloup
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
| | - Cassie Schumacher
- Swift Biosciences, 674 S. Wagner Rd., Suite 100, Ann Arbor, MI, 48103, USA
| | - Timothy Harkins
- Swift Biosciences, 674 S. Wagner Rd., Suite 100, Ann Arbor, MI, 48103, USA
| | - Alex Aguilar
- IRBIO and Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Diagonal 643, 08071, Barcelona, Spain
| | - Asunción Borrell
- IRBIO and Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Diagonal 643, 08071, Barcelona, Spain
| | - Marisa Ferreira
- MATB-Sociedade Portuguesa de Vida Selvagem, Estação de Campo de Quiaios, Apartado EC Quiaios, 3080-530, Figueira da Foz, Portugal.,CPRAM-Ecomare, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Lorenzo Rojas-Bracho
- Comisión Nacional de Áreas Naturales Protegidas (CONANP), C/o Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, BC, Mexico
| | - Kelly M Robertson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Barbara L Taylor
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Gísli A Víkingsson
- Marine and Freshwater Research Institute, Fornubúðum 5, 220, Hafnarfjörður, Iceland
| | - Arthur Weyna
- Institut Des Sciences de L'Évolution (Université de Montpellier, CNRS UMR 5554), Montpellier, France
| | - Jonathan Romiguier
- Institut Des Sciences de L'Évolution (Université de Montpellier, CNRS UMR 5554), Montpellier, France
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands. .,Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 229) et Centre de Recherche en Écologie et Évolution de la Santé (CREES), Institut de Recherche Pour Le Développement (IRD), 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
7
|
Nykänen M, Kaschner K, Dabin W, Brownlow A, Davison NJ, Deaville R, Garilao C, Kesner-Reyes K, Gilbert MTP, Penrose R, Islas-Villanueva V, Wales N, Ingram SN, Rogan E, Louis M, Foote AD. Postglacial Colonization of Northern Coastal Habitat by Bottlenose Dolphins: A Marine Leading-Edge Expansion? J Hered 2020; 110:662-674. [PMID: 31211393 DOI: 10.1093/jhered/esz039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/14/2019] [Indexed: 11/15/2022] Open
Abstract
Oscillations in the Earth's temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900-26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations.
Collapse
Affiliation(s)
- Milaja Nykänen
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße, Freiburg, Germany
| | - Willy Dabin
- Centre d'Etudes Biologiques de Chizé. UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France.,Observatoire PELAGIS, UMS 3462 CNRS-Université de La Rochelle, 5 allées de l'Océan, La Rochelle, France
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, UK
| | - Rob Deaville
- UK Cetacean Strandings Investigation Programme, The Wellcome Building, Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | | | | | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rod Penrose
- Marine Environmental Monitoring, Penwalk, Llechryd, Cardigan, Ceredigion, Wales, UK
| | | | - Nathan Wales
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon N Ingram
- Marine Vertebrate Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | - Marie Louis
- Centre d'Etudes Biologiques de Chizé. UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France.,Scottish Oceans Institute, East Sands, St Andrews, UK
| | - Andrew D Foote
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland.,Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Population genetic structure of the short-beaked common dolphin from the Black Sea and the Turkish Straits System. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:257-264. [PMID: 32654598 DOI: 10.1080/24701394.2020.1788008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our study aims to assess the population connectivity, evolutionary history, and conservation status of the short-beaked common dolphin in the Black Sea and Turkish Straits System (TSS). We also include DNA sequences from the Atlantic Ocean and the Mediterranean Sea to provide a regional perspective to our localized study. Analysis of 366 base pairs of mitochondrial DNA D-loop fragments from 37 samples collected from short-beaked common dolphins in the Black Sea, TSS, and Aegean Sea revealed 13 haplotypes, eight of which have not been previously reported. While analysis of samples archived on GenBank revealed 89 different haplotypes across the region. The haplotype network contains two main peripheral groups that include individuals from all locations. Haplotypes from the Atlantic Ocean are scattered across the network and no obvious population separation was detected. Some shared haplotypes potentially indicate multi-directional colonization events of the Mediterranean Sea from the eastern Atlantic Ocean. Moreover, some less widely distributed haplotypes suggest some level of more recent genetic connectivity through the Strait of Gibraltar and the TSS and point out the importance of these straits in the dispersal of short-beaked common dolphins. The haplotype and nucleotide diversity values were lower in the Black Sea, TSS, and western Mediterranean Sea when compared to the Atlantic Ocean, supporting the expansion of Atlantic populations into the Mediterranean and the Black Seas. Differentiation was observed between the Atlantic Ocean, and the Mediterranean Sea, TSS and the Black Sea based on Фst but not between Mediterranean and the Black Seas. For common dolphins, which have high dispersal potential, the protection of open seas and narrow seaways to enhance connectivity may be crucial.
