1
|
Li H, Ackah M, Amoako FK, Asare AT, Li J, Wang Z, Lin Q, Qiu C, Zhao M, Zhao W. The Targeted Metabolomic Signatures of Phytohormones in Leaves of Mulberry ( Morus alba L.) Are Crucial for Regrowth and Specifically Modulated by the Differential Stubble Lengths. PLANTS (BASEL, SWITZERLAND) 2025; 14:1126. [PMID: 40219194 PMCID: PMC11991534 DOI: 10.3390/plants14071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Vegetative propagation of mulberry (Morus alba L.) via sapling methods, due to the ability to exponentially multiply lateral buds on stem cuttings to enhance rapid shoot formation, is crucial for sericulture industries. The sprouting of mulberry using stubbles is an emerging method for rapid and mass production of mulberry leaves, but the growth mechanisms associated with its use remain obscure. This study is the first to report how the differential stubble lengths from mulberry plants alter and modulate phytohormones and the associated mechanisms. This study seeks to evaluate the growth mechanisms by elucidating the phytohormone signature modulation in response to differential stubble lengths of 0 cm, 5 cm, 10 cm, 20 cm, and a control via targeted metabolomics analysis in mulberry leaves. The results consistently show that the use of differential stubble lengths of mulberry promoted growth, the number of buds, aboveground biomass, and branch and leaf weights by improving the net photosynthesis, transpiration rate, stomatal conductance, and intercellular CO2 relative to the control. The differential stubble lengths not only caused contrasting responses in the contents of plant hormones, including salicylic acid (SA), abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and gibberellin (GA), but also modulated higher elemental contents relative to the control. The results further reveal significant and positive correlations between the phytohormones and all growth, biomass, and photosynthetic parameters, highlighting the role of phytohormones in the sprouting and rejuvenation of mulberry stubbles. Meanwhile, the targeted metabolomics analysis identified a total of 11 differentially accumulated phytohormones in response to the differential stubble lengths, which were significantly implicated and enriched in three major pathways, including the biosynthesis of plant hormones (ko01070), metabolic pathways (ko01100), and the plant hormone signal transduction pathway (ko04575). The use of stubbles for rapid leaf production in mulberry plants is of great importance to improve early sprouting and cutting survival, as well as shortening growth and rooting time, and is highly recommended for the sericulture industries.
Collapse
Affiliation(s)
- Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 00233, Ghana; (F.K.A.); (A.T.A.)
| | - Frank Kwarteng Amoako
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 00233, Ghana; (F.K.A.); (A.T.A.)
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Aaron Tettey Asare
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 00233, Ghana; (F.K.A.); (A.T.A.)
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
| | - Zhenjiang Wang
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China;
| | - Qiang Lin
- Sericulture Technology Promotion Station, Nanning 530007, China; (Q.L.); (C.Q.)
| | - Changyu Qiu
- Sericulture Technology Promotion Station, Nanning 530007, China; (Q.L.); (C.Q.)
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.L.); (J.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, China
| |
Collapse
|
2
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
3
|
Castro-Camba R, Neves M, Correia S, Canhoto J, Vielba JM, Sánchez C. Ethylene Action Inhibition Improves Adventitious Root Induction in Adult Chestnut Tissues. PLANTS (BASEL, SWITZERLAND) 2024; 13:738. [PMID: 38475584 DOI: 10.3390/plants13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Phase change refers to the process of maturation and transition from the juvenile to the adult stage. In response to this shift, certain species like chestnut lose the ability to form adventitious roots, thereby hindering the successful micropropagation of adult plants. While auxin is the main hormone involved in adventitious root formation, other hormones, such as ethylene, are also thought to play a role in its induction and development. In this study, experiments were carried out to determine the effects of ethylene on the induction and growth of adventitious roots. The analysis was performed in two types of chestnut microshoots derived from the same tree, a juvenile-like line with a high rooting ability derived from basal shoots (P2BS) and a line derived from crown branches (P2CR) with low rooting responses. By means of the application of compounds to modify ethylene content or inhibit its signalling, the potential involvement of this hormone in the induction of adventitious roots was analysed. Our results show that ethylene can modify the rooting competence of mature shoots, while the response in juvenile material was barely affected. To further characterise the molecular reasons underlying this maturation-derived shift in behaviour, specific gene expression analyses were developed. The findings suggest that several mechanisms, including ethylene signalling, auxin transport and epigenetic modifications, relate to the modulation of the rooting ability of mature chestnut microshoots and their recalcitrant behaviour.
Collapse
Affiliation(s)
- Ricardo Castro-Camba
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Mariana Neves
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jesús M Vielba
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| | - Conchi Sánchez
- Department of Plant Production, Misión Biológica de Galicia, CSIC, Avda de Vigo s/n, 15705 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Kumar V, Majee A, Patwal P, Sairem B, Sane AP, Sane VA. A GARP transcription factor SlGCC positively regulates lateral root development in tomato via auxin-ethylene interplay. PLANTA 2024; 259:55. [PMID: 38300324 DOI: 10.1007/s00425-023-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
MAIN CONCLUSION SlGCC, a GARP transcription factor, functions as a root-related transcriptional repressor. SlGCC synchronizes auxin and ethylene signaling involving SlPIN3 and SlIAA3 as intermediate targets sketching a molecular map for lateral root development in tomato. The root system is crucial for growth and development of plants as it performs basic functions such as providing mechanical support, nutrients and water uptake, pathogen resistance and responds to various stresses. SlGCC, a GARP family transcription factor (TF), exhibited predominant expression in age-dependent (initial to mature stages) tomato root. SlGCC is a transcriptional repressor and is regulated at a transcriptional and translational level by auxin and ethylene. Auxin and ethylene mediated SlGCC protein stability is governed via proteasome degradation pathway during lateral root (LR) growth development. SlGCC over-expressor (OE) and under-expressed (UE) tomato transgenic lines demonstrate its role in LR development. This study is an attempt to unravel the vital role of SlGCC in regulating tomato LR architecture.
Collapse
Affiliation(s)
- Vinod Kumar
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Adity Majee
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Patwal
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babythoihoi Sairem
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Tian H, Tang B, Fan W, Pan Z, Peng J, Wang Y, Liu F, Liu G. The role of strigolactone analog (GR24) in endogenous hormone metabolism and hormone-related gene expression in tobacco axillary buds. PLANT CELL REPORTS 2023; 43:21. [PMID: 38150090 DOI: 10.1007/s00299-023-03081-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Strigolactone has the potential to influence hormone metabolism, in addition to having a role in inhibiting axillary bud elongation, which could be regulated by the expression of phytohormones-related genes. The elongation of axillary buds affects the economic benefits of tobacco. In this study, it was investigated the effect of strigolactone (SL) on the elongation of tobacco axillary buds and its endogenous hormone metabolism and related gene expression by applying the artificial analog of SL, GR24, and an inhibitor of SL synthesis, TIS-108, to the axillary buds. The results showed that the elongation of axillary buds was significantly inhibited by GR24 on day 2 and day 9. Ultra-high-performance liquid-chromatography-mass spectrometry results further showed that SL significantly affected the metabolism of endogenous plant hormones, altering both their levels and the ratios between each endogenous hormone. Particularly, the levels of auxin (IAA), trans-zeatin-riboside (tZR), N6-(∆2-isopentenyl) adenine (iP), gibberellin A4 (GA4), jasmonic acid (JA), and jasmonoyl isoleucine (JA-Ile) were decreased after GR24 treatment on day 9, but the levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and gibberellin A1 (GA1) were significantly increased. Further analysis of endogenous hormonal balance revealed that after the treatment with GR24 on day 9, the ratio of IAA to cytokinin (CTK) was markedly increased, but the ratios of IAA to abscisic acid (ABA), salicylic acid (SA), ACC, JAs, and, GAs were notably decreased. In addition, according to RNA-seq analysis, multiple differentially expressed genes were found, such as GH3.1, AUX/IAA, SUAR20, IPT, CKX1, GA2ox1, ACO3, ERF1, PR1, and HCT, which may play critical roles in the biosynthesis, deactivation, signaling pathway of phytohormones, and the biosynthesis of flavonoids to regulate the elongation of axillary buds in tobacco. This work lays the certain theoretical foundation for the application of SL in regulating the elongation of axillary buds of tobacco.
