1
|
Bull T, Khakhar A. Design principles for synthetic control systems to engineer plants. PLANT CELL REPORTS 2023; 42:1875-1889. [PMID: 37789180 DOI: 10.1007/s00299-023-03072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE Synthetic control systems have led to significant advancement in the study and engineering of unicellular organisms, but it has been challenging to apply these tools to multicellular organisms like plants. The ability to predictably engineer plants will enable the development of novel traits capable of alleviating global problems, such as climate change and food insecurity. Engineering predictable multicellular phenotypes will require the development of synthetic control systems that can precisely regulate how the information encoded in genomes is translated into phenotypes. Many efficient control systems have been developed for unicellular organisms. However, it remains challenging to use such tools to study or engineer multicellular organisms. Plants are a good chassis within which to develop strategies to overcome these challenges, thanks to their capacity to withstand large-scale reprogramming without lethality. Additionally, engineered plants have great potential for solving major societal problems. Here we briefly review the progress of control system development in unicellular organisms, and how that information can be leveraged to characterize control systems in plants. Further, we discuss strategies for developing control systems designed to regulate the expression of transgenes or endogenous loci and generate dosage-dependent or discrete traits. Finally, we discuss the utility that mathematical models of biological processes have for control system deployment.
Collapse
Affiliation(s)
- Tawni Bull
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Cho H, Moy Y, Rudnick NA, Klein TM, Yin J, Bolar J, Hendrick C, Beatty M, Castañeda L, Kinney AJ, Jones TJ, Chilcoat ND. Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:977-990. [PMID: 35015927 PMCID: PMC9055811 DOI: 10.1111/pbi.13777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 05/03/2023]
Abstract
We have discovered a novel bacterium, Ochrobactrum haywardense H1 (Oh H1), which is capable of efficient plant transformation. Ochrobactrum is a new host for Agrobacterium-derived vir and T-DNA-mediated transformation. Oh H1 is a unique, non-phytopathogenic species, categorized as a BSL-1 organism. We engineered Oh H1 with repurposed Agrobacterium virulence machinery and demonstrated Oh H1 can transform numerous dicot species and at least one monocot, sorghum. We generated a cysteine auxotrophic Oh H1-8 strain containing a binary vector system. Oh H1-8 produced transgenic soybean plants with an efficiency 1.6 times that of Agrobacterium strain AGL1 and 2.9 times that of LBA4404Thy-. Oh H1-8 successfully transformed several elite Corteva soybean varieties with T0 transformation frequency up to 35%. In addition to higher transformation efficiencies, Oh H1-8 generated high-quality, transgenic events with single-copy, plasmid backbone-free insertion at frequencies higher than AGL1. The SpcN selectable marker gene is excised using a heat shock-inducible excision system resulting in marker-free transgenic events. Approximately, 24.5% of the regenerated plants contained only a single copy of the transgene and contained no vector backbone. There were no statistically significant differences in yield comparing T3 null-segregant lines to wild-type controls. We have demonstrated that Oh H1-8, combined with spectinomycin selection, is an efficient, rapid, marker-free and yield-neutral transformation system for elite soybean.
Collapse
Affiliation(s)
- Hyeon‐Je Cho
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - York Moy
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Alpine Roads Inc.South San FranciscoCAUSA
| | - Nathan A. Rudnick
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Relic Culture LLC.San LeandroCAUSA
| | - Theodore M. Klein
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Meristematic Inc.San FranciscoCAUSA
| | - Jiaming Yin
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Joy Bolar
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Carol Hendrick
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Mary Beatty
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | | | | | - Todd J. Jones
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | | |
Collapse
|
3
|
Harrington SA, Backhaus AE, Fox S, Rogers C, Borrill P, Uauy C, Richardson A. A heat-shock inducible system for flexible gene expression in cereals. PLANT METHODS 2020; 16:137. [PMID: 33072173 PMCID: PMC7557097 DOI: 10.1186/s13007-020-00677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Functional characterisation of genes using transgenic methods is increasingly common in cereal crops. Yet standard methods of gene over-expression can lead to undesirable developmental phenotypes, or even embryo lethality, due to ectopic gene expression. Inducible expression systems allow the study of such genes by preventing their expression until treatment with the specific inducer. When combined with the Cre-Lox recombination system, inducible promoters can be used to initiate constitutive expression of a gene of interest. Yet while these systems are well established in dicot model plants, like Arabidopsis thaliana, they have not yet been implemented in grasses. RESULTS Here we present an irreversible heat-shock inducible system developed using Golden Gate-compatible components which utilises Cre recombinase to drive constitutive gene expression in barley and wheat. We show that a heat shock treatment of 38 °C is sufficient to activate the construct and drive expression of the gene of interest. Modulating the duration of heat shock controls the density of induced cells. Short durations of heat shock cause activation of the construct in isolated single cells, while longer durations lead to global construct activation. The system can be successfully activated in multiple tissues and at multiple developmental stages and shows no activation at standard growth temperatures (~ 20 °C). CONCLUSIONS This system provides an adaptable framework for use in gene functional characterisation in cereal crops. The developed vectors can be easily adapted for specific genes of interest within the Golden Gate cloning system. By using an environmental signal to induce activation of the construct, the system avoids pitfalls associated with consistent and complete application of chemical inducers. As with any inducible system, care must be taken to ensure that the expected construct activation has indeed taken place.
