1
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Peltz G, Tan Y. What Have We Learned (or Expect to) From Analysis of Murine Genetic Models Related to Substance Use Disorders? Front Psychiatry 2022; 12:793961. [PMID: 35095607 PMCID: PMC8790171 DOI: 10.3389/fpsyt.2021.793961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The tremendous public health problem created by substance use disorders (SUDs) presents a major opportunity for mouse genetics. Inbred mouse strains exhibit substantial and heritable differences in their responses to drugs of abuse (DOA) and in many of the behaviors associated with susceptibility to SUD. Therefore, genetic discoveries emerging from analysis of murine genetic models can provide critically needed insight into the neurobiological effects of DOA, and they can reveal how genetic factors affect susceptibility drug addiction. There are already indications, emerging from our prior analyses of murine genetic models of responses related to SUDs that mouse genetic models of SUD can provide actionable information, which can lead to new approaches for alleviating SUDs. Lastly, we consider the features of murine genetic models that enable causative genetic factors to be successfully identified; and the methodologies that facilitate genetic discovery.
Collapse
Affiliation(s)
- Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
3
|
Datta U, Schoenrock SE, Bubier JA, Bogue MA, Jentsch JD, Logan RW, Tarantino LM, Chesler EJ. Prospects for finding the mechanisms of sex differences in addiction with human and model organism genetic analysis. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12645. [PMID: 32012419 PMCID: PMC7060801 DOI: 10.1111/gbb.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Despite substantial evidence for sex differences in addiction epidemiology, addiction-relevant behaviors and associated neurobiological phenomena, the mechanisms and implications of these differences remain unknown. Genetic analysis in model organism is a potentially powerful and effective means of discovering the mechanisms that underlie sex differences in addiction. Human genetic studies are beginning to show precise risk variants that influence the mechanisms of addiction but typically lack sufficient power or neurobiological mechanistic access, particularly for the discovery of the mechanisms that underlie sex differences. Our thesis in this review is that genetic variation in model organisms are a promising approach that can complement these investigations to show the biological mechanisms that underlie sex differences in addiction.
Collapse
Affiliation(s)
- Udita Datta
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - Sarah E. Schoenrock
- Center for Systems Neurogenetics of Addiction, Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Jason A. Bubier
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - Molly A. Bogue
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - James D. Jentsch
- Center for Systems Neurogenetics of Addiction, PsychologyState University of New York at BinghamtonBinghamtonNew York
| | - Ryan W. Logan
- Center for Systems Neurogenetics of Addiction, PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Lisa M. Tarantino
- Center for Systems Neurogenetics of Addiction, Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Elissa J. Chesler
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| |
Collapse
|
4
|
Kozell LB, Denmark DL, Walter NAR, Buck KJ. Distinct Roles for Two Chromosome 1 Loci in Ethanol Withdrawal, Consumption, and Conditioned Place Preference. Front Genet 2018; 9:323. [PMID: 30210527 PMCID: PMC6120100 DOI: 10.3389/fgene.2018.00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
We previously identified a region on chromosome 1 that harbor quantitative trait loci (QTLs) with large effects on alcohol withdrawal risk using both chronic and acute models in mice. Here, using newly created and existing QTL interval-specific congenic (ISC) models, we report the first evidence that this region harbors two distinct alcohol withdrawal QTLs (Alcw11and Alcw12), which underlie 13% and 3–6%, respectively, of the genetic variance in alcohol withdrawal severity measured using the handling-induced convulsion. Our results also precisely localize Alcw11 and Alcw12 to discreet chromosome regions (syntenic with human 1q23.1–23.3) that encompass a limited number of genes with validated genotype-dependent transcript expression and/or non-synonymous sequence variation that may underlie QTL phenotypic effects. ISC analyses also implicate Alcw11and Alcw12 in withdrawal-induced anxiety-like behavior, representing the first evidence for their broader roles in alcohol withdrawal beyond convulsions; but detect no evidence for Alcw12 involvement in ethanol conditioned place preference (CPP) or consumption. Our data point to high-quality candidates for Alcw12, including genes involved in mitochondrial respiration, spatial buffering, and neural plasticity, and to Kcnj9 as a high-quality candidate for Alcw11. Our studies are the first to show, using two null mutant models on different genetic backgrounds, that Kcnj9−/− mice demonstrate significantly less severe alcohol withdrawal than wildtype littermates using acute and repeated exposure paradigms. We also demonstrate that Kcnj9−/− voluntarily consume significantly more alcohol (20%, two-bottle choice) than wildtype littermates. Taken together with evidence implicating Kcnj9 in ethanol CPP, our results support a broad role for this locus in ethanol reward and withdrawal phenotypes. In summary, our results demonstrate two distinct chromosome 1 QTLs that significantly affect risk for ethanol withdrawal, and point to their distinct unique roles in alcohol reward phenotypes.
Collapse
Affiliation(s)
- Laura B Kozell
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deaunne L Denmark
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Nicole A R Walter
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Kari J Buck
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
5
|
Munroe ME, Pezant N, Brown MA, Fife DA, Guthridge JM, Kelly JA, Wiley G, Gaffney PM, James JA, Montgomery CG. Association of IFIH1 and pro-inflammatory mediators: Potential new clues in SLE-associated pathogenesis. PLoS One 2017; 12:e0171193. [PMID: 28234905 PMCID: PMC5325200 DOI: 10.1371/journal.pone.0171193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/18/2017] [Indexed: 12/27/2022] Open
Abstract
Antiviral defenses are inappropriately activated in systemic lupus erythematosus (SLE) and association between SLE and the antiviral helicase gene, IFIH1, is well established. We sought to extend the previously reported association of pathogenic soluble mediators and autoantibodies with mouse Mda5 to its human ortholog, IFIH1. To better understand the role this gene plays in human lupus, we assessed association of IFIH1 variants with soluble mediators and autoantibodies in 357 European-American SLE patients, first-degree relatives, and unrelated, unaffected healthy controls. Association between each of 135 genotyped SNPs in IFIH1 and four lupus-associated plasma mediators, IL-6, TNF-α, IFN-β, and IP-10, were investigated via linear regression. No significant associations were found to SNPs orthologous to those identified in exon 13 of the mouse. However, outside of this region there were significant associations between IL-6 and rs76162067 (p = 0.008), as well as IP-10 and rs79711023 (p = 0.003), located in a region of IFIH1 previously shown to directly influence MDA-5 mediated IP-10 and IL-6 secretion. SLE patients and FDRs carrying the minor allele for rs79711023 demonstrated lower levels of IP-10, while only FDRs carrying the minor allele for rs76162067 demonstrated an increased level of IL-6. This would suggest that the change in IP-10 is genotypically driven, while the change in IL-6 may be reflective of SLE transition status. These data suggest that IFIH1 may contribute to SLE pathogenesis via altered inflammatory mechanisms.