Collapse
|
9
|
Tavares SB, Samarra FIP, Pascoal S, Graves JA, Miller PJO. Killer whales ( Orcinus orca) in Iceland show weak genetic structure among diverse isotopic signatures and observed movement patterns. Ecol Evol 2018; 8:11900-11913. [PMID: 30598785 PMCID: PMC6303705 DOI: 10.1002/ece3.4646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/07/2022] Open
Abstract
Local adaption through ecological niche specialization can lead to genetic structure between and within populations. In the Northeast Pacific, killer whales (Orcinus orca) of the same population have uniform specialized diets that are non-overlapping with other sympatric, genetically divergent, and socially isolated killer whale ecotypes. However, killer whales in Iceland show intrapopulation variation of isotopic niches and observed movement patterns: some individuals appear to specialize on herring and follow it year-round while others feed upon herring only seasonally or opportunistically. We investigated genetic differentiation among Icelandic killer whales with different isotopic signatures and observed movement patterns. This information is key for management and conservation purposes but also for better understanding how niche specialization drives genetic differentiation. Photo-identified individuals (N = 61) were genotyped for 22 microsatellites and a 611 bp portion of the mitochondrial DNA (mtDNA) control region. Photo-identification of individuals allowed linkage of genetic data to existing data on individual isotopic niche, observed movement patterns, and social associations. Population subdivision into three genetic units was supported by a discriminant analysis of principal components (DAPC). Genetic clustering corresponded to the distribution of isotopic signatures, mtDNA haplotypes, and observed movement patterns, but genetic units were not socially segregated. Genetic differentiation was weak (F ST < 0.1), suggesting ongoing gene flow or recent separation of the genetic units. Our results show that killer whales in Iceland are not as genetically differentiated, ecologically discrete, or socially isolated as the Northeast Pacific prey-specialized killer whales. If any process of ecological divergence and niche specialization is taking place among killer whales in Iceland, it is likely at a very early stage and has not led to the patterns observed in the Northeast Pacific.
Collapse
Affiliation(s)
- Sara B. Tavares
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt Andrews, FifeUK
| | - Filipa I. P. Samarra
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt Andrews, FifeUK
- Marine and Freshwater Research InstituteReykjavíkIceland
| | - Sonia Pascoal
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Jeff A. Graves
- Scottish Oceans InstituteUniversity of St AndrewsSt Andrews, FifeUK
| | - Patrick J. O. Miller
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt Andrews, FifeUK
| |
Collapse
|
10
|
Cryptic lineage differentiation among Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the northwest Indian Ocean. Mol Phylogenet Evol 2018; 122:1-14. [DOI: 10.1016/j.ympev.2017.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 11/19/2022]
|
11
|
Barragán-Barrera DC, May-Collado LJ, Tezanos-Pinto G, Islas-Villanueva V, Correa-Cárdenas CA, Caballero S. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the Archipelago of Bocas del Toro, Panama: A population at risk? PLoS One 2017; 12:e0189370. [PMID: 29236757 PMCID: PMC5728558 DOI: 10.1371/journal.pone.0189370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 11/26/2017] [Indexed: 11/19/2022] Open
Abstract
The current conservation status of the bottlenose dolphin (Tursiops truncatus) under the IUCN is ‘least concern’. However, in the Caribbean, small and localized populations of the ‘inshore form’ may be at higher risk of extinction than the ‘worldwide distributed form’ due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR) and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the ‘inshore form’, grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72–87), which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05). The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in Bocas del Toro should be elevated to ‘endangered’ at the national level, as a precautionary measure while population and viability estimates are conducted.
Collapse
Affiliation(s)
- Dalia C. Barragán-Barrera
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Departamento de Ciencias Biológicas, Universidad de los Andes, Laboratorio J-202, Bogotá, Colombia
- Fundación Macuáticos Colombia, Medellín, Colombia
- * E-mail:
| | - Laura J. May-Collado
- Department of Biology, University of Vermont, Burlington, VT, United States of America
- Centro de Investigaciones del Mar y Limnología, Universidad de Costa Rica, San Jose, Costa Rica
| | | | - Valentina Islas-Villanueva
- CONACYT, Universidad del Mar, Instituto de Genética, Ciudad Universitaria, Puerto Ángel, Distrito de San Pedro Pochutla, Oaxaca, México
| | - Camilo A. Correa-Cárdenas
- Facultad de Ingeniería y Ciencias Básicas, Departamento de Ciencias Naturales, Universidad Central, Bogotá, Colombia
- Departamento de Ciencias Básicas, Universidad de La Salle, Bogotá, Colombia
| | - Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Departamento de Ciencias Biológicas, Universidad de los Andes, Laboratorio J-202, Bogotá, Colombia
| |
Collapse
|
12
|
Ngqulana SG, Hofmeyr GJG, Plön S. Sexual dimorphism in long-beaked common dolphins (Delphinus capensis) from KwaZulu-Natal, South Africa. J Mammal 2017. [DOI: 10.1093/jmammal/gyx086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Fontaine MC, Thatcher O, Ray N, Piry S, Brownlow A, Davison NJ, Jepson P, Deaville R, Goodman SJ. Mixing of porpoise ecotypes in southwestern UK waters revealed by genetic profiling. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160992. [PMID: 28405389 PMCID: PMC5383846 DOI: 10.1098/rsos.160992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Contact zones between ecotypes are windows for understanding how species may react to climate changes. Here, we analysed the fine-scale genetic and morphological variation in harbour porpoises (Phocoena phocoena) around the UK by genotyping 591 stranded animals at nine microsatellite loci. The data were integrated with a prior study to map at high resolution the contact zone between two previously identified ecotypes meeting in the northern Bay of Biscay. Clustering and spatial analyses revealed that UK porpoises are derived from two genetic pools with porpoises from the southwestern UK being genetically differentiated, and having larger body sizes compared to those of other UK areas. Southwestern UK porpoises showed admixed ancestry between southern and northern ecotypes with a contact zone extending from the northern Bay of Biscay to the Celtic Sea and Channel. Around the UK, ancestry blends from one genetic group to the other along a southwest--northeast axis, correlating with body size variation, consistent with previously reported morphological differences between the two ecotypes. We also detected isolation by distance among juveniles but not in adults, suggesting that stranded juveniles display reduced intergenerational dispersal. The fine-scale structure of this admixture zone raises the question of how it will respond to future climate change and provides a reference point for further study.
