1
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Leggio L, Vendruscolo LF. Evidence for independent actions of the CRF and ghrelin systems in binge-like alcohol drinking in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111341. [PMID: 40139339 PMCID: PMC12043401 DOI: 10.1016/j.pnpbp.2025.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/16/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. Both ghrelin and corticotrophin-releasing factor (CRF) drive stress responses and alcohol drinking. Despite evidence of a relationship between the ghrelin and CRF systems, their potential interaction in modulating alcohol drinking is unclear. We tested the effect of a brain-penetrant CRF1 receptor antagonist (R121919) and a peripherally restricted nonselective CRF receptor antagonist (astressin) on plasma ghrelin levels. We also tested effects of R121919 and astressin alone and combined with the growth hormone secretagogue receptor (GHSR; the ghrelin receptor) antagonist JMV2959 and GHSR antagonist/inverse agonist PF-5190457 in a model of binge-like alcohol drinking in male and female C57BL/6 J mice. The intraperitoneal administration of R121919 but not astressin increased plasma ghrelin levels. R121919 but not astressin reduced binge-like alcohol drinking. CRF receptor antagonism had no effect on the ability of GHSR blockers to reduce alcohol drinking. No sex × drug treatment interactions were observed. These findings suggest that while both CRF receptor antagonism and GHSR antagonism reduce alcohol drinking, these two pharmacological approaches may not interact to mediate binge-like alcohol drinking in mice. Additionally, these results provide evidence that GHSR but not peripheral endogenous ghrelin may be key in driving binge-like alcohol drinking.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay A Kryszak
- Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA..
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Vendruscolo LF, Leggio L. GHSR blockade, but not reduction of peripherally circulating ghrelin via β 1-adrenergic receptor antagonism, decreases binge-like alcohol drinking in mice. Mol Psychiatry 2025; 30:1047-1056. [PMID: 39232198 PMCID: PMC11835741 DOI: 10.1038/s41380-024-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. The stomach-derived peptide ghrelin, and its receptor, the growth hormone secretagogue receptor (GHSR), both of which are expressed in the brain and periphery, are implicated in alcohol-related outcomes. We previously found that systemic and central administration of GHSR antagonists reduced binge-like alcohol drinking, whereas a ghrelin vaccine did not. Thus, we hypothesized that central GHSR drives binge-like alcohol drinking independently of peripheral ghrelin. To investigate this hypothesis, we antagonized β1-adrenergic receptors (β1ARs), which are required for peripheral ghrelin release, and combined them with GHSR blockers. We found that both systemic β1AR antagonism with atenolol (peripherally restricted) and metoprolol (brain permeable) robustly decreased plasma ghrelin levels. Also, ICV administration of atenolol had no effect on peripheral endogenous ghrelin levels. However, only metoprolol, but not atenolol, decreased binge-like alcohol drinking. The β1AR antagonism also did not prevent the effects of the GHSR blockers JMV2959 and PF-5190457 in decreasing binge-like alcohol drinking. These results suggest that the GHSR rather than peripheral endogenous ghrelin is involved in binge-like alcohol drinking. Thus, GHSRs and β1ARs represent possible targets for therapeutic intervention for AUD, including the potential combination of drugs that target these two systems.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay A Kryszak
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA.
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
3
|
Faulkner ML, Farokhnia M, Lee MR, Farinelli L, Browning BD, Abshire K, Daurio AM, Munjal V, Deschaine SL, Boukabara SR, Fortney C, Sherman G, Schwandt M, Akhlaghi F, Momenan R, Ross TJ, Persky S, Leggio L. A randomized, double-blind, placebo-controlled study of a GHSR blocker in people with alcohol use disorder. JCI Insight 2024; 9:e182331. [PMID: 39704175 PMCID: PMC11665556 DOI: 10.1172/jci.insight.182331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUNDStudies have demonstrated the role of ghrelin in alcohol-related behaviors and consumption. Blockade of the growth hormone secretagogue receptor (GHSR), which is the ghrelin receptor, has been shown to decrease alcohol drinking and reward-related behaviors across several animal models. We previously conducted a human study testing a GHSR inverse agonist/competitive antagonist, PF-5190457, in individuals who are heavy drinkers and showed its safety when coadministered with alcohol. Here, we conducted a phase IIa experimental medicine study in patients with alcohol use disorder (AUD) to investigate the effects of PF-5190457 on alcohol- and food-related outcomes.METHODSForty-two individuals with AUD (n = 29 completers) participated in a randomized, double-blind, placebo-controlled study where they received PF-5190457 100mg b.i.d. (or placebo) in 2 counterbalanced, within-subject stages. Participants completed an alcohol cue-reactivity (CR) experiment in a bar-like laboratory and a virtual food choice experiment in a cafeteria-like virtual reality (VR) environment. A subset of participants (n = 12) performed a CR task during a brain functional MRI (fMRI) experiment.RESULTSPF-5190457 did not reduce cue-elicited alcohol craving. PF-5190457 reduced virtual calories selected (P = 0.04) in the VR environment. PF-5190457 did not influence neural activation during CR task in the fMRI experiment.CONCLUSIONThis study provides human evidence of the role of GHSR blockade in behaviors related to food selection and highlights the need for future investigations into targeting the ghrelin system in AUD.TRIAL REGISTRATIONClinicalTrials.gov (accession no. NCT02707055).FUNDINGNIDA and NIAAA ZIA-DA000635; National Center for Advancing Translational Sciences UH2/UH3-TR000963.
Collapse
Affiliation(s)
- Monica L. Faulkner
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Lisa Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Brittney D. Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Kelly Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Allison M. Daurio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Vikas Munjal
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Selim R. Boukabara
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| | - Christopher Fortney
- Immersive Simulation Program, Social and Behavioral Research Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Garrick Sherman
- Office of the Clinical Director, NIDA, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Melanie Schwandt
- Office of the Clinical Director, NIAAA Division of Intramural Clinical and Biological Research, NIH, Bethesda, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, NIAAA, NIH, Bethesda, Maryland, USA
| | - Thomas J. Ross
- Neuroimaging Core, NIDA Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Susan Persky
- Immersive Simulation Program, Social and Behavioral Research Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse (NIDA) Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA) Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
4
|
Nestor LJ, Ersche KD. Gut Hormones: Possible Mediators of Addictive Disorders? Eur Addict Res 2024; 30:339-346. [PMID: 39389039 DOI: 10.1159/000540743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcohol and drug dependence are major health and economic burdens to society. One of the major challenges to reducing this burden will be to develop more effective and better tolerated medications that target alternative mechanisms in the brain. While the dopamine system has been well characterized for mediating the reward value of drugs, there is evidence that the endocrine system also conveys signals to the same neural systems using gut hormones. SUMMARY These gut hormones, produced in the stomach and intestine and that regulate food intake, have also been shown to control the use of other substances, such as alcohol and drugs of abuse. Examples of such hormones are ghrelin and glucagon-like peptide-1, which exert their effects on dopamine transmission in parts of the brain known to be involved in some of the core features of addiction, such as reward sensitivity. KEY MESSAGES This raises the possibility that gut hormone systems may play a pivotal role in addictive disorders. This review will briefly outline emerging evidence that the ghrelin and glucagon-like peptide-1 hormones are contrasting mediators of alcohol and drug use and may present a promising alternative target for treatment intervention in addictive disorders.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Tufvesson-Alm M, Aranäs C, Blid Sköldheden S, Vestlund J, Edvardsson CE, Jerlhag E. LEAP2, a ghrelin receptor inverse agonist, and its effect on alcohol-related responses in rodents. Transl Psychiatry 2024; 14:401. [PMID: 39358354 PMCID: PMC11446955 DOI: 10.1038/s41398-024-03136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
The underlying neurobiology of alcohol use disorder (AUD) is complex and needs further unraveling, with one of the key mechanisms being the gut-brain peptide ghrelin and its receptor (GHSR). However, additional substrates of the ghrelin pathway, such as liver-expressed antimicrobial peptide 2 (LEAP2), an endogenous GHSR inverse agonist, may contribute to this neurobiological framework. While LEAP2 modulates feeding and reward through central mechanisms, its effects on alcohol responses are unknown. The aim of the present study was therefore to identify the impact of central LEAP2 on the ability of alcohol to activate the mesolimbic dopamine system and to define its ability to control alcohol intake. These experiments revealed that central LEAP2 (i.e. into the third ventricle) prevented the ability of alcohol to cause locomotor stimulation in male mice, suppressed the memory of alcohol reward and attenuated the dopamine release in the nucleus accumbens caused by alcohol. Moreover, central LEAP2 reduced alcohol consumption in both male and female rats exposed to alcohol for 6 weeks before treatment. However, the serum levels of LEAP2 were similar between high- and low- alcohol-consuming (male) rats. Furthermore, central LEAP2 lowered the food intake in the alcohol-consuming male rats and reduced the body weight in the females. Collectively, the present study revealed that central LEAP2 mitigates alcohol-related responses in rodents, contributing to our understanding of the ghrelin pathway's role in alcohol effects.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Jerlhag E. Ghrelin system and GLP-1 as potential treatment targets for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:401-432. [PMID: 39523062 DOI: 10.1016/bs.irn.