1
|
Kang Y, Yang Y, Sun P, Li M, Wang H, Sun X, Jin W. Characterization of the heat shock factor RcHsfA6 in Rosa chinensis and function in the thermotolerance of Arabidopsis. BMC PLANT BIOLOGY 2025; 25:673. [PMID: 40399821 PMCID: PMC12093818 DOI: 10.1186/s12870-025-06652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Environmental stresses, especially high temperatures, severely limit the growth and development of many horticultural plants. As a woody ornamental flower with rich flower colors and flower types, rose (R. chinensis) leaves wilt and shriveled petals at high temperatures, which severely affects its growth and ornamental value. The defense mechanism of rose plants against high-temperature stress has not been fully elucidated. RESULTS In the present study, the transcriptomes of rose petals at normal (25 °C) and high (35 °C) temperature were compared. A total of 2519 differentially expressed genes (DEGs) were identified, including 1491 upregulated DEGs and 1028 downregulated DEGs. The plant hormone signal transduction pathway, especially the abscisic acid (ABA) signaling pathway, was the most enriched signaling pathway for DEGs in rose at high temperature. Heat shock factors (Hsfs), especially class A Hsfs, have been confirmed to be involved in thermotolerance mechanisms. Among the DEGs, eight genes were annotated as Hsfs, including 5 upregulated Hsfs at high temperature. RcHsfA6 is rapidly induced by high temperatures and is a candidate regulatory factor in the plant ABA signaling pathway. Therefore, we focused on RcHsfA6. RcHsfA6 encodes a protein containing 308 amino acids and contains typical Hsf domains, such as the DNA-binding domain (DBD), the N-terminal oligomerization domain (OD), the nuclear localization signal (NLS) and AHA motifs at the C-terminal activator domain (CTAD). The heterologous overexpression of RcHsfA6 in Arabidopsis increased the thermotolerance of Arabidopsis seeds. In addition, RcHsfA6 overexpression increased the ABA content and the expression of ABA biosynthetic gene AtABI5 and signal transduction gene AtPYL12, thereby inhibiting the germination of Arabidopsis seeds under exogenous ABA conditions. CONCLUSIONS Taken together, our results suggest that RcHsfA6 is involved in the high-temperature response of rose and its heterologous overexpression in Arabidopsis increased the thermotolerance of Arabidopsis at high temperatures via the ABA signaling pathway.
Collapse
Affiliation(s)
- Yanhui Kang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Xiangyi Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China.
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China.
| |
Collapse
|
2
|
Jeon SW, Kim YR, Han JY, Jeong U, Cheong EJ, Choi YE. A Heat-Shock Transcription Factor in Panax ginseng, PgHSFA2, Confers Heat and Salt Resistance in Transgenic Tobacco. Int J Mol Sci 2025; 26:3836. [PMID: 40332497 PMCID: PMC12028321 DOI: 10.3390/ijms26083836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Panax ginseng plants are susceptible to high temperatures and intense sunlight, necessitating cultivation under artificially shaded structures. Identifying the genes associated with heat resistance is critical for advancing molecular breeding strategies to develop heat-tolerant ginseng varieties. Heat-shock transcription factors (HSFs) are widely recognized as key regulators of plant responses to abiotic stresses, primarily by controlling heat-shock proteins (HSPs). To identify HSF genes in P. ginseng, transcriptome analysis was conducted on ginseng plants subjected to heat-shock treatment (1 h at 40 °C). Among the 26 HSF unigenes annotated from the ginseng transcriptome, a unigene related to the HSFA2 family exhibited the highest transcriptional activity following heat-shock treatment. The expression of PgHSFA2, a gene identified from this unigene, was analyzed under temperature and salt-stress conditions in ginseng plants using qPCR. The results showed that PgHSFA2 was highly responsive to various abiotic stresses, including heat, cold, salt, and intense sunlight. To assess the functional role of PgHSFA2, transgenic tobacco plants overexpressing this gene were analyzed. The overexpression of PgHSFA2 led to an elevated expression of heat-shock proteins (HSPs) in tobacco, resulting in enhanced resistance to high temperature and salt stress. Transgenic tobacco plants exhibited significantly less reduction in chlorophyll fluorescence compared to nontransgenic controls when exposed to salt stress (200 and 400 mM NaCl) and high-temperature stress (42 °C), indicating improved stress tolerance. In conclusion, PgHSFA2 is a crucial HSF that regulates the transcriptional control of HSPs in ginseng plants. The constitutive expression of PgHSFA2 in transgenic ginseng could potentially confer improved tolerance to high temperatures, making it a valuable target for molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Eui Choi
- Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea; (S.W.J.); (Y.R.K.); (J.Y.H.); (U.J.); (E.J.C.)
| |
Collapse
|
3
|
Fragkostefanakis S, Schleiff E, Scharf KD. Back to the basics: the molecular blueprint of plant heat stress transcription factors. Biol Chem 2025:hsz-2025-0115. [PMID: 40223542 DOI: 10.1515/hsz-2025-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Heat stress transcription factors (HSFs) play a pivotal role in regulating plant responses to heat and other environmental stresses, as well as developmental processes. HSFs possess conserved domains responsible for DNA binding, oligomerization, and transcriptional regulation, which collectively enable precise and dynamic control of cellular responses to environmental stimuli. Functional diversification of HSFs has been demonstrated through genetic studies in model plants such as Arabidopsis thaliana and economically important crops like tomato, rice, and wheat. However, the underlying molecular mechanisms that govern HSF function remain only partially understood, and for a handful of HSFs. Advancements in structural biology, biochemistry, molecular biology, and genomics shed light into how HSFs mediate stress responses at the molecular level. These insights offer exciting opportunities to leverage HSF biology for gene editing and crop improvement, enabling the customization of stress tolerance traits via regulation of HSF-dependent regulatory networks to enhance thermotolerance. This review synthesizes current knowledge on HSF structure and function, providing a perspective on their roles in plant adaptation to a changing climate.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| | - Enrico Schleiff
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| |
Collapse
|
4
|
Carfora A, Lucibelli F, Di Lillo P, Mazzucchiello SM, Saccone G, Salvemini M, Varone M, Volpe G, Aceto S. Genetic responses of plants to urban environmental challenges. PLANTA 2025; 261:102. [PMID: 40183929 PMCID: PMC11971160 DOI: 10.1007/s00425-025-04678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
MAIN CONCLUSION This review aims to describe the main genetic adaptations of plants to abiotic and biotic stressors in urban landscapes through modulation of gene expression and genotypic changes. Urbanization deeply impacts biodiversity through ecosystem alteration and habitat fragmentation, creating novel environmental challenges for plant species. Plants have evolved cellular, molecular, and biochemical strategies to cope with the diverse biotic and abiotic stresses associated with urbanization. However, many of these defense and resistance mechanisms remain poorly understood. Addressing these knowledge gaps is crucial for advancing our understanding of urban biodiversity and elucidating the ecological and evolutionary dynamics of species in urban landscapes. As sessile organisms, plants depend heavily on modifications in gene expression as a rapid and efficient strategy to survive urban stressors. At the same time, the urban environment pressures induced plant species to evolve genotypic adaptations that enhance their survival and growth in these contexts. This review explores the different genetic responses of plants to urbanization. We focus on key abiotic challenges, such as air pollution, elevated CO2 levels, heavy metal contamination, heat and drought stress, salinity, and biotic stresses caused by herbivorous insects. By examining these genetic mechanisms induced by urban stressors, we aim to analyze the molecular pathways and genetic patterns underlying the adaptation of plant species to urban environments. This knowledge is a valuable tool for enhancing the selection and propagation of adaptive traits in plant populations, supporting species conservation efforts, and promoting urban biodiversity.
Collapse
Grants
- Project code CN_00000033 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Research National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- CUP H43C22000530001 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Project title "National Biodiversity Future Center - NBFC" National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union –
- Università degli Studi di Napoli Federico II
Collapse
Affiliation(s)
- Angela Carfora
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Paola Di Lillo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | | | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Gennaro Volpe
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| |
Collapse
|
5
|
Huang Z, Lin R, Dong Y, Tang M, Xia X, Fang L, Yu J, Kang H, Zhou Y. MiR164a-targeted NAM3 inhibits thermotolerance in tomato by regulating HSFA4b-mediated redox homeostasis. PLANT PHYSIOLOGY 2025; 197:kiaf113. [PMID: 40130544 DOI: 10.1093/plphys/kiaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025]
Abstract
Extreme weather events, including high temperatures, frequently occur and adversely affect crop growth, posing substantial challenges to global agriculture. MicroRNAs (miRNAs) play integral roles in regulating plant growth and responses to various stresses. In this study, we reveal that microRNA164a (miR164a) in tomato (Solanum lycopersicum) is a pivotal element that exhibits a rapid positive response to heat stress (HS) among multiple miRNAs, while its target NO APICAL MERISTEM 3 (NAM3) shows an opposite complementary response. MiR164a/b-5p-deficient mutant and NAM3-overexpressing plants resulted in increased sensitivity to HS, whereas mutants with reduced NAM3 levels exhibited enhanced thermotolerance. Importantly, HS-induced reactive oxygen species (ROS) accumulation and antioxidant enzyme activities were positively regulated by miR164a and negatively by NAM3, respectively. Furthermore, we demonstrated that NAM3 transcriptionally activated the expression of HSFA4b, and silencing HSFA4b improved tomato thermotolerance. HSFA4b repressed the expression of the antioxidant gene APX1 and the heat shock protein (HSP) gene HSP90, disrupting redox homeostasis and exacerbating oxidative stress. Our findings unveil a pivotal regulatory pathway governed by the miR164a-NAM3 module that confers thermotolerance in tomato via its influence on ROS-related and HSP pathways. These findings provide valuable insights into the molecular mechanisms that underpin tomato thermotolerance, which are crucial for advancing sustainable agricultural practices, particularly in the face of the challenges presented by global climate change.