Collapse
Affiliation(s)
- Michaël C. Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Oliver Thatcher
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Nicolas Ray
- EnviroSPACE Laboratory, Institute for Environmental Sciences, University of Geneva, Carouge, Switzerland
| | - Sylvain Piry
- INRA, UMR CBGP, 34988 Montferrier-sur-Lez Cedex, France
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
| | - Nicholas J. Davison
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
- Animal and Plant Health Agency, Polwhele, Truro, Cornwall TR4 9AD, UK
| | - Paul Jepson
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - Simon J. Goodman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| |
Collapse
|
14
|
Kershaw F, Carvalho I, Loo J, Pomilla C, Best PB, Findlay KP, Cerchio S, Collins T, Engel MH, Minton G, Ersts P, Barendse J, Kotze PGH, Razafindrakoto Y, Ngouessono S, Meÿer M, Thornton M, Rosenbaum HC. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol Ecol 2017; 26:977-994. [DOI: 10.1111/mec.13943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Francine Kershaw
- Columbia University; 116th Street and Broadway New York NY 10027 USA
| | - Inês Carvalho
- Population and Conservation Genetics Group; Instituto Gulbenkian de Ciência; Rua da Quinta Grande, 6 2780-156 Oeiras Portugal
- Centre for Environmental and Marine Studies (CESAM); Universidade de Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Jacqueline Loo
- Department of Biology; New York University; 100 Washington Square New York NY 10012 USA
| | - Cristina Pomilla
- Wellcome Trust Sanger Institute; Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SA UK
| | - Peter B. Best
- Mammal Research Institute; University of Pretoria; c/o Iziko South African Museum, P.O. Box 61 Cape Town 8000 South Africa
| | - Ken P. Findlay
- Mammal Research Institute; University of Pretoria; c/o Iziko South African Museum, P.O. Box 61 Cape Town 8000 South Africa
| | - Salvatore Cerchio
- Wildlife Conservation Society; Ocean Giants Program; 2300 Southern Blvd. Bronx NY 10460-1099 USA
| | - Tim Collins
- Wildlife Conservation Society; Ocean Giants Program; 2300 Southern Blvd. Bronx NY 10460-1099 USA
- Environment Society of Oman; P.O. Box 3955 PC 112 Ruwi Sultanate of Oman
| | - Marcia H. Engel
- Humpback Whale Project/Humpback Whale Institute; Rua Barão do Rio Branco, 125 Caravelas Bahia Brazil
| | - Gianna Minton
- Environment Society of Oman; P.O. Box 3955 PC 112 Ruwi Sultanate of Oman
| | - Peter Ersts
- Center for Biodiversity and Conservation; American Museum of Natural History; Central Park West at 79th Street New York NY 10024 USA
| | - Jaco Barendse
- Mammal Research Institute; University of Pretoria; c/o Iziko South African Museum, P.O. Box 61 Cape Town 8000 South Africa
| | - P. G. H. Kotze
- Department of Environmental Affairs; Branch Oceans and Coasts; Private Bag x2, Roggebaai 8012 Cape Town South Africa
| | - Yvette Razafindrakoto
- Wildlife Conservation Society-Madagascar Program; 2300 Southern Blvd. Bronx NY 10460-1099 USA
| | - Solange Ngouessono
- Agence Nationale des Parcs Nationaux; Batterie 4 BP 20379 Libreville Gabon
| | - Michael Meÿer
- Department of Environmental Affairs; Branch Oceans and Coasts; Private Bag x2, Roggebaai 8012 Cape Town South Africa
| | - Meredith Thornton
- Mammal Research Institute; University of Pretoria; c/o Iziko South African Museum, P.O. Box 61 Cape Town 8000 South Africa
| | - Howard C. Rosenbaum
- Wildlife Conservation Society; Ocean Giants Program; 2300 Southern Blvd. Bronx NY 10460-1099 USA
- Sackler Institute for Comparative Genomics; American Museum of Natural History; Central Park West at 79th Street New York NY 10024 USA
| |
Collapse
|
15
|
do Amaral KB, Amaral AR, Ewan Fordyce R, Moreno IB. Historical Biogeography of Delphininae Dolphins and Related Taxa (Artiodactyla: Delphinidae). J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9376-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Segura-García I, Gallo JP, Chivers S, Díaz-Gamboa R, Hoelzel AR. Post-glacial habitat release and incipient speciation in the genus Delphinus. Heredity (Edinb) 2016; 117:400-407. [PMID: 27599576 DOI: 10.1038/hdy.2016.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
