1
|
García Méndez MDC, Encarnación-Guevara S, Martínez Batallar ÁG, Gómez-Caudillo L, Bru-Martínez R, Martínez Márquez A, Selles Marchart S, Tovar-Sánchez E, Álvarez-Berber L, Marquina Bahena S, Perea-Arango I, Arellano-García JDJ. High variability of perezone content in rhizomes of Acourtia cordata wild plants, environmental factors related, and proteomic analysis. PeerJ 2023; 11:e16136. [PMID: 38025722 PMCID: PMC10656900 DOI: 10.7717/peerj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.
Collapse
Affiliation(s)
- Ma del Carmen García Méndez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | - Leopoldo Gómez-Caudillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roque Bru-Martínez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Ascensión Martínez Márquez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Susana Selles Marchart
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura Álvarez-Berber
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Silvia Marquina Bahena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | |
Collapse
|
2
|
Inui H, Minic Z, Hüttmann N, Fujita K, Stoykova P, Karadžić I. Cucurbita pepo contains characteristic proteins without a signal peptide in the xylem sap. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154038. [PMID: 37413840 DOI: 10.1016/j.jplph.2023.154038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Xylem sap is a fluid that transfers water and nutrients from the rhizosphere. This sap contains relatively low concentrations of proteins that originate from the extracellular space among the root cells. One of the characteristic proteins in the xylem sap of the Cucurbitaceae family, which includes cucumber and zucchini, is a major latex-like protein (MLP). MLPs are responsible for crop contamination through the transport of hydrophobic pollutants from the roots. However, detailed information on the content of MLPs in the xylem sap is not available. Proteomic analysis of root and xylem sap proteins from the Cucurbita pepo cultivars Patty Green (PG) and Raven (RA) showed that the xylem sap of cv. RA, a high accumulator of hydrophobic pollutants, contained four MLPs that accounted for over 85% of the total xylem sap proteins in this cultivar. The xylem sap of PG, a low accumulator, mainly contained an uncharacterized protein. The amount of each root protein between the PG and RA cultivars was significantly and positively correlated in spite of being with and without a signal peptide (SP). However, the amount of xylem sap proteins without an SP was not correlated. These results suggest that cv. RA is characterized by MLPs in the xylem sap.
Collapse
Affiliation(s)
- Hideyuki Inui
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Zoran Minic
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5, Ottawa, ON, Canada
| | - Nico Hüttmann
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5, Ottawa, ON, Canada
| | - Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Petya Stoykova
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; AgroBioInstitute, 8 "Dragan Tsankov" Blvd, 1164, Sofia, Bulgaria
| | - Ivanka Karadžić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| |
Collapse
|
3
|
Azariadis A, Vouligeas F, Salame E, Kouhen M, Rizou M, Blazakis K, Sotiriou P, Ezzat L, Mekkaoui K, Monzer A, Krokida A, Adamakis ID, Dandachi F, Shalha B, Kostelenos G, Figgou E, Giannoutsou E, Kalaitzis P. Response of Prolyl 4 Hydroxylases, Arabinogalactan Proteins and Homogalacturonans in Four Olive Cultivars under Long-Term Salinity Stress in Relation to Physiological and Morphological Changes. Cells 2023; 12:1466. [PMID: 37296587 PMCID: PMC10252747 DOI: 10.3390/cells12111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water.
Collapse
Affiliation(s)
- Aristotelis Azariadis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Filippos Vouligeas
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Elige Salame
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Mohamed Kouhen
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Myrto Rizou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Kostantinos Blazakis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Penelope Sotiriou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Lamia Ezzat
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Aline Monzer
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Afroditi Krokida
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Faten Dandachi
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Boushra Shalha
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Eleftheria Figgou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| |
Collapse
|
4
|
Yadav BG, Aakanksha, Kumar R, Yadava SK, Kumar A, Ramchiary N. Understanding the Proteomes of Plant Development and Stress Responses in Brassica Crops. J Proteome Res 2023; 22:660-680. [PMID: 36786770 DOI: 10.1021/acs.jproteome.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.