Collapse
Affiliation(s)
- Melissa E. Munroe
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Nathan Pezant
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Michael A. Brown
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Dustin A. Fife
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Graham Wiley
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Courtney G. Montgomery
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| |
Collapse
|
6
|
Buck KJ, Chen G, Kozell LB. Limbic circuitry activation in ethanol withdrawal is regulated by a chromosome 1 locus. Alcohol 2017; 58:153-160. [PMID: 27989609 DOI: 10.1016/j.alcohol.2016.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/03/2016] [Accepted: 09/03/2016] [Indexed: 11/19/2022]
Abstract
Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force sustaining alcohol use/abuse and contributing to relapse in alcoholics. Although no animal model exactly duplicates alcoholism, models for specific factors, including the withdrawal syndrome, are useful for identifying potential genetic and neural determinants of liability in humans. We previously identified highly significant quantitative trait loci (QTLs) with large effects on predisposition to withdrawal after chronic and acute alcohol exposure in mice and mapped these loci to the same region of chromosome 1 (Alcdp1 and Alcw1, respectively). The present studies utilize a novel Alcdp1/Alcw1 congenic model (in which an interval spanning Alcdp1 and Alcw1 from the C57BL/6J donor strain [build GRCm38 150.3-174.6 Mb] has been introgressed onto a uniform inbred DBA/2J genetic background) known to demonstrate significantly less severe chronic and acute withdrawal compared to appropriate background strain animals. Here, using c-Fos induction as a high-resolution marker of neuronal activation, we report that male Alcdp1/Alcw1 congenic animals demonstrate significantly less alcohol withdrawal-associated neural activation compared to appropriate background strain animals in the prelimbic and cingulate cortices of the prefrontal cortex as well as discrete regions of the extended amygdala (i.e., basolateral) and extended basal ganglia (i.e., dorsolateral striatum, and caudal substantia nigra pars reticulata). These studies are the first to begin to elucidate circuitry by which this confirmed addiction-relevant QTL could influence behavior. This circuitry overlaps limbic circuitry involved in stress, providing additional mechanistic information. Alcdp1/Alcw1 maps to a region syntenic with human chromosome 1q, where multiple studies find significant associations with risk for alcoholism.
Collapse
Affiliation(s)
- Kari J Buck
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Gang Chen
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Laura B Kozell
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
7
|
Walter NAR, Denmark DL, Kozell LB, Buck KJ. A Systems Approach Implicates a Brain Mitochondrial Oxidative Homeostasis Co-expression Network in Genetic Vulnerability to Alcohol Withdrawal. Front Genet 2017; 7:218. [PMID: 28096806 PMCID: PMC5206817 DOI: 10.3389/fgene.2016.00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic factors significantly affect vulnerability to alcohol dependence (alcoholism). We previously identified quantitative trait loci on distal mouse chromosome 1 with large effects on predisposition to alcohol physiological dependence and associated withdrawal following both chronic and acute alcohol exposure in mice (Alcdp1 and Alcw1, respectively). We fine-mapped these loci to a 1.1–1.7 Mb interval syntenic with human 1q23.2-23.3. Alcw1/Alcdp1 interval genes show remarkable genetic variation among mice derived from the C57BL/6J and DBA/2J strains, the two most widely studied genetic animal models for alcohol-related traits. Here, we report the creation of a novel recombinant Alcw1/Alcdp1 congenic model (R2) in which the Alcw1/Alcdp1 interval from a donor C57BL/6J strain is introgressed onto a uniform, inbred DBA/2J genetic background. As expected, R2 mice demonstrate significantly less severe alcohol withdrawal compared to wild-type littermates. Additionally, comparing R2 and background strain animals, as well as reciprocal congenic (R8) and appropriate background strain animals, we assessed Alcw1/Alcdp1 dependent brain gene expression using microarray and quantitative PCR analyses. To our knowledge this includes the first Weighted Gene Co-expression Network Analysis using reciprocal congenic models. Importantly, this allows detection of co-expression patterns limited to one or common to both genetic backgrounds with high or low predisposition to alcohol withdrawal severity. The gene expression patterns (modules) in common contain genes related to oxidative phosphorylation, building upon human and animal model studies that implicate involvement of oxidative phosphorylation in alcohol use disorders (AUDs). Finally, we demonstrate that administration of N-acetylcysteine, an FDA-approved antioxidant, significantly reduces symptoms of alcohol withdrawal (convulsions) in mice, thus validating a phenotypic role for this network. Taken together, these studies support the importance of mitochondrial oxidative homeostasis in alcohol withdrawal and identify this network as a valuable therapeutic target in human AUDs.
Collapse
Affiliation(s)
- Nicole A R Walter
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| | - DeAunne L Denmark
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| | - Laura B Kozell
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| | - Kari J Buck
- Research and Development, Portland Veterans Affairs Medical Center, PortlandOR, USA; Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, PortlandOR, USA
| |
Collapse
|
8
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
9
|
Donaldson R, Sun Y, Liang DY, Zheng M, Sahbaie P, Dill DL, Peltz G, Buck KJ, Clark JD. The multiple PDZ domain protein Mpdz/MUPP1 regulates opioid tolerance and opioid-induced hyperalgesia. BMC Genomics 2016; 17:313. [PMID: 27129385 PMCID: PMC4850636 DOI: 10.1186/s12864-016-2634-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/22/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Opioids are a mainstay for the treatment of chronic pain. Unfortunately, therapy-limiting maladaptations such as loss of treatment effect (tolerance), and paradoxical opioid-induced hyperalgesia (OIH) can occur. The objective of this study was to identify genes responsible for opioid tolerance and OIH. RESULTS These studies used a well-established model of ascending morphine administration to induce tolerance, OIH and other opioid maladaptations in 23 strains of inbred mice. Genome-wide computational genetic mapping was then applied to the data in combination with a false discovery rate filter. Transgenic mice, gene expression experiments and immunoprecipitation assays were used to confirm the functional roles of the most strongly linked gene. The behavioral data processed using computational genetic mapping and false discovery rate filtering provided several strongly linked biologically plausible gene associations. The strongest of these was the highly polymorphic Mpdz gene coding for the post-synaptic scaffolding protein Mpdz/MUPP1. Heterozygous Mpdz +/- mice displayed reduced opioid tolerance and OIH. Mpdz gene expression and Mpdz/MUPP1 protein levels were lower in the spinal cords of low-adapting 129S1/Svlm mice than in high-adapting C57BL/6 mice. Morphine did not alter Mpdz expression levels. In addition, association of Mpdz/MUPP1 with its known binding partner CaMKII did not differ between these high- and low-adapting strains. CONCLUSIONS The degrees of maladaptive changes in response to repeated administration of morphine vary greatly across inbred strains of mice. Variants of the multiple PDZ domain gene Mpdz may contribute to the observed inter-strain variability in tolerance and OIH by virtue of changes in the level of their expression.