The role of ecological and changing environmental factors in the radiation of species diversity is a fundamental question in evolutionary biology. Of particular interest is the potential for these factors to determine the boundary between what we would consider differentiation among populations and incipient speciation. Dolphins in the genus Delphinus provide a useful test case, exhibiting morphological variation in beak length, coloration and body size across their wide geographic distribution, and in particular among coastal and more pelagic habitats. Two species have been proposed, D. delphis and D. capensis, but morphologically similar allopatric populations are not monophyletic, indicating that the mostly coastal 'long-beaked' D. capensis form is not a single globally distributed species. However, the sympatric populations in the Eastern North Pacific currently designated as these two species are both morphologically and genetically differentiated. Here we use microsatellite DNA and mitochondrial DNA markers to investigate the evolutionary mechanisms that led to this incipient speciation event. We used coalescent and assignment methods to investigate the timing and extent of reproductive isolation. Our data indicate that although there is some level of on-going gene flow, the putative species found in the Eastern North Pacific are reciprocally monophyletic. The timing of isolation appears to be associated with regional changes in paleoceanographic conditions within the Holocene timeframe.
Collapse
Affiliation(s)
- I Segura-García
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - J P Gallo
- Centro de Investigación en Alimentación y Desarrollo-Carretera al Varadero Nacional Km 6.6, Guaymas, Mexico
| | - S Chivers
- Southwest Fisheries Science Center, La Jolla, CA, USA
| | - R Díaz-Gamboa
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - A R Hoelzel
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
17
|
Mechanisms of global diversification in the marine species Madeiran Storm-petrel Oceanodroma castro and Monteiro’s Storm-petrel O. monteiroi: Insights from a multi-locus approach. Mol Phylogenet Evol 2016; 98:314-23. [DOI: 10.1016/j.ympev.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 02/07/2016] [Accepted: 02/18/2016] [Indexed: 01/19/2023]
|
18
|
Cunha HA, de Castro RL, Secchi ER, Crespo EA, Lailson-Brito J, Azevedo AF, Lazoski C, Solé-Cava AM. Molecular and Morphological Differentiation of Common Dolphins (Delphinus sp.) in the Southwestern Atlantic: Testing the Two Species Hypothesis in Sympatry. PLoS One 2015; 10:e0140251. [PMID: 26559411 PMCID: PMC4641715 DOI: 10.1371/journal.pone.0140251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022] Open
Abstract
The taxonomy of common dolphins (Delphinus sp.) has always been controversial, with over twenty described species since the original description of the type species of the genus (Delphinus delphis Linnaeus, 1758). Two species and four subspecies are currently accepted, but recent molecular data have challenged this view. In this study we investigated the molecular taxonomy of common dolphins through analyses of cytochrome b sequences of 297 individuals from most of their distribution. We included 37 novel sequences from the Southwestern Atlantic Ocean, a region where the short- and long-beaked morphotypes occur in sympatry, but which had not been well sampled before. Skulls of individuals from the Southwestern Atlantic were measured to test the validity of the rostral index as a diagnostic character and confirmed the presence of the two morphotypes in our genetic sample. Our genetic results show that all common dolphins in the Atlantic Ocean belong to a single species, Delphinus delphis. According to genetic data, the species Delphinus capensis is invalid. Long-beaked common dolphins from the Northeastern Pacific Ocean may constitute a different species. Our conclusions prompt the need for revision of currently accepted common dolphin species and subspecies and of Delphinus delphis distribution.