Collapse
Affiliation(s)
- Huiyuan Tian
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Boxi Tang
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Wuwei Fan
- Yimen County Branch of Yuxi Tobacco Company, Yimen, 651100, Yunnan, People's Republic of China
| | - Zhiyan Pan
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Jiantao Peng
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Yuanxiu Wang
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Fan Liu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China
| | - Guoqin Liu
- College of Tobacco Science, Guizhou University/Guizhou Key Laboratory for Tobacco Quality Research, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
6
|
Quan L, Shiting L, Chen Z, Yuyan H, Minrong Z, Shuyan L, Libao C. NnWOX1-1, NnWOX4-3, and NnWOX5-1 of lotus (Nelumbo nucifera Gaertn)promote root formation and enhance stress tolerance in transgenic Arabidopsis thaliana. BMC Genomics 2023; 24:719. [PMID: 38017402 PMCID: PMC10683310 DOI: 10.1186/s12864-023-09772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Adventitious roots (ARs) represent an important organ system for water and nutrient uptake in lotus plants because of degeneration of the principal root. The WUSCHEL-related homeobox (WOX) gene regulates plant development and growth by affecting the expression of several other genes. In this study, three WOX genes, NnWOX1-1, NnWOX4-3, and NnWOX5-1, were isolated and their functions were assessed in Arabidopsis plants. RESULTS The full lengths of NnWOX1-1, NnWOX4-3, and NnWOX5-1 were 1038, 645, and 558 bp, encoding 362, 214, and 185 amino acid residues, respectively. Phylogenetic analysis classified NnWOX1-1 and NnWOX4-3 encoding proteins into one group, and NnWOX5-1 and MnWOX5 encoding proteins exhibited strong genetic relationships. The three genes were induced by sucrose and indoleacetic acid (IAA) and exhibited organ-specific expression characteristics. In addition to improving root growth and salt tolerance, NnWOX1-1 and NnWOX4-3 promoted stem development in transgenic Arabidopsis plants. A total of 751, 594, and 541 genes, including 19, 19, and 13 respective genes related to ethylene and IAA metabolism and responses, were enhanced in NnWOX1-1, NnWOX4-3, and NnWOX5-1 transgenic plants, respectively. Further analysis showed that ethylene production rates in transgenic plants increased, whereas IAA, peroxidase, and lignin content did not significantly change. Exogenous application of ethephon on lotus seedlings promoted AR formation and dramatically increased the fresh and dry weights of the plants. CONCLUSIONS NnWOX1-1, NnWOX4-3, and NnWOX5-1 influence root formation, stem development, and stress adaptation in transgenic Arabidopsis plants by affecting the transcription of multiple genes. Among these, changes in gene expression involving ethylene metabolism and responses likely critically affect the development of Arabidopsis plants. In addition, ethylene may represent an important factor affecting AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Liu Quan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Liang Shiting
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Chen
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Han Yuyan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Minrong
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Jiangsu, People's Republic of China.
| | - Cheng Libao
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Pal P, Masand M, Sharma S, Seth R, Singh G, Singh S, Kumar A, Sharma RK. Genome-wide transcriptional profiling and physiological investigation elucidating the molecular mechanism of multiple abiotic stress response in Stevia rebaudiana Bertoni. Sci Rep 2023; 13:19853. [PMID: 37963906 PMCID: PMC10645737 DOI: 10.1038/s41598-023-46000-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Considering the major source of plant-derived low/non-calorie steviol glycosides (SGs), comprehensive physiological, biochemical, and deep transcriptional investigations were conducted to explicit deeper insight into multiple abiotic stress responses in Stevia rebaudiana. The physiological indicators including photosynthesis, chlorophyll, relative water content, shoot growth, electrolyte leakage, and SG biosynthesis were negatively impacted under drought (DS), followed by salinity (SS) and waterlogging (WS). Global transcriptional analysis revealed significant upregulated expression of the genes encoding for ROS detoxification (GST, SOD, APX, glutathione peroxidase), osmotic adjustment (alpha-trehalose-phosphate and S-adenosylmethionine decarboxylase), ion transporters (CAX, NHX, CNGS, VPPase, VATPase), water channel (PIP1, TIP) and abiotic stress-responsive candidate genes (LEA, HSPs, and Dehydrins) regulating abiotic stress response in S. rebaudiana. These inferences were complemented with predicted interactome network that revealed regulation of energy metabolism by key stress-responsive genes (GST, HKT1, MAPKs, P5CSs, PIP), transcription factors (HSFA2, DREB1A, DREB2A), and abiotic stress responsive pathways (ABA, ethylene, ion stress). This is the first detailed study to comprehend the molecular regulation of stress response and their interplay under DS, SS, and WS. The key genes and regulators can be functionally validated, and will facilitate targeted gene editing for genetic improvement of crop sustainability under changing environmental conditions in S. rebaudiana.
Collapse
Affiliation(s)
- Poonam Pal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mamta Masand
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Romit Seth
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanatsujat Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Ashok Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
8
|
Neves M, Correia S, Canhoto J. Ethylene Inhibition Reduces De Novo Shoot Organogenesis and Subsequent Plant Development from Leaf Explants of Solanum betaceum Cav. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091854. [PMID: 37176912 PMCID: PMC10180641 DOI: 10.3390/plants12091854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
In de novo shoot organogenesis (DNSO) plant cells develop into new shoots, without the need of an existing meristem. Generally, this process is triggered by wounding and specific growth regulators, such as auxins and cytokinins. Despite the potential significance of the plant hormone ethylene in DNSO, its effect in regeneration processes of woody species has not been thoroughly investigated. To address this gap, Solanum betaceum Cav. was used as an experimental model to explore the role of this hormone on DNSO and potentially extend the findings to other woody species. In this work it was shown that ethylene positively regulates DNSO from tamarillo leaf explants. Ethylene precursors ACC and ethephon stimulated shoot regeneration by increasing the number of buds and shoots regenerated. In contrast, the inhibition of ethylene biosynthesis or perception by AVG and AgNO3 decreased shoot regeneration. Organogenic callus induced in the presence of ethylene precursors showed an upregulated expression of the auxin efflux carrier gene PIN1, suggesting that ethylene may enhance shoot regeneration by affecting auxin distribution prior to shoot development. Additionally, it was found that the de novo shoot meristems induced in explants in which ethylene biosynthesis and perception was suppressed were unable to further develop into elongated shoots. Overall, these results imply that altering ethylene levels and perception could enhance shoot regeneration efficiency in tamarillo. Moreover, we offer insights into the possible molecular mechanisms involved in ethylene-induced shoot regeneration.
Collapse
Affiliation(s)
- Mariana Neves
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
9
|
Tokić M, Leljak Levanić D, Ludwig-Müller J, Bauer N. Growth and Molecular Responses of Tomato to Prolonged and Short-Term Heat Exposure. Int J Mol Sci 2023; 24:ijms24054456. [PMID: 36901887 PMCID: PMC10002527 DOI: 10.3390/ijms24054456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Tomatoes are one of the most important vegetables for human consumption. In the Mediterranean's semi-arid and arid regions, where tomatoes are grown in the field, global average surface temperatures are predicted to increase. We investigated tomato seed germination at elevated temperatures and the impact of two different heat regimes on seedlings and adult plants. Selected exposures to 37 °C and heat waves at 45 °C mirrored frequent summer conditions in areas with a continental climate. Exposure to 37 °C or 45 °C differently affected seedlings' root development. Both heat stresses inhibited primary root length, while lateral root number was significantly suppressed only after exposure to 37 °C. Heat stress treatments induced significant accumulation of indole-3-acetic acid (IAA) and reduced abscisic acid (ABA) levels in seedlings. As opposed to the heat wave treatment, exposure to 37 °C increased the accumulation of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which may have been involved in the root architecture modification of seedlings. Generally, more drastic phenotypic changes (chlorosis and wilting of leaves and bending of stems) were found in both seedlings and adult plants after the heat wave-like treatment. This was also reflected by proline, malondialdehyde and heat shock protein HSP90 accumulation. The gene expression of heat stress-related transcription factors was perturbed and DREB1 was shown to be the most consistent heat stress marker.
Collapse
Affiliation(s)
- Mirta Tokić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Dunja Leljak Levanić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606263
| |
Collapse
|
10
|
Pei L, Zhao Y, Shi X, Chen R, Yan J, Li X, Jiang Z, Wang J, Shi S. The Role of γ-Aminobutyric Acid (GABA) in the Occurrence of Adventitious Roots and Somatic Embryos in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3512. [PMID: 36559624 PMCID: PMC9784130 DOI: 10.3390/plants11243512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The occurrence of adventitious roots and somatic embryos is a crucial step in micropropagation that frequently limits the application of this technique in woody plants. Recent studies demonstrated that they can be negatively or positively regulated with γ-aminobutyric acid (GABA), which is a four-carbon non-proteinous amino acid that not only acts as a main inhibitory neurotransmitter in mammals. It has been reported that GABA affects plant growth and their response to stress although its mode of action is still unclear. This review dealt with the effects of GABA on adventitious root formation and growth as well as on somatic embryogenesis. Furthermore, we focused on discussing the interaction of GABA with phytohormones, such as auxin, ethylene, abscisic acid, and gibberellin, as well as with the carbon and nitrogen metabolism during adventitious root development. We suggested that research on GABA will contribute to the application of micropropagation in the recalcitrant fruit and forest species.