Collapse
Affiliation(s)
- Zelan Huang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yufei Dong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Lei Fang
- Hainan Institute, Zhejiang University, Sanya 572025, P.R. China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Huijia Kang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, P.R. China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou 310058, P.R. China
| |
Collapse
|
6
|
Li S, Sun Y, Hu Z, Dong F, Zhu J, Cao M, Wang C. Cloning and expression analysis of RhHsf24 gene in Rose (Rosa hybrida). Sci Rep 2025; 15:8182. [PMID: 40065040 PMCID: PMC11894197 DOI: 10.1038/s41598-025-93421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Rose (Rosa hybrida) is one of the most important ornamental and perfume industry crops worldwide, both economically and culturally. Abiotic stresses, such as high temperature and salt are crucial factors influencing the quality of roses. In this study, RhHsf24 was isolated from rose (R. hybrida 'Samantha'), which encodes 295 amino acids (aa). Sequence comparison with members of Arabidopsis Hsfs family revealed that this gene is most closely related to AtHsfB1; phylogenetic tree analysis with proteins from other species showed that it clusters with R. rugosa (RrHSF24), Fragaria vesca (FvHSFB1a) and Argentina anserina (AaHSF24), which are the closest relatives and belong to the class B heat shock transcription factors. RhHsf24 was localized in the nucleus. The qRT-PCR results indicated that the gene was expressed in roots, stems, leaves, flowers and buds. Expression analysis of the gene in leaves subjected to various temperatures and durations of heat stress treatment demonstrated that RhHsf24 gene expression is induced by heat stress. Under salt stress, the expression of the RhHsf24 gene generally exhibited a high level of expression with increasing concentration. The above results preliminarily clarified the biological function of RhHsf24, and provide a genetic resource and theoretical reference for the resistance breeding of roses.
Collapse
Affiliation(s)
- Sudan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaqi Sun
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Agricultural University, Taian, 271000, Shandong, China
| | - Zongxia Hu
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Agricultural University, Taian, 271000, Shandong, China
| | - Fei Dong
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiao Zhu
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mengqi Cao
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Agricultural University, Taian, 271000, Shandong, China
| | - Chengpeng Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
- Shandong Engineering Research Center of Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
7
|
Li HG, Yang L, Fang Y, Wang G, Lyu S, Deng S. A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109460. [PMID: 39793331 DOI: 10.1016/j.plaphy.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.
Collapse
Affiliation(s)
- Hui-Guang Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ling Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yujie Fang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Gui Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zheng L, Zhang Q, Wang C, Wang Z, Gao J, Zhang R, Shi Y, Zheng X. The heat shock factor HSFB1 coordinates plant growth and drought tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17258. [PMID: 39918871 DOI: 10.1111/tpj.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025]
Abstract
Plants are constantly challenged by a diversity of abiotic stressors, and growth arrest is a common plant response aimed at enhancing stress tolerance. Because of this growth/stress tolerance antagonism, plants must finely modulate their growth and responses to environmental stimuli. Here, we demonstrate that HSFB1, a heat shock transcription factor, plays a critical role in the coordination of plant growth and drought stress responses in Arabidopsis thaliana. First, we found that HSFB1 negatively regulates plant growth and development under normal conditions and that HSFB1 expression is enhanced under drought stress. Conversely, the loss-of-function mutant hsfb1 exhibited increased plant growth and reduced drought stress tolerance compared with the wild-type. Consistently, overexpression of HSFB1 suppressed plant growth and enhanced drought stress tolerance. Subsequently, via chromatin immunoprecipitation sequencing, RNA sequencing, and transient expression assays, we screened and identified the heat shock protein 101 (HSP101) gene as a direct transcriptional target of HSFB1. Genetic analysis suggested that HSP101 functions downstream of HSFB1 to positively regulate drought tolerance in plants. Furthermore, we found that HSFB1 physically interacts with the eukaryotic translation initiation factor eIF3G1, and this interaction appears to be further enhanced under drought stress. Notably, the mutation of eif3g1 increased the severity of drought-induced growth inhibition in the hsfb1 mutant, and eIF3G1 enhanced the transcriptional activation of HSFB1 on the HSP101 promoter under drought stress. Altogether, our findings highlight HSFB1 as a key regulator coordinating plant growth and drought stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Lanjie Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongbao Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Runcong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
9
|
Zhang H, Meng X, Liu R, Li R, Wang Y, Ma Z, Liu Z, Duan S, Li G, Guo X. Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1 and enhances maize thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:493-512. [PMID: 39324623 PMCID: PMC11714762 DOI: 10.1093/jxb/erae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Heat stress adversely impacts plant growth, development, and grain yield. Heat shock factors (Hsf), especially the HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to heat stress. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contained conserved domains including a DNA binding domain, oligomerization domain, and transcriptional activation domain. The protein was nuclear localized and had transcription activation activity. Yeast two-hybrid and split luciferase complementation assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthetic rate, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicated that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under heat stress. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.
Collapse
Affiliation(s)
- Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Li
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, P. R. China
| | - Yantao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, P. R. China
| | - Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| |
Collapse
|
10
|
Guo S, Chen H, Wu H, Xu Z, Yang H, Lin Q, Feng H, Zeng Z, Wang S, Liu H, Liu X, Cao S, Wang K. Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Betula platyphylla Reveals Promising Candidates for Heat Tolerance. Int J Mol Sci 2024; 26:172. [PMID: 39796031 PMCID: PMC11720272 DOI: 10.3390/ijms26010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the HSF gene family in Betula platyphylla remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 BpHSF genes within the Betula platyphylla genome, revealing their uneven distribution across chromosomes. These genes were categorized into three subfamilies: A, B, and C. Each was characterized by conserved protein motifs and gene structures, with notable divergence observed between subfamilies. Collinearity analysis suggested that segmental duplication events have driven the evolutionary expansion of the BpHSF gene family. Promoter region analysis identified an array of cis-acting elements linked to growth, development, hormonal regulation, and stress responses. Subcellular localization experiments confirmed the nuclear localization of BpHSFA2a, BpHSFB1a, and BpHSFC1a, consistent with in silico predictions. RNA-seq and RT-qPCR analyses revealed tissue-specific expression patterns of BpHSF genes and their dynamic responses to heat stress, with qPCR validation highlighting a significant upregulation of BpHSFA2a under high-temperature conditions. In summary, this study provided a comprehensive characterization of the HSF gene family in Betula platyphylla, laying a solid foundation for future functional studies. Particularly, BpHSFA2a emerges as a promising candidate gene for enhancing heat tolerance in Betula platyphylla, warranting further detailed investigation.
Collapse
Affiliation(s)
- Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Hao Chen
- College of Computer Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hongwei Wu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Institute of Science and Technology, College of Forestry, Haixia Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zuyuan Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Hao Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hanyu Feng
- College of Jixian Honors, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zilu Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Sanjiao Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.W.); (X.L.)
| | - Haolin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.W.); (X.L.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Z.X.); (H.Y.); (Z.Z.); (H.L.)