Collapse
Affiliation(s)
- Haydée A. Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rocio Loizaga de Castro
- Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico–CONICET, Puerto Madryn, Chubut, Argentina
| | - Eduardo R. Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (EcoMega), Instituto de Oceanografia, Fundação Universitária do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Enrique A. Crespo
- Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico–CONICET, Puerto Madryn, Chubut, Argentina
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F. Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio M. Solé-Cava
- Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
da Silva DMP, Azevedo AF, Secchi ER, Barbosa LA, Flores PAC, Carvalho RR, Bisi TL, Lailson-Brito J, Cunha HA. Molecular taxonomy and population structure of the rough-toothed dolphinSteno bredanensis(Cetartiodactyla: Delphinidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dayse M. P. da Silva
- Programa de Pós-Graduação em Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4018-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
- MAQUA - Laboratório de Mamíferos Aquáticos e Bioindicadores; Faculdade de Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4002-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
| | - Alexandre F. Azevedo
- MAQUA - Laboratório de Mamíferos Aquáticos e Bioindicadores; Faculdade de Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4002-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
| | - Eduardo R. Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha - EcoMega; Instituto de Oceanografia; Fundação Universitária do Rio Grande; Av. Italia, Km 8, Centro Rio Grande RS 96201-900 Brazil
| | - Lupércio A. Barbosa
- Instituto Organização Consciência Ambiental (ORCA); Av. São Paulo, 23, Vila Velha ES 29101-315 Brazil
| | - Paulo A. C. Flores
- CMA - Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos / ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade; Ministério do Meio Ambiente; CMA/SC; Rodovia Mauricio Sirotsky Sobrinho, s/n, Km02 Florianópolis SC 88053-700 Brazil
| | - Rafael R. Carvalho
- MAQUA - Laboratório de Mamíferos Aquáticos e Bioindicadores; Faculdade de Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4002-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
- Programa de Pós-graduação em Ecologia e Evolução; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524, PHLC - sala 224, Maracanã Rio de Janeiro RJ 20550-013 Brazil
| | - Tatiana L. Bisi
- MAQUA - Laboratório de Mamíferos Aquáticos e Bioindicadores; Faculdade de Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4002-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
| | - José Lailson-Brito
- MAQUA - Laboratório de Mamíferos Aquáticos e Bioindicadores; Faculdade de Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4002-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
| | - Haydée A. Cunha
- MAQUA - Laboratório de Mamíferos Aquáticos e Bioindicadores; Faculdade de Oceanografia; Universidade do Estado do Rio de Janeiro; Rua São Francisco Xavier, 524/4002-E, Maracanã Rio de Janeiro RJ 20550-013 Brazil
| |
Collapse
|
20
|
Morin PA, Parsons KM, Archer FI, Ávila-Arcos MC, Barrett-Lennard LG, Dalla Rosa L, Duchêne S, Durban JW, Ellis GM, Ferguson SH, Ford JK, Ford MJ, Garilao C, Gilbert MTP, Kaschner K, Matkin CO, Petersen SD, Robertson KM, Visser IN, Wade PR, Ho SYW, Foote AD. Geographic and temporal dynamics of a global radiation and diversification in the killer whale. Mol Ecol 2015; 24:3964-79. [PMID: 26087773 DOI: 10.1111/mec.13284] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
Global climate change during the Late Pleistocene periodically encroached and then released habitat during the glacial cycles, causing range expansions and contractions in some species. These dynamics have played a major role in geographic radiations, diversification and speciation. We investigate these dynamics in the most widely distributed of marine mammals, the killer whale (Orcinus orca), using a global data set of over 450 samples. This marine top predator inhabits coastal and pelagic ecosystems ranging from the ice edge to the tropics, often exhibiting ecological, behavioural and morphological variation suggestive of local adaptation accompanied by reproductive isolation. Results suggest a rapid global radiation occurred over the last 350 000 years. Based on habitat models, we estimated there was only a 15% global contraction of core suitable habitat during the last glacial maximum, and the resources appeared to sustain a constant global effective female population size throughout the Late Pleistocene. Reconstruction of the ancestral phylogeography highlighted the high mobility of this species, identifying 22 strongly supported long-range dispersal events including interoceanic and interhemispheric movement. Despite this propensity for geographic dispersal, the increased sampling of this study uncovered very few potential examples of ancestral dispersal among ecotypes. Concordance of nuclear and mitochondrial data further confirms genetic cohesiveness, with little or no current gene flow among sympatric ecotypes. Taken as a whole, our data suggest that the glacial cycles influenced local populations in different ways, with no clear global pattern, but with secondary contact among lineages following long-range dispersal as a potential mechanism driving ecological diversification.
Collapse
Affiliation(s)
- Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Kim M Parsons
- Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Frederick I Archer
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Lance G Barrett-Lennard