Collapse
Affiliation(s)
- Lu Pei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Xinru Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Rongrong Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Jiawei Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Xu Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, The Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, The Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
11
|
Fan X, Li H, Guo Y, Sun H, Wang S, Qi Q, Jiang X, Wang Y, Xu X, Qiu C, Li W, Han Z. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3582-3603. [PMID: 36000454 DOI: 10.1111/pce.14422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Yushuang Guo
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Haochen Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Gambhir P, Singh V, Parida A, Raghuvanshi U, Kumar R, Sharma AK. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. PLANT PHYSIOLOGY 2022; 190:2775-2796. [PMID: 36130295 PMCID: PMC9706452 DOI: 10.1093/plphys/kiac441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Despite the obligatory role of ethylene in climacteric fruit ripening and the identification of 77 ethylene response factors (ERFs) in the tomato (Solanum lycopersicum) genome, the role of few ERFs has been validated in the ripening process. Here, using a comprehensive morpho-physiological, molecular, and biochemical approach, we demonstrate the regulatory role of ERF D7 (SlERF.D7) in tomato fruit ripening. SlERF.D7 expression positively responded to exogenous ethylene and auxin treatments, most likely in a ripening inhibitor-independent manner. SlERF.D7 overexpression (OE) promoted ripening, and its silencing had the opposite effect. Alterations in its expression modulated ethylene production, pigment accumulation, and fruit firmness. Consistently, genes involved in ethylene biosynthesis and signaling, lycopene biosynthesis, and cell wall loosening were upregulated in the OE lines and downregulated in RNAi lines. These transgenic lines also accumulated altered levels of indole-3-acetic acid at late-breaker stages. A positive association between auxin response factor 2 (ARF2) paralog's transcripts and SlERF.D7 mRNA levels and that SlARF2A and SlARF2B are direct targets of SlERF.D7 underpinned the perturbed auxin-ethylene crosstalk for the altered ripening program observed in the transgenic fruits. Overall, this study uncovers that SlERF.D7 positively regulates SlARF2A/B abundance to amalgamate auxin and ethylene signaling pathways for controlling tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
13
|
Zhao Y, Chen Y, Jiang C, Lu MZ, Zhang J. Exogenous hormones supplementation improve adventitious root formation in woody plants. Front Bioeng Biotechnol 2022; 10:1009531. [PMID: 36177185 PMCID: PMC9513251 DOI: 10.3389/fbioe.2022.1009531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Jin Zhang, , orcid.org/0000-0002-8397-5078
| |
Collapse
|
14
|
Estrella-Maldonado H, Chan-León A, Fuentes G, Girón-Ramírez A, Desjardins Y, Santamaría JM. The interaction between exogenous IBA with sucrose, light and ventilation alters the expression of ARFs and Aux/IAA genes in Carica papaya plantlets. PLANT MOLECULAR BIOLOGY 2022; 110:107-130. [PMID: 35725838 DOI: 10.1007/s11103-022-01289-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The interaction between exogenous IBA with sucrose, light and ventilation, alters the expression of ARFs and Aux/IAA genes in in vitro grown Carica papaya plantlets. In vitro papaya plantlets normally show low rooting percentages during their ex vitro establishment that eventually leads to high mortality when transferred to field conditions. Indole-3-butyric acid (IBA) auxin is normally added to culture medium, to achieve adventitious root formation on in vitro papaya plantlets. However, the molecular mechanisms occurring when IBA is added to the medium under varying external conditions of sugar, light and ventilation have not been studied. Auxin response factors (ARF) are auxin-transcription activators, while auxin/indole-3-acetic acid (Aux/IAA) are auxin-transcription repressors, that modulate key components involved in auxin signaling in plants. In the present study, we identified 12 CpARF and 18 CpAux/IAA sequences in the papaya genome. The cis-acting regulatory elements associated to those CpARFs and CpAux/IAA gene families were associated with stress and hormone responses. Furthermore, a comprehensive characterization and expression profiling analysis was performed on 6 genes involved in rhizogenesis formation (CpARF5, 6, 7 and CpAux/IAA11, 13, 14) from in vitro papaya plantlets exposed to different rhizogenesis-inducing treatments. In general, intact in vitro plantlets were not able to produce adventitious roots, when IBA (2 mg L-1) was added to the culture medium; they became capable to produce roots and increased their ex-vitro survival. However, the best rooting and survival % were obtained when IBA was added in combination with adequate sucrose supply (20 g L-1), increased light intensity (750 µmol photon m-2 s-1) and ventilation systems within the culture vessel. Interestingly, it was precisely under those conditions that promoted high rooting and survival %, where the highest expression of CpARFs, but the lowest expression of CpAux/IAAs occurred. One interesting case occurred when in vitro plantlets were exposed to high levels of light in the absence of added IBA, as high rooting and survival occurred, even though no exogenous auxin was added. In fact, plantlets from this treatment showed the right expression profile between auxin activators/repressors genes, in both stem base and root tissues.
Collapse
Affiliation(s)
- Humberto Estrella-Maldonado
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, C.P. 93600, Tlapacoyan, Veracruz, México.
| | - Arianna Chan-León
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Gabriela Fuentes
- Independent Researcher, Calle 6a 279 a, Jardines de Vista Alegre, Mérida, Yucatán, México
| | - Amaranta Girón-Ramírez
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Quebec City, QC, G1V 0A6, Canada
| | - Jorge M Santamaría
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
| |
Collapse
|
15
|
Martin RE, Marzol E, Estevez JM, Muday GK. Ethylene signaling increases reactive oxygen species accumulation to drive root hair initiation in Arabidopsis. Development 2022; 149:275731. [PMID: 35713303 DOI: 10.1242/dev.200487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Root hair initiation is a highly regulated aspect of root development. The plant hormone ethylene and its precursor, 1-amino-cyclopropane-1-carboxylic acid, induce formation and elongation of root hairs. Using confocal microscopy paired with redox biosensors and dyes, we demonstrated that treatments that elevate ethylene levels lead to increased hydrogen peroxide accumulation in hair cells prior to root hair formation. In the ethylene-insensitive receptor mutant, etr1-3, and the signaling double mutant, ein3eil1, the increase in root hair number or reactive oxygen species (ROS) accumulation after ACC and ethylene treatment was lost. Conversely, etr1-7, a constitutive ethylene signaling receptor mutant, has increased root hair formation and ROS accumulation, similar to ethylene-treated Col-0 seedlings. The caprice and werewolf transcription factor mutants have decreased and elevated ROS levels, respectively, which are correlated with levels of root hair initiation. The rhd2-6 mutant, with a defect in the gene encoding the ROS-synthesizing RESPIRATORY BURST OXIDASE HOMOLOG C (RBOHC), and the prx44-2 mutant, which is defective in a class III peroxidase, showed impaired ethylene-dependent ROS synthesis and root hair formation via EIN3EIL1-dependent transcriptional regulation. Together, these results indicate that ethylene increases ROS accumulation through RBOHC and PRX44 to drive root hair formation.
Collapse
Affiliation(s)
- R Emily Martin
- Departments of Biology and Biochemistry and the Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109,USA
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina, C1405BWE
| | - Jose M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina, C1405BWE.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago, Chile and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile, 8370146
| | - Gloria K Muday
- Departments of Biology and Biochemistry and the Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109,USA
| |
Collapse
|
16
|
Álvarez-Rodríguez S, López-González D, Reigosa MJ, Araniti F, Sánchez-Moreiras AM. Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:78-89. [PMID: 35325658 DOI: 10.1016/j.plaphy.2022.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Harmaline is an indole alkaloid with demonstrated phytotoxicity and recognized pharmacological applications. However, no information is available concerning its mode of action on plant metabolism. Therefore, the present work evaluated bioherbicide mode of action of harmaline on plant metabolism of Arabidopsis thaliana (L.) Heynh. Harmaline induced a strong inhibitory activity on root growth of treated seedlings, reaching IC50 and IC80 values of 14 and 29 μM, respectively. Treated roots were shorter and thicker than control and were characterized by a shorter root meristem size and an increase of root hairs production. Harmaline induced ultrastructural changes such as increment of cell wall thickness, higher density and condensation of mitochondria and vacuolization, appearance of cell wall deposits, increment of Golgi secretory activity and higher percentage of aberrant nuclei. The ethylene inhibitor AgNO3 reversed high root hair appearance and increment of root thickness, and pTCSn::GFP transgenic line showed fluorescence cytokinin signal in stele zone after harmaline treatment that was absent in control, whereas the auxin signal in the transgenic line DR5 was significantly reduced by the treatment. All these results suggest that the mode of action of harmaline could be involving auxin, ethylene and cytokinin synergic/antagonistic action.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - David López-González
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, 20133, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| |
Collapse
|
17
|
Yu D, Li X, Li Y, Ali F, Li F, Wang Z. Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2022; 234:375-391. [PMID: 34882809 DOI: 10.1111/nph.17901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway. Moreover, we systematically summarized the effects of ethylene on the development of epidermal hair and the underlying regulatory mechanisms in Arabidopsis. Based on the knowledge of ethylene-promoted cell differentiation, elongation, and development in different tissues or plants, we advised a possible regulatory network for cotton fiber development with ethylene as the hub. Importantly, we emphasized the roles of ethylene as an important node in regulating cotton vegetative growth, and stress resistance, and suggested utilizing multiple methods to subtly modify ethylene synthesis or signaling in a tissue or spatiotemporal-specific manner to clarify its exact effect on architecture, adaptability of the plant, and fiber development, paving the way for basic research and genetic improvement of the cotton crop.