Collapse
Affiliation(s)
- Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| |
Collapse
|
5
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
6
|
Toscano S, Romano D, Ferrante A. Molecular Responses of Vegetable, Ornamental Crops, and Model Plants to Salinity Stress. Int J Mol Sci 2023; 24:ijms24043190. [PMID: 36834600 PMCID: PMC9965374 DOI: 10.3390/ijms24043190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
Vegetable and ornamental plants represent a very wide group of heterogeneous plants, both herbaceous and woody, generally without relevant salinity-tolerant mechanisms. The cultivation conditions-almost all are irrigated crops-and characteristics of the products, which must not present visual damage linked to salt stress, determine the necessity for a deep investigation of the response of these crops to salinity stress. Tolerance mechanisms are linked to the capacity of a plant to compartmentalize ions, produce compatible solutes, synthesize specific proteins and metabolites, and induce transcriptional factors. The present review critically evaluates advantages and disadvantages to study the molecular control of salt tolerance mechanisms in vegetable and ornamental plants, with the aim of distinguishing tools for the rapid and effective screening of salt tolerance levels in different plants. This information can not only help in suitable germplasm selection, which is very useful in consideration of the high biodiversity expressed by vegetable and ornamental plants, but also drive the further breeding activities.
Collapse
Affiliation(s)
- Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy
- Correspondence:
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
7
|
Yu W, Wu W, Zhang N, Wang L, Wang Y, Wang B, Lan Q, Wang Y. Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. BIOLOGY 2022; 11:biology11091273. [PMID: 36138752 PMCID: PMC9495733 DOI: 10.3390/biology11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Plant growth and development are inevitably affected by various environmental factors. High salinity is the main factor leading to the reduction of cultivated land area, which seriously affects the growth and yield of plants. The genus Suaeda is a kind of euhalophyte herb, with seedlings that grow rapidly in moderately saline environments and can even survive in conditions of extreme salinity. Its fresh branches can be used as vegetables and the seed oil is rich in unsaturated fatty acids, which has important economic value and usually grows in a saline environment. This paper reviews the progress of research in recent years into the salt tolerance of several Suaeda species (for example, S. salsa, S. japonica, S. glauca, S. corniculata), focusing on ion regulation and compartmentation, osmotic regulation of organic solutes, antioxidant regulation, plant hormones, photosynthetic systems, and omics (transcriptomics, proteomics, and metabolomics). It helps us to understand the salt tolerance mechanism of the genus Suaeda, and provides a theoretical foundation for effectively improving crop resistance to salt stress environments.
Collapse
Affiliation(s)
- Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Wenwen Wu
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Zhang
- Department of Agronomy, Tianjin Agricultural University, Tianjin 300392, China
| | - Luping Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- Correspondence: (Q.L.); (Y.W.)
| |
Collapse
|
8
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
9
|
Chardon F, De Marco F, Marmagne A, Le Hir R, Vilaine F, Bellini C, Dinant S. Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153707. [PMID: 35550522 DOI: 10.1016/j.jplph.2022.153707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.
Collapse
Affiliation(s)
- Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Federica De Marco
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Vilaine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Catherine Bellini
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France; Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
10
|
Comparative Transcriptomics Reveals the Molecular Mechanism of the Parental Lines of Maize Hybrid An'nong876 in Response to Salt Stress. Int J Mol Sci 2022; 23:ijms23095231. [PMID: 35563623 PMCID: PMC9100555 DOI: 10.3390/ijms23095231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Maize (Zea mays L.) is an essential food crop worldwide, but it is highly susceptible to salt stress, especially at the seedling stage. In this study, we conducted physiological and comparative transcriptome analyses of seedlings of maize inbred lines An’nong876 paternal (cmh15) and An’nong876 maternal (CM37) under salt stress. The cmh15 seedlings were more salt-tolerant and had higher relative water content, lower electrolyte leakage, and lower malondialdehyde levels in the leaves than CM37. We identified 2559 upregulated and 1770 downregulated genes between salt-treated CM37 and the controls, and 2757 upregulated and 2634 downregulated genes between salt-treated cmh15 and the controls by RNA sequencing analysis. Gene ontology functional enrichment analysis of the differentially expressed genes showed that photosynthesis-related and oxidation-reduction processes were deeply involved in the responses of cmh15 and CM37 to salt stress. We also found differences in the hormone signaling pathway transduction and regulation patterns of transcription factors encoded by the differentially expressed genes in both cmh15 and CM37 under salt stress. Together, our findings provide insights into the molecular networks that mediate salt stress tolerance of maize at the seedling stage.