| | - Kang Wang
- College of Jixian Honors, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| |
Collapse
|
11
|
Li T, Wu Z, Zhang Y, Xu S, Xiang J, Ding L, Teng N. An AP2/ERF member LlERF012 confers thermotolerance via activation of HSF pathway in lily. PLANT, CELL & ENVIRONMENT 2024; 47:4702-4719. [PMID: 39073746 DOI: 10.1111/pce.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Heat stress transcription factors (HSFs) are core factors of plants in response to heat stress (HS), but their regulatory network is complicated and remains elusive in a large part, especially HSFBs. In this study, we reported that the LlERF012-LlHSFA1 module participates in heat stress response (HSR) by directly regulating HSF pathway in lily (Lilium longiflorum). LlHSFB1 was confirmed as a positive regulator in lily thermotolerance and a heat-inducible AP2/ERF member LlERF012 (Ethylene Response Factor 012) was further identified to be a direct trans-activator of LlHSFB1. Overexpression of LlERF012 elevated the thermotolerance of transgenic Arabidopsis and lily, but silencing LlERF012 reduced thermotolerance in lily. Further analysis showed LlERF012 interacted with LlHSFA1, which led to enhanced transactivation activity and DNA-binding capability of LlERF012. In addition, LlERF012 also directly activated the expression of LlHSFA1 by binding its promoter. As expected, we found that LlERF012 bound the promoters of LlHSFA2, LlHSFA3A, and LlHSFA3B to stimulate their expression, and LlERF012-LlHSFA1 interaction enhanced these activation effects. Overall, our data suggested that LlERF012 was a key factor for lily thermotolerance and the LlERF012-LlHSFA1 interaction synergistically regulated the activity of the HSF pathway including the class A and B members, which might be of great significance for coordinating the functions of different HSFs.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Yinyi Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Jun Xiang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| |
Collapse
|
12
|
Yan H, Du M, Ding J, Song D, Ma W, Li Y. Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize. Int J Mol Sci 2024; 25:11550. [PMID: 39519102 PMCID: PMC11546149 DOI: 10.3390/ijms252111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants' tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the Zea pan-genome. By identifying 56 HSP20 pan-genes, we revealed the variation in the number of these genes across different maize inbreds or relatives. Among those 56 genes, only 31 are present in more than 52 inbreds or relatives. Further phylogenetic analysis classified these genes into four major groups (Class A, B, C, D) and explored their diversity in subcellular localization, physicochemical properties, and the terminal structures of those HSP20s. Through collinearity analysis and Ka/Ks ratio calculations, we found that most HSP20 genes underwent purifying selection during maize domestication, although a few genes showed signs of positive selection pressure. Additionally, expression analysis showed that several HSP20 genes were significantly upregulated under high temperatures, particularly in tassels and leaves. Co-expression network analysis revealed that HSP20 genes were significantly enriched in GO terms related to environmental stress responses, suggesting that HSP20 genes not only play key roles in heat stress but may also be involved in regulating various other biological processes, such as secondary metabolism and developmental processes. These findings expand our understanding of the functions of the maize HSP20 family and provide new insights for further research into maize's response mechanisms to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
13
|
Bakery A, Vraggalas S, Shalha B, Chauhan H, Benhamed M, Fragkostefanakis S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. THE NEW PHYTOLOGIST 2024; 244:51-64. [PMID: 39061112 DOI: 10.1111/nph.20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.
Collapse
Affiliation(s)
- Ayat Bakery
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Botany Department, Faculty of Science, Ain Shams University, 11517, Cairo, Egypt
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Boushra Shalha
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Harsh Chauhan
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Moussa Benhamed
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Institut Universitaire de France (IUF), Orsay, 91405, France
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Morffy N, Van den Broeck L, Miller C, Emenecker RJ, Bryant JA, Lee TM, Sageman-Furnas K, Wilkinson EG, Pathak S, Kotha SR, Lam A, Mahatma S, Pande V, Waoo A, Wright RC, Holehouse AS, Staller MV, Sozzani R, Strader LC. Identification of plant transcriptional activation domains. Nature 2024; 632:166-173. [PMID: 39020176 PMCID: PMC11589624 DOI: 10.1038/s41586-024-07707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Caelan Miller
- Department of Biology, Duke University, Durham, NC, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - John A Bryant
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tyler M Lee
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Sunita Pathak
- Department of Biology, Duke University, Durham, NC, USA
| | - Sanjana R Kotha
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Angelica Lam
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Saloni Mahatma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vikram Pande
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Aman Waoo
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - R Clay Wright
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Max V Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
15
|
Li Y, Wu Q, Zhu L, Zhang R, Tong B, Wang Y, Han Y, Lu Y, Dou D, Tian Z, Zheng J, Zhang Y. Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis. PLANTA 2024; 260:61. [PMID: 39060400 DOI: 10.1007/s00425-024-04486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
MAIN CONCLUSION The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree's high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis, and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana. The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri. In S. pohuashanensis, SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana, indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.
Collapse
Affiliation(s)
- Yuyan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Qianwen Wu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Lingyi Zhu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruili Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Yan Wang
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Yi Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Dequan Dou
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhihui Tian
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
16
|
Hao X, He S. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Garlic (Allium sativum L.). BMC PLANT BIOLOGY 2024; 24:421. [PMID: 38760734 PMCID: PMC11102281 DOI: 10.1186/s12870-024-05018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Shutao He
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| |
Collapse
|
17
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
18
|
Zhang F, Wang C, Yao J, Xing C, Xu K, Zhang Z, Chen Q, Qiao Q, Dong H, Han C, Lin L, Zhang S, Huang X. PbHsfC1a-coordinates ABA biosynthesis and H 2O 2 signalling pathways to improve drought tolerance in Pyrus betulaefolia. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1177-1197. [PMID: 38041554 PMCID: PMC11022796 DOI: 10.1111/pbi.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jia‐Long Yao
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Caihua Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qinghai Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chenyang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Likun Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
19
|
Zhang L, Li T, Wang L, Cao K, Gao W, Yan S, Cao J, Lu J, Ma C, Chang C, Zhang H. A wheat heat shock transcription factor gene, TaHsf-7A, regulates seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108541. [PMID: 38552264 DOI: 10.1016/j.plaphy.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 05/12/2024]
Abstract
Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.
Collapse
Affiliation(s)
- Litian Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Ting Li
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Ling Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Kun Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| |
Collapse
|
20
|
Wang Z, Wang P, He J, Kong L, Zhang W, Liu W, Liu X, Ma W. Genome-Wide Analysis of the HSF Gene Family Reveals Its Role in Astragalus mongholicus under Different Light Conditions. BIOLOGY 2024; 13:280. [PMID: 38666892 PMCID: PMC11048653 DOI: 10.3390/biology13040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Astragalus mongholicus is a traditional Chinese medicine (TCM) with important medicinal value and is widely used worldwide. Heat shock (HSF) transcription factors are among the most important transcription factors in plants and are involved in the transcriptional regulation of various stress responses, including drought, salinity, oxidation, osmotic stress, and high light, thereby regulating growth and developmental processes. However, the HFS gene family has not yet been identified in A. mongholicus, and little is known regarding the role of HSF genes in A. mongholicus. This study is based on whole genome analysis of A. mongholicus, identifying a total of 22 AmHSF genes and analyzing their physicochemical properties. Divided into three subgroups based on phylogenetic and gene structural characteristics, including subgroup A (12), subgroup B (9), and subgroup C (1), they are randomly distributed in 8 out of 9 chromosomes of A. mongholicus. In addition, transcriptome data and quantitative real time polymerase chain reaction (qRT-PCR) analyses revealed that AmHSF was differentially transcribed in different tissues, suggesting that AmHSF gene functions may differ. Red and blue light treatment significantly affected the expression of 20 HSF genes in soilless cultivation of A. mongholicus seedlings. AmHSF3, AmHSF3, AmHSF11, AmHSF12, and AmHSF14 were upregulated after red light and blue light treatment, and these genes all had light-corresponding cis-elements, suggesting that AmHSF genes play an important role in the light response of A. mongholicus. Although the responses of soilless-cultivated A. mongholicus seedlings to red and blue light may not represent the mature stage, our results provide fundamental research for future elucidation of the regulatory mechanisms of HSF in the growth and development of A. mongholicus and its response to different light conditions.
Collapse
Affiliation(s)
- Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Panpan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Jiajun He
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
| | - Wenwei Zhang
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Weili Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Z.W.); (P.W.); (J.H.); (L.K.); (W.L.)
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| |
Collapse
|
21
|
Wang X, Zhu Y, Tang L, Wang Y, Sun R, Deng X. Arabidopsis HSFA9 Acts as a Regulator of Heat Response Gene Expression and the Acquisition of Thermotolerance and Seed Longevity. PLANT & CELL PHYSIOLOGY 2024; 65:372-389. [PMID: 38123450 PMCID: PMC11020252 DOI: 10.1093/pcp/pcad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Heat-shock transcription factors (HSFs) are crucial for regulating plant responses to heat and various stresses, as well as for maintaining normal cellular functions and plant development. HSFA9 and HSFA2 are two of the Arabidopsis class A HSFs and their expressions are dramatically induced in response to heat shock (HS) stress among all 21 Arabidopsis HSFs. However, the detailed biological roles of their cooperation have not been fully characterized. In this study, we employed an integrated approach that combined bioinformatics, molecular genetics and computational analysis to identify and validate the molecular mechanism that controls seed longevity and thermotolerance in Arabidopsis. The acquisition of tolerance to deterioration was accompanied by a significant transcriptional switch that involved the induction of primary metabolism, reactive oxygen species and unfolded protein response, as well as the regulation of genes involved in response to dehydration, heat and hypoxia. In addition, the cis-regulatory motif analysis in normal stored and controlled deterioration treatment (CDT) seeds confirmed the CDT-repressed genes with heat-shock element (HSE) in their promoters. Using a yeast two-hybrid and molecular dynamic interaction assay, it is shown that HSFA9 acted as a potential regulator that can interact with HSFA2. Moreover, the knock-out mutants of both HSFA9 and HSFA2 displayed a significant reduction in seed longevity. These novel findings link HSF transcription factors with seed deterioration tolerance and longevity.