Collapse
Affiliation(s)
- Daoqian Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yonghui Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
18
|
Deng C, Wang Y, Navarro G, Sun Y, Cota-Ruiz K, Hernandez-Viezcas JA, Niu G, Li C, White JC, Gardea-Torresdey J. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152260. [PMID: 34896498 DOI: 10.1016/j.scitotenv.2021.152260] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Weedy rice grows competitively with cultivated rice and significantly diminishes rice grain production worldwide. The different effects of Cu-based nanomaterials on the production of weedy and cultivated rice, especially the grain qualities are not known. Grains were collected from weedy and cultivated rice grown for four months in field soil amended with nanoscale CuO (nCuO), bulk CuO (bCuO), and copper sulfate (CuSO4) at 0, 75, 150, 300, and 600 mg Cu/kg soil. Cu translocation, essential element accumulation, yield, sugar, starch, protein content, and the expression of auxin associated genes in grains were determined. The grains of weedy and cultivated rice were differentially impacted by CuO-based compounds. At ≥300 mg/kg, nCuO and bCuO treated rice had no grain production. Treatment at 75 mg/kg significantly decreased grain yield as compared to control with the order: bCuO (by 88.7%) > CuSO4 (by 47.2%) ~ nCuO (by 38.3% only in cultivated rice); at the same dose, the Cu grain content was: nCuO ~ CuSO4 > bCuO > control. In weedy grains, K, Mg, Zn, and Ca contents were decreased by 75 and 150 mg/kg nCuO by up to 47.4%, 34.3%, 37.6%, and 60.0%, but no such decreases were noted in cultivated rice, and Fe content was increased by up to 88.6%, and 53.2%. In rice spikes, nCuO increased Mg, Ca, Fe, and Zn levels by up to 118.1%, 202.6%, 133.8%, and 103.9%, respectively. Nanoscale CuO at 75 and 150 mg/kg upregulated the transcription of an auxin associated gene by 5.22- and 1.38-fold, respectively, in grains of weedy and cultivated rice. The biodistribution of Cu-based compounds in harvested grain was determined by two-photon microscopy. These findings demonstrate a cultivar-specific and concentration-dependent response of rice to nCuO. A potential use of nCuO at 75 and 150 mg/kg in cultivar-dependent delivery system was suggested based on enhanced grain nutritional quality, although the yield was compromised. This knowledge, at the physiological and molecular level, provides valuable information for the future use of Cu-based nanomaterials in sustainable agriculture.
Collapse
Affiliation(s)
- Chaoyi Deng
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Yi Wang
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504, USA; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Gilberto Navarro
- Department of Physics, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Youping Sun
- Department of Plants, Soil, and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322, USA
| | - Keni Cota-Ruiz
- MSU-DOE - Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jose Angel Hernandez-Viezcas
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Genhua Niu
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504, USA
| | - Jorge Gardea-Torresdey
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA.
| |
Collapse
|
19
|
Cheng L, Zhao C, Zhao M, Han Y, Li S. Lignin Synthesis, Affected by Sucrose in Lotus ( Nelumbo nucifera) Seedlings, Was Involved in Regulation of Root Formation in the Arabidopsis thanliana. Int J Mol Sci 2022; 23:ijms23042250. [PMID: 35216366 PMCID: PMC8875098 DOI: 10.3390/ijms23042250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (ARs) have an unmatched status in plant growth and metabolism due to the degeneration of primary roots in lotuses. In the present study, we sought to assess the effect of sucrose on ARs formation and observed that lignin synthesis was involved in ARs development. We found that the lignification degree of the ARs primordium was weaker in plants treated with 20 g/L sucrose than in 50 g/L sucrose treatment and control plants. The contents of lignin were lower in plants treated with 20 g/L sucrose and higher in plants treated with 50 g/L sucrose. The precursors of monomer lignin, including p-coumaric acid, caffeate, sinapinal aldehyde, and ferulic acid, were lower in the GL50 library than in the GL20 library. Further analysis revealed that the gene expression of these four metabolites had no novel difference in the GL50/GL20 libraries. However, a laccase17 gene (NnLAC17), involved in polymer lignin synthesis, had a higher expression in the GL50 library than in the GL20 library. Therefore, NnLAC17 was cloned and the overexpression of NnLAC17 was found to directly result in a decrease in the root number in transgenic Arabidopsis plants. These findings suggest that lignin synthesis is probably involved in ARs formation in lotus seedlings.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
- Correspondence:
| | - Chen Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Minrong Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Yuyan Han
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (C.Z.); (M.Z.); (Y.H.)
| | - Shuyan Li
- College of Guangling, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
20
|
Kościelniak P, Glazińska P, Kȩsy J, Zadworny M. Formation and Development of Taproots in Deciduous Tree Species. FRONTIERS IN PLANT SCIENCE 2021; 12:772567. [PMID: 34925417 PMCID: PMC8675582 DOI: 10.3389/fpls.2021.772567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Trees are generally long-lived and are therefore exposed to numerous episodes of external stimuli and adverse environmental conditions. In certain trees e.g., oaks, taproots evolved to increase the tree's ability to acquire water from deeper soil layers. Despite the significant role of taproots, little is known about the growth regulation through internal factors (genes, phytohormones, and micro-RNAs), regulating taproot formation and growth, or the effect of external factors, e.g., drought. The interaction of internal and external stimuli, involving complex signaling pathways, regulates taproot growth during tip formation and the regulation of cell division in the root apical meristem (RAM). Assuming that the RAM is the primary regulatory center responsible for taproot growth, factors affecting the RAM function provide fundamental information on the mechanisms affecting taproot development.
Collapse
Affiliation(s)
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kȩsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|
21
|
Althiab-Almasaud R, Sallanon H, Chang C, Chervin C. 1-Aminocyclopropane-1-carboxylic acid stimulates tomato pollen tube growth independently of ethylene receptors. PHYSIOLOGIA PLANTARUM 2021; 173:2291-2297. [PMID: 34609746 DOI: 10.1111/ppl.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The plant hormone ethylene plays vital roles in plant development, including pollen tube (PT) growth. Many studies have used the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as a tool to trigger ethylene signaling. Several studies have suggested that ACC can act as a signal molecule independently of ethylene, inducing responses that are distinct from those induced by ethylene. In this study, we confirmed that ethylene receptor function is essential for promoting PT growth in tomato, but interestingly, we discovered that ACC itself can act as a signal that also promotes PT growth. Exogenous ACC stimulated PT growth even when ethylene perception was inhibited either chemically by treating with 1-methylcyclopropene (1-MCP) or genetically by using the ethylene-insensitive Never Ripe (NR) mutant. Treatment with aminoethoxyvinylglycine, which reduces endogenous ACC levels, led to a reduction of PT growth, even in the NR mutants. Furthermore, GUS activity driven by an EIN3 Binding Site promoter (EBS:GUS transgene) was triggered by ACC in the presence of 1-MCP. Taken together, these results suggest that ACC signaling can bypass the ethylene receptor step to stimulate PT growth and EBS driven gene expression.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Laboratoire de Recherche en Sciences Végétales, GBF, Université de Toulouse, Toulouse, France
| | - Huguette Sallanon
- Université d'Avignon, Avignon, France
- Qualisud, Université d'Avignon, Université Montpellier, CIRAD, Montpellier SupAgro, Université de La Réunion, Montpellier, France
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Christian Chervin
- Laboratoire de Recherche en Sciences Végétales, GBF, Université de Toulouse, Toulouse, France
| |
Collapse
|
22
|
Devi J, Kaur E, Swarnkar MK, Acharya V, Bhushan S. De novo transcriptome analysis provides insights into formation of in vitro adventitious root from leaf explants of Arnebia euchroma. BMC PLANT BIOLOGY 2021; 21:414. [PMID: 34503445 PMCID: PMC8427917 DOI: 10.1186/s12870-021-03172-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Adventitious root formation is considered a major developmental step during the propagation of difficult to root plants, especially in horticultural crops. Recently, adventitious roots induced through plant tissue culture methods have also been used for production of phytochemicals such as flavonoids, anthocyanins and anthraquinones. It is rather well understood which horticultural species will easily form adventitious roots, but the factors affecting this process at molecular level or regulating the induction process in in vitro conditions are far less known. The present study was conducted to identify transcripts involved in in vitro induction and formation of adventitious roots using Arnebia euchroma leaves at different time points (intact leaf (control), 3 h, 12 h, 24 h, 3 d, 7 d, 10 d and 15 d). A. euchroma is an endangered medicinal Himalayan herb whose root contains red naphthoquinone pigments. These phytoconstituents are widely used as an herbal ingredient in Asian traditional medicine as well as natural colouring agent in food and cosmetics. RESULTS A total of 137.93 to 293.76 million raw reads were generated and assembled to 54,587 transcripts with average length of 1512.27 bps and N50 of 2193 bps, respectively. In addition, 50,107 differentially expressed genes were identified and found to be involved in plant hormone signal transduction, cell wall modification and wound induced mitogen activated protein kinase signalling. The data exhibited dominance of auxin responsive (AUXIN RESPONSE FACTOR8, IAA13, GRETCHEN HAGEN3.1) and sucrose translocation (BETA-31 FRUCTOFURANOSIDASE and MONOSACCHARIDE-SENSING protein1) genes during induction phase. In the initiation phase, the expression of LATERAL ORGAN BOUNDARIES DOMAIN16, EXPANSIN-B15, ENDOGLUCANASE25 and LEUCINE-rich repeat EXTENSION-like proteins was increased. During the expression phase, the same transcripts, with exception of LATERAL ORGAN BOUNDARIES DOMAIN16 were identified. Overall, the transcriptomic analysis revealed a similar patterns of genes, however, their expression level varied in subsequent phases of in vitro adventitious root formation in A. euchroma. CONCLUSION The results presented here will be helpful in understanding key regulators of in vitro adventitious root development in Arnebia species, which may be deployed in the future for phytochemical production at a commercial scale.
Collapse
Affiliation(s)
- Jyoti Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur,, H.P.-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Ekjot Kaur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur,, H.P.-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur,, H.P.-176061, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur,, H.P.-176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India.
| | - Shashi Bhushan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur,, H.P.-176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India.
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur,, H.P.-176061, India.
| |
Collapse
|
23
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Mohareb F, Estelles-Lopez L, Kevei Z, Ferrández-Ayela A, Pérez-Pérez JM, Gifford ML, Pérez-Alfocea F. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. PLANT, CELL & ENVIRONMENT 2021; 44:2966-2986. [PMID: 34053093 DOI: 10.1111/pce.14121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.