Collapse
Affiliation(s)
- Robin Donaldson
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Yuan Sun
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - De-Yong Liang
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ming Zheng
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Gary Peltz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari J Buck
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Anesthesiology, 112A, Palo Alto, CA, 94304, USA. .,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
11
|
Farris SP, Pietrzykowski AZ, Miles MF, O'Brien MA, Sanna PP, Zakhari S, Mayfield RD, Harris RA. Applying the new genomics to alcohol dependence. Alcohol 2015; 49:825-36. [PMID: 25896098 PMCID: PMC4586299 DOI: 10.1016/j.alcohol.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Samir Zakhari
- Office of Science, Distilled Spirits Council of the United States, Washington, DC, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Morozova TV, Huang W, Pray VA, Whitham T, Anholt RRH, Mackay TFC. Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult drosophila. BMC Genomics 2015; 16:865. [PMID: 26503115 PMCID: PMC4624176 DOI: 10.1186/s12864-015-2064-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Alcohol abuse and alcoholism are significant public health problems, but the genetic basis for individual variation in alcohol sensitivity remains poorly understood. Drosophila melanogaster presents a powerful model system for dissecting the genetic underpinnings that determine individual variation in alcohol-related phenotypes. We performed genome wide association analyses for alcohol sensitivity using the sequenced, inbred lines of the D. melanogaster Genetic Reference Panel (DGRP) together with extreme QTL mapping in an advanced intercross population derived from sensitive and resistant DGRP lines. RESULTS The DGRP harbors substantial genetic variation for alcohol sensitivity and tolerance. We identified 247 candidate genes affecting alcohol sensitivity in the DGRP or the DGRP-derived advanced intercross population, some of which met a Bonferroni-corrected significance threshold, while others occurred among the top candidate genes associated with variation in alcohol sensitivity in multiple analyses. Among these were candidate genes associated with development and function of the nervous system, including several genes in the Dopamine decarboxylase (Ddc) cluster involved in catecholamine synthesis. We found that 58 of these genes formed a genetic interaction network. We verified candidate genes using mutational analysis, targeted gene disruption through RNAi knock-down and transcriptional profiling. Two-thirds of the candidate genes have been implicated in previous Drosophila, mouse and human studies of alcohol-related phenotypes. CONCLUSIONS Individual variation in alcohol sensitivity in Drosophila is highly polygenic and in part determined by variation in evolutionarily conserved signaling pathways that are associated with catecholamine neurotransmitter biosynthesis and early development of the nervous system.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Wen Huang
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Victoria A Pray
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Thomas Whitham
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
- Department of Biochemistry and Physiology, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Robert R H Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, Koob G, Richardson HN, Lombardo J, Hoffman PL, Tabakoff B. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J 2015; 282:3556-78. [PMID: 26183165 DOI: 10.1111/febs.13358] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED A quantitative genetic approach, which involves correlation of transcriptional networks with the phenotype in a recombinant inbred (RI) population and in selectively bred lines of rats, and determination of coinciding quantitative trait loci for gene expression and the trait of interest, has been applied in the present study. In this analysis, a novel approach was used that combined DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat strains and six pairs of rat lines selectively bred for high and low alcohol preference, and RNA-Seq data (including rat brain transcriptome reconstruction) to quantify transcript expression levels, generate co-expression modules and identify biological functions that contribute to the predisposition of consuming varying amounts of alcohol. A gene co-expression module was identified in the RI rat strains that contained both annotated and unannotated transcripts expressed in the brain, and was associated with alcohol consumption in the RI panel. This module was found to be enriched with differentially expressed genes from the selected lines of rats. The candidate genes within the module and differentially expressed genes between high and low drinking selected lines were associated with glia (microglia and astrocytes) and could be categorized as being related to immune function, energy metabolism and calcium homeostasis, as well as glial-neuronal communication. The results of the present study show that there are multiple combinations of genetic factors that can produce the same phenotypic outcome. Although no single gene accounts for predisposition to a particular level of alcohol consumption in every animal model, coordinated differential expression of subsets of genes in the identified pathways produce similar phenotypic outcomes. DATABASE The datasets supporting the results of the present study are available at http://phenogen.ucdenver.edu.
Collapse
Affiliation(s)
- Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Stephen C Flink
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Lauren A Vanderlinden
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Yedy Israel
- Laboratory of Pharmacogenetics of Alcoholism, Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lutske Tampier
- Laboratory of Pharmacogenetics of Alcoholism, Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Kalervo Kiianmaa
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki, Finland
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Morton P Printz
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Pamela Flodman
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - George Koob
- Committee on the Neurobiology of Addiction Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Heather N Richardson
- Committee on the Neurobiology of Addiction Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Joseph Lombardo
- National Supercomputing Center for Energy and Environment, University of Nevada, Las Vegas, Nevada, USA
| | - Paula L Hoffman
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
14
|
Zale EL, Maisto SA, Ditre JW. Interrelations between pain and alcohol: An integrative review. Clin Psychol Rev 2015; 37:57-71. [PMID: 25766100 PMCID: PMC4385458 DOI: 10.1016/j.cpr.2015.02.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
Abstract
Pain and alcohol use are both highly prevalent in the general population, and pain-alcohol interrelations are of increasing empirical interest. Previous research has identified associations between pain and alcohol dependence, and the current review provides novel contributions to this emerging domain by incorporating studies that have tested relations between pain and low-to-moderate alcohol consumption, and by identifying potential psychosocial mechanisms of action. Specifically, we sought to integrate evidence of pain-alcohol relations derived from two directions of empirical inquiry (i.e., effects of alcohol on pain and effects of pain on alcohol use) across psychological, social, and biological literatures. We observed converging evidence that associations between alcohol consumption and pain may be curvilinear in nature. Whereas moderate alcohol use was observed to be associated with positive pain-related outcomes (e.g., greater quality of life), excessive drinking and alcohol use disorder appear to be associated with deleterious pain-related outcomes (e.g., greater pain severity). We also observed evidence that alcohol administration confers acute pain-inhibitory effects, and that situational pain may motivate alcohol consumption (e.g., drinking for pain-coping). Future research can inform theoretical and clinical applications through examination of temporal relations between pain and alcohol consumption, tests of hypothesized mechanisms, and the development of novel interventions.