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides of the gut-brain axis have gained recent attention as potential treatment targets for addiction. While the number of gut-brain peptides is vast, ghrelin and glucagon-like peptide-1 (GLP-1) have been suggested as important players. Ghrelin is traditionally considered an orexigenic peptide, but recent studies found that it increases alcohol intake in rodents and craving for alcohol in humans. Additionally, suppression of the ghrelin receptor attenuates alcohol-related responses in animal models reflecting alcohol use disorder (AUD). For instance, a lower alcohol intake, suppressed motivation to consume alcohol, and attenuated reward from alcohol is observed after ghrelin receptor antagonism treatment. On a similar note, a partial ghrelin receptor agonist prevents hangover symptoms in humans. When it comes to the anorexigenic peptide GLP-1, agonists of its receptor are approved to treat diabetes type 2 and obesity. Extensive preclinical studies have revealed that these GLP-1 receptor agonists reduce alcohol intake, suppress the motivation to consume alcohol, and prevent relapse drink, with effects tentatively associated with a reduced alcohol-induced reward. These preclinical findings have to some extent been varied in humans, as GLP-1 receptor agonists decrease alcohol intake in overweight patients with AUD. Furthermore, genetic variations in either the genes encoding for pre-pro-ghrelin, GHSR, GLP-1, or its receptor, are associated with AUD and heavy alcohol drinking. While central mechanisms appear to modulate the ability of either ghrelin or GLP-1 to regulate alcohol-related responses the exact mechanisms have not been defined. Taken together these preclinical and clinical data imply that gut-brain peptides participate in the addiction process and should be considered as potential targets for AUD treatment.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Witley S, Edvardsson CE, Aranäs C, Tufvesson-Alm M, Stalberga D, Green H, Vestlund J, Jerlhag E. Des-acyl ghrelin reduces alcohol intake and alcohol-induced reward in rodents. Transl Psychiatry 2024; 14:277. [PMID: 38965230 PMCID: PMC11224403 DOI: 10.1038/s41398-024-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mechanisms contributing to alcohol use disorder (AUD) are complex and the orexigenic peptide ghrelin, which enhances alcohol reward, is implied as a crucial modulator. The major proportion of circulating ghrelin is however the non-octanoylated form of ghrelin, des-acyl ghrelin (DAG), whose role in reward processes is unknown. As recent studies show that DAG decreases food intake, we hypothesize that DAG attenuates alcohol-related responses in animal models. Acute and repeated DAG treatment dose-dependently decreased alcohol drinking in male and female rats. In these alcohol-consuming male rats, repeated DAG treatment causes higher levels of dopamine metabolites in the ventral tegmental area, an area central to reward processing. The role of DAG in reward processing is further supported as DAG prevents alcohol-induced locomotor stimulation, reward in the conditioned place preference paradigm, and dopamine release in the nucleus accumbens in male rodents. On the contrary, DAG does not alter the memory of alcohol reward or affect neurotransmission in the hippocampus, an area central to memory. Further, circulating DAG levels are positively correlated with alcohol drinking in female but not male rats. Studies were conducted in attempts to identify tentative targets of DAG, which currently are unknown. Data from these recombinant cell system revealed that DAG does not bind to either of the monoamine transporters, 5HT2A, CB1, or µ-opioid receptors. Collectively, our data show that DAG attenuates alcohol-related responses in rodents, an effect opposite to that of ghrelin, and contributes towards a deeper insight into behaviors regulated by the ghrelinergic signaling pathway.
Collapse
Affiliation(s)
- Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Darta Stalberga
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Henrik Green
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Özkan-Kotiloğlu S, Kaya-Akyüzlü D, Güven E, Doğan Ö, Ağtaş-Ertan E, Özgür-İlhan İ. A case control study investigating the methylation levels of GHRL and GHSR genes in alcohol use disorder. Mol Biol Rep 2024; 51:663. [PMID: 38771494 DOI: 10.1007/s11033-024-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a relapsing disease described as excessive use of alcohol. Evidence of the role of DNA methylation in addiction is accumulating. Ghrelin is an important peptide known as appetite hormone and its role in addictive behavior has been identified. Here we aimed to determine the methylation levels of two crucial genes (GHRL and GHSR) in ghrelin signaling and further investigate the association between methylation ratios and plasma ghrelin levels. METHODS Individuals diagnosed with (n = 71) and without (n = 82) AUD were recruited in this study. DNA methylation levels were measured through methylation-sensitive high-resolution melting (MS-HRM). Acylated ghrelin levels were detected by ELISA. The GHRL rs696217 polymorphism was analyzed by the standard PCR-RFLP method. RESULTS GHRL was significantly hypermethylated (P < 0.0022) in AUD between 25 and 50% methylation than in control subjects but no significant changes of GHSR methylation were observed. Moreover, GHRL showed significant positive correlation of methylation ratio between 25 and 50% with age. A significant positive correlation between GHSR methylation and ghrelin levels in the AUD group was determined (P = 0.037). The level of GHRL methylation and the ghrelin levels showed a significant association in the control subjects (P = 0.042). CONCLUSION GHSR and GHRL methylation levels did not change significantly between control and AUD groups. However, GHRL and GHSR methylations seemed to have associations with plasma ghrelin levels in two groups. This is the first study investigating the DNA methylation of GHRL and GHSR genes in AUD.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Türkiye.
| | | | - Emine Güven
- Department of Biomedical Engineering, Faculty of Engineering, Düzce University, Düzce, Türkiye
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, USA
| | - Özlem Doğan
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ece Ağtaş-Ertan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - İnci Özgür-İlhan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| |
Collapse
|
9
|
Mahalingam S, Bellamkonda R, Kharbanda KK, Arumugam MK, Kumar V, Casey CA, Leggio L, Rasineni K. Role of ghrelin hormone in the development of alcohol-associated liver disease. Biomed Pharmacother 2024; 174:116595. [PMID: 38640709 PMCID: PMC11161137 DOI: 10.1016/j.biopha.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomic Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Tufvesson-Alm M, Zhang Q, Aranäs C, Blid Sköldheden S, Edvardsson CE, Jerlhag E. Decoding the influence of central LEAP2 on food intake and its effect on accumbal dopamine release. Prog Neurobiol 2024; 236:102615. [PMID: 38641041 DOI: 10.1016/j.pneurobio.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Qian Zhang
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Sebastian Blid Sköldheden
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 13A, Gothenburg SE-405 30, Sweden.
| |
Collapse
|
11
|
Söderpalm B, Ericson M. Alcohol and the dopamine system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:21-73. [PMID: 38555117 DOI: 10.1016/bs.irn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Pierce-Messick ZJ, Brink AK, Anna Vo T, Corbit LH. Ghrelin receptor antagonism and satiety attenuate Pavlovian-instrumental transfer. Neurobiol Learn Mem 2024; 207:107864. [PMID: 38000462 DOI: 10.1016/j.nlm.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Animals rely on learned cues to guide their behaviour for rewards such as food. The Pavlovian-instrumental transfer (PIT) task can be used to investigate the influence of Pavlovian stimuli on instrumental responding. Ghrelin, an orexigenic peptide, and its receptor, growth hormone secretagogue receptor 1A (GHS-R1A), has received growing interest for its role in reward-motivated learning and behaviours. A significant population of GHS-R1A have been identified within the ventral tegmental area (VTA), a critical node in the mesolimbic reward circuit that is necessary for the expression of PIT. As ghrelin has been found to increase dopaminergic activity in the VTA, we predicted that GHS-R1A antagonism with JMV-2959 would attenuate PIT. Further, given the relationship between hunger levels and changes in ghrelin signalling, we sought to compare the effects GHS-R1A antagonism with those of satiety, hypothesizing parallel effects, with each attenuating PIT. Rats received daily sessions of Pavlovian and then instrumental training over 3 weeks. Across three experiments, we examined the effects of a shift to satiety, or treatment with the GHS-R1A antagonist JMV-2959, either peripherally or directly into the VTA. We found that presentations of a stimulus paired with food reward enhanced responding for food across all conditions, thus demonstrating the expected PIT effect. Further, GHS-R1A antagonism, both peripherally and within the VTA, as well as satiety significantly reduced the magnitude of the PIT effect compared to control conditions. These results clarify our understanding of ghrelin signalling in PIT and begin to elucidate the role of feeding-related peptides in the modulation of reward-related responding.
Collapse
|
13
|
White B, Sirohi S. A Complex Interplay between Nutrition and Alcohol use Disorder: Implications for Breaking the Vicious Cycle. Curr Pharm Des 2024; 30:1822-1837. [PMID: 38797900 PMCID: PMC12085226 DOI: 10.2174/0113816128292367240510111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Approximately 16.5% of the United States population met the diagnostic criteria for substance use disorder (SUD) in 2021, including 29.5 million individuals with alcohol use disorder (AUD). Individuals with AUD are at increased risk for malnutrition, and impairments in nutritional status in chronic alcohol users can be detrimental to physical and emotional well-being. Furthermore, these nutritional deficiencies could contribute to the never-ending cycle of alcoholism and related pathologies, thereby jeopardizing the prospects of recovery and treatment outcomes. Improving nutritional status in AUD patients may not only compensate for general malnutrition but could also reduce adverse symptoms during recovery, thereby promoting abstinence and successful treatment of AUD. In this review, we briefly summarize alterations in the nutritional status of people with addictive disorders, in addition to the underlying neurobiological mechanisms and clinical implications regarding the role of nutritional intervention in recovery from alcohol use disorder.