Collapse
Affiliation(s)
| | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | | |
Collapse
|
24
|
Nascimento VL, Pereira AM, Pereira AS, Silva VF, Costa LC, Bastos CEA, Ribeiro DM, Caldana C, Sulpice R, Nunes-Nesi A, Zsögön A, Araújo WL. Physiological and metabolic bases of increased growth in the tomato ethylene-insensitive mutant Never ripe: extending ethylene signaling functions. PLANT CELL REPORTS 2021; 40:1377-1393. [PMID: 33074436 DOI: 10.1007/s00299-020-02623-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The tomato mutant Never ripe (Nr), a loss-of-function for the ethylene receptor SlETR3, shows enhanced growth, associated with increased carbon assimilation and a rewiring of the central metabolism. Compelling evidence has demonstrated the importance of ethylene during tomato fruit development, yet its role on leaf central metabolism and plant growth remains elusive. Here, we performed a detailed characterization of Never ripe (Nr) tomato, a loss-of-function mutant for the ethylene receptor SlETR3, known for its fruits which never ripe. However, besides fruits, the Nr gene is also constitutively expressed in vegetative tissues. Nr mutant showed a growth enhancement during both the vegetative and reproductive stage, without an earlier onset of leaf senescence, with Nr plants exhibiting a higher number of leaves and an increased dry weight of leaves, stems, roots, and fruits. At metabolic level, Nr also plays a significant role with the mutant showing changes in carbon assimilation, carbohydrates turnover, and an exquisite reprogramming of a large number of metabolite levels. Notably, the expression of genes related to ethylene signaling and biosynthesis are not altered in Nr. We assess our results in the context of those previously published for tomato fruits and of current models of ethylene signal transduction, and conclude that ethylene insensitivity mediated by Nr impacts the whole central metabolism at vegetative stage, leading to increased growth rates.
Collapse
Affiliation(s)
- Vitor L Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Auderlan M Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Aurelio S Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Victor F Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Carla E A Bastos
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ronan Sulpice
- Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre and Ryan Institute, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
25
|
Abdelsalam A, Mahran E, Chowdhury K, Boroujerdi A. Metabolic profiling, in vitro propagation, and genetic assessment of the endangered rare plant Anarrhinum pubescens. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:108. [PMID: 34309751 PMCID: PMC8313610 DOI: 10.1186/s43141-021-00210-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Background Anarrhinum pubescens Fresen. (Plantaginaceae) is a rare plant, endemic to the Saint Catherine area, of South Sinai, Egypt. Earlier studies have reported the isolation of cytotoxic and anti-cholinesterase iridoid glucosides from the aerial parts of the plant. The present study aimed to investigate the chemical profiling of the wild plant shoots as well as establish efficient protocols for in vitro plant regeneration and proliferation with further assessment of the genetic stability of the in vitro regenerated plants. Results Twenty-seven metabolites have been identified in wild plant shoots using the Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolites include alkaloids, amino acids, carbohydrates, organic acids, vitamins, and a phenol. In vitro propagation of the plant was carried out through nodal cutting-micropropagation and leaf segment-direct organogenesis. The best results were obtained when nodal cutting explants were cultured on Murashige and Skoog medium with Gamborg B5 vitamins supplemented with 6-benzylaminopurine (BAP) (1.0 mg/L) and naphthaleneacetic acid (NAA) (0.05 mg/L), which gave a shoot formation capacity of 100% and a mean number of shoots of 27.67 ± 1.4/explant. These shoots were successfully rooted and transferred to the greenhouse and the survival rate was 75%. Genetic fidelity evaluation of the micropropagated clones was carried out using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) molecular markers. Jaccard’s similarity coefficient indicated a similarity as high as 98% and 95% from RAPD and ISSR markers, respectively. Conclusions This study provides the chemical profiling of the aerial part of Anarrhinum pubescens. Moreover, in vitro regeneration through different tissue culture techniques has been established for mass propagation of the plant, and the genetic fidelity of the in vitro regenerated plants was confirmed as well. Our work on the in vitro propagation of A. pubescens will be helpful in ex situ conservation and identification of bioactive metabolites.
Collapse
Affiliation(s)
- Asmaa Abdelsalam
- Department of Botany, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ehab Mahran
- Department of Chemistry, Claflin University, Orangeburg, SC, 29115, USA.,Department of Pharmacognosy, Al-Azhar University, Cairo, 11371, Egypt
| | - Kamal Chowdhury
- Department of Biology, Claflin University, Orangeburg, SC, 29115, USA.
| | - Arezue Boroujerdi
- Department of Chemistry, Claflin University, Orangeburg, SC, 29115, USA
| |
Collapse
|
26
|
Joshi M, Ginzberg I. Adventitious root formation in crops-Potato as an example. PHYSIOLOGIA PLANTARUM 2021; 172:124-133. [PMID: 33305392 DOI: 10.1111/ppl.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The root system of potato is made up of adventitious roots (AR) that form at the base of a sprout once it emerges from the mother tuber. By definition, AR originate from dormant preformed meristems, or from cells neighboring vascular tissues in stems or leaves. This may occur as part of the developmental program of the plant (e.g., potato), or when replacing the embryonic primary roots in response to stress conditions, such as flooding, nutrient deprivation, or wounding. AR formation is studied mainly in cereals and model plants, and less is known about its developmental program in root and tuber crops. In this review, we summarize the recent data on AR development in potato and relate this knowledge to what is known from model plants. For example, AR formation following stem cutting in potato follows a pattern of initiation, expression, and emergence phases that are known for other plants and involves auxin, the master regulator of AR induction and development. Molecular regulation of AR formation and the effect of environmental stresses are discussed. Understanding the origin and nature of AR systems in important crops will contribute to increased production and improve global food security.
Collapse
Affiliation(s)
- Mukul Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
27
|
Alaguero-Cordovilla A, Sánchez-García AB, Ibáñez S, Albacete A, Cano A, Acosta M, Pérez-Pérez JM. An auxin-mediated regulatory framework for wound-induced adventitious root formation in tomato shoot explants. PLANT, CELL & ENVIRONMENT 2021; 44:1642-1662. [PMID: 33464573 DOI: 10.1111/pce.14001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 05/24/2023]
Abstract
Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.
Collapse
Affiliation(s)
| | | | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Alfonso Albacete
- Present address: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Espinardo, Murcia, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
28
|
Lyu J, Wu Y, Jin X, Tang Z, Liao W, Dawuda MM, Hu L, Xie J, Yu J, Calderón-Urrea A. Proteomic analysis reveals key proteins involved in ethylene-induced adventitious root development in cucumber ( Cucumis sativus L.). PeerJ 2021; 9:e10887. [PMID: 33868797 PMCID: PMC8034359 DOI: 10.7717/peerj.10887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
The mechanisms involved in adventitious root formation reflect the adaptability of plants to the environment. Moreover, the rooting process is regulated by endogenous hormone signals. Ethylene, a signaling hormone molecule, has been shown to play an essential role in the process of root development. In the present study, in order to explore the relationship between the ethylene-induced adventitious rooting process and photosynthesis and energy metabolism, the iTRAQ technique and proteomic analysis were employed to ascertain the expression of different proteins that occur during adventitious rooting in cucumber (Cucumis sativus L.) seedlings. Out of the 5,014 differentially expressed proteins (DEPs), there were 115 identified DEPs, among which 24 were considered related to adventitious root development. Most of the identified proteins were related to carbon and energy metabolism, photosynthesis, transcription, translation and amino acid metabolism. Subsequently, we focused on S-adenosylmethionine synthase (SAMS) and ATP synthase subunit a (AtpA). Our findings suggest that the key enzyme, SAMS, upstream of ethylene synthesis, is directly involved in adventitious root development in cucumber. Meanwhile, AtpA may be positively correlated with photosynthetic capacity during adventitious root development. Moreover, endogenous ethylene synthesis, photosynthesis, carbon assimilation capacity, and energy material metabolism were enhanced by exogenous ethylene application during adventitious rooting. In conclusion, endogenous ethylene synthesis can be improved by exogenous ethylene additions to stimulate the induction and formation of adventitious roots. Moreover, photosynthesis and starch degradation were enhanced by ethylene treatment to provide more energy and carbon sources for the rooting process.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.,Department of Horticulture, University for Development Studies, Tamale, Ghana
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China.,Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, CA, USA.,College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
29
|
Sharma K, Gupta S, Sarma S, Rai M, Sreelakshmi Y, Sharma R. Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:95-112. [PMID: 33370496 DOI: 10.1111/tpj.15148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.
Collapse
Affiliation(s)
- Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Soni Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
30
|
Sharma K, Gupta S, Sarma S, Rai M, Sreelakshmi Y, Sharma R. Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:95-112. [PMID: 33370496 DOI: 10.1101/2020.05.12.090431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.