Collapse
Affiliation(s)
- Emily L Zale
- Syracuse University, Syracuse, NY 13244, United States
| | - Stephen A Maisto
- Syracuse University, Syracuse, NY 13244, United States; Center for Integrated Healthcare, Syracuse Veteran's Affairs Medical Center, Syracuse, NY 13210, United States
| | - Joseph W Ditre
- Syracuse University, Syracuse, NY 13244, United States; Center for Integrated Healthcare, Syracuse Veteran's Affairs Medical Center, Syracuse, NY 13210, United States.
| |
Collapse
|
15
|
Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics. Genetics 2014; 197:1377-93. [PMID: 24923803 DOI: 10.1534/genetics.114.166165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.
Collapse
|
16
|
Bodhinathan K, Slesinger PA. Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics. Front Physiol 2014; 5:76. [PMID: 24611054 PMCID: PMC3933770 DOI: 10.3389/fphys.2014.00076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/07/2014] [Indexed: 12/27/2022] Open
Abstract
Alcohol (ethanol)-induced behaviors may arise from direct interaction of alcohol with discrete protein cavities within brain proteins. Recent structural and biochemical studies have provided new insights into the mechanism of alcohol-dependent activation of G protein-gated inwardly rectifying potassium (GIRK) channels, which regulate neuronal responses in the brain reward circuit. GIRK channels contain an alcohol binding pocket formed at the interface of two adjacent channel subunits. Here, we discuss the physiochemical properties of the alcohol pocket and the roles of G protein βγ subunits and membrane phospholipid PIP2 in regulating the alcohol response of GIRK channels. Some of the features of alcohol modulation of GIRK channels may be common to other alcohol-sensitive brain proteins. We discuss the possibility of alcohol-selective therapeutics that block alcohol access to the pocket. Understanding alcohol recognition and modulation of brain proteins is essential for development of therapeutics for alcohol abuse and addiction.
Collapse
Affiliation(s)
- Karthik Bodhinathan
- Structural Biology and Peptide Biology Laboratories, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Paul A Slesinger
- Structural Biology and Peptide Biology Laboratories, The Salk Institute for Biological Studies La Jolla, CA, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
17
|
Abstract
Alcoholism (alcohol dependence and alcohol use disorder, AUD) is quintessentially behavioral in nature. AUD is behaviorally and genetically complex. This review discusses behavioral assessment of alcohol sensitivity, tolerance, dependence, withdrawal, and reinforcement. The focus is on using laboratory animal models to explore genetic contributions to individual differences in alcohol responses. Rodent genetic animal models based on selective breeding for high vs low alcohol response, and those based on the use of inbred strains, are reviewed. Genetic strategies have revealed the complexity of alcohol responses where genetic influences on multiple alcohol-related behaviors are mostly discrete. They have also identified areas where genetic influences are consistent across behavioral assays and have been used to model genetic differences among humans at different risk for AUD.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Crabbe JC. Rodent models of genetic contributions to motivation to abuse alcohol. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2014; 61:5-29. [PMID: 25306777 PMCID: PMC4988659 DOI: 10.1007/978-1-4939-0653-6_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In summary, there are remarkably few studies focused on the genetic contributions to alcohol's reinforcing values. Almost all such studies examine the two-bottle preference test. Despite the deficiencies I have raised in its interpretation, a rodent genotype's willingness to drink ethanol when water is freely available offers a reasonable aggregate estimate of alcohol's reinforcing value relative to other genotypes (Green and Grahame 2008). As indicated above, however, preference drinking studies will likely never avoid the confounding role of taste preferences and most often yield intake levels not sufficient to yield a pharmacologically significant BAL. Thus, the quest for improved measures of reinforcing value continues. Of the potential motivational factors considered by McClearn in his seminal review in this series, we can safely conclude that rodent alcohol drinking is not primarily directed at obtaining calories. The role of taste (and odor) remains a challenge. McClearn appears to have been correct that especially those genotypes that avoid alcohol are probably doing so based on preingestive sensory cues; however, postingestive consequences are also important. Cunningham's intragastric model shows the role of both preingestional and postingestional modulating factors for the best known examples, the usually nearly absolutely alcohol-avoiding DBA/2J and HAP-2 mice. Much subsequent data reinforce McClearn's earlier conclusion that C57BL/6J mice, at least, do not regulate their intake around a given self-administered dose of alcohol by adjusting their intake. This leaves us with the puzzle of why nearly all genotypes, even those directionally selectively bred for high voluntary intake for many generations, fail to self-administer intoxicating amounts of alcohol. Since McClearn's review, many ingenious assays to index alcohol's motivational effects have been used extensively, and new methods for inducing dependence have supplanted the older ones prevalent in 1968. I have tried to identify promising areas where the power of genetics could be fruitfully harvested and generally feel that we have a much more clear idea now about some important experiments remaining to be performed.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Medical Center (R&D 12), 3710 SW US Veterans Hospital Road, Portland, Oregon 97239 USA, Phone: 503-273-5298, FAX: 503-721-1029
| |
Collapse
|
19
|
Farris SP, Miles MF. Fyn-dependent gene networks in acute ethanol sensitivity. PLoS One 2013; 8:e82435. [PMID: 24312422 PMCID: PMC3843713 DOI: 10.1371/journal.pone.0082435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022] Open
Abstract
Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | |
Collapse
|
20
|
Mulligan MK, Dubose C, Yue J, Miles MF, Lu L, Hamre KM. Expression, covariation, and genetic regulation of miRNA Biogenesis genes in brain supports their role in addiction, psychiatric disorders, and disease. Front Genet 2013; 4:126. [PMID: 23847651 PMCID: PMC3701868 DOI: 10.3389/fgene.2013.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022] Open
Abstract