Collapse
Affiliation(s)
- Brooke White
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana. New Orleans, LA 70125, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana. New Orleans, LA 70125, USA
| |
Collapse
|
14
|
Richardson RS, Sulima A, Rice KC, Kucharczk JA, Janda KD, Nisbett KE, Koob GF, Vendruscolo LF, Leggio L. Pharmacological GHSR (ghrelin receptor) blockade reduces alcohol binge-like drinking in male and female mice. Neuropharmacology 2023; 238:109643. [PMID: 37369277 PMCID: PMC10513123 DOI: 10.1016/j.neuropharm.2023.109643] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Ghrelin is a peptide that is produced by endocrine cells that are primarily localized in the stomach. Ghrelin receptors (GHSR) are expressed in the brain and periphery. Preclinical and clinical studies support a role for ghrelin in alcohol drinking and seeking. The GHSR has been suggested to be a potential pharmacotherapeutic target for alcohol use disorder (AUD). However, the role of the ghrelin system and its potential modulation by biological sex on binge-like drinking has not been comprehensively investigated. The present study tested six GHSR antagonists in an alcohol binge-like drinking procedure in male and female mice. Systemic administration of the GHSR antagonists JMV2959, PF-5190457, PF-6870961, and HM-04 reduced alcohol intake in both male and female mice. YIL-781 decreased intake in males, and LEAP2 (likely peripherally restricted) did not reduce intake in mice of either sex. We also administered LEAP2 and JMV2959 intracerebroventricularly to investigate whether the effects of GHSR blockade on alcohol intake are mediated by central receptors. The central administration of LEAP2 and JMV2959 decreased alcohol intake, particularly in high-drinking animals. Finally, in a preliminary experiment, an anti-ghrelin vaccine was examined for its potential effect on binge-like drinking and had no effect. In all experiments, there was a lack of meaningful sex differences. These findings suggest that central GHSR mediates binge-like alcohol intake. These data reveal novel pharmacological compounds with translational potential in the treatment of AUD and provide further evidence of the GHSR as a potential treatment target for AUD.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jed A Kucharczk
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Khalin E Nisbett
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
15
|
Merritt CR, Garcia EJ, Brehm VD, Fox RG, Moeller FG, Anastasio NC, Cunningham KA. Ghrelin receptor antagonist JMV2959 blunts cocaine and oxycodone drug-seeking, but not self-administration, in male rats. Front Pharmacol 2023; 14:1268366. [PMID: 37795028 PMCID: PMC10545966 DOI: 10.3389/fphar.2023.1268366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The "hunger hormone" ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs.
Collapse
Affiliation(s)
- Christina R. Merritt
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Erik J. Garcia
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Victoria D. Brehm
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert G. Fox
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - F. Gerard Moeller
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Departments of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
16
|
Deschaine SL, Hedegaard MA, Pince CL, Farokhnia M, Moose JE, Stock IA, Adusumalli S, Akhlaghi F, Hougland JL, Sulima A, Rice KC, Koob GF, Vendruscolo LF, Holst B, Leggio L. Initial Pharmacological Characterization of a Major Hydroxy Metabolite of PF-5190457: Inverse Agonist Activity of PF-6870961 at the Ghrelin Receptor. J Pharmacol Exp Ther 2023; 386:117-128. [PMID: 36631279 PMCID: PMC10353127 DOI: 10.1124/jpet.122.001393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Preclinical and clinical studies have identified the ghrelin receptor [growth hormone secretagogue receptor (GHSR)1a] as a potential target for treating alcohol use disorder. A recent phase 1a clinical trial of a GHSR1a antagonist/inverse agonist, PF-5190457, in individuals with heavy alcohol drinking identified a previously undetected major hydroxy metabolite of PF-5190457, namely PF-6870961. Here, we further characterized PF-6870961 by screening for off-target interactions in a high-throughput screen and determined its in vitro pharmacodynamic profile at GHSR1a through binding and concentration-response assays. Moreover, we determined whether the metabolite demonstrated an in vivo effect by assessing effects on food intake in male and female rats. We found that PF-6870961 had no off-target interactions and demonstrated both binding affinity and inverse agonist activity at GHSR1a. In comparison with its parent compound, PF-5190457, the metabolite PF-6870961 had lower binding affinity and potency at inhibiting GHSR1a-induced inositol phosphate accumulation. However, PF-6870961 had increased inhibitory potency at GHSR1a-induced β-arrestin recruitment relative to its parent compound. Intraperitoneal injection of PF-6870961 suppressed food intake under conditions of both food restriction and with ad libitum access to food in male and female rats, demonstrating in vivo activity. The effects of PF-6870961 on food intake were abolished in male and female rats knockout for GHSR, thus demonstrating that its effects on food intake are in fact mediated by the GHSR receptor. Our findings indicate that the newly discovered major hydroxy metabolite of PF-5190457 may contribute to the overall activity of PF-5190457 by demonstrating inhibitory activity at GHSR1a. SIGNIFICANCE STATEMENT: Antagonists or inverse agonists of the growth hormone secretagogue receptor (GHSR)1a have demonstrated substantial potential as therapeutics for alcohol use disorder. We here expand understanding of the pharmacology of one such GHSR1a inverse agonist, PF-5190457, by studying the safety and pharmacodynamics of its major hydroxy metabolite, PF-6870961. Our data demonstrate biased inverse agonism of PF-6870961 at GHSR1a and provide new structure-activity relationship insight into GHSR1a inverse agonism.
Collapse
Affiliation(s)
- Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Morten A Hedegaard
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Claire L Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Jacob E Moose
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Ingrid A Stock
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Sravani Adusumalli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Fatemeh Akhlaghi
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - James L Hougland
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Agnieszka Sulima
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Kenner C Rice
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - George F Koob
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Leandro F Vendruscolo
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Birgitte Holst
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland (S.L.D., C.L.P., M.F., L.L.); Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (S.L.D.); Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (M.A.H., B.H.); Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse (C.L.P., G.F.K., L.F.V.) and Medication Development Program, National Institute on Drug Abuse Intramural Research Program (A.S., K.C.R., L.L.), National Institutes of Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (M.F.) and Division of Addiction Medicine, Department of Medicine, School of Medicine (L.L.), Johns Hopkins University, Baltimore, Maryland; Department of Chemistry (J.E.M., J.L.H.), Department of Biology (J.L.H.), and BioInspired Syracuse (J.L.H.), Syracuse University, Syracuse, New York; Pfizer Inc. Medicine Design, Groton, Connecticut (I.A.S.); Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (S.A., F.A.); Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (A.S., K.C.R.); and Center for Alcohol Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island (L.L.)
| |
Collapse
|
17
|
Aranäs C, Edvardsson CE, Shevchouk OT, Zhang Q, Witley S, Blid Sköldheden S, Zentveld L, Vallöf D, Tufvesson-Alm M, Jerlhag E. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. EBioMedicine 2023; 93:104642. [PMID: 37295046 PMCID: PMC10363436 DOI: 10.1016/j.ebiom.2023.104642] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Glucagon-like peptide1 receptor (GLP-1R) agonists have been found to reduce alcohol drinking in rodents and overweight patients with alcohol use disorder (AUD). However, the probability of low semaglutide doses, an agonist with higher potency and affinity for GLP-1R, to attenuate alcohol-related responses in rodents and the underlying neuronal mechanisms is unknown. METHODS In the intermittent access model, we examined the ability of semaglutide to decrease alcohol intake and block relapse-like drinking, as well as imaging the binding of fluorescently marked semaglutide to nucleus accumbens (NAc) in both male and female rats. The suppressive effect of semaglutide on alcohol-induced locomotor stimulation and in vivo dopamine release in NAc was tested in male mice. We evaluated effect of semaglutide on the in vivo release of dopamine metabolites (DOPAC and HVA) and gene expression of enzymes metabolising dopamine (MAOA and COMT) in male mice. FINDINGS In male and female rats, acute and repeated semaglutide administration reduced alcohol intake and prevented relapse-like drinking. Moreover, fluorescently labelled semaglutide was detected in NAc of alcohol-drinking male and female rats. Further, semaglutide attenuated the ability of alcohol to cause hyperlocomotion and to elevate dopamine in NAc in male mice. As further shown in male mice, semaglutide enhanced DOPAC and HVA in NAc when alcohol was onboard and increased the gene expression of COMT and MAOA. INTERPRETATION Altogether, this indicates that semaglutide reduces alcohol drinking behaviours, possibly via a reduction in alcohol-induced reward and NAc dependent mechanisms. As semaglutide also decreased body weight of alcohol-drinking rats of both sexes, upcoming clinical studies should test the plausibility that semaglutide reduces alcohol intake and body weight in overweight AUD patients. FUNDING Swedish Research Council (2019-01676), LUA/ALF (723941) from the Sahlgrenska University Hospital and the Swedish brain foundation.
Collapse
Affiliation(s)
- Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Qian Zhang
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lindsay Zentveld
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Jerlhag E. Animal studies reveal that the ghrelin pathway regulates alcohol-mediated responses. Front Psychiatry 2023; 14:1050973. [PMID: 36970276 PMCID: PMC10030715 DOI: 10.3389/fpsyt.2023.1050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Alcohol use disorder (AUD) is often described as repeated phases of binge drinking, compulsive alcohol-taking, craving for alcohol during withdrawal, and drinking with an aim to a reduce the negative consequences. Although multifaceted, alcohol-induced reward is one aspect influencing the former three of these. The neurobiological mechanisms regulating AUD processes are complex and one of these systems is the gut-brain peptide ghrelin. The vast physiological properties of ghrelin are mediated via growth hormone secretagogue receptor (GHSR, ghrelin receptor). Ghrelin is well known for its ability to control feeding, hunger, and metabolism. Moreover, ghrelin signaling appears central for alcohol-mediated responses; findings reviewed herein. In male rodents GHSR antagonism reduces alcohol consumption, prevents relapse drinking, and attenuates the motivation to consume alcohol. On the other hand, ghrelin increases the consumption of alcohol. This ghrelin-alcohol interaction is also verified to some extent in humans with high alcohol consumption. In addition, either pharmacological or genetic suppression of GHSR decreases several alcohol-related effects (behavioral or neurochemical). Indeed, this suppression blocks the alcohol-induced hyperlocomotion and dopamine release in nucleus accumbens as well as ablates the alcohol reward in the conditioned place preference model. Although not fully elucidated, this interaction appears to involve areas central for reward, such as the ventral tegmental area (VTA) and brain nodes targeted by VTA projections. As reviewed briefly, the ghrelin pathway does not only modulate alcohol-mediated effects, it regulates reward-related behaviors induced by addictive drugs. Although personality traits like impulsivity and risk-taking behaviors are common in patients with AUD, the role of the ghrelin pathway thereof is unknown and remains to be studied. In summary, the ghrelin pathway regulates addiction processes like AUD and therefore the possibility that GHSR antagonism reduces alcohol or drug-taking should be explored in randomized clinical trials.