Collapse
Affiliation(s)
- Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yan Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ling Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
22
|
Wu Z, Li T, Ding L, Wang C, Teng R, Xu S, Cao X, Teng N. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. THE NEW PHYTOLOGIST 2024; 241:2124-2142. [PMID: 38185817 DOI: 10.1111/nph.19507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Heat stress transcription factors (HSFs) are core regulators of plant heat stress response. Much research has focused on class A and B HSFs, leaving those of class C relatively understudied. Here, we reported a lily (Lilium longiflorum) heat-inducible HSFC2 homology involved in thermotolerance. LlHSFC2 was located in the nucleus and cytoplasm and exhibited a repression ability by binding heat stress element. Overexpression of LlHSFC2 in Arabidopsis, tobacco (Nicotiana benthamiana), and lily, all increased the thermotolerance. Conversely, silencing of LlHSFC2 in lily reduced its thermotolerance. LlHSFC2 could interact with itself, or interact with LlHSFA1, LlHSFA2, LlHSFA3A, and LlHSFA3B of lily, AtHSFA1e and AtHSFA2 of Arabidopsis, and NbHSFA2 of tobacco. LlHSFC2 interacted with HSFAs to accelerate their transactivation ability and act as a transcriptional coactivator. Notably, compared with the separate LlHSFA3A overexpression, co-overexpression of LlHSFC2/LlHSFA3A further enhanced thermotolerance of transgenic plants. In addition, after suffering HS, the homologous interaction of LlHSFC2 was repressed, but its heterologous interaction with the heat-inducible HSFAs was promoted, enabling it to exert its co-activation effect for thermotolerance establishment and maintenance. Taken together, we identified that LlHSFC2 plays an active role in the general balance and maintenance of heat stress response by cooperating with HSFAs, and provided an important candidate for the enhanced thermotolerance breeding of crops and horticulture plants.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Liping Ding
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Chengpeng Wang
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Renda Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Xing Cao
- College of Architecture, Yantai University, Yantai, 264005, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| |
Collapse
|
23
|
Zhao P, Sun L, Zhang S, Jiao B, Wang J, Ma C. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage. Genes (Basel) 2024; 15:189. [PMID: 38397179 PMCID: PMC10887930 DOI: 10.3390/genes15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
High temperature around flowering has a serious impact on the growth and development of maize. However, few maize genes related to flowering under heat stress have been confirmed, and the regulatory mechanism is unclear. To reveal the molecular mechanism of heat tolerance in maize, two maize hybrids, ZD309 and XY335, with different heat resistance, were selected to perform transcriptome and metabolomics analysis at the flowering stage under heat stress. In ZD309, 314 up-regulated and 463 down-regulated differentially expressed genes (DEGs) were detected, while 168 up-regulated and 119 down-regulated DEGs were identified in XY335. By comparing the differential gene expression patterns of ZD309 and XY335, we found the "frontloaded" genes which were less up-regulated in heat-tolerant maize during high temperature stress. They included heat tolerance genes, which may react faster at the protein level to provide resilience to instantaneous heat stress. A total of 1062 metabolites were identified via metabolomics analysis. Lipids, saccharides, and flavonoids were found to be differentially expressed under heat stress, indicating these metabolites' response to high temperature. Our study will contribute to the identification of heat tolerance genes in maize, therefore contributing to the breeding of heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Pu Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Siqi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Chunhong Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| |
Collapse
|
24
|
Li J, Zhang Y, Tang X, Liao W, Li Z, Zheng Q, Wang Y, Chen S, Zheng P, Cao S. Genome Identification and Expression Profiling of the PIN-Formed Gene Family in Phoebe bournei under Abiotic Stresses. Int J Mol Sci 2024; 25:1452. [PMID: 38338732 PMCID: PMC10855349 DOI: 10.3390/ijms25031452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
PIN-formed (PIN) proteins-specific transcription factors that are widely distributed in plants-play a pivotal role in regulating polar auxin transport, thus influencing plant growth, development, and abiotic stress responses. Although the identification and functional validation of PIN genes have been extensively explored in various plant species, their understanding in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. P. bournei is an economically significant tree species that is endemic to southern China. For this study, we employed bioinformatics approaches to screen and identify 13 members of the PIN gene family in P. bournei. Through a phylogenetic analysis, we classified these genes into five sub-families: A, B, C, D, and E. Furthermore, we conducted a comprehensive analysis of the physicochemical properties, three-dimensional structures, conserved motifs, and gene structures of the PbPIN proteins. Our results demonstrate that all PbPIN genes consist of exons and introns, albeit with variations in their number and length, highlighting the conservation and evolutionary changes in PbPIN genes. The results of our collinearity analysis indicate that the expansion of the PbPIN gene family primarily occurred through segmental duplication. Additionally, by predicting cis-acting elements in their promoters, we inferred the potential involvement of PbPIN genes in plant hormone and abiotic stress responses. To investigate their expression patterns, we conducted a comprehensive expression profiling of PbPIN genes in different tissues. Notably, we observed differential expression levels of PbPINs across the various tissues. Moreover, we examined the expression profiles of five representative PbPIN genes under abiotic stress conditions, including heat, cold, salt, and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. In summary, this study systematically analyzes the expression patterns of PIN genes and their response to abiotic stresses in P. bournei using whole-genome data. Our findings provide novel insights and valuable information for stress tolerance regulation in P. bournei. Moreover, the study offers significant contributions towards unraveling the functional characteristics of the PIN gene family.
Collapse
Affiliation(s)
- Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuoqun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Ma Z, Zhao B, Zhang H, Duan S, Liu Z, Guo X, Meng X, Li G. Upregulation of Wheat Heat Shock Transcription Factor TaHsfC3-4 by ABA Contributes to Drought Tolerance. Int J Mol Sci 2024; 25:977. [PMID: 38256051 PMCID: PMC10816066 DOI: 10.3390/ijms25020977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Drought stress can seriously affect the yield and quality of wheat (Triticum aestivum). So far, although few wheat heat shock transcription factors (Hsfs) have been found to be involved in the stress response, the biological functions of them, especially the members of the HsfC (heat shock transcription factor C) subclass, remain largely unknown. Here, we identified a class C encoding gene, TaHsfC3-4, based on our previous omics data and analyzed its biological function in transgenic plants. TaHsfC3-4 encodes a protein containing 274 amino acids and shows the basic characteristics of the HsfC class. Gene expression profiles revealed that TaHsfC3-4 was constitutively expressed in many tissues of wheat and was induced during seed maturation. TaHsfC3-4 could be upregulated by PEG and abscisic acid (ABA), suggesting that this Hsf may be involved in the regulation pathway depending on ABA in drought resistance. Further results represented that TaHsfC3-4 was localized in the nucleus but had no transcriptional activation activity. Notably, overexpression of TaHsfC3-4 in Arabidopsis thaliana pyr1pyl1pyl2pyl4 (pyr1pyl124) quadruple mutant plants complemented the ABA-hyposensitive phenotypes of the quadruple mutant including cotyledon greening, root elongation, seedling growth, and increased tolerance to drought, indicating positive roles of TaHsfC3-4 in the ABA signaling pathway and drought tolerance. Furthermore, we identified TaHsfA2-11 as a TaHsfC3-4-interacting protein by yeast two-hybrid (Y2H) screening. The experimental data show that TaHsfC3-4 can indeed interact with TaHsfA2-11 in vitro and in vivo. Moreover, transgenic Arabidopsis TaHsfA2-11 overexpression lines exhibited enhanced drought tolerance, too. In summary, our study confirmed the role of TaHsfC3-4 in response to drought stress and provided a target locus for marker-assisted selection breeding to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| |
Collapse
|
26
|
Pardal R, Scheres B, Heidstra R. SCHIZORIZA domain-function analysis identifies requirements for its specific role in cell fate segregation. PLANT PHYSIOLOGY 2023; 193:1866-1879. [PMID: 37584278 PMCID: PMC10602604 DOI: 10.1093/plphys/kiad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers. Some of these defects are observed in tissues where SCZ is not expressed, indicating that part of the SCZ function is nonautonomous. As a class B HEAT-SHOCK TRANSCRIPTION FACTOR (HSFB), the SCZ protein contains several conserved domains and motifs. However, which domain(s) discriminates SCZ from its family members to obtain a role in development remains unknown. Here, we investigate how each domain contributes to SCZ function in Arabidopsis root patterning by generating altered versions of SCZ by domain swapping and mutation. We show that the SCZ DNA-binding domain is the main factor for its developmental function, and that SCZ likely acts as a nonmotile transcriptional repressor. Our results demonstrate how members of the HSF family can evolve toward functions beyond stress response.
Collapse
Affiliation(s)
- Renan Pardal
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
27
|
Żyła N, Babula-Skowrońska D. Evolutionary Consequences of Functional and Regulatory Divergence of HD-Zip I Transcription Factors as a Source of Diversity in Protein Interaction Networks in Plants. J Mol Evol 2023; 91:581-597. [PMID: 37351602 PMCID: PMC10598176 DOI: 10.1007/s00239-023-10121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
The HD superfamily has been studied in detail for several decades. The plant-specific HD-Zip I subfamily attracts the most attention because of its involvement in plant development and stress responses. In this review, we provide a comprehensive insight into the evolutionary events responsible for the functional redundancy and diversification of the HD-Zip I genes in regulating various biological processes. We summarized the evolutionary history of the HD-Zip family, highlighting the important role of WGDs in its expansion and divergence of retained duplicates in the genome. To determine the relationship between the evolutionary origin and functional conservation of HD-Zip I in different species, we performed a phylogenetic analysis, compared their expression profiles in different tissues and under stress and traced the role of orthologs and paralogs in regulating developmental processes. We found that HD-Zip I from different species have similar gene structures with a highly conserved HD and Zip, bind to the same DNA sequences and are involved in similar biological processes. However, they exhibit a functional diversity, which is manifested in altered expression patterns. Some of them are involved in the regulation of species-specific leaf morphology and phenotypes. Here, we discuss the role of changes in functional domains involved in DNA binding and protein interaction of HD-Zip I and in cis-regulated regions of its target genes in promoting adaptive innovations through the formation of de novo regulatory systems. Understanding the role of the HD-Zip I subfamily in organism-environment interactions remains a challenge for evolutionary developmental biology (evo-devo).