Collapse
|
11
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
12
|
López-Moral A, Agustí-Brisach C, Leiva-Egea FM, Trapero A. Influence of Cultivar and Biocontrol Treatments on the Effect of Olive Stem Extracts on the Viability of Verticillium dahliae Conidia. PLANTS (BASEL, SWITZERLAND) 2022; 11:554. [PMID: 35214890 PMCID: PMC8874693 DOI: 10.3390/plants11040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
The effect of olive (Olea europaea) stem extract (OSE) on the viability of conidia of Verticillium dahliae, the causal agent of Verticillium wilt of olive (VWO), is not yet well understood. Thus, the aim of this study was to determine the influence of the olive genotype (cultivar resistance) and the interaction between olive cultivars and biocontrol treatments on the effect of OSE on conidial germination of V. dahliae by in vitro sensitivity tests. To this end, OSE from cultivars Frantoio, Arbequina, and Picual, respectively tolerant, moderately susceptible, and highly susceptible to V. dahliae, were tested alone or after treatments with biological control agents (BCAs) and commercial products efficient at reducing the progress of VWO. Aureobasidium pullulans strain AP08, Phoma sp. strain ColPat-375, and Bacillus amyloliquefaciens strain PAB-24 were considered as BCAs. Aluminium lignosulfonate (IDAI Brotaverd®), copper phosphite (Phoscuprico®), potassium phosphite (Naturfos®), and salicylic acid were selected as commercial products. Our results indicate that the influence of biological treatments against the pathogen depends on the genotype, since the higher the resistance of the cultivar, the lower the effect of the treatments on the ability of OSE to inhibit the germination of conidia. In 'Picual', the BCA B. amyloliquefaciens PAB024 and copper phosphite were the most effective treatments in inhibiting conidia germination by the OSE. This work represents a first approach to elucidate the role of cultivar and biological treatments in modifying the effect on the pathogen of the endosphere content of olive plants.
Collapse
Affiliation(s)
| | | | | | - Antonio Trapero
- Departamento de Agronomía, María de Maeztu Unit of Excellence 2020-23, Campus de Rabanales, Universidad de Córdoba, Edif. C4, 14071 Córdoba, Spain; (A.L.-M.); (C.A.-B.); (F.M.L.-E.)
| |
Collapse
|
13
|
Qin W, Yan H, Zou B, Guo R, Ci D, Tang Z, Zou X, Zhang X, Yu X, Wang Y, Si T. Arbuscular mycorrhizal fungi alleviate salinity stress in peanut: Evidence from pot‐grown and field experiments. Food Energy Secur 2021. [DOI: 10.1002/fes3.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wenjie Qin
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Hengyu Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Bingyin Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Runze Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Dunwei Ci
- Shandong Peanut Research Institute Qingdao China
| | - Zhaohui Tang
- Institute of Crop Germplasm Resources Shandong Academy of Agricultural Sciences (SAAS) Jinan China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| |
Collapse
|
14
|
Urban MO, Planchon S, Hoštičková I, Vanková R, Dobrev P, Renaut J, Klíma M, Vítámvás P. The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:628167. [PMID: 34177973 PMCID: PMC8231708 DOI: 10.3389/fpls.2021.628167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
Collapse
Affiliation(s)
- Milan O. Urban
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Irena Hoštičková
- Department of Plant Production and Agroecology, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Miroslav Klíma
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Pavel Vítámvás
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| |
Collapse
|
15
|
Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep 2020; 10:8232. [PMID: 32427862 PMCID: PMC7237498 DOI: 10.1038/s41598-020-65135-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Seagrasses evolved from monocotyledonous land plants that returned to the marine habitat. This transition was accomplished by substantial changes in cell wall composition, revealing habitat-driven adaption to the new environment. Whether arabinogalactan-proteins (AGPs), important signalling molecules of land plants, are present in seagrass cell walls is of evolutionary and plant development interest. AGPs of Zostera marina L. were isolated and structurally characterised by analytical and bioinformatics methods as well as by ELISA with different anti-AGP antibodies. Calcium-binding capacity of AGPs was studied by isothermal titration calorimetry (ITC) and microscopy. Bioinformatic searches of the Z. marina proteome identified 9 classical AGPs and a large number of chimeric AGPs. The glycan structures exhibit unique features, including a high degree of branching and an unusually high content of terminating 4-O-methyl-glucuronic acid (4-OMe GlcA) residues. Although the common backbone structure of land plant AGPs is conserved in Z. marina, the terminating residues are distinct with high amounts of uronic acids. These differences likely result from the glycan-active enzymes (glycosyltransferases and methyltransferases) and are essential for calcium-binding properties. The role of this polyanionic surface is discussed with regard to adaption to the marine environment.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Thomas Shafee
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany.