Collapse
Affiliation(s)
- Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Soni Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
31
|
Saluja M, Zhu F, Yu H, Walia H, Sattler SE. Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. THE NEW PHYTOLOGIST 2021; 229:2780-2794. [PMID: 33124063 DOI: 10.1111/nph.17051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a key target for modifying lignocellulosic biomass for efficient biofuel production. Brown midrib 12 (bmr12) encodes the sorghum caffeic acid O-methyltransferase (COMT) and is one of the key enzymes in monolignol biosynthesis. Loss of function mutations in COMT reduces syringyl (S) lignin subunits and improves biofuel conversion rate. Although lignin plays an important role in maintaining cell wall integrity of xylem vessels, physiological and molecular consequences due to loss of COMT on root growth and adaptation to water deficit remain unexplored. We addressed this gap by evaluating the root morphology, anatomy and transcriptome of bmr12 mutant. The mutant had reduced lateral root density (LRD) and altered root anatomy and response to water limitation. The wild-type exhibits similar phenotypes under water stress, suggesting that bmr12 may be in a water deficit responsive state even in well-watered conditions. bmr12 had increased transcript abundance of genes involved in (a)biotic stress response, gibberellic acid (GA) biosynthesis and signaling. We show that bmr12 is more sensitive to exogenous GA application and present evidence for the role of GA in regulating reduced LRD in bmr12. These findings elucidate the phenotypic and molecular consequences of COMT deficiency under optimal and water stress environments in grasses.
Collapse
Affiliation(s)
- Manny Saluja
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Feiyu Zhu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hongfeng Yu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| |
Collapse
|
32
|
Hostetler AN, Khangura RS, Dilkes BP, Sparks EE. Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101985. [PMID: 33418403 DOI: 10.1016/j.pbi.2020.101985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
33
|
Cui C, Wang Z, Su Y, Wang T. New insight into the rapid growth of the Mikania micrantha stem based on DIA proteomic and RNA-Seq analysis. J Proteomics 2021; 236:104126. [PMID: 33540067 DOI: 10.1016/j.jprot.2021.104126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 01/29/2023]
Abstract
Mikania micrantha is one of the world's most invasive plants, which causes severe damage to natural ecosystems and agroforestry systems due to its rapid stem growth. This work investigated the proteomic and transcriptomic profiles of M. micrantha in different stem tissues (pre-internode, post-internode, and internode), as well as in adventitious roots and primary roots with the final goal of elucidating differentially expressed genes and proteins responsible for the rapid growth of stem. The objective was approached by using DIA-based proteomic and RNA-Seq technologies. More than seven giga-transcriptome clean reads were sequenced, and 5196 protein species were identified. Differentially expressed genes identified in all stem tissues were significantly enriched in photosynthesis and carbon fixation, suggesting that the stem possesses a strong photosynthetic capacity in order to maintain the energy supply for this species. Analysis of differentially expressed proteins showed that proteins related to photosystem I/II and the cytochrome b6/f complex, such as D1, D2, and cp43, were also highly accumulated in the adventitious roots, corroborating the transcriptome analysis results. These results provided basic proteomic and transcriptional expression information about the M. micrantha stem and adventitious root, thereby improving our understanding of the molecular mechanism underlying rapid growth in this species. SIGNIFICANCE: This is the first study to investigate the proteomic and transcriptomic profiles of Mikania micrantha, a highly invasive plant, in different stem tissues (pre-internode, post-internode, and internode), as well as in adventitious and primary roots, using the latest DIA-based (data-independent acquisition mode) proteomic and RNA-Seq technologies. A comprehensive study was carried out, and differentially expressed genes and differentially expressed proteins identified in the pre-internode, post-internode, and internode tissues were significantly enriched during photosynthesis and carbon fixation, suggesting that the M. micrantha stem possesses a strong photosynthetic capacity that allows the plant to maintain a high energy supply. Enriched plant hormone signal transduction pathway analysis revealed an interaction between auxin and other phytohormones involved in adventitious root development. The study provided basic data on the molecular mechanism of M. micrantha vegetative propagation and the rapid growth of its stem. The novel scientific content of this study successfully builds upon the limited information currently available on the subject, therefore warranting publication.
Collapse
Affiliation(s)
- Can Cui
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, Shenzhen 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Wushan 483, Guangzhou 510642, China.
| |
Collapse
|
34
|
Chen K, Guo B, Yu C, Chen P, Chen J, Gao G, Wang X, Zhu A. Comparative Transcriptome Analysis Provides New Insights into the Molecular Regulatory Mechanism of Adventitious Root Formation in Ramie ( Boehmeria nivea L.). PLANTS 2021; 10:plants10010160. [PMID: 33467608 PMCID: PMC7830346 DOI: 10.3390/plants10010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The occurrence of adventitious roots is necessary for the survival of cuttings. In this study, comparative transcriptome analysis between two ramie (Boehmeria nivea L.) varieties with different adventitious root (AR) patterns was performed by mRNA-Seq before rooting (control, CK) and 10 days water-induced adventitious rooting (treatment, T) to reveal the regulatory mechanism of rooting. Characterization of the two ramie cultivars, Zhongzhu No 2 (Z2) and Huazhu No 4 (H4), indicated that Z2 had a high adventitious rooting rate but H4 had a low rooting rate. Twelve cDNA libraries of the two varieties were constructed, and a total of 26,723 genes were expressed. In the non-water culture condition, the number of the distinctive genes in H4 was 2.7 times of that in Z2, while in the water culture condition, the number of the distinctive genes in Z2 was nearly 2 times of that in H4. A total of 4411 and 5195 differentially expressed genes (DEGs) were identified in the comparison of H4CK vs. H4T and Z2CK vs. Z2T, respectively. After the water culture, more DEGs were upregulated in Z2, but more DEGs were downregulated in H4. Gene ontology (GO) functional analysis of the DEGs indicated that the polysaccharide metabolic process, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall macromolecule metabolic process, and photosystem GO terms were distinctively significantly enriched in H4. Simultaneously, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis, photosynthesis antenna proteins, and starch and sucrose metabolism pathways were distinctively significantly enriched in H4. Moreover, KEGG analysis showed that jasmonic acid (JA) could interact with ethylene to regulate the occurrence and number of AR in Z2. This study reveals the transcriptomic divergence of two ramie varieties with high and low adventitious rooting rates, and provides insights into the molecular regulatory mechanism of AR formation in ramie.
Collapse
|
35
|
González-Guzmán M, Gómez-Cadenas A, Arbona V. Abscisic Acid as an Emerging Modulator of the Responses of Plants to Low Oxygen Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:661789. [PMID: 33981326 PMCID: PMC8107475 DOI: 10.3389/fpls.2021.661789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.
Collapse
|
36
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
37
|
Bannoud F, Bellini C. Adventitious Rooting in Populus Species: Update and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:668837. [PMID: 34093625 PMCID: PMC8174304 DOI: 10.3389/fpls.2021.668837] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 05/11/2023]
Abstract
Populus spp. are among the most economically important species worldwide. These trees are used not only for wood and fiber production, but also in the rehabilitation of degraded lands. Since they are clonally propagated, the ability of stem cuttings to form adventitious roots is a critical point for plant establishment and survival in the field, and consequently for the forest industry. Adventitious rooting in different Populus clones has been an agronomic trait targeted in breeding programs for many years, and many factors have been identified that affect this quantitative trait. A huge variation in the rooting capacity has been observed among the species in the Populus genus, and the responses to some of the factors affecting this trait have been shown to be genotype-dependent. This review analyses similarities and differences between results obtained from studies examining the role of internal and external factors affecting rooting of Populus species cuttings. Since rooting is the most important requirement for stand establishment in clonally propagated species, understanding the physiological and genetic mechanisms that promote this trait is essential for successful commercial deployment.
Collapse
Affiliation(s)
- Florencia Bannoud
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- *Correspondence: Florencia Bannoud,
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Catherine Bellini,
| |
Collapse
|
38
|
Duman Z, Hadas-Brandwein G, Eliyahu A, Belausov E, Abu-Abied M, Yeselson Y, Faigenboim A, Lichter A, Irihimovitch V, Sadot E. Short De-Etiolation Increases the Rooting of VC801 Avocado Rootstock. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1481. [PMID: 33153170 PMCID: PMC7693756 DOI: 10.3390/plants9111481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/16/2023]
Abstract
Dark-grown (etiolated) branches of many recalcitrant plant species root better than their green counterparts. Here it was hypothesized that changes in cell-wall properties and hormones occurring during etiolation contribute to rooting efficiency. Measurements of chlorophyll, carbohydrate and auxin contents, as well as tissue compression, histological analysis and gene-expression profiles were determined in etiolated and de-etiolated branches of the avocado rootstock VC801. Differences in chlorophyll content and tissue rigidity, and changes in xyloglucan and pectin in cambium and parenchyma cells were found. Interestingly, lignin and sugar contents were similar, suggesting that de-etiolated branches resemble the etiolated ones in this respect. Surprisingly, the branches that underwent short de-etiolation rooted better than the etiolated ones, and only a slight difference in IAA content between the two was observed. Gene-expression profiles revealed an increase in ethylene-responsive transcripts in the etiolated branches, which correlated with enrichment in xyloglucan hydrolases. In contrast, transcripts encoding pectin methylesterase and pectolyases were enriched in the de-etiolated branches. Taken together, it seems that the short de-etiolation period led to fine tuning of the conditions favoring adventitious root formation in terms of auxin-ethylene balance and cell-wall properties.