Collapse
Affiliation(s)
| | | | - Samantha Fox
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Christian Rogers
- ENSA, Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR UK
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Annis Richardson
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| |
Collapse
|
4
|
Dolzblasz A, Gola EM, Sokołowska K, Smakowska-Luzan E, Twardawska A, Janska H. Impairment of Meristem Proliferation in Plants Lacking the Mitochondrial Protease AtFTSH4. Int J Mol Sci 2018. [PMID: 29538317 PMCID: PMC5877714 DOI: 10.3390/ijms19030853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shoot and root apical meristems (SAM and RAM, respectively) are crucial to provide cells for growth and organogenesis and therefore need to be maintained throughout the life of a plant. However, plants lacking the mitochondrial protease AtFTSH4 exhibit an intriguing phenotype of precocious cessation of growth at both the shoot and root apices when grown at elevated temperatures. This is due to the accumulation of internal oxidative stress and progressive mitochondria dysfunction. To explore the impacts of the internal oxidative stress on SAM and RAM functioning, we study the expression of selected meristem-specific (STM, CLV3, WOX5) and cell cycle-related (e.g., CYCB1, CYCD3;1) genes at the level of the promoter activity and/or transcript abundance in wild-type and loss-of-function ftsh4-1 mutant plants grown at 30 °C. In addition, we monitor cell cycle progression directly in apical meristems and analyze the responsiveness of SAM and RAM to plant hormones. We show that growth arrest in the ftsh4-1 mutant is caused by cell cycle dysregulation in addition to the loss of stem cell identity. Both the SAM and RAM gradually lose their proliferative activity, but with different timing relative to CYCB1 transcriptional activity (a marker of G2-M transition), which cannot be compensated by exogenous hormones.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Edyta M Gola
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Katarzyna Sokołowska
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Elwira Smakowska-Luzan
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| | - Adriana Twardawska
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| |
Collapse
|
5
|
Rajaee M, Ow DW. A new location to split Cre recombinase for protein fragment complementation. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1420-1428. [PMID: 28317293 PMCID: PMC5633763 DOI: 10.1111/pbi.12726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre.
Collapse
Affiliation(s)
- Maryam Rajaee
- Plant Gene Engineering CenterSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - David W. Ow
- Plant Gene Engineering CenterSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
6
|
Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H. AtOMA1 Affects the OXPHOS System and Plant Growth in Contrast to Other Newly Identified ATP-Independent Proteases in Arabidopsis Mitochondria. FRONTIERS IN PLANT SCIENCE 2017; 8:1543. [PMID: 28936218 PMCID: PMC5594102 DOI: 10.3389/fpls.2017.01543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/23/2017] [Indexed: 05/17/2023]
Abstract
Compared with yeast, our knowledge on members of the ATP-independent plant mitochondrial proteolytic machinery is rather poor. In the present study, using confocal microscopy and immunoblotting, we proved that homologs of yeast Oma1, Atp23, Imp1, Imp2, and Oct1 proteases are localized in Arabidopsis mitochondria. We characterized these components of the ATP-independent proteolytic system as well as the earlier identified protease, AtICP55, with an emphasis on their significance in plant growth and functionality in the OXPHOS system. A functional complementation assay demonstrated that out of all the analyzed proteases, only AtOMA1 and AtICP55 could substitute for a lack of their yeast counterparts. We did not observe any significant developmental or morphological changes in plants lacking the studied proteases, either under optimal growth conditions or after exposure to stress, with the only exception being retarded root growth in oma1-1, thus implying that the absence of a single mitochondrial ATP-independent protease is not critical for Arabidopsis growth and development. We did not find any evidence indicating a clear functional complementation of the missing protease by any other protease at the transcript or protein level. Studies on the impact of the analyzed proteases on mitochondrial bioenergetic function revealed that out of all the studied mutants, only oma1-1 showed differences in activities and amounts of OXPHOS proteins. Among all the OXPHOS disorders found in oma1-1, the complex V deficiency is distinctive because it is mainly associated with decreased catalytic activity and not correlated with complex abundance, which has been observed in the case of supercomplex I + III2 and complex I deficiencies. Altogether, our study indicates that despite the presence of highly conservative homologs, the mitochondrial ATP-independent proteolytic system is not functionally conserved in plants as compared with yeast. Our findings also highlight the importance of AtOMA1 in maintenance of proper function of the OXPHOS system as well as in growth and development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Iwona Migdal
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Renata Skibior-Blaszczyk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Marta Kolodziejczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
| | - Arnold Garbiec
- Institute of Experimental Biology, Faculty of Biological Sciences, University of WroclawWroclaw, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of WroclawWroclaw, Poland
- *Correspondence: Hanna Janska,
| |
Collapse
|
7
|
Pan L, Zhao H, Yu Q, Bai L, Dong L. miR397/Laccase Gene Mediated Network Improves Tolerance to Fenoxaprop- P-ethyl in Beckmannia syzigachne and Oryza sativa. FRONTIERS IN PLANT SCIENCE 2017; 8:879. [PMID: 28588605 PMCID: PMC5440801 DOI: 10.3389/fpls.2017.00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/10/2017] [Indexed: 05/03/2023]
Abstract