| |
Collapse
|
16
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
17
|
Li Z, Cheng B, Zeng W, Zhang X, Peng Y. Proteomic and Metabolomic Profilings Reveal Crucial Functions of γ-Aminobutyric Acid in Regulating Ionic, Water, and Metabolic Homeostasis in Creeping Bentgrass under Salt Stress. J Proteome Res 2020; 19:769-780. [PMID: 31916766 DOI: 10.1021/acs.jproteome.9b00627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The global emergence of soil salinization poses a serious challenge to many countries and regions. γ-Aminobutyric acid (GABA) is involved in systemic regulation of plant adaptation to salt stress but the underlying molecular and metabolic mechanism still remains largely unknown. The elevated endogenous GABA level by the application of exogenous GABA improved salt tolerance associated with the enhancement of antioxidant capacity, photosynthetic characteristics, osmotic adjustment (OA), and water use efficiency in creeping bentgrass. GABA strongly upregulated transcript levels of AsPPa2, AsATPaB2, AsNHX2/4/6, and AsSOS1/20 in roots involved in enhanced capacity of Na+ compartmentalization and mitigation of Na+ toxicity in the cytosol. Significant downregulation of AsHKT1/4 expression could be induced by GABA in leaves in relation to maintenance of the significantly lower Na+ content and higher K+/Na+ ratio. GABA-depressed aquaporin expression and accumulation induced declines in stomatal conductance and transpiration, thereby reducing water loss in leaves during salt stress. For metabolic regulation, GABA primarily enhanced sugar and amino acid accumulation and metabolism, largely contributing to improved salt tolerance through maintaining OA and metabolic homeostasis. Other major pathways could be related to GABA-induced salt tolerance including increases in antioxidant defense, heat shock proteins, and myo-inositol accumulation in leaves. Integrative analyses of molecular, protein, metabolic, and physiological changes reveal systemic functions of GABA in regulating ionic, water, and metabolic homeostasis in nonhalophytic creeping bentgrass under salt stress.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Weihang Zeng
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| |
Collapse
|
18
|
Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:658-674. [PMID: 30803125 DOI: 10.1111/jipb.12797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 05/04/2023]
Abstract
Excess salinity is a natural stress that causes crop yield losses worldwide. The genetic bases of maize salt tolerance remain largely unknown. Here we investigated the survival rates of 445 maize natural accessions after salt treatments. A skewed distribution of the salt-tolerant phenotypes was observed in this population. Genome-wide association studies (GWAS) revealed 57 loci significantly associated with salt tolerance. Forty-nine candidate genes were detected from these loci. About 10% of these genes were co-localized with loci from QTL mapping. Forty four percent of the candidate genes were involved in stress responses, ABA signaling, stomata division, DNA binding/transcription regulation and auxin signaling, suggesting that they are key genetic mechanisms of maize salt tolerance. Transgenic studies showed that two genes, the salt-tolerance-associated-gene 4 (SAG4, GRMZM2G077295) and SAG6 (GRMZM2G106056), which encode a protein transport protein and the double-strand break repair protein MRE11, respectively, had positive roles in plant salt tolerance, and their salt-tolerant haplotypes were revealed. The genes we identified in this study provide a list of candidate targets for further study of maize salt tolerance, and of genetic markers and materials that may be used for breeding salt-tolerance in maize.
Collapse
Affiliation(s)
- Xi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingcai Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan Gao
- College of Plant Science, Tarim University, Alaer, 843300, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D, Abadía A, Uemura M, Abadía J, López-Millán AF. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses. J Proteomics 2017; 170:117-129. [PMID: 28847647 DOI: 10.1016/j.jprot.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary cell wall. Cell wall modifications could affect the mechanical and permeability properties of the xylem sap vessels, and therefore ultimately affect solute transport and distribution to the leaves. Results also suggest that signaling cascades involving lipid and peptides might play a role in nutrient stress signaling and pinpoint interesting candidates for future studies. Finally, both nutrient deficiencies seem to affect phosphorylation and glycosylation processes, again following an opposite pattern.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Elain Gutierrez-Carbonell
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Anunciación Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, P.O. Box 13034, 50080 Zaragoza, Spain
| | - Ana Flor López-Millán
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA.
| |
Collapse
|
20
|
Abstract
This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.