The role of miRNA and miRNA biogenesis genes in the adult brain is just beginning to be explored. In this study we have performed a comprehensive analysis of the expression, genetic regulation, and co-expression of major components of the miRNA biogenesis pathway using human and mouse data sets and resources available on the GeneNetwork web site (genenetwork.org). We found a wide range of variation in expression in both species for key components of the pathway—Drosha, Pasha, and Dicer. Across species, tissues, and expression platforms all three genes are generally well-correlated. No single genetic locus exerts a strong and consistent influence on the expression of these key genes across murine brain regions. However, in mouse striatum, many members of the miRNA pathway are correlated—including Dicer, Drosha, Pasha, Ars2 (Srrt), Eif2c1 (Ago1), Eif2c2 (Ago2), Zcchc11, and Snip1. The expression of these genes may be partly influenced by a locus on Chromosome 9 (105.67–106.32 Mb). We explored ~1500 brain phenotypes available for the C57BL/6J × DBA/2J (BXD) genetic mouse population in order to identify miRNA biogenesis genes correlated with traits related to addiction and psychiatric disorders. We found a significant association between expression of Dicer and Drosha in several brain regions and the response to many drugs of abuse, including ethanol, cocaine, and methamphetamine. Expression of Dicer, Drosha, and Pasha in most of the brain regions explored is strongly correlated with the expression of key members of the dopamine system. Drosha, Pasha, and Dicer expression is also correlated with the expression of behavioral traits measuring depression and sensorimotor gating, impulsivity, and anxiety, respectively. Our study provides a global survey of the expression and regulation of key miRNA biogenesis genes in brain and provides preliminary support for the involvement of these genes and their product miRNAs in addiction and psychiatric disease processes.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
21
|
Crabbe JC, Kendler KS, Hitzemann RJ. Modeling the diagnostic criteria for alcohol dependence with genetic animal models. Curr Top Behav Neurosci 2013; 13:187-221. [PMID: 21910077 PMCID: PMC3371181 DOI: 10.1007/7854_2011_162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual's manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
22
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Wahlsten D. The hunt for gene effects pertinent to behavioral traits and psychiatric disorders: from mouse to human. Dev Psychobiol 2012; 54:475-92. [PMID: 22674524 DOI: 10.1002/dev.21043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of behavioral genetics was reviewed in the classic 1960 text by Fuller and Thompson. Since then, there has been remarkable progress in the genetic analysis of animal behavior. Many molecular genetic methods in common use today were not even anticipated in 1960. Animal models for many human psychiatric disorders have been discovered or created. In human behavior genetics, however, powerful new methods have failed to reveal even one bona fide, replicable gene effect pertinent to the normal range of variation in intelligence and personality. There is no explanatory or predictive value in that genetic information. For several psychiatric disorders, including autism and schizophrenia, many large genetic effects arise from de novo mutations. Genetically, the disorders are heterogeneous; different cases with the same diagnosis have different causes. The promises of the molecular genetic revolution have not been fulfilled in behavioral domains of most interest to human psychology.
Collapse
Affiliation(s)
- Douglas Wahlsten
- Department of Psychology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
24
|
Crabbe JC. Translational behaviour-genetic studies of alcohol: are we there yet? GENES BRAIN AND BEHAVIOR 2012; 11:375-86. [PMID: 22510368 DOI: 10.1111/j.1601-183x.2012.00798.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In biomedical research, one key stage of translating basic science knowledge to clinical practice is the reconciliation of phenotypes employed for laboratory animal studies with those important for the clinical condition. Alcohol dependence (AD) is a prototypic complex genetic trait. There is a long history of behaviour-genetic studies of AD in both human subjects and various genetic animal models. This review assesses the state of the art in our understanding of the genetic contributions to AD. In particular, it primarily focuses on the phenotypes studied in mouse genetic animal models, comparing them to the aspects of the human condition they are intended to target. It identifies several features of AD where genetic animal models have been particularly useful, and tries to identify understudied areas where there is good promise for further genetic animal model work.
Collapse
Affiliation(s)
- J C Crabbe
- VA Medical Center (R&D12) Portland Alcohol Research Center Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
25
|
Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J×129S1/SvImJ inbred mouse cross. Mamm Genome 2012; 23:305-21. [PMID: 22371272 PMCID: PMC3357470 DOI: 10.1007/s00335-012-9394-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 01/26/2012] [Indexed: 01/01/2023]
Abstract
Individual variation in sensitivity to acute ethanol (EtOH) challenge is associated with alcohol drinking and is a predictor of alcohol abuse. Previous studies have shown that the C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mouse strains differ in responses on certain measures of acute EtOH intoxication. To gain insight into genetic factors contributing to these differences, we performed quantitative trait locus (QTL) analysis of measures of EtOH-induced ataxia (accelerating rotarod), hypothermia, and loss of righting reflex (LORR) duration in a B6 × S1 F2 population. We confirmed that S1 showed greater EtOH-induced hypothermia (specifically at a high dose) and longer LORR compared to B6. QTL analysis revealed several additive and interacting loci for various phenotypes, as well as examples of genotype interactions with sex. QTLs for different EtOH phenotypes were largely non-overlapping, suggesting separable genetic influences on these behaviors. The most compelling main-effect QTLs were for hypothermia on chromosome 16 and for LORR on chromosomes 4 and 6. Several QTLs overlapped with loci repeatedly linked to EtOH drinking in previous mouse studies. The architecture of the traits we examined was complex but clearly amenable to dissection in future studies. Using integrative genomics strategies, plausible functional and positional candidates may be found. Uncovering candidate genes associated with variation in these phenotypes in this population could ultimately shed light on genetic factors underlying sensitivity to EtOH intoxication and risk for alcoholism in humans.