Collapse
|
19
|
Kharbanda KK, Farokhnia M, Deschaine SL, Bhargava R, Rodriguez-Flores M, Casey CA, Goldstone AP, Jerlhag E, Leggio L, Rasineni K. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: A narrative review. Alcohol Clin Exp Res 2022; 46:2149-2159. [PMID: 36316764 PMCID: PMC9772086 DOI: 10.1111/acer.14967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Marcela Rodriguez-Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carol A. Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
20
|
Involvement of the ghrelin system in the maintenance of oxycodone self-administration: converging evidence from endocrine, pharmacologic and transgenic approaches. Mol Psychiatry 2022; 27:2171-2181. [PMID: 35064236 PMCID: PMC9133122 DOI: 10.1038/s41380-022-01438-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.
Collapse
|
21
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
22
|
Abstract
Alcohol use disorder (AUD) is a highly prevalent but severely under-treated disorder, with only three widely-approved pharmacotherapies. Given that AUD is a very heterogeneous disorder, it is unlikely that one single medication will be effective for all individuals with an AUD. As such, there is a need to develop new, more effective, and diverse pharmacological treatment options for AUD with the hopes of increasing utilization and improving care. In this qualitative literature review, we discuss the efficacy, mechanism of action, and tolerability of approved, repurposed, and novel pharmacotherapies for the treatment of AUD with a clinical perspective. Pharmacotherapies discussed include: disulfiram, acamprosate, naltrexone, nalmefene, topiramate, gabapentin, varenicline, baclofen, sodium oxybate, aripiprazole, ondansetron, mifepristone, ibudilast, suvorexant, prazosin, doxazosin, N-acetylcysteine, GET73, ASP8062, ABT-436, PF-5190457, and cannabidiol. Overall, many repurposed and novel agents discussed in this review demonstrate clinical effectiveness and promise for the future of AUD treatment. Importantly, these medications also offer potential improvements towards the advancement of precision medicine and personalized treatment for the heterogeneous AUD population. However, there remains a great need to improve access to treatment, increase the menu of approved pharmacological treatments, and de-stigmatize and increase treatment-seeking for AUD.
Collapse
|
23
|
Tufvesson-Alm M, Shevchouk OT, Jerlhag E. Insight into the role of the gut-brain axis in alcohol-related responses: Emphasis on GLP-1, amylin, and ghrelin. Front Psychiatry 2022; 13:1092828. [PMID: 36699502 PMCID: PMC9868418 DOI: 10.3389/fpsyt.2022.1092828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder (AUD) contributes substantially to global morbidity and mortality. Given the heterogenicity of this brain disease, available pharmacological treatments only display efficacy in sub-set of individuals. The need for additional treatment options is thus substantial and is the goal of preclinical studies unraveling neurobiological mechanisms underlying AUD. Although these neurobiological processes are complex and numerous, one system gaining recent attention is the gut-brain axis. Peptides of the gut-brain axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these three gut-brain peptides modulate alcohol-related responses (behavioral and neurochemical) in rodents, suggesting that the alcohol reduction may involve a suppression of alcohol's rewarding properties. Brain areas participating in the ability of these gut-brain peptides to reduce alcohol-mediated behaviors/neurochemistry involve those important for reward. Human studies support these preclinical studies as polymorphisms of the genes encoding for GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover, a GLP-1 receptor agonist decreases alcohol drinking in overweight patients with AUD and an inverse GHSR agonist reduces alcohol craving. Although preclinical and clinical studies reveal an interaction between the gut-brain axis and AUD, additional studies should explore this in more detail.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Shevchouk OT, Tufvesson-Alm M, Jerlhag E. An Overview of Appetite-Regulatory Peptides in Addiction Processes; From Bench to Bed Side. Front Neurosci 2021; 15:774050. [PMID: 34955726 PMCID: PMC8695496 DOI: 10.3389/fnins.2021.774050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.
Collapse
Affiliation(s)
- Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Differential Influence of Pueraria lobata Root Extract and Its Main Isoflavones on Ghrelin Levels in Alcohol-Treated Rats. Pharmaceuticals (Basel) 2021; 15:ph15010025. [PMID: 35056082 PMCID: PMC8777655 DOI: 10.3390/ph15010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
The study was carried out on alcohol-preferring male Wistar rats. The following drugs were repeatedly (28×) administered: acamprosate (500 mg/kg, p.o.), naltrexone (0.1 mg/kg, i.p), and Pueraria lobata (kudzu) root extract (KU) (500 mg/kg, p.o.) and its isoflavones: daidzin (40 mg/kg, p.o.) and puerarin (150 mg/kg, p.o.). Their effects on a voluntary alcohol intake were assessed. KU and alcohol were also given for 9 days in an experiment on alcohol tolerance development. Finally, total and active ghrelin levels in peripheral blood serum were measured by ELISA method. Acamprosate, naltrexone, daidzin, and puerarin, reducing the alcohol intake, caused an increase in both forms of ghrelin levels. On the contrary, though KU inhibited the alcohol intake and alcohol tolerance development, it reduced ghrelin levels in alcohol-preferring rats. The changes of ghrelin concentration could play a role as an indicator of the currently used drugs. The other effect on the KU-induced shift in ghrelin levels in the presence of alcohol requires further detailed study.
Collapse
|
26
|
Orellana ER, Piscura MK, Horvath N, Hajnal A. Differential Response in Ethanol Behaviors of Female Rats Given Various Weight Loss Surgeries. Alcohol Alcohol 2021; 56:599-604. [PMID: 34343232 DOI: 10.1093/alcalc/agab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Currently, the only effective treatment for morbid obesity and its comorbidities is weight loss surgery (WLS). Growing evidence suggests that different types of WLS, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), have differential effects on alcohol consumption in humans and rats. Thus, we aimed to directly compare the effects of these two surgical procedures, for the first time in female rats, and to determine whether presence or absence of the ghrelin-producing stomach tissue has critical influence on postoperative alcohol intake. METHODS We performed two experiments using an identical behavioral protocol, a continuous-access two-bottle choice protocol for various concentrations of ethanol (EtOH). In Experiment 1, 23 high fat diet (HFD) obese, female rats were randomized to three groups: RYGB, SG or sham-operated food-restricted (Sham) controls. In Experiment 2, HFD obese female rats received either sham (n = 11) or a modified RYGB surgery where the remnant stomach was removed (RYGB-X; n = 12). RESULTS SG rats drank significantly less than RYGB for 4, 6 and 8% and significantly less than Sham for 6, 8 and 8% reinstatement. RYGB-X consumed significantly less EtOH than Sham across all concentrations, reaching significance for 6 and 8% reinstatement. CONCLUSION These findings confirm reduced EtOH consumption by female SG rats as opposed to increased intake following RYGB, and provide the first experimental evidence that the remnant stomach in the RYGB procedure is contributory. Future studies in rats and humans are warranted to confirm that ghrelin plays a critical role in susceptibility to AUD development following WLS.
Collapse
Affiliation(s)
- Elise R Orellana
- Georgetown University, School of Medicine, Department of Biochemistry and Molecular & Cellular Biology, 3900 Reservoir Road NW, Washington, DC, 20009
| | - Mary K Piscura
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| | - Nelli Horvath
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| | - Andras Hajnal
- The Pennsylvania State University, College of Medicine, Department of Neural and Behavioral Sciences, 700 HMC Crescent road, Hershey, PA 17033
| |
Collapse
|
27
|
Edvardsson CE, Vestlund J, Jerlhag E. A ghrelin receptor antagonist reduces the ability of ghrelin, alcohol or amphetamine to induce a dopamine release in the ventral tegmental area and in nucleus accumbens shell in rats. Eur J Pharmacol 2021; 899:174039. [PMID: 33737011 DOI: 10.1016/j.ejphar.2021.174039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The orexigenic peptide ghrelin increases the release of dopamine in the nucleus accumbens (NAc) shell via central ghrelin receptors, especially those located in the ventral tegmental area (VTA). The activity of the VTA dopamine neurons projecting to NAc shell, involves somatodendritic dopamine release within the VTA. However, the effects of ghrelin on the concomitant dopamine release in the VTA and NAc shell is unknown. It is further unknown whether addictive drugs, such as alcohol and amphetamine, enhance the dopamine levels in both these areas via ghrelin receptor dependent mechanisms. Thus, the effects of a ghrelin receptor antagonist, JMV2959, on the ability of i) central ghrelin ii) systemic alcohol or iii) systemic amphetamine to increase the dopamine release in the VTA and in the NAc shell in rats by using in vivo microdialysis was explored. We showed that systemic administration of JMV2959 blocks the ability of central ghrelin to increases dopamine release in the VTA and the NAc shell, and reduces the alcohol- and amphetamine-induced dopamine release in both these areas. Locomotor activity studies was then conducted in an attempt to correlate the ghrelin-induced dopamine release in the VTA to a behavioural outcome. These revealed that local infusion of a dopamine D1 receptor antagonist into the VTA blocks the ability of central ghrelin to cause a locomotor stimulation in mice. Collectively, this study adds to the growing body of evidence indicating that ghrelin signalling modulates the ability of ghrelin, and addictive drugs, to activate the mesoaccumbal dopamine pathway.