Herbicide resistance can be either target-site or non-target-site based. The molecular mechanisms underlying non-target-site resistance (NTSR) are poorly understood, especially at the level of gene expression regulation. MicroRNAs (miRNAs) represent key post-transcriptional regulators of eukaryotic gene expression and play important roles in stress responses. In this study, the miR397 gene from Beckmannia syzigachne (referred to as bsy-miR397) was functionally characterized to determine its role in regulating fenoxaprop-P-ethyl resistance. We showed that (1) bsy-miR397 transcript level is constitutively higher in resistant than in sensitive B. syzigachne plants, whereas bsy-Laccase expression and activity show the opposite trend, and (2) bsy-miR397 suppresses the expression of bsy-Laccase in tobacco, indicating that it negatively regulates bsy-Laccase at the transcriptional level. We found evidences that miR397/laccase regulation might be involved in fenoxaprop-P-ethyl NTSR. First, the rice transgenic line overexpressing OXmiR397 showed improved fenoxaprop-P-ethyl tolerance. Second, following activation of bsy-Laccase gene expression by CuSO4 treatment, fenoxaprop resistance in B. syzigachne tended to decrease. Therefore, we suggest that bsy-miR397 might play a role in fenoxaprop-P-ethyl NTSR in B. syzigachne by down-regulating laccase expression, potentially leading to the enhanced expression of three oxidases/peroxidases genes to introduce an active moiety into herbicide molecules in Phase-2 metabolism. Bsy-miR397, bsy-Laccase, and other regulatory components might form a regulatory network to detoxify fenoxaprop-P-ethyl in B. syzigachne, supported by the differential expression of transcription factors and oxidases/peroxidases in the rice transgenic line overexpressing OXmiR397. This implies how down-regulation of a gene (laccase) can enhance NTSR. Our findings shed light on the daunting task of understanding and managing complex NTSR in weedy plant species.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests – Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests – Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, PerthWA, Australia
| | - Lianyang Bai
- Biotechnology Research Center, Hunan Academy of Agricultural SciencesChangsha, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests – Nanjing Agricultural University, Ministry of EducationNanjing, China
- *Correspondence: Liyao Dong,
| |
Collapse
|
8
|
Bhatia N, Bozorg B, Larsson A, Ohno C, Jönsson H, Heisler MG. Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis. Curr Biol 2016; 26:3202-3208. [PMID: 27818174 PMCID: PMC5154752 DOI: 10.1016/j.cub.2016.09.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/29/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2, 3, 4, 5, 6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7, 8, 9, 10, 11, 12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures. Auxin-regulated MP expression and activity predict PIN1 polarity changes at the SAM Localized MP activity is necessary to mediate periodic organ formation MP orients PIN1 polarity non-cell autonomously to promote local auxin accumulation Sub-epidermal MP activity is required to stabilize auxin distribution patterns
Collapse
Affiliation(s)
- Neha Bhatia
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Behruz Bozorg
- Computational Biology and Biological Physics Group, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - André Larsson
- Computational Biology and Biological Physics Group, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Carolyn Ohno
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Henrik Jönsson
- Computational Biology and Biological Physics Group, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden; Sainsbury Laboratory and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Marcus G Heisler
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
9
|
Rodriguez-Furlán C, Salinas-Grenet H, Sandoval O, Recabarren C, Arraño-Salinas P, Soto-Alvear S, Orellana A, Blanco-Herrera F. The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1081. [PMID: 27507978 PMCID: PMC4961009 DOI: 10.3389/fpls.2016.01081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/08/2016] [Indexed: 05/23/2023]
Abstract
Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) in plants (SYP), have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment) lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR) in order to trigger trigger induced systemic response (ISR). Plants with a defective SYP123 function were unable to mount a systemic acquired resistance in response to bacterial pathogen infection and ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors can affect the number, anatomy and physiology of root hairs. Here, we presented evidence that indicates that interactions with soil PGPR could be closely regulated by signaling involving secretory and/or endocytic trafficking at the root hair tip as a quick way to response to changing environmental conditions.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlán
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Omar Sandoval
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Camilo Recabarren
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Paulina Arraño-Salinas
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| |
Collapse
|
10
|
Sekan AS, Isayenkov SV, Blume YB. Development of marker-free transformants by site-specific recombinases. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715060080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Yang KZ, Jiang M, Wang M, Xue S, Zhu LL, Wang HZ, Zou JJ, Lee EK, Sack F, Le J. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis. MOLECULAR PLANT 2015; 8:783-95. [PMID: 25680231 DOI: 10.1016/j.molp.2014.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 05/18/2023]
Abstract
The initiation of stomatal lineage and subsequent asymmetric divisions in Arabidopsis require the activity of the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). It has been shown that SPCH controls entry into the stomatal lineage as a substrate either of the MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade or GSK3-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2). Here we show that three serine residues of SPCH appear to be the primary phosphorylation targets of Cyclin-Dependent Kinases A;1 (CDKA;1) in vitro, and among them Serine 186 plays a crucial role in stomatal formation. Expression of an SPCH construct harboring a mutation that results in phosphorylation deficiencies on Serine 186 residue failed to rescue stomatal defects in spch null mutants. Expression of a phosphorylation-mimic mutant SPCH(S186D) complemented stomatal production defects in the transgenic lines harboring the targeted expression of dominant-negative CDKA;1.N146. Therefore, in addition to MAPK- and BIN2-mediated phosphorylation on SPCH, phosphorylation at Serine 186 is positively required for SPCH function in regulating stomatal development.
