1
|
Ebersole JL, Novak MJ, Cappelli D, Dawson DR, Gonzalez OA. Use of Nonhuman Primates in Periodontal Disease Research: Contribution of the Caribbean Primate Research Center and Cayo Santiago Rhesus Colony. Am J Primatol 2025; 87:e23724. [PMID: 39902755 DOI: 10.1002/ajp.23724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
This review article provides a historical summary regarding the use, value, and validity of the nonhuman primate model of periodontal disease. The information provided cites results regarding the features of naturally occurring periodontitis in various nonhuman primate species, as well as the implementation of a model of experimental periodontitis. Clinical similarities to human disease are discussed, as well as the use of these models to document physiological and pathophysiological tissue changes in the periodontium related to the initiation and progression of the disease. Additionally, the use of these analytics in examination of the tissue characteristics of the disease, and the utility of nonhuman primates in testing and describing various therapeutic modalities are described. As periodontitis represents a disease of an oral microbiome dysbiosis, features of the altered microbiome in the disease in nonhuman primates are related to similar findings in the human condition. The review then provides a summary of the features of local and systemic host responses to a periodontal infection in an array of nonhuman primate species. This includes attributes of innate immunity, acute and chronic inflammation, and adaptive immune responses. Finally, extensive information is presented regarding the role of Macaca mulatta derived from the Cayo Santiago community in evaluating critical biologic details of disease initiation, progression, and resolution. This unique resource afforded the capacity to relate risk and expression of disease and traits of the responses to age, sex, and matriline derivation (e.g., heritability) of the animals. The Cayo Santiago colony continues to provide a critical preclinical model for assessment of molecular aspects of the disease process that can lead to both new targets for therapeutics and consideration of vaccine approaches to preventing and/or treating this global disease.
Collapse
Grants
- This study was supported by National Institute on Minority Health and Health Disparities (MD007600), National Institute of Dental and Craniofacial Research (DE05599, DE07267, DE07457), National Center for Research Resources (RR003051, RR020145, RR03640), National Institute of General Medical Sciences (GM103538), Office of Research Infrastructure Programs (OD012217, OD021458), and National Institute on Aging (AG021406).
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - D Cappelli
- Department of Biomedical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - D R Dawson
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Huang N, Shimomura E, Yin G, Tran C, Sato A, Steiner A, Heibeck T, Tam M, Fairman J, Gibson FC. Immunization with cell-free-generated vaccine protects from Porphyromonas gingivalis-induced alveolar bone loss. J Clin Periodontol 2019; 46:197-205. [PMID: 30578564 PMCID: PMC7891626 DOI: 10.1111/jcpe.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022]
Abstract
Introduction Periodontal diseases (PD) are complex oral inflammatory diseases initiated by keystone bacteria such as Porphyromonas gingivalis. A vaccine for PD is desirable as clinical treatment involves protracted maintenance strategies aimed to retain dentition. Although prior immunization approaches targeting P. gingivalis have reported variable success in limiting facets of disease such as oral bone loss, it remains that a vaccine for this disease may be attainable. Aim To investigate cell‐free protein synthesis (CFPS) as a platform to produce vaccinable targets suitable for efficacy testing in a P. gingivalis‐induced murine oral bone loss model. Materials and Methods Recombinantly generated P. gingivalis minor fimbriae protein (Mfa1), RgpA gingipain hemagglutinin domain 1 (HA1), and RgpA gingipain hemagglutinin domain 2 (HA2) were combined in equivalent doses in adjuvants and injected intramuscularly to immunize mice. Serum levels of protein‐specific antibody were measured by ELISA, and oral bone levels were defined by morphometrics. Results Recombinantly generated P. gingivalis proteins possessed high fidelity to predicted size and elicited protein‐specific IgG following immunization. Importantly, immunization with the vaccine cocktail protected from P. gingivalis elicited oral bone loss. Conclusion These data verify the utility of the CFPS technology to synthesize proteins that have the capacity to serve as novel vaccines.