Collapse
Affiliation(s)
- Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
28
|
Vestlund J, Bergquist F, Licheri V, Adermark L, Jerlhag E. Activation of glucagon-like peptide-1 receptors and skilled reach foraging. Addict Biol 2021; 26:e12953. [PMID: 32770792 PMCID: PMC8244104 DOI: 10.1111/adb.12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Glucagon‐like peptide‐1 receptor (GLP‐1R) agonists, such as exendin‐4 (Ex4), liraglutide and dulaglutide, regulate glucose homeostasis and are thus used to treat diabetes type II. GLP‐1 also contributes towards a variety of additional physiological functions, including suppression of reward and improvement of learning. Acute activation of GLP‐1R in the nucleus accumbens (NAc) shell, an area essential for motivation, reduces the motivation to consume sucrose or alcohol when assessed in a simple motor task. However, the effects of repeated administration of the different GLP‐1R agonists on behaviours in a more complex motor task are unknown. The aim was therefore to investigate the effects of repeated Ex4, liraglutide or dulaglutide on the motivation and learning of a complex motor tasks such as skilled reach foraging in the Montoya staircase test. To explore the neurophysiological correlates of the different GLP‐1R agonists on motivation, ex vivo electrophysiological recordings were conducted. In rats with an acquired skilled reach performance, Ex4 or liraglutide but not dulaglutide reduced the motivation of skilled reach foraging. In trained rats, Ex4 infusion into NAc shell decreased this motivated behaviour, and both Ex4 and liraglutide supressed the evoked field potentials in NAc shell. In rats without prior Montoya experience, dulaglutide but not Ex4 or liraglutide enhanced the learning of skilled reach foraging. Taken together, these findings indicate that the tested GLP‐1R agonists have different behavioural outcomes depending on the context.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Valentina Licheri
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| |
Collapse
|
29
|
Cannabinoid-Induced Conditioned Place Preference, Intravenous Self-Administration, and Behavioral Stimulation Influenced by Ghrelin Receptor Antagonism in Rats. Int J Mol Sci 2021; 22:ijms22052397. [PMID: 33673659 PMCID: PMC7957642 DOI: 10.3390/ijms22052397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Cannabis/cannabinoids are widely used for recreational and therapy purposes, but their risks are largely disregarded. However, cannabinoid-associated use disorders and dependence are alarmingly increasing and an effective treatment is lacking. Recently, the growth hormone secretagogue receptor (GHSR1A) antagonism was proposed as a promising mechanism for drug addiction therapy. However, the role of GHS-R1A and its endogenous ligand ghrelin in cannabinoid abuse remains unclear. Therefore, the aim of our study was to investigate whether the GHS-R1A antagonist JMV2959 could reduce the tetrahydrocannabinol (THC)-induced conditioned place preference (CPP) and behavioral stimulation, the WIN55,212-2 intravenous self-administration (IVSA), and the tendency to relapse. Following an ongoing WIN55,212-2 self-administration, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 120-min IVSA sessions under a fixed ratio FR1, which significantly reduced the number of the active lever-pressing, the number of infusions, and the cannabinoid intake. Pretreatment with JMV2959 suggested reduction of the WIN55,212-2-seeking/relapse-like behavior tested in rats on the twelfth day of the forced abstinence period. On the contrary, pretreatment with ghrelin significantly increased the cannabinoid IVSA as well as enhanced the relapse-like behavior. Co-administration of ghrelin with JMV2959 abolished/reduced the significant efficacy of the GHS-R1A antagonist in the cannabinoid IVSA. Pretreatment with JMV2959 significantly and dose-dependently reduced the manifestation of THC-induced CPP. The THC-CPP development was reduced after the simultaneous administration of JMV2959 with THC during conditioning. JMV2959 also significantly reduced the THC-induced behavioral stimulation in the LABORAS cage. Our findings suggest that GHS-R1A importantly participates in the rewarding/reinforcing effects of cannabinoids.
Collapse
|
30
|
Orellana ER, Nyland JE, Horvath N, Hajnal A. Vagotomy increases alcohol intake in female rats in diet dependent manner: Implications for increased alcohol use disorder after roux-en-y gastric bypass surgery. Physiol Behav 2021; 235:113309. [PMID: 33412192 DOI: 10.1016/j.physbeh.2021.113309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/18/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022]
Abstract
A variety of weight loss surgeries have been developed to fight the obesity epidemic, with Roux-en-Y gastric bypass (RYGB) being one of the most effective and popular procedures. However, the underlying mechanisms behind its efficacy are still not well understood. Furthermore, growing clinical evidence suggests that RYGB may result in increased risk for development of alcohol use disorder (AUD). The vagus nerve is a potentially critical contributor to increased risk of AUD following RYGB due to the potential for significant damage to the vagus during surgery, which has been confirmed in rodent studies. Studies aiming at the mechanisms underlying development of alcohol or substance use disorders following the surgery have exclusively used male rats, despite the majority of RYGB patients being female. Thus, the current study had two objectives: 1) to investigate the effect of RYGB on ethanol (EtOH) intake in female rats using a protocol previously established in male rats, and 2) to test the effect of vagal damage and high fat diet (HFD) on EtOH intake in female rats. In the first study, 22 female rats were maintained on HFD for four weeks and then split into two surgical groups, RYGB (n = 10) and Sham (n = 12). All rats then underwent a two-bottle choice test of increasing EtOH concentrations: 2%, 4%, 6%, 8%. Rats were then forced to abstain from EtOH for two weeks, after which access to 8% EtOH was reinstated. The RYGB female rats significantly increased their intake for low concentrations of EtOH (2% and 4%) and during the reinstatement period for 8%. These results mirror those seen in male rats, and thus, confirms RYGB in female rats as an equally viable model to males. In the second study, 40 female rats were separated into four groups: HFD/Sham, HFD/Vagotomy, normal diet (ND)/Sham, and ND/Vagotomy. All rats then were subjected to the same two-bottle choice test protocol as in the previous study. Rats in the vagotomy condition had significantly greater preference for 2% and 4% EtOH compared with Sham-operated controls. EtOH intake, either in ml or adjusted for body weight, was greater in rats maintained on ND compared with rats maintained on HFD. These data suggest that vagal damage may, at least in part, contribute to increased preference for EtOH. Furthermore, this increase in EtOH preference is counter to the blunting effect of HFD. In conclusion, the data presented here suggest a role for vagal damage in risk of AUD after weight loss surgery.
Collapse
Affiliation(s)
- Elise R Orellana
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States.
| | - Jennifer E Nyland
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States
| | - Nelli Horvath
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, United States
| |
Collapse
|
31
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Lee MR, Tapocik JD, Ghareeb M, Schwandt ML, Dias AA, Le AN, Cobbina E, Farinelli LA, Bouhlal S, Farokhnia M, Heilig M, Akhlaghi F, Leggio L. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Mol Psychiatry 2020; 25:461-475. [PMID: 29728704 PMCID: PMC6215751 DOI: 10.1038/s41380-018-0064-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022]
Abstract
Rodent studies indicate that ghrelin receptor blockade reduces alcohol consumption. However, no ghrelin receptor blockers have been administered to heavy alcohol drinking individuals. Therefore, we evaluated the safety, tolerability, pharmacokinetic (PK), pharmacodynamic (PD) and behavioral effects of a novel ghrelin receptor inverse agonist, PF-5190457, when co-administered with alcohol. We tested the effects of PF-5190457 combined with alcohol on locomotor activity, loss-of-righting reflex (a measure of alcohol sedative actions), and on blood PF-5190457 concentrations in rats. Then, we performed a single-blind, placebo-controlled, within-subject human study with PF-5190457 (placebo/0 mg b.i.d., 50 mg b.i.d., 100 mg b.i.d.). Twelve heavy drinkers during three identical visits completed an alcohol administration session, subjective assessments, and an alcohol cue-reactivity procedure, and gave blood samples for PK/PD testing. In rats, PF-5190457 did not interact with the effects of alcohol on locomotor activity or loss-of-righting reflex. Alcohol did not affect blood PF-5190457 concentrations. In humans, all adverse events were mild or moderate and did not require discontinuation or dose reductions. Drug dose did not alter alcohol concentration or elimination, alcohol-induced stimulation or sedation, or mood during alcohol administration. Potential PD markers of PF-5190457 were acyl-to-total ghrelin ratio and insulin-like growth factor-1. PF-5190457 (100 mg b.i.d.) reduced alcohol craving during the cue-reactivity procedure. This study provides the first translational evidence of safety and tolerability of the ghrelin receptor inverse agonist PF-5190457 when co-administered with alcohol. PK/PD/behavioral findings support continued research of PF-5190457 as a potential pharmacological agent to treat alcohol use disorder.