Collapse
|
26
|
Morozova TV, Goldman D, Mackay TFC, Anholt RRH. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biol 2012; 13:239. [PMID: 22348705 PMCID: PMC3334563 DOI: 10.1186/gb-2012-13-2-239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trudy FC Mackay
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert RH Anholt
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
27
|
Ziebarth JD, Cook MN, Wang X, Williams RW, Lu L, Cui Y. Treatment- and population-dependent activity patterns of behavioral and expression QTLs. PLoS One 2012; 7:e31805. [PMID: 22359631 PMCID: PMC3281015 DOI: 10.1371/journal.pone.0031805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/17/2012] [Indexed: 01/08/2023] Open
Abstract
Genetic control of gene expression and higher-order phenotypes is almost invariably dependent on environment and experimental conditions. We use two families of recombinant inbred strains of mice (LXS and BXD) to study treatment- and genotype-dependent control of hippocampal gene expression and behavioral phenotypes. We analyzed responses to all combinations of two experimental perturbations, ethanol and restraint stress, in both families, allowing for comparisons across 8 combinations of treatment and population. We introduce the concept of QTL activity patterns to characterize how associations between genomic loci and traits vary across treatments. We identified several significant behavioral QTLs and many expression QTLs (eQTLs). The behavioral QTLs are highly dependent on treatment and population. We classified eQTLs into three groups: cis-eQTLs (expression variation that maps to within 5 Mb of the cognate gene), syntenic trans-eQTLs (the gene and the QTL are on the same chromosome but not within 5 Mb), and non-syntenic trans-eQTLs (the gene and the QTL are on different chromosomes). We found that most non-syntenic trans-eQTLs were treatment-specific whereas both classes of syntenic eQTLs were more conserved across treatments. We also found there was a correlation between regions along the genome enriched for eQTLs and SNPs that were conserved across the LXS and BXD families. Genes with eQTLs that co-localized with the behavioral QTLs and displayed similar QTL activity patterns were identified as potential candidate genes associated with the phenotypes, yielding identification of novel genes as well as genes that have been previously associated with responses to ethanol.
Collapse
Affiliation(s)
- Jesse D. Ziebarth
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Melloni N. Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Jiangsu Key Laboratory of Neuroregenertion, Nantong University, Nantong, China
- * E-mail: (LL) (LL); (YC) (YC)
| | - Yan Cui
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (LL) (LL); (YC) (YC)
| |
Collapse
|
28
|
Blednov YA, Ponomarev I, Geil C, Bergeson S, Koob GF, Harris RA. Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 2012; 17:108-20. [PMID: 21309947 PMCID: PMC3117922 DOI: 10.1111/j.1369-1600.2010.00284.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of mouse brain gene expression, using strains that differ in alcohol consumption, provided a number of novel candidate genes that potentially regulate alcohol consumption. We selected six genes [beta-2-microglobulin (B2m), cathepsin S (Ctss), cathepsin F (Ctsf), interleukin 1 receptor antagonist (Il1rn), CD14 molecule (Cd14) and interleukin 6 (Il6)] for behavioral validation using null mutant mice. These genes are known to be important for immune responses but were not specifically linked to alcohol consumption by previous research. Null mutant mice were tested for ethanol intake in three tests: 24-hour two-bottle choice, limited access two-bottle choice and limited access to one bottle of ethanol. Ethanol consumption and preference were reduced in all the null mutant mice in the 24-hour two-bottle choice test, the test that was the basis for selection of these genes. No major differences were observed in consumption of saccharin or quinine in the null mutant mice. Deletion of B2m, Ctss, Il1rn, Cd14 and Il6 also reduced ethanol consumption in the limited access two bottle choice test for ethanol intake; with the Il1rn and Ctss null mutants showing reduced intake in all three tests (with some variation between males and females). These results provide the most compelling evidence to date that global gene expression analysis can identify novel genetic determinants of complex behavioral traits. Specifically, they suggest a novel role for neuroimmune signaling in regulation of alcohol consumption.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Department Pharmacology/Toxicology, University of Texas, Austin, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Buck KJ, Milner LC, Denmark DL, Grant SGN, Kozell LB. Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models. Alcohol Res 2012; 34:367-74. [PMID: 23134054 PMCID: PMC3860408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The genetic determinants of alcoholism still are largely unknown, hindering effective treatment and prevention. Systematic approaches to gene discovery are critical if novel genes and mechanisms involved in alcohol dependence are to be identified. Although no animal model can duplicate all aspects of alcoholism in humans, robust animal models for specific alcohol-related traits, including physiological alcohol dependence and associated withdrawal, have been invaluable resources. Using a variety of genetic animal models, the identification of regions of chromosomal DNA that contain a gene or genes which affect a complex phenotype (i.e., quantitative trait loci [QTLs]) has allowed unbiased searches for candidate genes. Several QTLs with large effects on alcohol withdrawal severity in mice have been detected, and fine mapping of these QTLs has placed them in small intervals on mouse chromosomes 1 and 4 (which correspond to certain regions on human chromosomes 1 and 9). Subsequent work led to the identification of underlying quantitative trait genes (QTGs) (e.g., Mpdz) and high-quality QTG candidates (e.g., Kcnj9 and genes involved in mitochondrial respiration and oxidative stress) and their plausible mechanisms of action. Human association studies provide supporting evidence that these QTLs and QTGs may be directly relevant to alcohol risk factors in clinical populations.
Collapse
Affiliation(s)
- Kari J Buck
- Oregon Health & Science University, Portland, Oregon and the Department of Veterans Affairs Medical Center, Portland, Oregon
| | | | | | | | | |
Collapse
|
30
|
Ehlers CL, Gizer IR, Gilder DA, Wilhelmsen KC. Linkage analyses of stimulant dependence, craving, and heavy use in American Indians. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:772-80. [PMID: 21812097 PMCID: PMC3188982 DOI: 10.1002/ajmg.b.31218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/30/2011] [Indexed: 11/06/2022]
Abstract
Amphetamine-type substances are the second most widely used illicit drugs in the United States. There is evidence to suggest that stimulant use (cocaine and methamphetamine) has a heritable component, yet the areas of the genome underlying these use disorders are yet to be identified. This study's aims were to map loci linked to stimulant dependence, heavy use, and craving in an American Indian community at high risk for substance dependence. DSM diagnosis of stimulant dependence, as well as indices of stimulant "craving," and "heavy use," were obtained using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 microsatellite polymorphisms in 381 members of multiplex families using SOLAR. Stimulant dependence, stimulant "craving," and "heavy stimulant use," were all found to be heritable. Analyses of multipoint variance component LOD scores, failed to yield evidence of linkage for stimulant dependence. For the stimulant "craving" phenotype, linkage analysis revealed a locus that had a LOD score of 3.02 on chromosome 15q25.3-26.1 near the nicotinic receptor gene cluster. A LOD score of 2.05 was found at this same site for "heavy stimulant use." Additional loci with LOD scores above 2.00 were found for stimulant "craving" on chromosomes 12p13.33-13.32 and 18q22.3. These results corroborate the importance of "craving" as an important phenotype that is associated with regions on chromosome 12, 15, and 18, that have been highlighted in prior segregation studies in this and other populations for substance dependence-related phenotypes.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA.