Collapse
Affiliation(s)
- Nasi Huang
- Department of Medicine, Section of Infectious Diseases, School of Medicine, Boston University, Boston, Massachusetts
| | | | - Gang Yin
- Sutro BioPharma, South San Francisco, California
| | - Cuong Tran
- Sutro BioPharma, South San Francisco, California
| | - Aaron Sato
- Sutro BioPharma, South San Francisco, California
| | - Alex Steiner
- Sutro BioPharma, South San Francisco, California
| | | | - Michelle Tam
- Sutro BioPharma, South San Francisco, California
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Yen CC, Tu YK, Chen TH, Lu HK. Comparison of treatment effects of guided tissue regeneration on infrabony lesions between animal and human studies: a systematic review and meta-analysis. J Periodontal Res 2013; 49:415-24. [PMID: 24111550 DOI: 10.1111/jre.12130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE For ethical reasons it is becoming increasingly more difficult to obtain, from clinical studies, histological data on infrabony defects treated with guided tissue regeneration (GTR) techniques. The aim of this systematic review was to find the value of extrapolating animal data on treatment of periodontal infrabony lesions, using GTR only or GTR + bone grafts, to human clinical results. MATERIAL AND METHODS Searches of the PubMed and Cochrane databases were combined with hand searching of articles published from 1 January 1969 to 1 August 2012. The search included any type of barrier membrane, with or without grafted materials, used to treat periodontal infrabony lesions. All studies with histological or re-entry methodology outcome parameters that evaluated bone-filling and/or new-cementum-formation ratios from a defect depth were collected. When comparing animal and human outcomes, a meta-analysis was used to evaluate the bone-filling ratio, but only a descriptive analysis of the histological studies was performed. RESULTS In total, 22 studies were selected for the meta-analysis. In the GTR + bone graft groups the weighted-average bone-filling ratios were 52% (95% CI: 18-85%) in animals and 57% (95% CI: 30-83%) in humans, which were not statistically significantly different (p = 0.825). Similar results were found in the GTR-only groups, in which the weighted-average bone-filling ratios were 54% (95% CI: 37-72%) in animals and 59% (95% CI: 42-77%) in humans (p = 0.703). New-cementum formation of GTR only and GTR + bone grafts showed comparable ratio outcomes, and both were superior to the control group in animals only (p = 0.042). CONCLUSION Although quality assessments differed between animal and human studies, our analysis indicated that animal models and human results showed similar bone-filling ratios in infrabony defects treated with GTR only or with GTR + bone grafting.
Collapse
Affiliation(s)
- C-C Yen
- Department of Periodontology, College of Oral Medicine, Taipei Medical University, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
4
|
Kovačević-Jovanović V, Miletić T, Stanojević S, Mitić K, Dimitrijević M. Strain differences in the humoral immune response to commensal bacterial antigens in rats. Acta Microbiol Immunol Hung 2013; 60:271-88. [PMID: 24060552 DOI: 10.1556/amicr.60.2013.3.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the immune response to commensal bacterial species in the two inbred rat strains: Dark Agouti (DA) and Albino Oxford (AO). The predominant Gram-negative aerobe in our rats' intestinal bacterial flora was Escherichia coli, while Proteus mirabilis was isolated only from DA rat strain. We report that sera from both DA and AO rat strains contain specific IgG against predominant intestinal flora. Intramuscular administration of commensal bacterial antigens provoked only Th1-type antibody response in AO rats while DA rats developed mixed Th1- and Th2-type antibody response to E. coli and Th1-type response to P. mirabilis antigens. Weaker antibody production to own E. coli and higher serum levels of natural IgG and IgA P. mirabilis-specific antibodies combined with higher CD3+ cells proliferation was found in AO rats. Strain difference in the pattern of antibody production and differential regulation of immune response to commensal bacteria may contribute to the marked differences in the immune reactivity of AO and DA rats.