Collapse
Affiliation(s)
- Zvi Duman
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Hadas-Brandwein
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Avi Eliyahu
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Yelena Yeselson
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Adi Faigenboim
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Amnon Lichter
- The Institute of Post Harvest and Food Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel;
| | - Vered Irihimovitch
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| |
Collapse
|
39
|
Libao C, Yuyan H, Minrong Z, Xiaoyong X, Zhiguang S, Chunfei W, Shuyan L, Zhubing H. Gene expression profiling reveals the effects of light on adventitious root formation in lotus seedlings (Nelumbo nucifera Gaertn.). BMC Genomics 2020; 21:707. [PMID: 33045982 PMCID: PMC7552355 DOI: 10.1186/s12864-020-07098-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lotus is an aquatic horticultural crop that is widely cultivated in most regions of China and is used as an important off-season vegetable. The principal root of lotus is degenerated, and adventitious roots (ARs) are irreplaceable for plant growth. We found that no ARs formed under darkness and that exposure to high-intensity light significantly promoted the development of root primordia. Four differential expression libraries based on three light intensities were constructed to monitor metabolic changes, especially in indole-3-acetic acid (IAA) and sugar metabolism. RESULTS AR formation was significantly affected by light, and high light intensity accelerated AR development. Metabolic changes during AR formation under different light intensities were evaluated using gene expression profiling by high-throughput tag-sequencing. More than 2.2 × 104 genes were obtained in each library; the expression level of most genes was between 0.01 and 100 (FPKF value). Libraries constructed from plants grown under darkness (D/CK), under 5000 lx (E/CK), and under 20,000 lx (F/CK) contained 1739, 1683, and 1462 upregulated genes and 1533, 995, and 834 downregulated genes, respectively, when compared to those in the initial state (CK). Additionally, we found that 1454 and 478 genes had altered expression in a comparison of libraries D/CK and F/CK. Gene transcription between libraries D/F ranged from a 5-fold decrease to a 5-fold increase. Twenty differentially expressed genes (DEGs) were involved in the signal transduction pathway, 28 DEGs were related to the IAA response, and 35 DEGs were involved in sugar metabolism. We observed that the IAA content was enhanced after seed germination, even in darkness; this was responsible for AR formation. We also observed that sucrose could eliminate the negative effect of 150 μMol IAA during AR development. CONCLUSIONS AR formation was regulated by IAA, even in the dark, where induction and developmental processes could also be completed. In addition, 36 genes displayed altered expression in carbohydrate metabolism and ucrose metabolism was involved in AR development (expressed stage) according to gene expression and content change characteristics.
Collapse
Affiliation(s)
- Cheng Libao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu P. R. China
| | - Han Yuyan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu P. R. China
| | - Zhao Minrong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu P. R. China
| | - Xu Xiaoyong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu P. R. China
| | - Shen Zhiguang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Wang Chunfei
- Henghui Food Co., Ltd of Yancheng, Kaifeng, 224700 China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu P. R. China
| | - Hu Zhubing
- Henghui Food Co., Ltd of Yancheng, Kaifeng, 224700 China
| |
Collapse
|
40
|
Wu J, Cheng J, Xu C, Qi S, Sun W, Wu S. AUREA maintains the balance between chlorophyll synthesis and adventitious root formation in tomato. HORTICULTURE RESEARCH 2020; 7:166. [PMID: 33082972 PMCID: PMC7527990 DOI: 10.1038/s41438-020-00386-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/13/2020] [Accepted: 07/24/2020] [Indexed: 05/15/2023]
Abstract
Flooding tolerance is an important trait for tomato breeding. In this study, we obtained a recessive mutant exhibiting highly enhanced submergence resistance. Phenotypical analyses showed that this resistant to flooding (rf) mutant displays slightly chlorotic leaves and spontaneous initiation of adventitious roots (ARs) on stems. The mutation was mapped to the phytochromobilin synthase gene AUREA (AU), in which a single amino acid substitution from asparagine to tyrosine occurred. In addition to the classic function of AU in phytochrome and chlorophyll biogenesis in leaves, we uncovered its novel role in mediating AR formation on stems. We further observed temporal coincidence of the two phenotypes in the rf mutant: chlorosis and spontaneous AR formation and revealed that AU functions by maintaining heme homeostasis. Interestingly, our grafting results suggest that heme might play roles in AR initiation via long-distance transport from leaves to stems. Our results present genetic evidence for the involvement of the AU-heme oxygenase-1-heme pathway in AR initiation in tomato. As fruit production and yield in the rf mutant are minimally impacted, the mutation identified in this study may provide a target for biotechnological renovation of tomato germplasm in future breeding.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Jie Cheng
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Chunmiao Xu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Shilian Qi
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Wenru Sun
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| |
Collapse
|
41
|
Libao C, Minrong Z, Zhubing H, Huiying L, Shuyan L. Comparative transcriptome analysis revealed the cooperative regulation of sucrose and IAA on adventitious root formation in lotus (Nelumbo nucifera Gaertn). BMC Genomics 2020; 21:653. [PMID: 32967611 PMCID: PMC7510093 DOI: 10.1186/s12864-020-07046-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Background In China, lotus is an important cultivated crop with multiple applications in ornaments, food, and environmental purification. Adventitious roots (ARs), a secondary root is necessary for the uptake of nutrition and water as the lotus principle root is underdeveloped. Therefore, AR formation in seedlings is very important for lotus breeding due to its effect on plant early growth. As lotus ARs formation was significantly affected by sucrose treatment, we analyzed the expression of genes and miRNAs upon treatment with differential concentrations of sucrose, and a crosstalk between sucrose and IAA was also identified. Results Notably, 20 mg/L sucrose promoted the ARs development, whereas 60 mg/L sucrose inhibited the formation of ARs. To investigate the regulatory pathway during ARs formation, the expression of genes and miRNAs was evaluated by high-throughput tag-sequencing. We observed that the expression of 5438, 5184, and 5345 genes was enhanced in the GL20/CK0, GL60/CK0, and CK1/CK0 libraries, respectively. Further, the expression of 73, 78, and 71 miRNAs was upregulated in the ZT20/MCK0, ZT60/MCK0, and MCK1/MCK0 libraries, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the differentially expressed genes and miRNAs in the GL20/GL60 and ZT20/ZT60 libraries were involved in signal transduction. A large number of these genes (29) and miRNAs (53) were associated with plant hormone metabolism. We observed an association between five miRNAs (miR160, miR156a-5p, miR397-5p_1, miR396a and miR167d) and nine genes (auxin response factor, protein brassinosteroid insensitive 1, laccase, and peroxidase 27) in the ZT20/ ZT60 libraries during ARs formation. Quantitative polymerase chain reaction (qRT-PCR) was used to validate the high-throughput tag-sequencing data. Conclusions We found that the expression of many critical genes involved in IAA synthesis and IAA transport was changed after treatment with various concentration of sucrose. Based on the change of these genes expression, IAA and sucrose content, we concluded that sucrose and IAA cooperatively regulated ARs formation. Sucrose affected ARs formation by improving IAA content at induction stage, and increased sucrose content might be also required for ARs development according to the changes tendency after application of exogenous IAA.
Collapse
Affiliation(s)
- Cheng Libao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| | - Zhao Minrong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Hu Zhubing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan, P. R. China
| | - Liu Huiying
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
42
|
Li A, Lakshmanan P, He W, Tan H, Liu L, Liu H, Liu J, Huang D, Chen Z. Transcriptome Profiling Provides Molecular Insights into Auxin-Induced Adventitious Root Formation in Sugarcane ( Saccharum spp. Interspecific Hybrids) Microshoots. PLANTS 2020; 9:plants9080931. [PMID: 32717893 PMCID: PMC7465322 DOI: 10.3390/plants9080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
Adventitious root (AR) formation was enhanced following the treatment of sugarcane microshoots with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) combined, suggesting that auxin is a positive regulator of sugarcane microshoot AR formation. The transcriptome profile identified 1737 and 1268 differentially expressed genes (DEGs) in the basal tissues (5 mm) of sugarcane microshoots treated with IBA+NAA compared to nontreated control on the 3rd and 7th days post-auxin or water treatment (days post-treatment—dpt), respectively. To understand the molecular changes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. This analysis showed that DEGs associated with the pathways were associated with plant hormone signaling, flavonoid and phenylpropanoid biosyntheses, cell cycle, and cell wall modification, and transcription factors could be involved in sugarcane microshoot AR formation. Furthermore, qRT–PCR analysis was used to validate the expression patterns of nine genes associated with root formation and growth, and the results were consistent with the RNA-seq results. Finally, a hypothetical hormonal regulatory working model of sugarcane microshoot AR formation is proposed. Our results provide valuable insights into the molecular processes associated with auxin-induced AR formation in sugarcane.
Collapse
Affiliation(s)
- Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Weizhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Hongwei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Limin Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Hongjian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Junxian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Zhongliang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| |
Collapse
|
43
|
Xie T, Ji J, Chen W, Yue J, Du C, Sun J, Chen L, Jiang Z, Shi S. GABA negatively regulates adventitious root development in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1459-1474. [PMID: 31740934 DOI: 10.1093/jxb/erz520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
γ-Aminobutyric acid (GABA) influences plant growth, but little is known about how this metabolite regulates adventitious root (AR) development. Here, we investigate the effects of GABA on ARs using poplar lines overexpressing glutamate decarboxilase 2 (GAD2) and by treating poplar stem cuttings with exogenous GABA or vigabatrin (VGB; a specific GABA transaminase inhibitor). Endogenous GABA accumulation not only inhibited AR growth, but it also suppressed or delayed AR formation. Anatomical observations revealed that the GABA and VGB treatments resulted in a 1 d delay in the formation of AR primordia and the appearance of ARs. This delay coincided with changes in primary metabolism, including transient increases in hexose and amino acid levels. GABA-dependent changes in the expression of genes related to hormone synthesis and signalling, as well as analysis of hormone levels revealed that ethylene-dependent pathways were decreased at the earliest stage of AR formation. In contrast, auxin and abscisic acid were increased at 1-5 d as well as GA4 over a 5 d period of AR formation. These results demonstrate that GABA plays a crucial role in AR development. Evidence is presented demonstrating that GABA can interact with hormone-related pathways as well as carbon/nitrogen metabolism. These findings also elucidate the functions of GABA in plant development.