Collapse
|
21
|
Urban MO, Vašek J, Klíma M, Krtková J, Kosová K, Prášil IT, Vítámvás P. Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. J Proteomics 2016; 152:188-205. [PMID: 27838467 DOI: 10.1016/j.jprot.2016.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
The cultivar-dependent differences in Brassica napus L. seed yield are significantly affected by drought stress. Here, the response of leaf proteome to long-term drought (28days) was studied in cultivars (cvs): Californium (C), Cadeli (D), Navajo (N), and Viking (V). Analysis of twenty-four 2-D DIGE gels revealed 134 spots quantitatively changed at least 2-fold; from these, 79 proteins were significantly identified by MALDI-TOF/TOF. According to the differences in water use, the cultivars may be assigned to two categories: water-savers or water-spenders. In the water-savers group (cvs C+D), proteins related to nitrogen assimilation, ATP and redox homeostasis were increased under stress, while in the water-spenders category (cvs N+V), carbohydrate/energy, photosynthesis, stress related and rRNA processing proteins were increased upon stress. Taking all data together, we indicated cv C as a drought-adaptable water-saver, cv D as a medium-adaptable water-saver, cv N as a drought-adaptable water-spender, and cv V as a low-adaptable drought sensitive water-spender rapeseed. Proteomic data help to evaluate the impact of drought and the extent of genotype-based adaptability and contribute to the understanding of their plasticity. These results provide new insights into the provenience-based drought acclimation/adaptation strategy of contrasting winter rapeseeds and link data at gasometric, biochemical, and proteome level. SIGNIFICANCE Soil moisture deficit is a real problem for every crop. The data in this study demonstrates for the first time that in stem-prolongation phase cultivars respond to progressive drought in different ways and at different levels. Analysis of physiological and proteomic data showed two different water regime-related strategies: water-savers and spenders. However, not only water uptake rate itself, but also individual protein abundances, gasometric and biochemical parameters together with final biomass accumulation after stress explained genotype-based responses. Interestingly, under a mixed climate profile, both water-use patterns (savers or spenders) can be appropriate for drought adaptation. These data suggest, than complete "acclimation image" of rapeseeds in stem-prolongation phase under drought could be reached only if these characteristics are taken, explained and understood together.
Collapse
Affiliation(s)
- Milan Oldřich Urban
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic; Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic.
| | - Jakub Vašek
- Czech University of Life Sciences Prague, Department of Genetics and Breeding, Kamýcká 129, Prague, Czech Republic
| | - Miroslav Klíma
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Jana Krtková
- Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic
| | - Klára Kosová
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Ilja Tom Prášil
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Pavel Vítámvás
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| |
Collapse
|
22
|
Protein Dynamics in the Plant Extracellular Space. Proteomes 2016; 4:proteomes4030022. [PMID: 28248232 PMCID: PMC5217353 DOI: 10.3390/proteomes4030022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
The extracellular space (ECS or apoplast) is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF). The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in "cell wall organization and biogenesis", "response to stimulus" and "protein metabolism". It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions.
Collapse
|
23
|
Carella P, Wilson DC, Kempthorne CJ, Cameron RK. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:651. [PMID: 27242852 PMCID: PMC4863880 DOI: 10.3389/fpls.2016.00651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
The plant vascular system, composed of the xylem and phloem, is important for the transport of water, mineral nutrients, and photosynthate throughout the plant body. The vasculature is also the primary means by which developmental and stress signals move from one organ to another. Due to practical and technological limitations, proteomics analysis of xylem and phloem sap has been understudied in comparison to accessible sample types such as leaves and roots. However, recent advances in sample collection techniques and mass spectrometry technology are making it possible to comprehensively analyze vascular sap proteomes. In this mini-review, we discuss the emerging field of vascular sap proteomics, with a focus on recent comparative studies to identify vascular proteins that may play roles in long-distance signaling and other processes during stress responses in plants.
Collapse
|
24
|
Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses. Sci Rep 2016; 6:21060. [PMID: 26879005 PMCID: PMC4754703 DOI: 10.1038/srep21060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2016] [Indexed: 11/08/2022] Open
Abstract
Proteomics was employed to investigate the molecular mechanisms of apoplastic response to potassium(K)-deficiency in cotton. Low K (LK) treatment significantly decreased the K and protein contents of xylem sap. Totally, 258 peptides were qualitatively identified in the xylem sap of cotton seedlings, of which, 90.31% were secreted proteins. Compared to the normal K (NK), LK significantly decreased the expression of most environmental-stress-related proteins and resulted in a lack of protein isoforms in the characterized proteins. For example, the contents of 21 Class Ш peroxidase isoforms under the LK were 6 to 44% of those under the NK and 11 its isoforms were lacking under the LK treatment; the contents of 3 chitinase isoforms under LK were 11–27% of those under the NK and 2 its isoforms were absent under LK. In addition, stress signaling and recognizing proteins were significantly down-regulated or disappeared under the LK. In contrast, the LK resulted in at least 2-fold increases of only one peroxidase, one protease inhibitor, one non-specific lipid-transfer protein and histone H4 and in the appearance of H2A. Therefore, K deficiency decreased plant tolerance to environmental stresses, probably due to the significant and pronounced decrease or disappearance of a myriad of stress-related proteins.