Collapse
Affiliation(s)
- Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Jenica D Tapocik
- Section on Molecular Pathophysiology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mwlod Ghareeb
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra A Dias
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - April N Le
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Enoch Cobbina
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Sofia Bouhlal
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Markus Heilig
- Section on Molecular Pathophysiology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
| |
Collapse
|
33
|
Koopmann A, Bach P, Schuster R, Bumb JM, Vollstädt-Klein S, Reinhard I, Rietschel M, Witt SH, Wiedemann K, Kiefer F. Ghrelin modulates mesolimbic reactivity to alcohol cues in alcohol-addicted subjects: a functional imaging study. Addict Biol 2019; 24:1066-1076. [PMID: 29984874 DOI: 10.1111/adb.12651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023]
Abstract
Ghrelin has been shown to be involved in the pathophysiology of alcohol dependence, affecting alcohol self-administration and craving. However, the mechanism of action in alcohol dependence still has to be determined. We thus investigated whether ghrelin is associated with mesolimbic cue reactivity to alcohol cues and alcohol craving in recently detoxified alcohol-addicted subjects. We included 41 recently detoxified alcohol-dependent individuals. Functional magnetic resonance imaging (fMRI) was used to study mesolimbic cue reactivity during the presentation of alcohol-related pictures. Additionally, we assessed patients' alcohol craving using the Alcohol Urge Questionnaire and a visual analogue scale. Plasma concentrations of total and acylated (activated) ghrelin were measured in parallel to the fMRI session. The association between ghrelin plasma concentrations, mesolimbic cue reactivity and alcohol craving was assessed by performing correlation and mediation analyses. Alcohol-induced brain response in a network of brain clusters, including the right and left ventral striatum, showed a significant positive association with acylated ghrelin plasma concentration. Additionally, acylated ghrelin was significantly associated with craving. Mediation analyses showed that the association between acylated ghrelin plasma concentration and alcohol craving is mediated by a cue-induced brain response in the ventral striatum. Based on the finding that ghrelin modulates mesolimbic reactivity to alcohol cues, the following should be considered: If alcohol craving and the appetitive status were interrelated, this has to be taken into account when implementing fMRI studies for addictive disorders. Moreover, appetite regulation seems to represent a valid treatment target for reducing cue reactivity in addictive disorders.
Collapse
Affiliation(s)
- Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| | - Iris Reinhard
- Department of Biostatistics; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
| | - Klaus Wiedemann
- Department of Psychiatry & Psychotherapy; University Medical Center; Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University; Germany
- Feuerlein Center on Translational Addiction Medicine (FCTS); University of Heidelberg; Germany
| |
Collapse
|
34
|
Vestlund J, Bergquist F, Eckernäs D, Licheri V, Adermark L, Jerlhag E. Ghrelin signalling within the rat nucleus accumbens and skilled reach foraging. Psychoneuroendocrinology 2019; 106:183-194. [PMID: 30999229 DOI: 10.1016/j.psyneuen.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 04/06/2019] [Indexed: 01/23/2023]
Abstract
Motivation alters behaviour in a complex manner and nucleus accumbens (NAc) shell has been implied as a key structure regulating such behaviour. Recent studies show that acute ghrelin signalling enhances motivation when assessed in a simple motor task. The aim of the present study was to define the role of ghrelin signalling on motivation in a more complex motor behaviour. Rats were tested in the Montoya staircase, an animal model of skilled reach foraging assessed by the number of sucrose pellets consumed. Electrophysiological recordings were conducted to explore the neurophysiological correlates of ghrelin signalling. The initial electrophysiological results displayed that ex vivo administration of ghrelin increased NAc shell output in brain slices from drug- and training-naïve rats. In rats with an acquired skilled reach performance, acute as well as repeated treatment with a ghrelin receptor (GHSR-1 A) antagonist (JMV2959) decreased the number of sucrose pellets consumed. Moreover, infusion of JMV2959 into NAc shell reduced this consumption. Sub-chronic, during ten days, JMV2959 treatment during training on the Montoya staircase reduced the number of pellets consumed, whereas ghrelin improved this behaviour. In addition, field potential and whole cell recordings were conducted in NAc shell of rats that had been treated with ghrelin or GHSR-1 A antagonist during training on the Montoya staircase. Sub-chronic administration of ghrelin during motor-skill learning selectively increased the frequency of inhibitory transmission in the NAc shell, resulting in a net suppression of accumbal output. Collectively these data suggest that ghrelin signalling in NAc shell enhances skilled reached foraging tentatively by increasing the motivation.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Eckernäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Valentina Licheri
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
35
|
Zallar LJ, Beurmann S, Tunstall BJ, Fraser CM, Koob GF, Vendruscolo LF, Leggio L. Ghrelin receptor deletion reduces binge-like alcohol drinking in rats. J Neuroendocrinol 2019; 31:e12663. [PMID: 30456835 DOI: 10.1111/jne.12663] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone that has been implicated in the neurobiology of alcohol drinking. We have recently developed a ghrelin receptor (growth hormone secretagogue receptor; GHSR) knockout (KO) rat model, which exhibits reduced food consumption and body weight. In addition, recent preliminary work suggests that the gut-microbiome, which appears to interact with the ghrelin system, may modulate alcohol drinking. In the present study, we investigated the effects of GHSR deletion on alcohol consumption utilising GHSR KO and wild-type (WT) rats in three separate alcohol consumption paradigms: (i) operant self-administration (30-minute sessions); (ii) drinking in the dark (DID) (4-hour sessions); and (iii) intermittent access (24-hour sessions). These paradigms model varying degrees of alcohol consumption. Furthermore, we aimed to investigate the gut-microbiome composition of GHSR KO and WT rats before and after alcohol exposure. We found that the GHSR KO rats self-administered significantly less alcohol compared to WT rats in the operant paradigm, and consumed less alcohol than WT in the initial stages of the DID paradigm. No genotype differences were found in the intermittent access test. In addition, we found a significant decrease in gut-microbial diversity after alcohol exposure in both genotypes. Thus, the present results indicate that the ghrelin system may be involved in drinking patterns that result in presumably increased alcohol exposure levels. Furthermore, GHSR may constitute a potential pharmacological target for the reduction of binge-alcohol consumption. The potential functional role of the gut-microbiome in alcohol drinking, as well as interaction with the ghrelin system, is an interesting topic for further investigation.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, Maryland
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Silvia Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, Maryland
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
| |
Collapse
|
36
|
Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019; 103:384-398. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic disease that develops over the years. The complexity of the neurobiological processes contributing to the emergence of AUD and the neuroadaptive changes occurring during disease progression make it difficult to improve treatments. On the other hand, this complexity offers researchers the possibility to explore new targets. Over years of intense research several molecules were tested in AUD; in most cases, despite promising preclinical data, the clinical efficacy appeared insufficient to justify futher development. A prototypical example is that of corticotropin releasing factor type 1 receptor (CRF1R) antagonists that showed significant effectiveness in animal models of AUD but were largely ineffective in humans. The present article attempts to analyze the most recent venues in the development of new medications in AUD with a focus on the most promising drug targets under current exploration. Moreover, we delineate the importance of using a more integrated translational framework approach to correlate preclinical findings and early clinical data to enhance the probability to validate biological targets of interest.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Alessio Masi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Massimo Bramucci
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Marisa Roberto
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Molecular Biotechnology and Health Science, University of Torino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
37
|
Farokhnia M, Faulkner ML, Piacentino D, Lee MR, Leggio L. Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav 2019; 204:49-57. [DOI: 10.1016/j.physbeh.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
|
38
|
Kalafateli AL, Vallöf D, Jerlhag E. Activation of amylin receptors attenuates alcohol-mediated behaviours in rodents. Addict Biol 2019; 24:388-402. [PMID: 29405517 PMCID: PMC6585842 DOI: 10.1111/adb.12603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Alcohol expresses its reinforcing properties by activating areas of the mesolimbic dopamine system, which consists of dopaminergic neurons projecting from the ventral tegmental area to the nucleus accumbens. The findings that reward induced by food and addictive drugs involve common mechanisms raise the possibility that gut-brain hormones, which control appetite, such as amylin, could be involved in reward regulation. Amylin decreases food intake, and despite its implication in the regulation of natural rewards, tenuous evidence support amylinergic mediation of artificial rewards, such as alcohol. Therefore, the present experiments were designed to investigate the effect of salmon calcitonin (sCT), an amylin receptor agonist and analogue of endogenous amylin, on various alcohol-related behaviours in rodents. We showed that acute sCT administration attenuated the established effects of alcohol on the mesolimbic dopamine system, particularly alcohol-induced locomotor stimulation and accumbal dopamine release. Using the conditioned place preference model, we demonstrated that repeated sCT administration prevented the expression of alcohol's rewarding properties and that acute sCT administration blocked the reward-dependent memory consolidation. In addition, sCT pre-treatment attenuated alcohol intake in low alcohol-consuming rats, with a more evident decrease in high alcohol consumers in the intermittent alcohol access model. Lastly, sCT did not alter peanut butter intake, blood alcohol concentration and plasma corticosterone levels in mice. Taken together, the present data support that amylin signalling is involved in the expression of alcohol reinforcement and that amylin receptor agonists could be considered for the treatment of alcohol use disorder in humans.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| |