- Vancouver Aquarium Marine Science Centre, 845 Avison Way, Vancouver, British Columbia, V6G 3E2, Canada
| | - Luciano Dalla Rosa
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km. 8 s/n, Campus Carreiros, Rio Grande, RS, 96201-900, Brazil
| | - Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - John W Durban
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA.,Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Graeme M Ellis
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, British Columbia, Canada
| | - Steven H Ferguson
- Fisheries & Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6, Canada
| | - John K Ford
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, British Columbia, Canada
| | - Michael J Ford
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA 2725 Montlake Blvd E, Seattle, WA, USA
| | - Cristina Garilao
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Düsternbrooker Weg 2, 24105, Kiel, Germany
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.,Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6845, Australia
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University of Freiburg, Tennenbacher Strasse 4, 79106, Freiburg, Germany
| | - Craig O Matkin
- North Gulf Oceanic Society, 3430 Main St. Ste. B1, Homer, AK, 99603, USA
| | - Stephen D Petersen
- Assiniboine Park Zoo, 2595 Roblin Blvd, Winnipeg, Manitoba, R3P 2N7, Canada
| | - Kelly M Robertson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Ingrid N Visser
- Orca Research Trust, P.O. Box 402043, Tutukaka, Northland, 0153, New Zealand
| | - Paul R Wade
- Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
21
|
Silva MC, Matias R, Wanless RM, Ryan PG, Stephenson BM, Bolton M, Ferrand N, Coelho MM. Understanding the mechanisms of antitropical divergence in the seabird White-faced Storm-petrel (Procellariiformes: Pelagodroma marina) using a multilocus approach. Mol Ecol 2015; 24:3122-37. [PMID: 25903359 DOI: 10.1111/mec.13212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/27/2022]
Abstract
Analytical methods that apply coalescent theory to multilocus data have improved inferences of demographic parameters that are critical to understanding population divergence and speciation. In particular, at the early stages of speciation, it is important to implement models that accommodate conflicting gene trees, and benefit from the presence of shared polymorphisms. Here, we employ eleven nuclear loci and the mitochondrial control region to investigate the phylogeography and historical demography of the pelagic seabird White-faced Storm-petrel (Pelagodroma marina) by sampling subspecies across its antitropical distribution. Groups are all highly differentiated: global mitochondrial ΦST = 0.89 (P < 0.01) and global nuclear ΦST varies between 0.22 and 0.83 (all P < 0.01). The complete lineage sorting of the mitochondrial locus between hemispheres is corroborated by approximately half of the nuclear genealogies, suggesting a long-term antitropical divergence in isolation. Coalescent-based estimates of demographic parameters suggest that hemispheric divergence of P. marina occurred approximately 840 000 ya (95% HPD 582 000-1 170 000), in the absence of gene flow, and divergence within the Southern Hemisphere occurred 190 000 ya (95% HPD 96 000-600 000), both probably associated with the profound palaeo-oceanographic changes of the Pleistocene. A fledgling sampled in St Helena (tropical South Atlantic) suggests recent colonization from the Northern Hemisphere. Despite the great potential for long-distance dispersal, P. marina antitropical groups have been evolving as independent, allopatric lineages, and divergence is probably maintained by philopatry coupled with asynchronous reproductive phenology and local adaptation.
Collapse
Affiliation(s)
- Mónica C Silva
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Rafael Matias
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn, TR10 9EZ, UK.,Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, 1149-041, Lisboa, Portugal
| | - Ross M Wanless
- Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Seabird Conservation Program, BirdLife South Africa, PO Box 7119, Roggebaai, 8012, South Africa
| | - Peter G Ryan
- Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa
| | - Brent M Stephenson
- Eco-Vista: Photography & Research Ltd, PO Box 157, Bay View, Napier, 4149, New Zealand
| | - Mark Bolton
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Sandy, Beds, SG19 2DL, UK
| | - Nuno Ferrand
- CIBIO, Universidade do Porto, Campus Agrário Vairão, 4485-661, Vairão, Portugal
| | - M Manuela Coelho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
22
|
Moura AE, Kenny JG, Chaudhuri RR, Hughes MA, Reisinger RR, de Bruyn PJN, Dahlheim ME, Hall N, Hoelzel AR. Phylogenomics of the killer whale indicates ecotype divergence in sympatry. Heredity (Edinb) 2015; 114:48-55. [PMID: 25052415 PMCID: PMC4815593 DOI: 10.1038/hdy.2014.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 03/28/2014] [Accepted: 05/30/2014] [Indexed: 12/26/2022] Open
Abstract
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the 'marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists.
Collapse
Affiliation(s)
- A E Moura
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - J G Kenny
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - R R Chaudhuri
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - M A Hughes
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - R R Reisinger
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - P J N de Bruyn
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - M E Dahlheim
- National Marine Mammal Laboratory, National Marine Fisheries Service, Seattle, WA, USA