Collapse
|
25
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
26
|
Pu Z, Ino Y, Kimura Y, Tago A, Shimizu M, Natsume S, Sano Y, Fujimoto R, Kaneko K, Shea DJ, Fukai E, Fuji SI, Hirano H, Okazaki K. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:31. [PMID: 26870056 PMCID: PMC4734173 DOI: 10.3389/fpls.2016.00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/10/2016] [Indexed: 05/06/2023]
Abstract
Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.
Collapse
Affiliation(s)
- Zijing Pu
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City UniversityKanazawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City UniversityKanazawa, Japan
| | - Asumi Tago
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Motoki Shimizu
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
- Iwate Biotechnology Research CenterKitakami, Japan
| | | | - Yoshitaka Sano
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe UniversityKobe, Japan
| | - Kentaro Kaneko
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Daniel J. Shea
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Eigo Fukai
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Shin-Ichi Fuji
- Faculty of Bioresource Sciences, Akita Prefectural UniversityAkita, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City UniversityKanazawa, Japan
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
- *Correspondence: Keiichi Okazaki
| |
Collapse
|
27
|
Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves. PLoS One 2015; 10:e0144808. [PMID: 26691228 PMCID: PMC4686907 DOI: 10.1371/journal.pone.0144808] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022] Open
Abstract
Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.
Collapse
|
28
|
Kumari A, Das P, Parida AK, Agarwal PK. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. FRONTIERS IN PLANT SCIENCE 2015; 6:537. [PMID: 26284080 PMCID: PMC4518276 DOI: 10.3389/fpls.2015.00537] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Paromita Das
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Asish Kumar Parida
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Pradeep K. Agarwal
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| |
Collapse
|
29
|
Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S. Recent progress in the use of 'omics technologies in brassicaceous vegetables. FRONTIERS IN PLANT SCIENCE 2015; 6:244. [PMID: 25926843 PMCID: PMC4396356 DOI: 10.3389/fpls.2015.00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 05/21/2023]
Abstract
Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of 'omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Monika Schreiner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Melanie Wiesner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
30
|
Notaguchi M, Okamoto S. Dynamics of long-distance signaling via plant vascular tissues. FRONTIERS IN PLANT SCIENCE 2015; 6:161. [PMID: 25852714 PMCID: PMC4364159 DOI: 10.3389/fpls.2015.00161] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/01/2015] [Indexed: 05/18/2023]
Abstract
Plant vascular systems are constructed by specific cell wall modifications through which cells are highly specialized to make conduits for water and nutrients. Xylem vessels are formed by thickened cell walls that remain after programmed cell death, and serve as water conduits from the root to the shoot. In contrast, phloem tissues consist of a complex of living cells, including sieve tube elements and their neighboring companion cells, and translocate photosynthetic assimilates from mature leaves to developing young tissues. Intensive studies on the content of vascular flow fluids have unveiled that plant vascular tissues transport various types of gene product, and the transport of some provides the molecular basis for the long-distance communications. Analysis of xylem sap has demonstrated the presence of proteins in the xylem transpiration stream. Recent studies have revealed that CLE and CEP peptides secreted in the roots are transported to above ground via the xylem in response to plant-microbe interaction and soil nitrogen starvation, respectively. Their leucine-rich repeat transmembrane receptors localized in the shoot phloem are required for relaying the signal from the shoot to the root. These findings well-fit to the current scenario of root-to-shoot-to-root feedback signaling, where peptide transport achieves the root-to-shoot signaling, the first half of the signaling process. Meanwhile, it is now well-evidenced that proteins and a range of RNAs are transported via the phloem translocation system, and some of those can exert their physiological functions at their destinations, including roots. Thus, plant vascular systems may serve not only as conduits for the translocation of essential substances but also as long-distance communication pathways that allow plants to adapt to changes in internal and external environments at the whole plant level.