Collapse
Affiliation(s)
- Ke-Zhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Min Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Ming Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Ling-Ling Zhu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Hong-Zhe Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Jun-Jie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Eun-Kyoung Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Fred Sack
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China.
| |
Collapse
|
12
|
Yang K, Wang H, Xue S, Qu X, Zou J, Le J. Requirement for A-type cyclin-dependent kinase and cyclins for the terminal division in the stomatal lineage of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2449-61. [PMID: 24687979 PMCID: PMC4036514 DOI: 10.1093/jxb/eru139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis stoma is a specialized epidermal valve made up of a pair of guard cells around a pore whose aperture controls gas exchange between the shoot and atmosphere. Guard cells (GCs) are produced by a symmetric division of guard mother cells (GMCs). The R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 restrict the division of a GMC to one. Previously, the upstream regions of several core cell cycle genes were identified as the direct targets of FLP/MYB88, including the B-type cyclin-dependent kinase CDKB1;1 and A2-type cyclin CYCA2;3. Here we show that CDKA;1 is also an immediate direct target of FLP/MYB88 through the binding to cis-regulatory elements in the CDKA;1 promoter region. CDKA;1 activity is required not only for normal GMC divisions but also for the excessive cell overproliferation in flp myb88 mutant GMCs. The impaired defects of GMC division in cdkb1;1 1;2 mutants could be partially rescued by a stage-specific expression of CDKA;1. Although targeted overexpression of CDKA;1 does not affect stomatal development, ectopic expression of the D3-type cyclin CYCD3;2 induces GC subdivision, resulting in a stoma with 3-4 GCs instead of the normal two. Co-overexpression of CDKA;1 with CYCD3;2, but not with CYCA2;3, confers a synergistic effect with respect to GC subdivision. Thus, in addition to a role in stomatal formative asymmetric divisions at early developmental stages, CDKA;1 is needed in triggering GMC symmetric divisions at the late stage of stomatal development. However, timely down-regulation of CDKA;1-CYCD3 activity is required for restriction of GC proliferation.
Collapse
Affiliation(s)
- Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Hongzhe Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Xiaoxiao Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| |
Collapse
|
13
|
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:362. [PMID: 25132838 PMCID: PMC4116805 DOI: 10.3389/fpls.2014.00362] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shweta Kalve
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium ; Department of Mathematics and Computer Science, University of Antwerp Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| |
Collapse
|
14
|
Borowska-Wykręt D, Elsner J, De Veylder L, Kwiatkowska D. Defects in leaf epidermis of Arabidopsis thaliana plants with CDKA;1 activity reduced in the shoot apical meristem. PROTOPLASMA 2013; 250:955-61. [PMID: 23247921 PMCID: PMC3728431 DOI: 10.1007/s00709-012-0472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/04/2012] [Indexed: 05/09/2023]
Abstract
In Arabidopsis thaliana, like in other dicots, the shoot epidermis originates from protodermis, the outermost cell layer of shoot apical meristem. We examined leaf epidermis in transgenic A. thaliana plants in which CDKA;1.N146, a negative dominant allele of A-type cyclin-dependent kinase, was expressed from the SHOOTMERISTEMLESS promoter, i.e., in the shoot apical meristem. Using cleared whole mount preparations of expanding leaves and sequential in vivo replicas of expanding leaf surface, we show that dominant-negative CDKA;1 expression results in defects in epidermis continuity: loss of individual cells and occurrence of gaps between anticlinal walls of neighboring pavement cells. Another striking feature is ingrowth-like invaginations of anticlinal cell walls of pavement cells. Their formation is related to various processes: expansion of cells surrounding the sites of cell loss, defected cytokinesis, and presumably also, the actual ingrowth of an anticlinal cell wall. The mutant exhibits also increased variation in cell size and locally reduced waviness of anticlinal walls of pavement cells. These unusual features of leaf epidermis phenotype may shed a new light on our knowledge on morphogenesis of jigsaw puzzle-shaped pavement cells and on the CDKA;1 role in regulation of plant development via influence on cytoskeleton and plant cell wall.
Collapse
Affiliation(s)
- Dorota Borowska-Wykręt
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Joanna Elsner
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Dorota Kwiatkowska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
15
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
16
|
Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 2012; 159:265-73. [DOI: 10.1016/j.jbiotec.2011.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/26/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
|
17
|
Ding D, Muthuswamy S, Meier I. Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. PLANT MOLECULAR BIOLOGY 2012; 79:203-16. [PMID: 22457071 DOI: 10.1007/s11103-012-9903-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/03/2012] [Indexed: 05/22/2023]
Abstract
In eukaryotes, the spindle assembly checkpoint (SAC) ensures the fidelity of chromosome segregation through monitoring the bipolar attachment of microtubules to kinetochores. Recently, the SAC components Mitotic Arrest Deficient 1 and 2 (MAD1 and MAD2) were found to associate with the nuclear pore complex (NPC) during interphase and to require certain nucleoporins, such as Tpr in animal cells, to properly localize to kinetochores. In plants, the SAC components MAD2, BUR1, BUB3 and Mps1 have been identified, but their connection to the nuclear pore has not been explored. Here, we show that AtMAD1 and AtMAD2 are associated with the nuclear envelope during interphase, requiring the Arabidopsis homolog of Tpr, NUA. Both NUA and AtMAD2 loss-of-function mutants have a shorter primary root and a smaller root meristem, and this defect can be partially rescued by sucrose. Mild AtMAD2 over-expressors exhibit a longer primary root, and an extended root meristem. In BY-2 cells, AtMAD2 is associated with kinetochores during prophase and prometaphase, but not metaphase, anaphase and telophase. Protein-interaction assays demonstrate binding of AtMAD2 to AtMAD1 and AtMAD1 to NUA. Together, these data suggest that NUA scaffolds AtMAD1 and AtMAD2 at the nuclear pore to form a functional complex and that both NUA and AtMAD2 suppress premature exit from cell division at the Arabidopsis root meristem.