| | | | | | | |
Collapse
|
31
|
Abstract
As opportunities to use and abuse drugs have tremendously increased during the past 50 years, so has addiction research. Here, we provide a systematic review on publication trends in the addiction research field. We examined publication trends in different subject categories of journals including general and multi-disciplinary science, neuroscience, pharmacology, psychiatry and, as a final and most important category, substance abuse. In this first report, we provide a brief comprehensive overview on what has been published in terms of addiction in the general and multi-disciplinary science category versus Addiction Biology within the past decade. We reviewed the literature within three time windows 1999/2000, 2004/2005 and 2009/2010 and selected the number of publications (1) according to the country/region where the original study was conducted; (2) according to the drug classes; (3) according to animal versus human studies; (4) and in terms of methodological trends such as genetic association studies and neuro-imaging. We found a 350% increase in addiction-related publications in the general and multi-disciplinary science category within the past decade. This increase, however, was mainly due to increased publication output from the United States. Concerning drug classes, alcohol-, nicotine- and psychostimulant-related publications clearly increased between 1999 and 2010, whereas published papers related to opioids decreased over time. There were also strongly increasing trends for genetic and imaging studies in the addiction field over time. These publication trends are also reflected to a certain degree by published studies in Addiction Biology.
Collapse
Affiliation(s)
- Sandra Helinski
- Institute of Psychopharmacology, Central Institute of Mental Health, Germany
| | | |
Collapse
|
32
|
Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, Tabakoff B. A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission. Neuropharmacology 2011; 60:1269-80. [PMID: 21185315 PMCID: PMC3079014 DOI: 10.1016/j.neuropharm.2010.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/01/2010] [Accepted: 12/15/2010] [Indexed: 11/19/2022]
Abstract
Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Laura M. Saba
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Beth Bennett
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Paula L. Hoffman
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Kelsey Barcomb
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Takao Ishii
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Katerina Kechris
- Colorado School of Public Health, Campus Box B119, Aurora, CO 80045 USA,
| | - Boris Tabakoff
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| |
Collapse
|
33
|
Campos J, Roca L, Gude F, Gonzalez-Quintela A. Long-term mortality of patients admitted to the hospital with alcohol withdrawal syndrome. Alcohol Clin Exp Res 2011; 35:1180-6. [PMID: 21352245 DOI: 10.1111/j.1530-0277.2011.01451.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although it is well known that alcoholism increases long-term mortality, there is a paucity of data regarding long-term prognosis in alcoholic patients who have an episode of alcohol withdrawal syndrome (AWS). METHODS We studied a cohort of 1,265 individuals with severe AWS who were admitted to a single university hospital between 1996 and 2006. Median age was 49 years (range 18 to 89 years). A total of 1,085 (85.8%) were men. Median follow-up was 34 months (range 0 to 121 months). Survival of patients with AWS was compared with that of a reference cohort of 1,362 individuals from the same area. In addition, age- and sex-standardized mortality ratios were calculated using the general population from the region (Galicia, Spain) as the reference. RESULTS The risk of mortality was higher in the cohort of patients with AWS than in the reference cohort after adjusting for age, sex, and smoking (hazard ratio 12.7; 95% CI 9.1 to 17.6; p < 0.001). The standardized mortality ratio in patients with AWS was 8.6 (95% CI 7.7 to 9.7). Age, smoking, serum creatinine, serum bilirubin, and prothrombin time at baseline were independently associated with mortality among patients with AWS. CONCLUSIONS Long-term mortality is highly increased in patients who have a history of AWS. Liver and kidney dysfunction are independent predictors of long-term mortality in patients with AWS.
Collapse
Affiliation(s)
- Joaquin Campos
- Department of Internal Medicine, Hospital Clinico Universitario, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
34
|
Molecular targets of alcohol action: Translational research for pharmacotherapy development and screening. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:293-347. [PMID: 21199775 DOI: 10.1016/b978-0-12-385506-0.00007-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alcohol abuse and dependence are multifaceted disorders with neurobiological, psychological, and environmental components. Research on other complex neuropsychiatric diseases suggests that genetically influenced intermediate characteristics affect the risk for heavy alcohol consumption and its consequences. Diverse therapeutic interventions can be developed through identification of reliable biomarkers for this disorder and new pharmacological targets for its treatment. Advances in the fields of genomics and proteomics offer a number of possible targets for the development of new therapeutic approaches. This brain-focused review highlights studies identifying neurobiological systems associated with these targets and possible pharmacotherapies, summarizing evidence from clinically relevant animal and human studies, as well as sketching improvements and challenges facing the fields of proteomics and genomics. Concluding thoughts on using results from these profiling technologies for medication development are also presented.
Collapse
|
35
|
Spanagel R, Bartsch D, Brors B, Dahmen N, Deussing J, Eils R, Ende G, Gallinat J, Gebicke-Haerter P, Heinz A, Kiefer F, Jäger W, Mann K, Matthäus F, Nöthen M, Rietschel M, Sartorius A, Schütz G, Sommer WH, Sprengel R, Walter H, Wichmann E, Wienker T, Wurst W, Zimmer A. An integrated genome research network for studying the genetics of alcohol addiction. Addict Biol 2010; 15:369-79. [PMID: 21040237 DOI: 10.1111/j.1369-1600.2010.00276.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alcohol drinking is highly prevalent in many cultures and contributes to the global burden of disease. In fact, it was shown that alcohol constitutes 3.2% of all worldwide deaths in the year 2006 and is linked to more than 60 diseases, including cancers, cardiovascular diseases, liver cirrhosis, neuropsychiatric disorders, injuries and foetal alcohol syndrome. Alcoholism, which has been proven to have a high genetic load, is one potentially fatal consequence of chronic heavy alcohol consumption, and may be regarded as one of the most prevalent neuropsychiatric diseases afflicting our society today. The aim of the integrated genome research network 'Genetics of Alcohol Addiction'--which is a German inter-/trans-disciplinary life science consortium consisting of molecular biologists, behavioural pharmacologists, system biologists with mathematicians, human geneticists and clinicians--is to better understand the genetics of alcohol addiction by identifying and validating candidate genes and molecular networks involved in the aetiology of this pathology. For comparison, addictive behaviour to other drugs of abuse (e.g. cocaine) is studied as well. Here, we present an overview of our research consortium, the current state of the art on genetic research in the alcohol field, and list finally several of our recently published research highlights. As a result of our scientific efforts, better insights into the molecular and physiological processes underlying addictive behaviour will be obtained, new targets and target networks in the addicted brain will be defined, and subsequently, novel and individualized treatment strategies for our patients will be delivered.