Collapse
Affiliation(s)
- Michitaka Notaguchi
- Graduate School of Science, Nagoya University, NagoyaJapan
- ERATO Higashiyama Live-Holonics Project, NagoyaJapan
- *Correspondence: Michitaka Notaguchi and Satoru Okamoto, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ;
| | - Satoru Okamoto
- Graduate School of Science, Nagoya University, NagoyaJapan
- Research Fellow of the Japan Society for the Promotion of Science, TokyoJapan
- *Correspondence: Michitaka Notaguchi and Satoru Okamoto, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ;
| |
Collapse
|
31
|
Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio JS, Bru R, Olmos E. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. THE NEW PHYTOLOGIST 2015; 205:216-39. [PMID: 25187269 DOI: 10.1111/nph.12997] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.
Collapse
|
32
|
Habash DZ, Baudo M, Hindle M, Powers SJ, Defoin-Platel M, Mitchell R, Saqi M, Rawlings C, Latiri K, Araus JL, Abdulkader A, Tuberosa R, Lawlor DW, Nachit MM. Systems responses to progressive water stress in durum wheat. PLoS One 2014; 9:e108431. [PMID: 25265161 PMCID: PMC4180936 DOI: 10.1371/journal.pone.0108431] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/21/2014] [Indexed: 01/08/2023] Open
Abstract
Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1) and a recombinant inbred line (RIL2219) showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat’s response to water stress, in terms of biological robustness theory, the findings suggest that each durum line transcriptome responded to water stress in a genome-specific manner which contributes to an overall different strategy of resistance to water stress.
Collapse
Affiliation(s)
- Dimah Z. Habash
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
- * E-mail:
| | - Marcela Baudo
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| | - Matthew Hindle
- Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Stephen J. Powers
- Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | | | - Rowan Mitchell
- Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Mansoor Saqi
- Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Chris Rawlings
- Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Kawther Latiri
- Laboratoire D'agronomie, National Agricultural Research Institute of Tunisia, Ariana, Tunisia
| | - Jose L. Araus
- Dept. of Vegetal Biology, Faculty of Biology, Barcelona, Spain
| | - Ahmad Abdulkader
- Biotechnology Department, General Commission for Scientific Agricultural Research, Damascus, Syria
| | - Roberto Tuberosa
- Dept. of Agroenvironmental Science and Technology, University of Bologna, Bologna, Italy
| | - David W. Lawlor
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| | - Miloudi M. Nachit
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
33
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|
34
|
Abstract
Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.
Collapse
|
35
|
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 2013; 167:111-22. [PMID: 23792782 DOI: 10.1016/j.jbiotec.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) synthesizes huge amounts of the exopolysaccharide xanthan and is a plant pathogen affecting Brassicaceae, among them the model plant Arabidopsis thaliana. Xanthan is produced as a thickening agent at industrial scale by fermentation of Xcc. In an approach based on 2D gel electrophoresis, protein samples from different growth phases were characterized to initialize analysis of the Xanthomonas phosphoproteome. The 2D gels were stained with Pro-Q Diamond phosphoprotein stain to identify putatively phosphorylated proteins. Spots of putatively phosphorylated proteins were excised from the gel and analyzed by mass spectrometry. Three proteins were confirmed to be phosphorylated, the phosphoglucomutase/phosphomannomutase XanA that is important for xanthan and lipopolysaccharide biosynthesis, the phosphoenolpyruvate synthase PspA that is involved in gluconeogenesis, and an anti-sigma factor antagonist RsbR that was so far uncharacterized in xanthomonads. The growth phase in which the samples were collected had an influence on protein phosphorylation in Xcc, particular distinct in case of RsbR, which was phosphorylated during the transition from the late exponential growth phase to the stationary phase.