| | - N Hall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - A R Hoelzel
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
23
|
Fontaine MC, Roland K, Calves I, Austerlitz F, Palstra FP, Tolley KA, Ryan S, Ferreira M, Jauniaux T, Llavona A, Öztürk B, Öztürk AA, Ridoux V, Rogan E, Sequeira M, Siebert U, Vikingsson GA, Borrell A, Michaux JR, Aguilar A. Postglacial climate changes and rise of three ecotypes of harbour porpoises,Phocoena phocoena, in western Palearctic waters. Mol Ecol 2014; 23:3306-21. [DOI: 10.1111/mec.12817] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 05/11/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Michaël C. Fontaine
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN 46556 USA
- Ecologie, Systématique et Evolution; UMR8079; Université Paris-Sud; F-91405 Orsay France
- CNRS; 91405 Orsay France
- AgroParisTech; F-91405 Orsay France
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Sorbonne Paris Cité; Université Paris Diderot; F-75005 Paris France
| | - Kathleen Roland
- INRA; UMR 1064 CBGP; Campus international de Baillarguet CS30016 F-34988 Montferrier-sur-Lez Cedex France
- Research Unit in Environmental and Evolutionary Biology (URBE); Narilis (Namur Research Institute for Lifesciences); University of Namur (FUNDP); Rue de Bruxelles 61 B-5000 Namur Belgium
| | - Isabelle Calves
- INRA; UMR 1064 CBGP; Campus international de Baillarguet CS30016 F-34988 Montferrier-sur-Lez Cedex France
- Laboratoire LEMAR (UMR CNRS/UBO/IRD/Ifremer 6539); Institut Universitaire Européen de la Mer; Technopôle Brest-Iroise; Rue Dumont d'Urville 29280 Plouzané France
| | - Frederic Austerlitz
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Sorbonne Paris Cité; Université Paris Diderot; F-75005 Paris France
| | - Friso P. Palstra
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Sorbonne Paris Cité; Université Paris Diderot; F-75005 Paris France
| | - Krystal A. Tolley
- Applied Biodiversity Research; South African National Biodiversity Institute; Private Bag X7 Claremont 7735 Cape Town South Africa
- Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Sean Ryan
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN 46556 USA
| | - Marisa Ferreira
- Departmento de Biologia; Sociedade Portuguesa de Vida Selvagem & Molecular and Environmental Biology Centre (CBMA); Universidade de Minho; Campus de Gualtar 4710-047 Braga Portugal
| | - Thierry Jauniaux
- Department of Pathology; University of Liège; Sart Tilman B43 4000 Liège Belgium
| | - Angela Llavona
- C.E.M.MA. Coordinadora para o Estudio dos Mamíferos MAriños; Apartado 15 36380 Nigrán Pontevedra Spain
| | - Bayram Öztürk
- Faculty of Fisheries; Istanbul University; Ordu Cad. No.200 34320 Laleli-Istanbul Turkey
- Turkish Marine Research Foundation (TUDAV) PK 10; 34820 Beykoz-Istanbul Turkey
| | - Ayaka A. Öztürk
- Faculty of Fisheries; Istanbul University; Ordu Cad. No.200 34320 Laleli-Istanbul Turkey
- Turkish Marine Research Foundation (TUDAV) PK 10; 34820 Beykoz-Istanbul Turkey
| | - Vincent Ridoux
- Littoral Environnement et Sociétés; UMR 7266; Université de La Rochelle/CNRS; F-17000 La Rochelle France
- Observatoire PELAGIS - Systèmes d'Observation pour la Conservation des Mammifères et des Oiseaux Marins; UMS 3462 Université de La Rochelle/CNRS; F-17000 La Rochelle France
| | - Emer Rogan
- School of Biological; Earth and Environmental Sciences; University College Cork; Cork Ireland
| | - Marina Sequeira
- Instituto da Conservação da Natureza e das Florestas; Rua de Santa Marta 55 1169-230 Lisboa Portugal
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research; University of Veterinary Medicine Hannover, Foundation; Werftstr. 6 25761 Büsum Germany
| | | | - Asunción Borrell
- Department of Animal Biology and IRBio; Faculty of Biology; University of Barcelona; Diagonal 643 08071 Barcelona Spain
| | - Johan R. Michaux
- INRA; UMR 1064 CBGP; Campus international de Baillarguet CS30016 F-34988 Montferrier-sur-Lez Cedex France
| | - Alex Aguilar
- Department of Animal Biology and IRBio; Faculty of Biology; University of Barcelona; Diagonal 643 08071 Barcelona Spain
| |
Collapse
|
24
|
Moura AE, Janse van Rensburg C, Pilot M, Tehrani A, Best PB, Thornton M, Plön S, de Bruyn PN, Worley KC, Gibbs RA, Dahlheim ME, Hoelzel AR. Killer whale nuclear genome and mtDNA reveal widespread population bottleneck during the last glacial maximum. Mol Biol Evol 2014; 31:1121-31. [PMID: 24497033 PMCID: PMC3995335 DOI: 10.1093/molbev/msu058] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.
Collapse
Affiliation(s)
- Andre E. Moura
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Charlene Janse van Rensburg
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Malgorzata Pilot
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | | | - Peter B. Best
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, c/o Iziko South African Museum, Cape Town, South Africa
| | - Meredith Thornton
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, c/o Iziko South African Museum, Cape Town, South Africa
| | - Stephanie Plön
- South African Institute for Aquatic Biodiversity (SAIAB), c/o PE Museum/Bayworld, Humewood, Port Elizabeth, South Africa
| | - P.J. Nico de Bruyn
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Kim C. Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Marilyn E. Dahlheim
- National Marine Mammal Laboratory, National Marine Fisheries Service, Seattle, WA
| | - Alan Rus Hoelzel
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| |
Collapse
|
25
|