Collapse
Affiliation(s)
- Dongfeng Ding
- Department of Molecular Genetics, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
18
|
Na X, Hu Y, Yue K, Lu H, Jia P, Wang H, Wang X, Bi Y. Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips. BMC PLANT BIOLOGY 2011; 11:184. [PMID: 22204558 PMCID: PMC3282671 DOI: 10.1186/1471-2229-11-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 12/28/2011] [Indexed: 05/13/2023]
Abstract
BACKGROUND Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. NCS has inhibitory effects on a broad range of biological activities and thus has various potential practical applications. Here we examine how NCS represses plant root growth. RESULTS Results showed that the inhibition of NCS on cell division in Arabidopsis root tips and its effects on cell differentiation are concentration-dependent; at low concentrations (0.5 and 1.0 μM) NCS preferentially targets mitotic cell cycle specific/cyclin complexes, whereas at high concentration (5.0 μM) the NCS-stimulated accumulation of Kip-related proteins (KRP1 and RP2) affects the CDK complexes with a role at both G1/S and G2/M phases. CONCLUSIONS Our findings suggest that NCS modulates the coordination between cell division and differentiation in Arabidopsis root tips and hence affects the postembryonic development of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Xiaofan Na
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yanfeng Hu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun Yue
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hongxia Lu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Pengfei Jia
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Huahua Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaomin Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yurong Bi
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
19
|
Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubès J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. PLANT PHYSIOLOGY 2011; 156:29-45. [PMID: 21386033 PMCID: PMC3091054 DOI: 10.1104/pp.111.172320] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/07/2011] [Indexed: 05/18/2023]
Abstract
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.
Collapse
|
20
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
21
|
Skylar A, Sung F, Hong F, Chory J, Wu X. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 2010; 351:82-9. [PMID: 21185286 DOI: 10.1016/j.ydbio.2010.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
Most organs in higher plants are generated postembryonically from the meristems, which harbor continuously dividing stem cells throughout a plant's life cycle. In addition to developmental regulations, mitotic activities in the meristematic tissues are modulated by nutritional cues, including carbon source availability. Here we further analyze the relationship between the sugar signal and seedling meristem establishment, taking advantage of our previous observation that exogenously supplied metabolic sugars can rescue the meristem growth arrest phenotype of the Arabidopsis stip mutant seedlings. Our results show that metabolic sugars reactivate the stip meristems by activating the expression of key cell cycle regulators, and therefore, promoting G2 to M transition in Arabidopsis meristematic tissues. One of the early events in this process is the transcriptional repression of TSS, a genetic suppressor of the stip mutations, by sugar signals, suggesting that TSS may act as an integrator of developmental and nutritional signals in regulating meristematic proliferation. We also present evidence that metabolic sugar signals are required for the activation of mitotic entry during de novo meristem formation from G2 arrested cells. Our observations, together with the recent findings that nutrient deprivation leads to G2 arrest of animal germline stem cells, suggest that carbohydrate availability-regulated G2 to M transition may represent a common mechanism in stem cell division regulation in multicellular organisms.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
22
|
Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, Hilson P, Inzé D, Van Damme D, Russinova E. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. PLANT PHYSIOLOGY 2010; 152:553-65. [PMID: 20018602 PMCID: PMC2815867 DOI: 10.1104/pp.109.148643] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/08/2009] [Indexed: 05/18/2023]
Abstract
Cell division depends on the correct localization of the cyclin-dependent kinases that are regulated by phosphorylation, cyclin proteolysis, and protein-protein interactions. Although immunological assays can define cell cycle protein abundance and localization, they are not suitable for detecting the dynamic rearrangements of molecular components during cell division. Here, we applied an in vivo approach to trace the subcellular localization of 60 Arabidopsis (Arabidopsis thaliana) core cell cycle proteins fused to green fluorescent proteins during cell division in tobacco (Nicotiana tabacum) and Arabidopsis. Several cell cycle proteins showed a dynamic association with mitotic structures, such as condensed chromosomes and the preprophase band in both species, suggesting a strong conservation of targeting mechanisms. Furthermore, colocalized proteins were shown to bind in vivo, strengthening their localization-function connection. Thus, we identified unknown spatiotemporal territories where functional cell cycle protein interactions are most likely to occur.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eugenia Russinova
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium (J.B., E.M., M.D., R.D.C., S.R., P.H., D.I., D.V.D., E.R.); Department of Plant Biotechnology and Genetics, Ghent University, B–9052 Ghent, Belgium (J.B., E.M., M.D., R.D.C., S.R., P.H., D.I., D.V.D., E.R.); and Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, B–9000 Ghent, Belgium (D.G.)
| |
Collapse
|
23
|
Bleys A, Karimi M, Hilson P. Clone-based functional genomics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 553:141-77. [PMID: 19588105 DOI: 10.1007/978-1-60327-563-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a wide range of species. Taking advantage of these developments, novel techniques have been implemented to investigate systematically diverse aspects of gene and protein functions underpinning biology processes. Here, we review functional genomics applications that require the mass production of cloned sequence repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in large-scale cloning projects and we provide an up-to-date overview of the clone resources available for model plant species and of the current applications that may be scaled up for systematic plant gene studies.