Collapse
|
39
|
Wenthur CJ, Gautam R, Zhou B, Vendruscolo LF, Leggio L, Janda KD. Ghrelin Receptor Influence on Cocaine Reward is Not Directly Dependent on Peripheral Acyl-Ghrelin. Sci Rep 2019; 9:1841. [PMID: 30755699 PMCID: PMC6372697 DOI: 10.1038/s41598-019-38549-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone acyl-ghrelin and its receptor, GHSR1a, represent intriguing therapeutic targets due to their actions in metabolic homeostasis and reward activity. However, this pleotropic activity makes it difficult to intervene in this system without inducing unwanted effects. Thus, it is desirable to identify passive and active regulatory mechanisms that allow differentiation between functional domains. Anatomical restriction by the blood brain barrier represents one major passive regulatory mechanism. However, it is likely that the ghrelin system is subject to additional passive mechanisms that promote independent regulation of orexigenic behavior and reward processing. By applying acyl-ghrelin sequestering antibodies, it was determined that peripheral sequestration of acyl-ghrelin is sufficient to blunt weight gain, but not cocaine rewarding effects. However, both weight gain and reward-associated behaviors were shown to be blocked by direct antagonism of GHSR1a. Overall, these data indicate that GHSR1a effects on reward are independent from peripheral acyl-ghrelin binding, whereas centrally-mediated alteration of energy storage requires peripheral acyl-ghrelin binding. This demonstration of variable ligand-dependence amongst functionally-distinct GHSR1a populations is used to generate a regulatory model for functional manipulation of specific effects when attempting to therapeutically target the ghrelin system.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacy, University of Wisconsin - Madison, Madison, WI, USA
| | - Ritika Gautam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
40
|
Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2018; 196:1-14. [PMID: 30439457 DOI: 10.1016/j.pharmthera.2018.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the limited efficacy of existing medications for addictive disorders including alcohol use disorder (AUD), the need for additional medications is substantial. Potential new medications for addiction can be identified through investigation of the neurochemical substrates mediating the ability of drugs of abuse such as alcohol to activate the mesolimbic dopamine system. Interestingly, recent studies implicate neuropeptides of the gut-brain axis as modulators of reward and addiction processes. The present review therefore summarizes the current studies investigating the ability of the gut-brain peptides ghrelin, glucagon-like peptide-1 (GLP-1), amylin and neuromedin U (NMU) to modulate alcohol- and drug-related behaviors in rodents and humans. Extensive literature demonstrates that ghrelin, the only known orexigenic neuropeptide to date, enhances reward as well as the intake of alcohol, and other drugs of abuse, while ghrelin receptor antagonism has the opposite effects. On the other hand, the anorexigenic peptides GLP-1, amylin and NMU independently inhibits reward from alcohol and drugs of abuse in rodents. Collectively, these rodent and human studies imply that central ghrelin, GLP-1, amylin and NMU signaling may contribute to addiction processes. Therefore, the need for randomized clinical trials investigating the effects of agents targeting these aforementioned systems on drug/alcohol use is substantial.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
41
|
Havlickova T, Charalambous C, Lapka M, Puskina N, Jerabek P, Sustkova-Fiserova M. Ghrelin Receptor Antagonism of Methamphetamine-Induced Conditioned Place Preference and Intravenous Self-Administration in Rats. Int J Mol Sci 2018; 19:ijms19102925. [PMID: 30261633 PMCID: PMC6213741 DOI: 10.3390/ijms19102925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine abuse imposes a significant burden on individuals and society worldwide, and an effective therapy of methamphetamine addiction would provide distinguished social benefits. Ghrelin significantly participates in reinforcing neurobiological mechanisms of stimulants, including amphetamines; thus, ghrelin antagonism is proposed as a promising addiction treatment. The aim of our study was to elucidate whether the pretreatment with growth hormone secretagogue receptor (GHS-R1A) antagonist, substance JMV2959, could reduce the methamphetamine intravenous self-administration (IVSA) and the tendency to relapse, and whether JMV2959 could reduce or prevent methamphetamine-induced conditioned place preference (CPP) in rats. Following an adequate maintenance period, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 180 min sessions of methamphetamine IVSA under a fixed ratio FR1, which significantly reduced the number of active lever-pressings, the number of infusions, and the amount of the consumed methamphetamine dose. Pretreatment with JMV2959 also reduced or prevented relapse-like behavior tested in rats on the 12th day of the abstinence period. Pretreatment with JMV2959 significantly reduced the expression of methamphetamine-induced CPP. Simultaneous administration of JMV2959 with methamphetamine during the conditioning period significantly reduced the methamphetamine-CPP. Our results encourage further research of the ghrelin antagonism as a potential new pharmacological tool for methamphetamine addiction treatment.
Collapse
Affiliation(s)
- Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Nina Puskina
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 212800 Prague, Czech Republic.
| | - Pavel Jerabek
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| | - Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 1010034 Prague, Czech Republic.
| |
Collapse
|
42
|
Naish KR, Laliberte M, MacKillop J, Balodis IM. Systematic review of the effects of acute stress in binge eating disorder. Eur J Neurosci 2018; 50:2415-2429. [DOI: 10.1111/ejn.14110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 08/07/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Katherine R. Naish
- Peter Boris Centre for Addictions Research Department of Psychiatry and Behavioural Neurosciences McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
| | - Michele Laliberte
- Peter Boris Centre for Addictions Research Department of Psychiatry and Behavioural Neurosciences McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
- Eating Disorders Clinic St. Joseph's Healthcare Hamilton Hamilton ON Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research Michael G. DeGroote School of Medicine McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research Department of Psychiatry and Behavioural Neurosciences McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research Michael G. DeGroote School of Medicine McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
| | - Iris M. Balodis
- Peter Boris Centre for Addictions Research Department of Psychiatry and Behavioural Neurosciences McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research Michael G. DeGroote School of Medicine McMaster University and St. Joseph's Healthcare Hamilton Hamilton ON Canada
| |
Collapse
|
43
|
Farokhnia M, Lee MR, Farinelli LA, Ramchandani VA, Akhlaghi F, Leggio L. Pharmacological manipulation of the ghrelin system and alcohol hangover symptoms in heavy drinking individuals: Is there a link? Pharmacol Biochem Behav 2018; 172:39-49. [PMID: 30030128 DOI: 10.1016/j.pbb.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Ghrelin, an orexigenic peptide synthesized in the stomach, is a key player in the gut-brain axis. In addition to its role in regulating food intake and energy homeostasis, ghrelin has been shown to modulate alcohol-related behaviors. Alcohol consumption frequently results in hangover, an underexplored phenomenon with considerable medical, psychological, and socioeconomic consequences. While the pathophysiology of hangover is not clear, contributions of mechanisms such as alcohol-induced metabolic/endocrine changes, inflammatory/immune response, oxidative stress, and gut dysbiosis have been reported. Interestingly, these mechanisms considerably overlap with ghrelin's physiological functions. Here, we investigated whether pharmacological manipulation of the ghrelin system may affect alcohol hangover symptoms. Data were obtained from two placebo-controlled laboratory studies. The first study tested the effects of intravenous (IV) ghrelin and consisted of two experiments: a progressive-ratio IV alcohol self-administration (IV-ASA) and a fixed-dose IV alcohol clamp. The second study tested the effects of an oral ghrelin receptor inverse agonist (PF-5190457) and included a fixed-dose oral alcohol administration experiment. Alcohol hangover data were collected the morning after each alcohol administration experiment using the Acute Hangover Scale (AHS). IV ghrelin, compared to placebo, significantly reduced alcohol hangover after IV-ASA (p = 0.04) and alcohol clamp (p = 0.04); PF-5190457 had no significant effect on AHS scores. Females reported significantly higher hangover symptoms than males following the IV-ASA experiment (p = 0.04), but no gender × drug condition (ghrelin vs. placebo) effect was found. AHS total scores were positively correlated with peak subjective responses, including 'stimulation' (p = 0.08), 'sedation' (p = 0.009), 'feel high' (p = 0.05), and 'feel intoxicated' (p = 0.03) during the IV-ASA. IV ghrelin blunted the positive association between alcohol sedation and hangover as shown by trend-level drug × sedation effect (p = 0.08). This is the first study showing that exogenous ghrelin administration, but not ghrelin receptor inverse agonism, affects hangover symptoms. Future research should investigate the potential mechanism(s) underlying this effect.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Morris LS, Voon V, Leggio L. Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13781. [PMID: 29797564 PMCID: PMC6252147 DOI: 10.1111/acer.13781] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Since its discovery, the gut hormone, ghrelin, has been implicated in diverse functional roles in the central nervous system. Central and peripheral interactions between ghrelin and other hormones, including the stress-response hormone cortisol, govern complex behavioral responses to external cues and internal states. By acting at ventral tegmental area dopaminergic projections and other areas involved in reward processing, ghrelin can induce both general and directed motivation for rewards, including craving for alcohol and other alcohol-seeking behaviors. Stress-induced increases in cortisol seem to increase ghrelin in the periphery, suggesting a pathway by which ghrelin influences how stressful life events trigger motivation for rewards. However, in some states, ghrelin may be protective against the anxiogenic effects of stressors. This critical review brings together a dynamic and growing literature, that is, at times inconsistent, on the relationships between ghrelin, central reward-motivation pathways, and central and peripheral stress responses, with a special focus on its emerging role in the context of alcohol use disorder.