Collapse
Affiliation(s)
- Natalia Żyła
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland
| | - Danuta Babula-Skowrońska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland.
| |
Collapse
|
28
|
Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. THE PLANT CELL 2023; 35:3889-3910. [PMID: 37399070 PMCID: PMC10533334 DOI: 10.1093/plcell/koad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Dissecting genetic components in crop plants associated with heat stress (HS) sensing and adaptation will facilitate the design of modern crop varieties with improved thermotolerance. However, the molecular mechanisms underlying the ON/OFF switch controlling HS responses (HSRs) in wheat (Triticum aestivum) remain largely unknown. In this study, we focused on the molecular action of TaHsfA1, a class A heat shock transcription factor, in sensing dynamically changing HS signals and regulating HSRs. We show that the TaHsfA1 protein is modified by small ubiquitin-related modifier (SUMO) and that this modification is essential for the full transcriptional activation activity of TaHsfA1 in triggering downstream gene expression. During sustained heat exposure, the SUMOylation of TaHsfA1 is suppressed, which partially reduces TaHsfA1 protein activity, thereby reducing the intensity of downstream HSRs. In addition, we demonstrate that TaHsfA1 interacts with the histone acetyltransferase TaHAG1 in a thermosensitive manner. Together, our findings emphasize the importance of TaHsfA1 in thermotolerance in wheat. In addition, they define a highly dynamic SUMOylation-dependent "ON/OFF" molecular switch that senses temperature signals and contributes to thermotolerance in crops.
Collapse
Affiliation(s)
- Haoran Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Man Feng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sufang Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Ren Y, Ma R, Xie M, Fan Y, Feng L, Chen L, Yang H, Wei X, Wang X, Liu K, Cheng P, Wang B. Genome-wide identification, phylogenetic and expression pattern analysis of HSF family genes in the Rye (Secale cereale L.). BMC PLANT BIOLOGY 2023; 23:441. [PMID: 37726665 PMCID: PMC10510194 DOI: 10.1186/s12870-023-04418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Heat shock factor (HSF), a typical class of transcription factors in plants, has played an essential role in plant growth and developmental stages, signal transduction, and response to biotic and abiotic stresses. The HSF genes families has been identified and characterized in many species through leveraging whole genome sequencing (WGS). However, the identification and systematic analysis of HSF family genes in Rye is limited. RESULTS In this study, 31 HSF genes were identified in Rye, which were unevenly distributed on seven chromosomes. Based on the homology of A. thaliana, we analyzed the number of conserved domains and gene structures of ScHSF genes that were classified into seven subfamilies. To better understand the developmental mechanisms of ScHSF family during evolution, we selected one monocotyledon (Arabidopsis thaliana) and five (Triticum aestivum L., Hordeum vulgare L., Oryza sativa L., Zea mays L., and Aegilops tauschii Coss.) specific representative dicotyledons associated with Rye for comparative homology mapping. The results showed that fragment replication events modulated the expansion of the ScHSF genes family. In addition, interactions between ScHSF proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScHSF expression was complex. A total of 15 representative genes were targeted from seven subfamilies to characterize their gene expression responses in different tissues, fruit developmental stages, three hormones, and six different abiotic stresses. CONCLUSIONS This study demonstrated that ScHSF genes, especially ScHSF1 and ScHSF3, played a key role in Rye development and its response to various hormones and abiotic stresses. These results provided new insights into the evolution of HSF genes in Rye, which could help the success of molecular breeding in Rye.
Collapse
Affiliation(s)
- Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhua Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, People's Republic of China
| | - Long Chen
- Tianfu New Area General Aviation Profession Academy, Meishan, 620564, China
| | - Hao Yang
- Agricultural Service Center of Langde Town of Leishan County, Qiandongnan Miao and Dong Autonomous Prefecture, 556019, China
| | - Xiaobao Wei
- Guizhou Provincial Center For Disease Control And Prevention, Guiyang, 550025, People's Republic of China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Kouhan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
30
|
Tu J, Abid M, Luo J, Zhang Y, Yang E, Cai X, Gao P, Huang H, Wang Z. Genome-wide identification of the heat shock transcription factor gene family in two kiwifruit species. FRONTIERS IN PLANT SCIENCE 2023; 14:1075013. [PMID: 37799558 PMCID: PMC10548268 DOI: 10.3389/fpls.2023.1075013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
High temperatures have a significant impact on plant growth and metabolism. In recent years, the fruit industry has faced a serious threat due to high-temperature stress on fruit plants caused by global warming. In the present study, we explored the molecular regulatory mechanisms that contribute to high-temperature tolerance in kiwifruit. A total of 36 Hsf genes were identified in the A. chinensis (Ac) genome, while 41 Hsf genes were found in the A. eriantha (Ae) genome. Phylogenetic analysis revealed the clustering of kiwifruit Hsfs into three distinct groups (groups A, B, and C). Synteny analysis indicated that the expansion of the Hsf gene family in the Ac and Ae genomes was primarily driven by whole genome duplication (WGD). Analysis of the gene expression profiles revealed a close relationship between the expression levels of Hsf genes and various plant tissues and stress treatments throughout fruit ripening. Subcellular localization analysis demonstrated that GFP-AcHsfA2a/AcHsfA7b and AcHsfA2a/AcHsfA7b -GFP were localized in the nucleus, while GFP-AcHsfA2a was also observed in the cytoplasm of Arabidopsis protoplasts. The results of real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assay revealed that the majority of Hsf genes, especially AcHsfA2a, were expressed under high-temperature conditions. In conclusion, our findings establish a theoretical foundation for analyzing the potential role of Hsfs in high-temperature stress tolerance in kiwifruit. This study also offers valuable information to aid plant breeders in the development of heat-stress-resistant plant materials.
Collapse
Affiliation(s)
- Jing Tu
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Juan Luo
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Yi Zhang
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Endian Yang
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Xinxia Cai
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Zupeng Wang
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Wen J, Qin Z, Sun L, Zhang Y, Wang D, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat. THE NEW PHYTOLOGIST 2023; 239:2235-2247. [PMID: 37403528 DOI: 10.1111/nph.19100] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.
Collapse
Affiliation(s)
- Jingjing Wen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongli Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Liu H, Li X, Zi Y, Zhao G, Zhu L, Hong L, Li M, Wang S, Long R, Kang J, Yang Q, Chen L. Characterization of the Heat Shock Transcription Factor Family in Medicago sativa L. and Its Potential Roles in Response to Abiotic Stresses. Int J Mol Sci 2023; 24:12683. [PMID: 37628861 PMCID: PMC10454044 DOI: 10.3390/ijms241612683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is not in the tetraploid alfalfa genome. We detected 104 HSF genes (MsHSFs) in the tetraploid alfalfa genome ("Xinjiangdaye" reference genome) and classified them into three subgroups: 68 in HSFA, 35 in HSFB and 1 in HSFC subgroups. Basic bioinformatics analysis, including genome location, protein sequence length, protein molecular weight and conserved motif identification, was conducted. Gene expression analysis revealed tissue-specific expression for 13 MsHSFs and tissue-wide expression for 28 MsHSFs. Based on transcriptomic data analysis, 21, 11 and 27 MsHSFs responded to drought stress, cold stress and salt stress, respectively, with seven responding to all three. According to RT-PCR, MsHSF27/33 expression gradually increased with cold, salt and drought stress condition duration; MsHSF6 expression increased over time under salt and drought stress conditions but decreased under cold stress. Our results provide key information for further functional analysis of MsHSFs and for genetic improvement of stress resistance in alfalfa.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Yunfei Zi
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Guoqing Zhao
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Lihua Zhu
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Ling Hong
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Shiqing Wang
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos 017000, China; (Y.Z.); (G.Z.); (L.Z.); (L.H.); (S.W.)