Collapse
Affiliation(s)
- Annick Bleys
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Gent, Belgium
| | | | | |
Collapse
|
24
|
Wehrkamp-Richter S, Degroote F, Laffaire JB, Paul W, Perez P, Picard G. Characterisation of a new reporter system allowing high throughput in planta screening for recombination events before and after controlled DNA double strand break induction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:248-255. [PMID: 19136269 DOI: 10.1016/j.plaphy.2008.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/26/2008] [Accepted: 11/28/2008] [Indexed: 05/27/2023]
Abstract
DNA double strand breaks (DSBs) are created either by DNA damaging reagents or in a programmed manner, for example during meiosis. Homologous recombination (HR) can be used to repair DSBs, a process vital both for cell survival and for genetic rearrangement during meiosis. In order to easily quantify this mechanism, a new HR reporter gene that is suitable for the detection of rare recombination events in high-throughput screens was developed in Arabidopsis thaliana. This reporter, pPNP, is composed of two mutated Pat genes and has also one restriction site for the meganuclease I-SceI. A functional Pat gene can be reconstituted by an HR event giving plants which are resistant to the herbicide glufosinate. The basal frequency of intra-chromosomal recombination is very low (10(-5)) and can be strongly increased by the expression of I-SceI which creates a DSB. Expression of I-SceI under the control of the 35S CaMV promoter dramatically increases HR frequency (10,000 fold); however the measured recombinant events are in majority somatic. In contrast only germinal recombination events were measured when the meganuclease was expressed from a floral-specific promoter. Finally, the reporter was used to test a dexamethasone inducible I-SceI which could produce up to 200x more HR events after induction. This novel inducible I-SceI should be useful in fundamental studies of the mechanism of repair of DSBs and for biotechnological applications.
Collapse
|
25
|
Allelic mutant series reveal distinct functions for Arabidopsis cycloartenol synthase 1 in cell viability and plastid biogenesis. Proc Natl Acad Sci U S A 2008; 105:3163-8. [PMID: 18287026 DOI: 10.1073/pnas.0712190105] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sterols have multiple functions in all eukaryotes. In plants, sterol biosynthesis is initiated by the enzymatic conversion of 2,3-oxidosqualene to cycloartenol. This reaction is catalyzed by cycloartenol synthase 1 (CAS1), which belongs to a family of 13 2,3-oxidosqualene cyclases in Arabidopsis thaliana. To understand the full scope of sterol biological functions in plants, we characterized allelic series of cas1 mutations. Plants carrying the weak mutant allele cas1-1 were viable but developed albino inflorescence shoots because of photooxidation of plastids in stems that contained low amounts of carotenoids and chlorophylls. Consistent with the CAS1 catalyzed reaction, mutant tissues accumulated 2,3-oxidosqualene. This triterpenoid precursor did not increase at the expense of the pathway end products. Two strong mutations, cas1-2 and cas1-3, were not transmissible through the male gametes, suggesting a role for CAS1 in male gametophyte function. To validate these findings, we analyzed a conditional CRE/loxP recombination-dependent cas1-2 mutant allele. The albino phenotype of growing leaf tissues was a typical defect observed shortly after the CRE/loxP-induced onset of CAS1 loss of function. In the induced cas1-2 seedlings, terminal phenotypes included arrest of meristematic activity, followed by necrotic death. Mutant tissues accumulated 2,3-oxidosqualene and contained low amounts of sterols. The vital role of sterols in membrane functioning most probably explains the requirement of CAS1 for plant cell viability. The observed impact of cas1 mutations on a chloroplastic function implies a previously unrecognized role of sterols or triterpenoid metabolites in plastid biogenesis.
Collapse
|
26
|
De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A. Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. PLANT PHYSIOLOGY 2007; 145:1171-82. [PMID: 17693537 PMCID: PMC2151725 DOI: 10.1104/pp.107.104067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Molecular Genetics, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G. Marker-free transgenic plants through genetically programmed auto-excision. PLANT PHYSIOLOGY 2007; 145:1220-31. [PMID: 17965180 PMCID: PMC2151720 DOI: 10.1104/pp.107.106526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/22/2007] [Indexed: 05/18/2023]
Abstract
We present here a vector system to obtain homozygous marker-free transgenic plants without the need of extra handling and within the same time frame as compared to transformation methods in which the marker is not removed. By introducing a germline-specific auto-excision vector containing a cre recombinase gene under the control of a germline-specific promoter, transgenic plants become genetically programmed to lose the marker when its presence is no longer required (i.e. after the initial selection of primary transformants). Using promoters with different germline functionality, two modules of this genetic program were developed. In the first module, the promoter, placed upstream of the cre gene, confers CRE functionality in both the male and the female germline or in the common germline (e.g. floral meristem cells). In the second module, a promoter conferring single germline-specific CRE functionality was introduced upstream of the cre gene. Promoter sequences used in this work are derived from the APETALA1 and SOLO DANCERS genes from Arabidopsis (Arabidopsis thaliana) Columbia-0 conferring common germline and single germline functionality, respectively. Introduction of the genetic program did not reduce transformation efficiency. Marker-free homozygous progeny plants were efficiently obtained, regardless of which promoter was used. In addition, simplification of complex transgene loci was observed.