Collapse
Affiliation(s)
- Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychology, University of Cambridge, UK
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
45
|
Ch’Ng SS, Lawrence AJ. Investigational drugs for alcohol use disorders: a review of preclinical data. Expert Opin Investig Drugs 2018; 27:459-474. [DOI: 10.1080/13543784.2018.1472763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sarah S Ch’Ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
46
|
Orellana ER, Jamis C, Horvath N, Hajnal A. Effect of vertical sleeve gastrectomy on alcohol consumption and preferences in dietary obese rats and mice: A plausible role for altered ghrelin signaling. Brain Res Bull 2018; 138:26-36. [PMID: 28802901 PMCID: PMC6537102 DOI: 10.1016/j.brainresbull.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022]
Abstract
Vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are the most common surgical options for the treatment of obesity and metabolic disorder. Whereas RYGB may result in greater and more durable weight loss, recent clinical and pre-clinical studies in rats have raised concerns that RYGB surgery may increase risk for alcohol use disorder (AUD). In contrast, recent clinical reports suggest a lesser risk for AUD following VSG, although no preclinical studies have been done to confirm that. Therefore, the present study sought to determine the effects of VSG on ethanol intake and preferences in rodent models using protocols similar to those previously used in animal studies for RYGB. Male Sprague Dawley rats and male C57B6 mice were made obese on a high fat diet (60%kcal from fat) and received VSG or no surgery (controls). All animals then were given access to increasing concentrations of ethanol (2%, 4%, 6%, and 8%), presented for few days each. Compared to controls, VSG rats consumed significantly less of 2, 6 and 8% ethanol and showed significantly reduced preferences to 6 and 8% ethanol over water. VSG mice also displayed reduced intake and preference for 6 and 8% ethanol solutions. After a two-week period of forced abstinence, 8% ethanol was reintroduced and the VSG rats and mice continued to exhibit reduced consumption and less preference for ethanol. Regarding the underlying mechanism, we hypothesized that the removal of the ghrelin producing part of the stomach in the VSG surgery is a possible contributor to the observed reduced ethanol preference. To test for functional changes at the ghrelin receptors, the VSG and control rats were given IP injections of acyl-ghrelin (2.5nmol and 5nmol) prior to ethanol access. Neither concentration of ghrelin resulted in a significant increase in 8% ethanol consumption of VSG or control subjects. Next, the rats were given IP injections of the ghrelin receptor antagonist, JMV (2.5mg/kg body weight). This dose induced a significant reduction in 8% ethanol consumption in the VSG group, but no effect on ethanol intake in the controls. While ghrelin injection was uninformative, increased sensitivity to subthreshold doses of the ghrelin receptor antagonist may indicate reduced ghrelin signaling following VSG. Overall, these findings suggest that bariatric patients with increased susceptibility to AUD may benefit from receiving VSG instead of RYGB surgery, and that changes in ghrelin signaling, at least in part, may play a role in the differential AUD risks between the two most commonly performed bariatric surgical procedures.
Collapse
Affiliation(s)
- Elise R Orellana
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033, USA
| | - Catherine Jamis
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033, USA
| | - Nelli Horvath
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
47
|
Suchankova P, Yan J, Schwandt ML, Stangl BL, Jerlhag E, Engel JA, Hodgkinson CA, Ramchandani VA, Leggio L. The Leu72Met Polymorphism of the Prepro-ghrelin Gene is Associated With Alcohol Consumption and Subjective Responses to Alcohol: Preliminary Findings. Alcohol Alcohol 2018; 52:425-430. [PMID: 28481975 DOI: 10.1093/alcalc/agx021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
Aims The orexigenic peptide ghrelin may enhance the incentive value of food-, drug- and alcohol-related rewards. Consistent with preclinical findings, human studies indicate a role of ghrelin in alcohol use disorders (AUD). In the present study an a priori hypothesis-driven analysis was conducted to investigate whether a Leu72Met missense polymorphism (rs696217) in the prepro-ghrelin gene (GHRL), is associated with AUD, alcohol consumption and subjective responses to alcohol. Method Association analysis was performed using the National Institute on Alcohol Abuse and Alcoholism (NIAAA) clinical sample, comprising AUD individuals and controls (N = 1127). Then, a post-hoc analysis using data from a human laboratory study of intravenous alcohol self-administration (IV-ASA, N = 144) was performed to investigate the association of this SNP with subjective responses following a fixed dose of alcohol (priming phase) and alcohol self-administration (ad libitum phase). Results The case-control study revealed a trend association (N = 1127, OR = 0.665, CI = 0.44-1.01, P = 0.056) between AUD diagnosis and Leu72Met. In AUD subjects, the SNP was associated with significantly lower average drinks per day (n = 567, β = -2.49, 95% CI = -4.34 to -0.64, P = 0.008) and significantly fewer heavy drinking days (n = 567, β = -12.00, 95% CI = -19.10 to -4.89, P < 0.001). The IV-ASA study further revealed that 72Met carriers had greater subjective responses to alcohol (P < 0.05) when compared to Leu72Leu both at priming and during ad lib self-administration. Conclusion Although preliminary, these findings suggest that the Leu72Leu genotype may lead to increased risk of AUD possibly via mechanisms involving a lower response to alcohol resulting in excessive alcohol consumption. Further investigations are warranted. Short Summary We investigated whether a Leu72Met missense polymorphism in the prepro-ghrelin gene, is associated with alcohol use disorder, alcohol consumption and subjective responses to alcohol. Although preliminary, results suggest that the Leu72Leu genotype may lead to increased risk of alcohol use disorder possibly via mechanisms involving a lower response to alcohol.
Collapse
Affiliation(s)
- Petra Suchankova
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA.,Department of Pharmacology, The Sahlgrenska Academy at University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Jia Yan
- Section on Human Psychopharmacology, NIAAA, NIH, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA.,Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 1101 E Marshall Street, Box 980033, Richmond, VA 23298, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, NIAAA, NIH, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA
| | - Bethany L Stangl
- Section on Human Psychopharmacology, NIAAA, NIH, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA
| | - Elisabet Jerlhag
- Department of Pharmacology, The Sahlgrenska Academy at University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Jörgen A Engel
- Department of Pharmacology, The Sahlgrenska Academy at University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, NIAAA, NIH, 5625 Fishers Lane, Rockville, MD 20892, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, NIAAA, NIH, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, 121 South Main Street, Providence, RI 02912, USA
| |
Collapse
|
48
|
Koopmann A, Schuster R, Kiefer F. The impact of the appetite-regulating, orexigenic peptide ghrelin on alcohol use disorders: A systematic review of preclinical and clinical data. Biol Psychol 2018; 131:14-30. [DOI: 10.1016/j.biopsycho.2016.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
|
49
|
Blackburn AN, Hajnal A, Leggio L. The gut in the brain: the effects of bariatric surgery on alcohol consumption. Addict Biol 2017; 22:1540-1553. [PMID: 27578259 DOI: 10.1111/adb.12436] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022]
Abstract
Obesity represents a major medical and public health problem worldwide. Efforts have been made to develop novel treatments, and among them bariatric surgery is used as an effective treatment to achieve significant, long-term weight loss and alleviate medical problems related to obesity. Alcohol use disorder (AUD) is also a leading cause of morbidity and mortality worldwide. Recent clinical studies have revealed a concern for bariatric surgery patients developing an increased risk for alcohol consumption, and for AUD. A better understanding of the relationship between bariatric surgery and potential later development of AUD is important, given the critical need of identifying patients at high risk for AUD. This paper reviews current clinical and basic science research and discusses potential underlying mechanisms. Special emphasis in this review is given to recent work suggesting that, alterations in alcohol metabolism/pharmacokinetics resulting from bariatric surgery are unlikely to be the primary or at least the only explanation for increased alcohol use and development of AUD, as changes in brain reward processing are also likely to play an important role. Additional studies are needed to clarify the potential role and mechanisms of how bariatric surgery may increase alcohol use and lead to AUD development.
Collapse
Affiliation(s)
- Ashley N. Blackburn
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health; Bethesda MD USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences; Pennsylvania State University College of Medicine; PA USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health; Bethesda MD USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences; Brown University; Providence RI USA
| |
Collapse
|
50
|
Koopmann A, Lippmann K, Schuster R, Reinhard I, Bach P, Weil G, Rietschel M, Witt SH, Wiedemann K, Kiefer F. Drinking water to reduce alcohol craving? A randomized controlled study on the impact of ghrelin in mediating the effects of forced water intake in alcohol addiction. Psychoneuroendocrinology 2017; 85:56-62. [PMID: 28822300 DOI: 10.1016/j.psyneuen.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent data suggest that ghrelin is involved in the pathophysiology of alcohol use disorders, affecting alcohol self-administration and craving. Gastric ghrelin secretion is reduced by stomach distension. We now tested the hypothesis whether the clinically well-known effects of high-volume water intake on craving reduction in alcoholism is mediated by acute changes in ghrelin secretion. METHODS In this randomized human laboratory study, we included 23 alcohol-dependent male inpatient subjects who underwent alcohol cue exposure. Participants of the intervention group drank 1000ml of mineral water within 10min directly thereafter, compared to the participants of the control group who did not. Craving and plasma concentrations of acetylated ghrelin were measured ten times during the 120min following the alcohol cue exposure session. RESULTS In the intervention group, a significant decrease in acetylated ghrelin in plasma compared to the control group was observed. This decrease was correlated to a reduction in patients' subjective level of craving. In the control group, no decrease of acetylated ghrelin in plasma and no association between alcohol craving and changes in plasma concentrations of acetylated ghrelin were observed. CONCLUSIONS Our results present new evidence that the modulation in the ghrelin system by oral water intake mediates the effects of volume intake with craving reduction in alcohol use disorders. Hence, in addition to pharmacological interventions with ghrelin antagonists, the reduction of physiological ghrelin secretion might be a target for future interventions in the treatment of alcohol craving.
Collapse
Affiliation(s)
- Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany.
| | - Katharina Lippmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Georg Weil
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Klaus Wiedemann
- Department of Psychiatry & Psychotherapy, University Medical Center, Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| |
Collapse
|