Collapse
Affiliation(s)
- Rainer Spanagel
- Department of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stephens DN, Duka T, Crombag HS, Cunningham CL, Heilig M, Crabbe JC. Reward sensitivity: issues of measurement, and achieving consilience between human and animal phenotypes. Addict Biol 2010; 15:145-68. [PMID: 20148777 DOI: 10.1111/j.1369-1600.2009.00193.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reward is a concept fundamental to discussions of drug abuse and addiction. The idea that altered sensitivity to either drug-reward, or to rewards in general, contributes to, or results from, drug-taking is a common theme in several theories of addiction. However, the concept of reward is problematic in that it is used to refer to apparently different behavioural phenomena, and even to diverse neurobiological processes (reward pathways). Whether these different phenomena are different behavioural expressions of a common underlying process is not established, and much research suggests that there may be only loose relationships among different aspects of reward. Measures of rewarding effects of drugs in humans often depend upon subjective reports. In animal studies, such insights are not available, and behavioural measures must be relied upon to infer rewarding effects of drugs or other events. In such animal studies, but also in many human methods established to objectify measures of reward, many other factors contribute to the behaviour being studied. For that reason, studying the biological (including genetic) bases of performance of tasks that ostensibly measure reward cannot provide unequivocal answers. The current overview outlines the strengths and weaknesses of current approaches that hinder the conciliation of cross-species studies of the genetics of reward sensitivity and the dysregulation of reward processes by drugs of abuse. Some suggestions are made as to how human and animal studies may be made to address more closely homologous behaviours, even if those processes are only partly able to isolate 'reward' from other factors contributing to behavioural output.
Collapse
Affiliation(s)
- David N Stephens
- Department of Psychology, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
If people are brought into the laboratory and given alcohol, there are pronounced differences among individuals in many responses to the drug. Some participants in alcohol challenge protocols show a cluster of 'low level of responses to alcohol' determined by observing post-drinking-related changes in subjective, motor and physiological effects at a given dose level. Those individuals characterized as having low level of response (LR) to alcohol have been shown to be at increased risk for a lifetime diagnosis of alcohol dependence (AD), and this relationship between low LR and AD appears to be in part genetic. LR to alcohol is an area where achieving greater consilience between the human and the rodent phenotypes would seem to be highly likely. However, despite extensive data from both human and rodent studies, few attempts have been made to evaluate the human and animal data systematically in order to understand which aspects of LR appear to be most directly comparable across species and thus the most promising for further study. We review four general aspects of LR that could be compared between humans and laboratory animals: (1) behavioral measures of subjective intoxication; (2) body sway; (3) endocrine responses; and (4) stimulant, autonomic and electrophysiological responses. None of these aspects of LR provide completely face-valid direct comparisons across species. Nevertheless, one of the most replicated findings in humans is the low subjective response, but, as it may reflect either aversively valenced and/or positively valenced responses to alcohol as usually assessed, it is unclear which rodent responses are analogous. Stimulated heart rate appears to be consistent in animal and human studies, although at-risk subjects appear to be more rather than less sensitive to alcohol using this measure. The hormone and electrophysiological data offer strong possibilities of understanding the neurobiological mechanisms, but the rodent data in particular are rather sparse and unsystematic. Therefore, we suggest that more effort is still needed to collect data using refined measures designed to be more directly comparable in humans and animals. Additionally, the genetically mediated mechanisms underlying this endophenotype need to be characterized further across species.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, OR 97239, USA.
| | | | | |
Collapse
|
38
|
Björk K, Hansson AC, Sommer WH. Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:129-71. [DOI: 10.1016/s0074-7742(10)91005-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Milner LC, Buck KJ. Identifying quantitative trait loci (QTLs) and genes (QTGs) for alcohol-related phenotypes in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:173-204. [PMID: 20813243 DOI: 10.1016/s0074-7742(10)91006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcoholism is a complex clinical disorder with genetic and environmental contributions. Although no animal model duplicates alcoholism, models for specific factors, such as the withdrawal syndrome, are useful to identify potential genetic determinants of liability in humans. Murine models have been invaluable to identify quantitative trait loci (QTLs) that influence a variety of alcohol responses. However, the QTL regions are typically large, at least initially, and contain numerous genes, making identification of the causal quantitative trait gene(s) (QTGs) challenging. Here, we present QTG identification strategies currently used in the field of alcohol genetics and discuss relevance to alcoholic human populations.
Collapse
Affiliation(s)
- Lauren C Milner
- Department of Behavioral Neuroscience, VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
40
|
Foroud T, Edenberg HJ, Crabbe JC. Genetic research: who is at risk for alcoholism. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2010; 33:64-75. [PMID: 23579937 PMCID: PMC3887503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case-control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA-sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state-of-the-art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol-metabolizing enzymes and neurotransmitter receptors. Genome-wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol's effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches-for example, into epigenetic mechanisms of gene regulation-also are under way and undoubtedly will further clarify the genetic basis of alcoholism.
Collapse
Affiliation(s)
- Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
41
|
Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 2009; 29:11662-73. [PMID: 19759313 DOI: 10.1523/jneurosci.1413-09.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we map a quantitative trait locus (QTL) with a large effect on predisposition to barbiturate (pentobarbital) withdrawal to a 0.44 Mb interval of mouse chromosome 1 syntenic with human 1q23.2. We report a detailed analysis of the genes within this interval and show that it contains 15 known and predicted genes, 12 of which demonstrate validated genotype-dependent transcript expression and/or nonsynonymous coding sequence variation that may underlie the influence of the QTL on withdrawal. These candidates are involved in diverse cellular functions including intracellular trafficking, potassium conductance and spatial buffering, and multimolecular complex dynamics, and indicate both established and novel aspects of neurobiological response to sedative-hypnotics. This work represents a substantial advancement toward identification of the gene(s) that underlie the phenotypic effects of the QTL. We identify Kcnj9 as a particularly promising candidate and report the development of a Kcnj9-null mutant model that exhibits significantly less severe withdrawal from pentobarbital as well as other sedative-hypnotics (zolpidem and ethanol) versus wild-type littermates. Reduced expression of Kcnj9, which encodes GIRK3 (Kir3.3), is associated with less severe sedative-hypnotic withdrawal. A multitude of QTLs for a variety of complex traits, including diverse responses to sedative-hypnotics, have been detected on distal chromosome 1 in mice, and as many as four QTLs on human chromosome 1q have been implicated in human studies of alcohol dependence. Thus, our results will be primary to additional efforts to identify genes involved in a wide variety of behavioral responses to sedative-hypnotics and may directly facilitate progress in human genetics.
Collapse
|