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (X.L.); (M.L.); (R.L.); (J.K.); (Q.Y.)
| |
Collapse
|
33
|
Wang Q, Zhang Z, Guo C, Zhao X, Li Z, Mou Y, Sun Q, Wang J, Yuan C, Li C, Cong P, Shan S. Hsf transcription factor gene family in peanut ( Arachis hypogaea L.): genome-wide characterization and expression analysis under drought and salt stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1214732. [PMID: 37476167 PMCID: PMC10355374 DOI: 10.3389/fpls.2023.1214732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various stress responses. In present study, 46 Hsf genes in peanut (AhHsf) were identified and analyzed. The 46 AhHsf genes were classed into three groups (A, B, and C) and 14 subgroups (A1-A9, B1-B4, and C1) together with their Arabidopsis homologs according to phylogenetic analyses, and 46 AhHsf genes unequally located on 17 chromosomes. Gene structure and protein motif analysis revealed that members from the same subgroup possessed similar exon/intron and motif organization, further supporting the results of phylogenetic analyses. Gene duplication events were found in peanut Hsf gene family via syntenic analysis, which were important in Hsf gene family expansion in peanut. The expression of AhHsf genes were detected in different tissues using published data, implying that AhHsf genes may differ in function. In addition, several AhHsf genes (AhHsf5, AhHsf11, AhHsf20, AhHsf24, AhHsf30, AhHsf35) were induced by drought and salt stresses. Furthermore, the stress-induced member AhHsf20 was found to be located in nucleus. Notably, overexpression of AhHsf20 was able to enhance salt tolerance. These results from this study may provide valuable information for further functional analysis of peanut Hsf genes.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cun Guo
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Ping Cong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
34
|
Chang J, Fan D, Lan S, Cheng S, Chen S, Lin Y, Cao S. Genome-Wide Identification, Expression and Stress Analysis of the GRAS Gene Family in Phoebe bournei. PLANTS (BASEL, SWITZERLAND) 2023; 12:2048. [PMID: 37653964 PMCID: PMC10222183 DOI: 10.3390/plants12102048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
GRAS genes are important transcriptional regulators in plants that govern plant growth and development through enhancing plant hormones, biosynthesis, and signaling pathways. Drought and other abiotic factors may influence the defenses and growth of Phoebe bournei, which is a superb timber source for the construction industry and building exquisite furniture. Although genome-wide identification of the GRAS gene family has been completed in many species, that of most woody plants, particularly P. bournei, has not yet begun. We performed a genome-wide investigation of 56 PbGRAS genes, which are unequally distributed across 12 chromosomes. They are divided into nine subclades. Furthermore, these 56 PbGRAS genes have a substantial number of components related to abiotic stress responses or phytohormone transmission. Analysis using qRT-PCR showed that the expression of four PbGRAS genes, namely PbGRAS7, PbGRAS10, PbGRAS14 and PbGRAS16, was differentially increased in response to drought, salt and temperature stresses, respectively. We hypothesize that they may help P. bournei to successfully resist harsh environmental disturbances. In this work, we conducted a comprehensive survey of the GRAS gene family in P. bournei plants, and the results provide an extensive and preliminary resource for further clarification of the molecular mechanisms of the GRAS gene family in P. bournei in response to abiotic stresses and forestry improvement.
Collapse
Affiliation(s)
- Jiarui Chang
- International College, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Dunjin Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.F.); (S.C.); (S.C.)
| | - Shuoxian Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengze Cheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.F.); (S.C.); (S.C.)
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.F.); (S.C.); (S.C.)
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.F.); (S.C.); (S.C.)
- Key Laboratory of Fujian Universities for Stress Physiology Ecology and Molecular Biology of Forest, Fuzhou 350002, China
| |
Collapse
|
35
|
Qu R, Wang S, Wang X, Peng J, Guo J, Cui G, Chen M, Mu J, Lai C, Huang L, Wang S, Shen Y. Genome-Wide Characterization and Expression of the Hsf Gene Family in Salvia miltiorrhiza (Danshen) and the Potential Thermotolerance of SmHsf1 and SmHsf7 in Yeast. Int J Mol Sci 2023; 24:8461. [PMID: 37239808 PMCID: PMC10218652 DOI: 10.3390/ijms24108461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese herb with significant medicinal value. The yield and quality of Danshen are greatly affected by climatic conditions, in particular high temperatures. Heat shock factors (Hsfs) play important regulatory roles in plant response to heat and other environmental stresses. However, little is currently known about the role played by the Hsf gene family in S. miltiorrhiza. Here, we identified 35 SmHsf genes and classified them into three major groups: SmHsfA (n = 22), SmHsfB (n = 11), and SmHsfC (n = 2) using phylogenetic analysis. The gene structure and protein motifs were relatively conserved within subgroups but diverged among the different groups. The expansion of the SmHsf gene family was mainly driven by whole-genome/segmental and dispersed gene duplications. The expression profile of SmHsfs in four distinct organs revealed its members (23/35) are predominantly expressed in the root. The expression of a large number of SmHsfs was regulated by drought, ultraviolet, heat and exogenous hormones. Notably, the SmHsf1 and SmHsf7 genes in SmHsfB2 were the most responsive to heat and are conserved between dicots and monocots. Finally, heterologous expression analysis showed that SmHsf1 and SmHsf7 enhance thermotolerance in yeast. Our results provide a solid foundation for further functional investigation of SmHsfs in Danshen plants as a response to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
36
|
Li M, Zhang R, Zhou J, Du J, Li X, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, He W, Wang X, Xiong A, Luo Y, Tang H. Comprehensive analysis of HSF genes from celery ( Apium graveolens L.) and functional characterization of AgHSFa6-1 in response to heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1132307. [PMID: 37223803 PMCID: PMC10202177 DOI: 10.3389/fpls.2023.1132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
High temperature stress is regarded as one of the significant abiotic stresses affecting the composition and distribution of natural habitats and the productivity of agriculturally significant plants worldwide. The HSF family is one of the most important transcription factors (TFs) families in plants and capable of responding rapidly to heat and other abiotic stresses. In this study, 29 AgHSFs were identified in celery and classified into three classes (A, B, and C) and 14 subgroups. The gene structures of AgHSFs in same subgroups were conserved, whereas in different classes were varied. AgHSF proteins were predicted to be involved in multiple biological processes by interacting with other proteins. Expression analysis revealed that AgHSF genes play a significant role in response to heat stress. Subsequently, AgHSFa6-1, which was significantly induced by high temperature, was selected for functional validation. AgHSFa6-1 was identified as a nuclear protein, and can upregulate the expression of certain downstream genes (HSP98.7, HSP70-1, BOB1, CPN60B, ADH2, APX1, GOLS1) in response to high-temperature treatment. Overexpression of AgHSFa6-1 in yeast and Arabidopsis displayed higher thermotolerance, both morphologically and physiologically. In response to heat stress, the transgenic plants produced considerably more proline, solute protein, antioxidant enzymes, and less MDA than wild-type (WT) plants. Overall, this study revealed that AgHSF family members perform a key role in response to high temperature, and AgHSFa6-1 acts as a positive regulator by augmenting the ROS-scavenging system to maintain membrane integrity, reducing stomatal apertures to control water loss, and upregulating the expression level of heat-stress sensitive genes to improve celery thermotolerance.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ran Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jiageng Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Gao C, Peng X, Zhang L, Zhao Q, Ma L, Yu Q, Lian X, Gao L, Xiong L, Li S. Proteome and Ubiquitylome Analyses of Maize Endoplasmic Reticulum under Heat Stress. Genes (Basel) 2023; 14:genes14030749. [PMID: 36981020 PMCID: PMC10047965 DOI: 10.3390/genes14030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Excessive misfolded proteins undergo further degradation through ER-associated degradation (ERAD). Although much research on the plant heat stress response has been conducted, the regulation of ER-localized proteins has not been well-studied thus far. We isolated the microsome fraction from heat-treated and untreated maize seedlings and performed proteome and ubiquitylome analyses. Of the 8306 total proteins detected in the proteomics analysis, 1675 proteins were significantly up-regulated and 708 proteins were significantly down-regulated. Global ubiquitination analysis revealed 1780 proteins with at least one ubiquitination site. Motif analysis revealed that alanine and glycine are the preferred amino acids upstream and downstream of ubiquitinated lysine sites. ERAD components were found to be hyper-ubiquitinated after heat treatment, implying the feedback regulation of ERAD activity through protein degradation.
Collapse
Affiliation(s)
- Chunyan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Peng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luoying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liguo Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuechun Lian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langyu Xiong
- Institute of Advanced Studies in Humanities and Social Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Goel K, Kundu P, Gahlaut V, Sharma P, Kumar A, Thakur S, Verma V, Bhargava B, Chandora R, Zinta G. Functional divergence of Heat Shock Factors (Hsfs) during heat stress and recovery at the tissue and developmental scales in C4 grain amaranth ( Amaranthus hypochondriacus). FRONTIERS IN PLANT SCIENCE 2023; 14:1151057. [PMID: 37123843 PMCID: PMC10141669 DOI: 10.3389/fpls.2023.1151057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
Two major future challenges are an increase in global earth temperature and a growing world population, which threaten agricultural productivity and nutritional food security. Underutilized crops have the potential to become future climate crops due to their high climate-resilience and nutritional quality. In this context, C4 pseudocereals such as grain amaranths are very important as C4 crops are more heat tolerant than C3 crops. However, the thermal sensitivity of grain amaranths remains unexplored. Here, Amaranthus hypochondriacus was exposed to heat stress at the vegetative and reproductive stages to capture heat stress and recovery responses. Heat Shock Factors (Hsfs) form the central module to impart heat tolerance, thus we sought to identify and characterize Hsf genes. Chlorophyll content and chlorophyll fluorescence (Fv/Fm) reduced significantly during heat stress, while malondialdehyde (MDA) content increased, suggesting that heat exposure caused stress in the plants. The genome-wide analysis led to the identification of thirteen AhHsfs, which were classified into A, B and C classes. Gene expression profiling at the tissue and developmental scales resolution under heat stress revealed the transient upregulation of most of the Hsfs in the leaf and inflorescence tissues, which reverted back to control levels at the recovery time point. However, a few Hsfs somewhat sustained their upregulation during recovery phase. The study reported the identification, physical location, gene/motif structure, promoter analysis and phylogenetic relationships of Hsfs in Amaranthus hypochondriacus. Also, the genes identified may be crucial for future gene functional studies and develop thermotolerant cultivars.