Collapse
Affiliation(s)
- Dimitri Verweire
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
28
|
Karimi M, Depicker A, Hilson P. Recombinational cloning with plant gateway vectors. PLANT PHYSIOLOGY 2007; 145:1144-54. [PMID: 18056864 PMCID: PMC2151728 DOI: 10.1104/pp.107.106989] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/02/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Mansour Karimi
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, 9052 Ghent, Belgium
| | | | | |
Collapse
|
29
|
Marjanac G, De Paepe A, Peck I, Jacobs A, De Buck S, Depicker A. Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 2007; 17:239-50. [PMID: 17541719 DOI: 10.1007/s11248-007-9096-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
The ability of the CRE recombinase to catalyze excision of a DNA fragment flanked by directly repeated lox sites has been exploited to modify gene expression and proved to function well in particular case studies. However, very often variability in CRE expression and differences in efficiency of CRE-mediated recombination are observed. Here, various approaches were investigated to reproducibly obtain optimal CRE activity. CRE recombination was analyzed either by transforming the CRE T-DNA into plants containing a lox-flanked fragment or by transforming a T-DNA harboring a lox-flanked fragment into plants producing the CRE recombinase. Although somatic CRE-mediated excision of a lox-flanked fragment was obtained in all transformants, a variable amount of germline-transmitted deletions was found among different independent transformants, irrespective of the orientation of transformation. Also, the efficiency of CRE-mediated excision correlated well with the CRE mRNA level. In addition, CRE-mediated fragment excision was compared after floral dip and after root tissue transformation when transforming in a CRE-expressing background. Importantly, less CRE activity was needed to excise the lox-flanked fragment from the transferred T-DNA after root tissue transformation than after floral dip transformation. We hypothesize that this is correlated with the lower T-DNA copy number inserted during root transformation as compared to floral dip transformation.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- DNA, Bacterial/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Genome, Plant
- Glucuronidase/metabolism
- Integrases/genetics
- Integrases/metabolism
- Plant Roots/genetics
- Plant Roots/growth & development
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Transformation, Genetic
Collapse
Affiliation(s)
- Gordana Marjanac
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent 9052, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
David KM, Couch D, Braun N, Brown S, Grosclaude J, Perrot-Rechenmann C. The auxin-binding protein 1 is essential for the control of cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:197-206. [PMID: 17376160 DOI: 10.1111/j.1365-313x.2007.03038.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The phytohormone auxin has been known for >50 years to be required for entry into the cell cycle. Despite the critical effects exerted by auxin on the control of cell division, the molecular mechanism by which auxin controls this pathway is poorly understood, and how auxin is perceived upstream of any change in the cell cycle is unknown. Auxin Binding Protein 1 (ABP1) is considered to be a candidate auxin receptor, triggering early modification of ion fluxes across the plasma membrane in response to auxin. ABP1 has also been proposed to mediate auxin-dependent cell expansion, and is essential for early embryonic development. We investigated whether ABP1 has a role in the cell cycle. Functional inactivation of ABP1 in the model plant cell system BY2 was achieved through cellular immunization via the conditional expression of a single-chain fragment variable (scFv). This scFv was derived from a well characterized anti-ABP1 monoclonal antibody previously shown to block the activity of the protein. We demonstrate that functional inactivation of ABP1 results in cell-cycle arrest, and provide evidence that ABP1 plays a critical role in regulation of the cell cycle by acting at both the G1/S and G2/M checkpoints. We conclude that ABP1 is essential for the auxin control of cell division and is likely to constitute the first step of the auxin-signalling pathway mediating auxin effects on the cell cycle.
Collapse
Affiliation(s)
- Karine M David
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
31
|
Grønlund JT, Stemmer C, Lichota J, Merkle T, Grasser KD. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes. PLANT MOLECULAR BIOLOGY 2007; 63:545-56. [PMID: 17131098 DOI: 10.1007/s11103-006-9108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 10/30/2006] [Indexed: 05/12/2023]
Abstract
The beta recombinase is a member of the prokaryotic site-specific serine recombinases (invertase/resolvase family), which in the presence of a DNA bending cofactor can catalyse DNA deletions between two directly oriented 90-bp six recombination sites. We have examined here whether the beta recombinase can be expressed in plants and whether it displays in planta its specific catalytic activity excising DNA sequences that are flanked by six sites. In plant protoplasts, the enzyme could be expressed as a GFP-beta recombinase fusion which can localise to the cell nucleus. Beta recombinase stably expressed in tobacco plants can catalyse deletion of a spacer region that is flanked by directly oriented six sites and has been placed between promoter and a GUS reporter gene (preventing GUS expression). In transient transformation experiments, beta recombinase-mediated elimination of the spacer results in transcriptional induction of the GUS gene. Similarly, beta recombinase in stably double-transformed Arabidopsis plants deletes specifically the spacer region of a reporter construct that has been incorporated into the genome. In the segregating T1 generation, plants were identified that contain exclusively the recombined reporter construct. In summary, our results demonstrate that functional / recombinase can be expressed in plants and that the enzyme is suitable to precisely eliminate undesired sequences from plant genomes. Therefore, the beta/six recombination system (and presumably related recombinases) may become an attractive tool for plant genetic engineering.
Collapse
Affiliation(s)
- Jesper T Grønlund
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|
32
|
De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inzé D, De Veylder L. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. THE PLANT CELL 2007; 19:211-25. [PMID: 17209125 PMCID: PMC1820959 DOI: 10.1105/tpc.106.045047] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.
Collapse
Affiliation(s)
- Kristof De Schutter
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cell cycle regulation is of pivotal importance for plant growth and development. Although plant cell division shares basic mechanisms with all eukaryotes, plants have evolved novel molecules orchestrating the cell cycle. Some regulatory proteins, such as cyclins and inhibitors of cyclin-dependent kinases, are particularly numerous in plants, possibly reflecting the remarkable ability of plants to modulate their postembryonic development. Many plant cells also can continue DNA replication in the absence of mitosis, a process known as endoreduplication, causing polyploidy. Here, we review the molecular mechanisms that regulate cell division and endoreduplication and we discuss our understanding, albeit very limited, on how the cell cycle is integrated with plant development.