Collapse
Affiliation(s)
- Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jiacheng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Zeping Jiang
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
44
|
The dynamic response of the Arabidopsis root metabolome to auxin and ethylene is not predicted by changes in the transcriptome. Sci Rep 2020; 10:679. [PMID: 31959762 PMCID: PMC6971091 DOI: 10.1038/s41598-019-57161-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
While the effects of phytohormones on plant gene expression have been well characterized, comparatively little is known about how hormones influence metabolite profiles. This study examined the effects of elevated auxin and ethylene on the metabolome of Arabidopsis roots using a high-resolution 24 h time course, conducted in parallel to time-matched transcriptomic analyses. Mass spectrometry using orthogonal UPLC separation strategies (reversed phase and HILIC) in both positive and negative ionization modes was used to maximize identification of metabolites with altered levels. The findings show that the root metabolome responds rapidly to hormone stimulus and that compounds belonging to the same class of metabolites exhibit similar changes. The responses were dominated by changes in phenylpropanoid, glucosinolate, and fatty acid metabolism, although the nature and timing of the response was unique for each hormone. These alterations in the metabolome were not directly predicted by the corresponding transcriptome data, suggesting that post-transcriptional events such as changes in enzyme activity and/or transport processes drove the observed changes in the metabolome. These findings underscore the need to better understand the biochemical mechanisms underlying the temporal reconfiguration of plant metabolism, especially in relation to the hormone-metabolome interface and its subsequent physiological and morphological effects.
Collapse
|
45
|
Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2286-2298. [PMID: 31033158 PMCID: PMC6835127 DOI: 10.1111/pbi.13140] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 05/24/2023]
Abstract
Group VII ethylene response factors (ERFVIIs) play important roles in ethylene signalling and plant responses to flooding. However, natural ERFVII variations in maize (ZmERFVIIs) that are directly associated with waterlogging tolerance have not been reported. Here, a candidate gene association analysis of the ZmERFVII gene family showed that a waterlogging-responsive gene, ZmEREB180, was tightly associated with waterlogging tolerance. ZmEREB180 expression specifically responded to waterlogging and was up-regulated by ethylene; in addition, its gene product localized to the nucleus. Variations in the 5'-untranslated region (5'-UTR) and mRNA abundance of this gene under waterlogging conditions were significantly associated with survival rate (SR). Ectopic expression of ZmEREB180 in Arabidopsis increased the SR after submergence stress, and overexpression of ZmEREB180 in maize also enhanced the SR after long-term waterlogging stress, apparently through enhanced formation of adventitious roots (ARs) and regulation of antioxidant levels. Transcriptomic assays of the transgenic maize line under normal and waterlogged conditions further provided evidence that ZmEREB180 regulated AR development and reactive oxygen species homeostasis. Our study provides direct evidence that a ZmERFVII gene is involved in waterlogging tolerance. These findings could be applied directly to breed waterlogging-tolerant maize cultivars and improve our understanding of waterlogging stress.
Collapse
Affiliation(s)
- Feng Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kun Liang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Tian Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xuesong Han
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Manjun Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
46
|
Guan L, Tayengwa R, Cheng ZM, Peer WA, Murphy AS, Zhao M. Auxin regulates adventitious root formation in tomato cuttings. BMC PLANT BIOLOGY 2019; 19:435. [PMID: 31638898 PMCID: PMC6802334 DOI: 10.1186/s12870-019-2002-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/30/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis. RESULTS Here we show the progression by which AR form from founder cells in the basal pericycle cell layers in tomato stem cuttings. The first disordered clumps of cells assumed a dome shape that later differentiated into functional AR cell layers. Further growth resulted in emergence of mature AR through the epidermis following programmed cell death of epidermal cells. Auxin and ethylene levels increased in the basal stem cutting within 1 h. Tomato lines expressing the auxin response element DR5pro:YFP showed an increase in auxin distribution during the AR initiation phase, and was mainly concentrated in the meristematic cells of the developing AR. Treatment of stem cuttings with auxin, increased the number of AR primordia and the length of AR, while stem cuttings treated with the pre-emergent herbicide/auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) occasionally developed thick, agravitropic AR. Hormone profile analyses showed that auxin positively regulated AR formation, whereas perturbations to zeatin, salicylic acid, and abscisic acid homeostasis suggested minor roles during tomato stem rooting. The gene expression of specific auxin transporters increased during specific developmental phases of AR formation. CONCLUSION These data show that AR formation in tomato stems is a complex process. Upon perception of a wounding stimulus, expression of auxin transporter genes and accumulation of auxin at founder cell initiation sites in pericycle cell layers and later in the meristematic cells of the AR primordia were observed. A clear understanding and documentation of these events in tomato is critical to resolve AR formation in recalcitrant species like hardwoods and improve stem cutting propagation efficiency and effectiveness.
Collapse
Affiliation(s)
- Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Zongming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Wendy Ann Peer
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA.
- Agriculture Biotechnology Center, University of Maryland, College Park, MD, USA.
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Agriculture Biotechnology Center, University of Maryland, College Park, MD, USA
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| |
Collapse
|
47
|
Li A, Chen G, Yu X, Zhu Z, Zhang L, Zhou S, Hu Z. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. PLANT CELL REPORTS 2019; 38:951-963. [PMID: 31062133 DOI: 10.1007/s00299-019-02417-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Overexpression of SlMBP9 reduced auxin biosynthesis and transport, and negatively regulated lateral root formation and apical dominance. MADS-box transcription factors play a critical role in plant development. In this study, we describe SlMBP9, a novel MADS-box gene that is expressed in the roots of tomato plants. Tomato lines that over- or under-expressed SlMBP9 were generated using a transgenic approach. The number of lateral roots (LRs) were reduced in SlMBP9-overexpressing lines but slightly increased in SlMBP9-silenced lines. A physiological index revealed that the auxin content significantly decreased in the root maturation zone of the overexpression lines. In addition, gene expression analysis revealed that the expression of the polar auxin transporter genes PIN1 and ABCB19/MDR1 and genes involved in auxin biosynthesis was downregulated in the stems of overexpression lines, which is consistent with the reduced accumulation of auxin in the root maturation zone. Exogenous indole-3-acetic acid (auximone) rescued the lateral root phenotypes of the SlMBP9-overexpressing lines. Overexpression of SlMBP9 resulted in dwarf plants, enhanced lateral buds and reduced the gibberellin content in the stems. Together, these results suggest that SlMBP9 plays a negative role in the process of auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Anzhou Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
48
|
Gonin M, Bergougnoux V, Nguyen TD, Gantet P, Champion A. What Makes Adventitious Roots? PLANTS (BASEL, SWITZERLAND) 2019; 8:E240. [PMID: 31336687 PMCID: PMC6681363 DOI: 10.3390/plants8070240] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Collapse
Affiliation(s)
- Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Thu D Nguyen
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| |
Collapse
|
49
|
Justamante MS, Acosta-Motos JR, Cano A, Villanova J, Birlanga V, Albacete A, Cano EÁ, Acosta M, Pérez-Pérez JM. Integration of Phenotype and Hormone Data during Adventitious Rooting in Carnation ( Dianthus caryophyllus L.) Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2019; 8:E226. [PMID: 31311180 PMCID: PMC6681402 DOI: 10.3390/plants8070226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 01/24/2023]
Abstract
The rooting of stem cuttings is a highly efficient procedure for the vegetative propagation of ornamental plants. In cultivated carnations, an increased auxin level in the stem cutting base produced by active auxin transport from the leaves triggers adventitious root (AR) formation from the cambium. To provide additional insight into the physiological and genetic basis of this complex trait, we studied AR formation in a collection of 159 F1 lines derived from a cross between two hybrid cultivars (2003 R 8 and 2101-02 MFR) showing contrasting rooting performances. In three different experiments, time-series for several stem and root architectural traits were quantified in detail in a subset of these double-cross hybrid lines displaying extreme rooting phenotypes and their parental genotypes. Our results indicate that the water content and area of the AR system directly contributed to the shoot water content and shoot growth. Moreover, morphometric data and rooting quality parameters were found to be associated with some stress-related metabolites such as 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor, and the conjugated auxin indol-3-acetic acid-aspartic acid (IAA-Asp).
Collapse
Affiliation(s)
| | - José Ramón Acosta-Motos
- Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, 30107 Guadalupe, Spain
- CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal, Universidad de Murcia, 30100 Murcia, Spain
| | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Virginia Birlanga
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Alfonso Albacete
- CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | | | - Manuel Acosta
- Departamento de Biología Vegetal, Universidad de Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
50
|
Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei MR. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. ANNALS OF BOTANY 2019; 123:929-949. [PMID: 30759178 PMCID: PMC6589513 DOI: 10.1093/aob/mcy234] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/03/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources. SCOPE Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme. CONCLUSION Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.
Collapse
Affiliation(s)
- Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | | | - Yvonne Klopotek
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Manuel Acosta
- Universidad de Murcia, Facultad de Biología, Campus de Espinardo, Murcia, Spain
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | - Siegfried Zerche
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Mohammad R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| |
Collapse
|