Collapse
Affiliation(s)
- Komal Goel
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pravesh Kundu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Biotechnology and University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Paras Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ayush Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiwali Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Bhavya Bhargava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rahul Chandora
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Shimla, Himachal Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- *Correspondence: Gaurav Zinta, ;;
| |
Collapse
|
39
|
Liu R, Zou P, Yan ZY, Chen X. Identification, classification, and expression profile analysis of heat shock transcription factor gene family in Salvia miltiorrhiza. PeerJ 2022; 10:e14464. [PMID: 36523473 PMCID: PMC9745953 DOI: 10.7717/peerj.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 12/09/2022] Open
Abstract
In response to abiotic stresses, transcription factors are essential. Heat shock transcription factors (HSFs), which control gene expression, serve as essential regulators of plant growth, development, and stress response. As a model medicinal plant, Salvia miltiorrhiza is a crucial component in the treatment of cardiovascular illnesses. But throughout its growth cycle, S.miltiorrhiza is exposed to a series of abiotic challenges, including heat and drought. In this study, 35 HSF genes were identified based on genome sequencing of Salvia miltiorrhiza utilizing bioinformatics techniques. Additionally, 35 genes were classified into three groups by phylogeny and gene structural analysis, comprising 22 HSFA, 11 HSFB, and two HSFC. The distribution and sequence analysis of motif showed that SmHSFs were relatively conservative. In SmHSF genes, analysis of the promoter region revealed the presence of many cis-acting elements linked to stress, hormones, and growth and development, suggesting that these factors have regulatory roles. The majority of SmHSFs were expressed in response to heat and drought stress, according to combined transcriptome and real-time quantitative PCR (qRT-PCR) analyses. In conclusion, this study looked at the SmHSF gene family using genome-wide identification, evolutionary analysis, sequence characterization, and expression analysis. This research serves as a foundation for further investigations into the role of HSF genes and their molecular mechanisms in plant stress responses.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Peijin Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Zhu-Yun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Qi X, Di Z, Li Y, Zhang Z, Guo M, Tong B, Lu Y, Zhang Y, Zheng J. Genome-Wide Identification and Expression Profiling of Heat Shock Protein 20 Gene Family in Sorbus pohuashanensis (Hance) Hedl under Abiotic Stress. Genes (Basel) 2022; 13:genes13122241. [PMID: 36553508 PMCID: PMC9778606 DOI: 10.3390/genes13122241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Small heat shock proteins (HSP20s) are a significant factor in plant growth and development in response to abiotic stress. In this study, we investigated the role of HSP20s' response to the heat stress of Sorbus pohuashanensis introduced into low-altitude areas. The HSP20 gene family was identified based on the genome-wide data of S. pohuashanensis, and the expression patterns of tissue specificity and the response to abiotic stresses were evaluated. Finally, we identified 38 HSP20 genes that were distributed on 16 chromosomes. Phylogenetic analysis of HSP20s showed that the closest genetic relationship to S. pohuashanensis (SpHSP20s) is Malus domestica, followed by Populus trichocarpa and Arabidopsis thaliana. According to phylogenetic analysis and subcellular localization prediction, the 38 SpHSP20s belonged to 10 subfamilies. Analysis of the gene structure and conserved motifs indicated that HSP20 gene family members are relatively conserved. Synteny analysis showed that the expansion of the SpHSP20 gene family was mainly caused by segmental duplication. In addition, many cis-acting elements connected with growth and development, hormones, and stress responsiveness were found in the SpHSP20 promoter region. Analysis of expression patterns showed that these genes were closely related to high temperature, drought, salt, growth, and developmental processes. These results provide information and a theoretical basis for the exploration of HSP20 gene family resources, as well as the domestication and genetic improvement of S. pohuashanensis.
Collapse
Affiliation(s)
- Xiangyu Qi
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zexin Di
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yuyan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zeren Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Miaomiao Guo
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
41
|
Rao S, Gupta A, Bansal C, Sorin C, Crespi M, Mathur S. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:7-26. [PMID: 36050841 DOI: 10.1111/tpj.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Heat stress transcription factors (HSFs) and microRNAs (miRNAs) regulate different stress and developmental networks in plants. Regulatory feedback mechanisms are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of Nuclear Factor-YA (NF-YA) transcription factors. We show that HSFs recognize tomato (Solanum lycopersicum) and Arabidopsis MIR169 promoters using yeast one-hybrid/chromatin immunoprecipitation-quantitative PCR. Silencing tomato HSFs using virus-induced gene silencing (VIGS) reduced Sly-MIR169 levels and enhanced Sly-NF-YA9/A10 target expression. Further, Sly-NF-YA9/A10 VIGS knockdown tomato plants and Arabidopsis plants overexpressing At-MIR169d or At-nf-ya2 mutants showed a link with increased heat tolerance. In contrast, Arabidopsis plants overexpressing At-NF-YA2 and those expressing a non-cleavable At-NF-YA2 form (miR169d-resistant At-NF-YA2) as well as plants in which At-miR169d regulation is inhibited (miR169d mimic plants) were more sensitive to heat stress, highlighting NF-YA as a negative regulator of heat tolerance. Furthermore, post-transcriptional cleavage of NF-YA by elevated miR169 levels resulted in alleviation of the repression of the heat stress effector HSFA7 in tomato and Arabidopsis, revealing a retroactive control of HSFs by the miR169:NF-YA node. Hence, a regulatory feedback loop involving HSFs, miR169s and NF-YAs plays a critical role in the regulation of the heat stress response in tomato and Arabidopsis plants.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Apoorva Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Chandni Bansal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Celine Sorin
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Martin Crespi
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| |
Collapse
|
42
|
Zhang Y, Wang C, Wang C, Yun L, Song L, Idrees M, Liu H, Zhang Q, Yang J, Zheng X, Zhang Z, Gao J. OsHsfB4b Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice. Int J Mol Sci 2022; 23:ijms231810830. [PMID: 36142741 PMCID: PMC9501395 DOI: 10.3390/ijms231810830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock factors (Hsfs) play pivotal roles in plant stress responses and confer stress tolerance. However, the functions of several Hsfs in rice (Oryza sativa L.) are not yet known. In this study, genome-wide analysis of the Hsf gene family in rice was performed. A total of 25 OsHsf genes were identified, which could be clearly clustered into three major groups, A, B, and C, based on the characteristics of the sequences. Bioinformatics analysis showed that tandem duplication and fragment replication were two important driving forces in the process of evolution and expansion of the OsHsf family genes. Both OsHsfB4b and OsHsfB4d showed strong responses to the stress treatment. The results of subcellular localization showed that the OsHsfB4b protein was in the nucleus whereas the OsHsfB4d protein was located in both the nucleus and cytoplasm. Over-expression of the OsHsfB4b gene in Arabidopsis and rice can increase the resistance to drought stress. This study provides a basis for understanding the function and evolutionary history of the OsHsf gene family, enriching our knowledge of understanding the biological functions of OsHsfB4b and OsHsfB4d genes involved in the stress response in rice, and also reveals the potential value of OsHsfB4b in rice environmental adaptation improvement.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liu Yun
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Muhammad Idrees
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
| | - Huiying Liu
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| | - Jie Gao
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| |
Collapse
|
43
|
Qin Q, Zhao Y, Zhang J, Chen L, Si W, Jiang H. A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants. BMC PLANT BIOLOGY 2022; 22:406. [PMID: 35986244 PMCID: PMC9392289 DOI: 10.1186/s12870-022-03789-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs) are highly conserved among eukaryote and always play vital role in plant stress responses. Whereas, function and mechanism of Hsfs in maize are limited. RESULTS In this study, an HSF gene ZmHsf11, a member of class B Hsfs, was cloned from maize, and it was up-regulated under heat treatment. ZmHsf11 was a nuclear protein with no transcriptional autoactivation activity in yeast. Overexpression of ZmHsf11 gene in Arabidopsis and rice significantly reduced the survival rate under heat shock treatment and decreased ABA sensitivity of transgenic plants. Under heat stress, transgenic rice accumulated more H2O2, increased cell death, and decreased proline content compared with wild type. In addition, RT-qPCR analysis revealed that ZmHsf11 negatively regulated some oxidative stress-related genes APX2, DREB2A, HsfA2e, NTL3, GR and HSP17 under heat stress treatment. CONCLUSIONS Our results indicate that ZmHsf11 decreases plant tolerance to heat stress by negatively regulating the expression of oxidative stress-related genes, increasing ROS levels and decreasing proline content. It is a negative regulator involved in high temperature stress response.