Banguera-Hinestroza E, Evans PGH, Mirimin L, Reid RJ, Mikkelsen B, Couperus AS, Deaville R, Rogan E, Hoelzel AR. Phylogeography and population dynamics of the white-sided dolphin (Lagenorhynchus acutus) in the North Atlantic. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0578-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Kershaw F, Rosenbaum HC. Ten years lost at sea: response to Manel and Holderegger. Trends Ecol Evol 2014; 29:69-70. [DOI: 10.1016/j.tree.2013.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 11/15/2013] [Accepted: 12/07/2013] [Indexed: 01/29/2023]
|
27
|
Louis M, Viricel A, Lucas T, Peltier H, Alfonsi E, Berrow S, Brownlow A, Covelo P, Dabin W, Deaville R, de Stephanis R, Gally F, Gauffier P, Penrose R, Silva MA, Guinet C, Simon-Bouhet B. Habitat-driven population structure of bottlenose dolphins,Tursiops truncatus, in the North-East Atlantic. Mol Ecol 2014; 23:857-74. [DOI: 10.1111/mec.12653] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/30/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Marie Louis
- Centre d'Etudes Biologiques de Chizé; UPR 1934; 79360 Villiers-en-Bois France
- Littoral; Environnement et Sociétés (LIENSs); UMR 7266, CNRS/Université de La Rochelle; 2 rue Olympe de Gouges 17000 La Rochelle France
- GECC (Groupe d'Etude des Cétacés du Cotentin); Place des Justes 50130 Cherbourg-Octeville France
| | - Amélia Viricel
- Littoral; Environnement et Sociétés (LIENSs); UMR 7266, CNRS/Université de La Rochelle; 2 rue Olympe de Gouges 17000 La Rochelle France
| | - Tamara Lucas
- Littoral; Environnement et Sociétés (LIENSs); UMR 7266, CNRS/Université de La Rochelle; 2 rue Olympe de Gouges 17000 La Rochelle France
| | - Hélène Peltier
- Observatoire PELAGIS; UMS 3462 CNRS/Université de La Rochelle; Ple Analytique; 5 allée de l'Océan 17000 La Rochelle France
| | - Eric Alfonsi
- Laboratoire d'Etude des Mammiféres Marins; Océanopolis; port de plaisance; BP 91039 29210 Brest Cedex 1 France
- Laboratoire BioGeMME (Biologie et Génétique des Mammiféres Marins dans leur Environnement); Université Européenne de Bretagne & Université de Bretagne Occidentale; Université de Brest; UFR Sciences et Techniques; 6 Av. Victor Le Gorgeu CS93837 29238 Brest Cedex 3 France
| | - Simon Berrow
- Irish Whale and Dolphin Group; Merchants Quay; Kilrush Co Clare Ireland
- Marine and Freshwater Research Centre; Galway-Mayo Institute of Technology; Dublin Road Galway Ireland
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme; SAC Disease Surveillance Centre; Drummond Hill Inverness IV2 4JZ UK
| | - Pablo Covelo
- CEMMA (Coordinadora para o Estudo dos Mamiferos Mariños); Aptdo. 15 36380 Gondomar (Pontevedra) Spain
| | - Willy Dabin
- Observatoire PELAGIS; UMS 3462 CNRS/Université de La Rochelle; Ple Analytique; 5 allée de l'Océan 17000 La Rochelle France
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London; Regent's Park London NWI 4RY UK
| | - Renaud de Stephanis
- Estación Biológica de Doñana-CSIC; Americo Vespuccio S/N; Isla de la Cartuja Sevilla 41092 Spain
| | - François Gally
- GECC (Groupe d'Etude des Cétacés du Cotentin); Place des Justes 50130 Cherbourg-Octeville France
| | - Pauline Gauffier
- CIRCE (Conservation, Information and Research on Cetaceans); Cabeza de Manzaneda 3; Pelayo Algeciras 11390 Cadix Spain
| | - Rod Penrose
- Marine Environmental Monitoring; Penwalk; Llechryd; Cardigan West Wales SA43 2PS UK
| | - Monica A. Silva
- Center of the Institute of Marine Research & Department of Oceanography and Fisheries; University of the Azores; 9901-862 Horta Portugal
- Laboratory of Robotics and Systems in Engineering and Science; 9901-862 Horta Portugal
- Biology Department; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé; UPR 1934; 79360 Villiers-en-Bois France
| | - Benoit Simon-Bouhet
- Littoral; Environnement et Sociétés (LIENSs); UMR 7266, CNRS/Université de La Rochelle; 2 rue Olympe de Gouges 17000 La Rochelle France
| |
Collapse
|
28
|
Hybrid speciation in a marine mammal: the clymene dolphin (Stenella clymene). PLoS One 2014; 9:e83645. [PMID: 24421898 PMCID: PMC3885441 DOI: 10.1371/journal.pone.0083645] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow.
Collapse
|
29
|
Gui D, Jia K, Xia J, Yang L, Chen J, Wu Y, Yi M. De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response. PLoS One 2013; 8:e72417. [PMID: 24015242 PMCID: PMC3756080 DOI: 10.1371/journal.pone.0072417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 01/31/2023] Open
Abstract
Background The Indo-Pacific humpback dolphin (Sousa chinensis), a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. Principal Findings We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-value<10−5), respectively. In total, 16,467 unigenes were clustered into 25 functional categories by searching against the COG database, and BLAST2GO search assigned 37,976 unigenes to 61 GO terms. In addition, 36,345 unigenes were grouped into 258 KEGG pathways. We also identified 9,906 simple sequence repeats and 3,681 putative single nucleotide polymorphisms as potential molecular markers in our assembled sequences. A large number of unigenes were predicted to be involved in immune response, and many genes were predicted to be relevant to adaptive evolution and cetacean-specific traits. Conclusion This study represented the first transcriptome analysis of the Indo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers.
Collapse
Affiliation(s)
- Duan Gui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jia Xia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lili Yang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jialin Chen
- Guang Dong Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai, P. R. China
| | - Yuping Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (MY); (YW)
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (MY); (YW)
| |
Collapse
|
30
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|