Collapse
|
36
|
Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J. An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 2013; 8:e64041. [PMID: 23696864 PMCID: PMC3655940 DOI: 10.1371/journal.pone.0064041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/09/2013] [Indexed: 12/05/2022] Open
Abstract
As an environmental contaminant, mercury is of great concern due to its high risk to environmental and human health. The halophyte Suaeda salsa is the dominant plant in the intertidal zones of the Yellow River Delta (YRD) where has been contaminated by mercury in some places. This study aimed at evaluating the chronic effects of mercury (Hg2+, 20 µg L−1) and the influence of an environmentally relevant salinity (NaCl, 500 mM) on mercury-induced effects in S. salsa. A total of 43 protein spots with significant changes were identified in response to Hg2+, salinity and combined Hg2+ and salinity. These proteins can be categorized into diverse functional classes, related to metabolic processes, photosynthesis, stress response, protein fate, energy metabolism, signaling pathways and immunosuppression. Metabolic responses demonstrated that Hg2+ could disturb protein and energy metabolisms in S. salsa co-exposed with or without salinity. In addition, both antagonistic and synergistic effects between Hg2+ and salinity were confirmed by differential levels of proteins (magnesium-chelatase and ribulose-l,5-bisphosphate carboxylase/oxygenase) and metabolites (valine, malonate, asparagine, glycine, fructose and glucose) in S. salsa. These findings suggest that a combination of proteomics and metabolomics can provide insightful information of environmental contaminant-induced effects in plants at molecular levels.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- The Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- * E-mail:
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- The Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lei Wei
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- The Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
| | - Junbao Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
| |
Collapse
|
37
|
Turnbull CGN, Lopez-Cobollo RM. Heavy traffic in the fast lane: long-distance signalling by macromolecules. THE NEW PHYTOLOGIST 2013; 198:33-51. [PMID: 23398598 DOI: 10.1111/nph.12167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/21/2012] [Indexed: 05/05/2023]
Abstract
The two major vascular conduits in plants, the xylem and phloem, theoretically provide opportunities for the long-distance translocation of almost any type of water-borne molecule. This review focuses on the signalling functions conveyed by the movement of macromolecules. Here, a signal is defined as the communication of information from source to destination, where it modifies development, physiology or defence through altered gene expression or by direct influences on other cellular processes. Xylem and phloem sap both contain diverse classes of proteins; in addition, phloem contains many full-length and small RNA species. Only a few of these mobile molecules have proven functions in signalling. The transduction of signals typically depends on connection to appropriate signalling pathways. Incoming protein signals require specific detection systems, generally via receptors. Mobile RNAs require either the translation or presence of a homologous target. Given that phloem sieve elements are enucleate and lack translation machinery, RNA function requires subsequent unloading at least into adjacent companion cells. The binding of RNA by proteins in ribonucleoprotein complexes enables the translocation of some signals, with evidence for both sequence-specific and size-specific binding. Several examples of long-distance macromolecular signalling are highlighted, including the FT protein signal which regulates flowering time and other developmental switches.
Collapse
Affiliation(s)
- Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
38
|
Liao C, Liu R, Zhang F, Li C, Li X. Nitrogen under- and over-supply induces distinct protein responses in maize xylem sap. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:374-387. [PMID: 22501030 DOI: 10.1111/j.1744-7909.2012.01122.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants. However, it remains largely unknown how nitrogenous compounds, especially proteins in xylem sap, respond to N under- or over-supply. We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap. Proteomic analysis showed that 23 proteins in the xylem sap of maize plants, including 12 newly identified ones, differentially accumulated in response to various N supplies. Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses, whereas the other five proteins appeared to respond largely to N under- or over-supply, suggesting distinct protein responses in maize xylem upon N under- and over-supply. Furthermore, one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.
Collapse
Affiliation(s)
- Chengsong Liao
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
39
|
Saeed M, Dahab AHA, Wangzhen G, Tianzhen Z. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:188-99. [PMID: 22433075 DOI: 10.1089/omi.2011.0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Today, agriculture is facing a tremendous threat from the climate change menace. As human survival is dependent on a constant supply of food from plants as the primary producers, we must aware of the underlying molecular mechanisms that plants have acquired as a result of molecular evolution to cope this rapidly changing environment. This understanding will help us in designing programs aimed at developing crop plant cultivars best suited to our needs of a sustainable agriculture. The field of systems biology is rapidly progressing, and new insight is coming out about the molecular mechanisms involved in abiotic stress tolerance. There is a cascade of changes in transcriptome, proteome, and metabolome of plants during these stress responses. We have tried to cover most pronounced recent developments in the field of "omics" related to abiotic stress tolerance of plants. These changes are very coordinated, and often there is crosstalk between different components of stress tolerance. The functions of various molecular entities are becoming more clear and being associated with more precise biological phenomenon.
Collapse
Affiliation(s)
- Muhammad Saeed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | |
Collapse
|
40
|
Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC. Omics of Root-to-Shoot Signaling Under Salt Stress and Water Deficit. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:893-901. [DOI: 10.1089/omi.2011.0092] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Aurelio Gómez-Cadenas
- Ciències Agràries i del Medi Natural, Universidad Jaume I, , Castellon de la Plana, Spain
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|