Collapse
Affiliation(s)
- Qianqian Qin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujun Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jiajun Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Li Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
44
|
Yuan T, Liang J, Dai J, Zhou XR, Liao W, Guo M, Aslam M, Li S, Cao G, Cao S. Genome-Wide Identification of Eucalyptus Heat Shock Transcription Factor Family and Their Transcriptional Analysis under Salt and Temperature Stresses. Int J Mol Sci 2022; 23:ijms23148044. [PMID: 35887387 PMCID: PMC9318532 DOI: 10.3390/ijms23148044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Heat shock transcription factors (HSFs) activate heat shock protein gene expression by binding their promoters in response to heat stress and are considered to be pivotal transcription factors in plants. Eucalyptus is a superior source of fuel and commercial wood. During its growth, high temperature or other abiotic stresses could impact its defense capability and growth. Hsf genes have been cloned and sequenced in many plants, but rarely in Eucalyptus. In this study, we used bioinformatics methods to analyze and identify Eucalyptus Hsf genes, their chromosomal localization and structure. The phylogenetic relationship and conserved domains of their encoded proteins were further analyzed. A total of 36 Hsf genes were identified and authenticated from Eucalyptus, which were scattered across 11 chromosomes. They could be classified into three classes (A, B and C). Additionally, a large number of stress-related cis-regulatory elements were identified in the upstream promoter sequence of HSF, and cis-acting element analysis indicated that the expression of EgHsf may be regulated by plant growth and development, metabolism, hormones and stress responses. The expression profiles of five representative Hsf genes, EgHsf4, EgHsf9, EgHsf13, EgHsf24 and EgHsf32, under salt and temperature stresses were examined by qRT-PCR. The results show that the expression pattern of class B genes (EgHsf4, EgHsf24 and EgHsf32) was more tolerant to abiotic stresses than that of class A genes (EgHsf9 and EgHsf13). However, the expressions of all tested Hsf genes in six tissues were at different levels. Finally, we investigated the network of interplay between genes, and the results suggest that there may be synergistic effects between different Hsf genes in response to abiotic stresses. We conclude that the Hsf gene family played an important role in the growth and developmental processes of Eucalyptus and could be vital for maintaining cell homeostasis against external stresses. This study provides basic information on the members of the Hsf gene family in Eucalyptus and lays the foundation for the functional identification of related genes and the further investigation of their biological functions in plant stress regulation.
Collapse
Affiliation(s)
- Tan Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Jianxiang Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Jiahao Dai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Xue-Rong Zhou
- Commonwealth Scientific Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT 2601, Australia;
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Mingliang Guo
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.G.); (M.A.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.G.); (M.A.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shubin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Guangqiu Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
- Correspondence: (G.C.); (S.C.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
- Correspondence: (G.C.); (S.C.)
| |
Collapse
|
45
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhou H, Zhang D, Ma J, Zhao C, Han M, Ren X, Xing L. MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC PLANT BIOLOGY 2022; 22:317. [PMID: 35786201 PMCID: PMC9251929 DOI: 10.1186/s12870-022-03698-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Because of global warming, the apple flowering period is occurring significantly earlier, increasing the probability and degree of freezing injury. Moreover, extreme hot weather has also seriously affected the development of apple industry. Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport, but their roles in regulating plant development and stress responses are still unknown. Here, we analysed the components of the apple NPC and found that MdNup62 interacts with MdNup54, forming the central NPC channel. MdNup62 was localized to the nuclear pore, and its expression was significantly up-regulated in 'Nagafu No. 2' tissue-cultured seedlings subjected to heat treatments. To determine MdNup62's function, we obtained MdNup62-overexpressed (OE) Arabidopsis and tomato lines that showed significantly reduced high-temperature resistance. Additionally, OE-MdNup62 Arabidopsis lines showed significantly earlier flowering compared with wild-type. Furthermore, we identified 62 putative MdNup62-interacting proteins and confirmed MdNup62 interactions with multiple MdHSFs. The OE-MdHSFA1d and OE-MdHSFA9b Arabidopsis lines also showed significantly earlier flowering phenotypes than wild-type, but had enhanced high-temperature resistance levels. Thus, MdNUP62 interacts with multiple MdHSFs during nucleocytoplasmic transport to regulate flowering and heat resistance in apple. The data provide a new theoretical reference for managing the impact of global warming on the apple industry.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Meng X, Zhao B, Li M, Liu R, Ren Q, Li G, Guo X. Characteristics and Regulating Roles of Wheat TaHsfA2-13 in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:922561. [PMID: 35832224 PMCID: PMC9271894 DOI: 10.3389/fpls.2022.922561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Heat shock transcription factor (Hsf) exists widely in eukaryotes and responds to various abiotic stresses by regulating the expression of downstream transcription factors, functional enzymes, and molecular chaperones. In this study, TaHsfA2-13, a heat shock transcription factor belonging to A2 subclass, was cloned from wheat (Triticum aestivum) and its function was analyzed. TaHsfA2-13 encodes a protein containing 368 amino acids and has the basic characteristics of Hsfs. Multiple sequence alignment analysis showed that TaHsfA2-13 protein had the highest similarity with TdHsfA2c-like protein from Triticum dicoccoides, which reached 100%. The analysis of tissue expression characteristics revealed that TaHsfA2-13 was highly expressed in root, shoot, and leaf during the seedling stage of wheat. The expression of TaHsfA2-13 could be upregulated by heat stress, low temperature, H2O2, mannitol, salinity and multiple phytohormones. The TaHsfA2-13 protein was located in the nucleus under the normal growth conditions and showed a transcriptional activation activity in yeast. Further studies found that overexpression of TaHsfA2-13 in Arabidopsis thaliana Col-0 or athsfa2 mutant results in improved tolerance to heat stress, H2O2, SA and mannitol by regulating the expression of multiple heat shock protein (Hsp) genes. In summary, our study identified TaHsfA2-13 from wheat, revealed its regulatory function in varieties of abiotic stresses, and will provide a new target gene to improve stress tolerance for wheat breeding.
Collapse
Affiliation(s)
- Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qianqian Ren
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
47
|
Li Z, Zhang J. Effects of Raised Ambient Temperature on the Local and Systemic Adaptions of Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:755. [PMID: 35336636 PMCID: PMC8949135 DOI: 10.3390/plants11060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Maize is a staple food, feed, and industrial crop. One of the major stresses on maize production is heat stress, which is usually accompanied by other stresses, such as drought or salinity. In this review, we compared the effects of high temperatures on maize production in China. Heat stress disturbs cellular homeostasis and impedes growth and development in plants. Plants have evolved a variety of responses to minimize the damage related to high temperatures. This review summarized the responses in different cell organelles at elevated temperatures, including transcriptional regulation control in the nuclei, unfolded protein response and endoplasmic reticulum-associated protein quality control in the endoplasmic reticulum (ER), photosynthesis in the chloroplast, and other cell activities. Cells coordinate their activities to mediate the collective stresses of unfavorable environments. Accordingly, we evaluated heat stress at the local and systemic levels in in maize. We discussed the physiological and morphological changes in sensing tissues in response to heat stress in maize and the existing knowledge on systemically acquired acclimation in plants. Finally, we discussed the challenges and prospects of promoting corn thermotolerance by breeding and genetic manipulation.
Collapse
|
48
|
Aldubai AA, Alsadon AA, Migdadi HH, Alghamdi SS, Al-Faifi SA, Afzal M. Response of Tomato ( Solanum lycopersicum L.) Genotypes to Heat Stress Using Morphological and Expression Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:615. [PMID: 35270087 PMCID: PMC8912326 DOI: 10.3390/plants11050615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Due to unfavorable environmental conditions, heat stress is one of the significant production restrictions for the tomato (Solanum lycopersicum L.) crop. The tomato crop is considered an important vegetable crop globally and represents a model plant for fruit development research. The heat shock factor (HSF) gene family contains plant-specific transcription factors (TFs) that are highly conserved and play a key role in plant high-temperature stress responses. The current study was designed to determine the relative response of heat stress under three different temperatures in the field condition to determine its relative heat tolerance. Furthermore, the study also characterized heat shock genes in eight tomato genotypes under different temperature regimes. The expressions of each gene were quantified using qPCR. The descriptive statistics results suggested a high range of diversity among the studied variables growing under three different temperatures. The qPCR study revealed that the SlyHSF genes play an important role in plant heat tolerance pathways. The expression patterns of HSF genes in tomatoes have been described in various tissues were determined at high temperature stress. The genes, SlyHSFs-1, SlyHSFs-2, SlyHSFs-8, SlyHSFs-9 recorded upregulation expression relative to SlyHSFs-3, SlyHSFs-5, SlyHSFs-10, and SlyHSFs-11. The genotypes, Strain B, Marmande VF, Pearson's early, and Al-Qatif-365 recorded the tolerant tomato genotypes under high-temperature stress conditions relative to other genotypes. The heat map analysis also confirmed the upregulation and downregulation of heat shock factor genes among the tomato genotypes. These genotypes will be introduced in the breeding program to improve tomato responses to heat stress.
Collapse
Affiliation(s)
- Abdulhakim A. Aldubai
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Hussein H. Migdadi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
- National Agricultural Research Center, Baqa, Amman 19381, Jordan
| | - Salem S. Alghamdi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Sulieman A. Al-Faifi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Muhammad Afzal
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| |
Collapse
|
49
|
New Insights into the Roles of Osmanthus Fragrans Heat-Shock Transcription Factors in Cold and Other Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.
Collapse
|
50
|
The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies ( Lilium Longiflorum). Int J Mol Sci 2022; 23:ijms23010572. [PMID: 35009000 PMCID: PMC8745440 DOI: 10.3390/ijms23010572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies.
Collapse
|