Collapse
Affiliation(s)
- Dirk Inzé
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | | |
Collapse
|
34
|
Da Costa M, Bach L, Landrieu I, Bellec Y, Catrice O, Brown S, De Veylder L, Lippens G, Inzé D, Faure JD. Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. THE PLANT CELL 2006; 18:1426-37. [PMID: 16698944 PMCID: PMC1475488 DOI: 10.1105/tpc.105.040485] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/12/2006] [Accepted: 04/22/2006] [Indexed: 05/09/2023]
Abstract
PASTICCINO2 (PAS2), a member of the protein Tyr phosphatase-like family, is conserved among all eukaryotes and is characterized by a mutated catalytic site. The cellular functions of the Tyr phosphatase-like proteins are still unknown, even if they are essential in yeast and mammals. Here, we demonstrate that PAS2 interacts with a cyclin-dependent kinase (CDK) that is phosphorylated on Tyr and not with its unphosphorylated isoform. Phosphorylation of the conserved regulatory Tyr-15 is involved in the binding of CDK to PAS2. Loss of the PAS2 function dephosphorylated Arabidopsis thaliana CDKA;1 and upregulated its kinase activity. In accordance with its role as a negative regulator of the cell cycle, overexpression of PAS2 slowed down cell division in suspension cell cultures at the G2-to-M transition and early mitosis and inhibited Arabidopsis seedling growth. The latter was accompanied by altered leaf development and accelerated cotyledon senescence. PAS2 was localized in the cytoplasm of dividing cells but moved into the nucleus upon cell differentiation, suggesting that the balance between cell division and differentiation is regulated through the interaction between CDKA;1 and the antiphosphatase PAS2.
Collapse
Affiliation(s)
- Marco Da Costa
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, F-78026 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Underwood BA, Vanderhaeghen R, Whitford R, Town CD, Hilson P. Simultaneous high-throughput recombinational cloning of open reading frames in closed and open configurations. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:317-24. [PMID: 17147637 DOI: 10.1111/j.1467-7652.2006.00183.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Comprehensive open reading frame (ORF) clone collections, ORFeomes, are key components of functional genomics projects. When recombinational cloning systems are used to capture ORFs in master clones, these DNA sequences can be easily transferred into a variety of expression plasmids, each designed for a specific assay. Depending on downstream applications, an ORF is cloned either with or without a stop codon at its original position, referred to as closed or open configuration, respectively. The former is preferred when the encoded protein is produced in its native form or with an amino-terminal tag; the latter is obligatory when the protein is produced as a fusion with a carboxyl-terminal tag. We developed a streamlined protocol for high-throughput, simultaneous cloning of both open and closed ORF entry clones with the Gateway recombinational cloning system. The protocol is straightforward to set up in large-scale ORF cloning projects, and is cost-effective, because the initial ORF amplification and the cloning in a pDONR vector are performed only once to obtain the two ORF configurations. We illustrated its implementation for the isolation and validation of 346 Arabidopsis ORF entry clones.
Collapse
Affiliation(s)
- Beverly A Underwood
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
36
|
Hilson P. Cloned sequence repertoires for small- and large-scale biology. TRENDS IN PLANT SCIENCE 2006; 11:133-41. [PMID: 16481211 DOI: 10.1016/j.tplants.2006.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/14/2005] [Accepted: 01/30/2006] [Indexed: 05/06/2023]
Abstract
How to assign function to the tens of thousands of genes discovered in the chromosomes of a few model species? How to complement the classical genetic approaches that are not always ideally suited to decode complex mechanisms? The solutions to these pressing questions are not simple and rely on the development of novel resources and technologies. Here I critically review what clone collections are available and how they can be exploited for the systematic analysis of gene functions in plants.
Collapse
Affiliation(s)
- Pierre Hilson
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, B-9052 Gent, Belgium.
| |
Collapse
|
37
|
Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS. Gateway-compatible vectors for plant functional genomics and proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:616-29. [PMID: 16441352 DOI: 10.1111/j.1365-313x.2005.02617.x] [Citation(s) in RCA: 1303] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gateway cloning technology facilitates high-throughput cloning of target sequences by making use of the bacteriophage lambda site-specific recombination system. Target sequences are first captured in a commercially available "entry vector" and are then recombined into various "destination vectors" for expression in different experimental organisms. Gateway technology has been embraced by a number of plant laboratories that have engineered destination vectors for promoter specificity analyses, protein localization studies, protein/protein interaction studies, constitutive or inducible protein expression studies, gene knockdown by RNA interference, or affinity purification experiments. We review the various types of Gateway destination vectors that are currently available to the plant research community and provide links and references to enable additional information to be obtained concerning these vectors. We also describe a set of "pEarleyGate" plasmid vectors for Agrobacterium-mediated plant transformation that translationally fuse FLAG, HA, cMyc, AcV5 or tandem affinity purification epitope tags onto target proteins, with or without an adjacent fluorescent protein. The oligopeptide epitope tags allow the affinity purification, immunolocalization or immunoprecipitation of recombinant proteins expressed in vivo. We demonstrate the utility of pEarleyGate destination vectors for the expression of epitope-tagged proteins that can be affinity captured or localized by immunofluorescence microscopy. Antibodies detecting the FLAG, HA, cMyc and AcV5 tags show relatively little cross-reaction with endogenous proteins in a variety of monocotyledonous and dicotyledonous plants, suggesting broad utility for the tags and vectors.
Collapse
Affiliation(s)
- Keith W Earley
- Biology Department, Washington University, 1 Brookings Drive, St Louis, MO 63130, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In recent years, considerable progress has been made in unraveling the control mechanisms operating on the plant cell cycle and most of the key regulators have now been identified, including cyclin-dependent kinases (CDKs), cyclins, CDK-inhibitory proteins, the WEE kinase and proteins of the retinoblastoma-related protein (RBR)/E2F/DP pathway. The review discusses recent developments in our understanding of the plant cell cycle machinery and highlights the role of the cell cycle in plant development.
Collapse
Affiliation(s)
- Dirk Inzé
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Gent, Belgium.
| |
Collapse
|