Collapse
|
5
|
Ebersole JL, Holt SC, Cappelli D. Periodontitis in pregnant baboons: systemic inflammation and adaptive immune responses and pregnancy outcomes in a baboon model. J Periodontal Res 2013; 49:226-36. [PMID: 23710643 DOI: 10.1111/jre.12099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND/OBJECTIVES Chronic periodontal infections have been suggested to contribute to the risk of adverse pregnancy outcomes. MATERIAL AND METHODS This study describes the relationship of patterns of systemic inflammatory mediators and IgG antibody to 20 oral bacteria in pregnant female baboons (Papio anubis) coupled with clinical features of ligature-induced periodontitis, as risk indicators for adverse pregnancy outcomes. Animals showing a preterm delivery and/or low birth weight newborns, as well as those pregnancies resulting in spontaneous abortion, stillbirth, or fetal demise were tabulated as adverse pregnancy outcomes. RESULTS A significantly greater frequency of the periodontitis group neonates had a low birth weight (18.1%; p = 0.008) and decreased gestational age (9.8%). Spontaneous abortion/stillbirth/fetal demise were increased in the periodontitis (8.7%) versus the control group (3.8%) (p = 0.054). The baseline oral clinical presentation of the experimental animals did not relate to the adverse pregnancy outcomes. Animals with the greatest extent/severity of periodontitis progression during the initial ½ of gestation (ie. to mid-pregnancy) had the greatest risk for adverse pregnancy outcomes. Baseline biological parameters indicating historical responses of the animals to periodontal challenge demonstrated individual variation in selected mediators, some of which became more differential during ligature-induced periodontitis. The relationship of clinical parameters to systemic inflammatory responses was consistent with a temporal contribution to adverse pregnancy outcomes in a subset of the animals. CONCLUSIONS These results support a link between periodontitis and adverse pregnancy outcomes in the baboons and provide a prospective experimental model for delineating the biologic parameters that contribute to a causal relationship between chronic oral infections and birth events.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
6
|
Koh EM, Kim J, Kim TG, Moon JH, Oh JH, Lee JY, Jang YS. Cloning and characterization of heavy and light chain genes encoding the FimA-specific monoclonal antibodies that inhibit Porphyromonas gingivalis adhesion. Microbiol Immunol 2011; 55:199-210. [PMID: 21223367 DOI: 10.1111/j.1348-0421.2011.00305.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FimA of Porphyromonas gingivalis, a major pathogen in periodontitis, is known to be closely related to the virulence of these bacteria and has been suggested as a candidate for development of a vaccine against periodontal disease. In order to develop a passive immunization method for inhibiting the establishment of periodontal disease, B hybridoma clones 123-123-10 and 256-265-9, which produce monoclonal antibodies (Mabs) specific to purified fimbriae, were established. Both mAbs reacted with the conformational epitopes displayed by partially dissociated oligomers of FimA, but not with the 43 kDa FimA monomer. Gene sequence analyses of full-length cDNAs encoding heavy and light chain immunoglobulins enabled classification of the genes of mAb 123-123-10 as members of the mVh II (A) and mVκ I subgroups, and those of mAb 256-265-9 as members of the mVh III (D) and mVκ I subgroups. More importantly, 50 ng/mL of antibodies purified from the culture supernatant of antibody gene-transfected CHO cells inhibited, by approximately 50%, binding of P. gingivalis to saliva-coated hydroxyapatite bead surfaces. It is expected that these mAbs could be used as a basis for passive immunization against P. gingivalis-mediated periodontitis.
Collapse
Affiliation(s)
- Eun-Mi Koh
- Department of Molecular Biology, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Jong RAM, van der Reijden WA. Feasibility and therapeutic strategies of vaccines against Porphyromonas gingivalis. Expert Rev Vaccines 2010; 9:193-208. [PMID: 20109029 DOI: 10.1586/erv.09.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Periodontitis is a chronic infectious disease that is highly prevalent worldwide and is characterized by inflammation of the gums, and loss of connective tissue and bone support. The Gram-negative anerobic bacterium Porphyromonas gingivalis is generally accepted as the main etiological agent for chronic periodontitis. The objective of this paper is to elucidate the feasibility of achieving protection against periodontitis though immunization against P. gingivalis. Until now, animal studies have showed no complete protection against P. gingivalis. However, current knowledge about P. gingivalis structures could be applicable for further research to develop a successful licensed vaccine and alternative therapeutic strategies. This review reveals that a multicomponent vaccine against P. gingivalis, which includes structures shared among P. gingivalis serotypes, will be feasible to induce broad and complete protection.
Collapse
Affiliation(s)
- Rosa A M Jong
- Department of Oral Microbiology, Academic Centre for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Ebersole JL, Steffen MJ, Reynolds MA, Branch-Mays GL, Dawson DR, Novak KF, Gunsolley JC, Mattison JA, Ingram DK, Novak MJ. Differential gender effects of a reduced-calorie diet on systemic inflammatory and immune parameters in nonhuman primates. J Periodontal Res 2008; 43:500-7. [PMID: 18565132 PMCID: PMC2574803 DOI: 10.1111/j.1600-0765.2008.01051.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Dietary manipulation, including caloric restriction, has been shown to impact host response capabilities significantly, particularly in association with aging. This investigation compared systemic inflammatory and immune-response molecules in rhesus monkeys (Macaca mulatta). MATERIAL AND METHODS Monkeys on continuous long-term calorie-restricted diets and a matched group of animals on a control ad libitum diet, were examined for systemic response profiles including the effects of both gender and aging. RESULTS The results demonstrated that haptoglobin and alpha1-antiglycoprotein levels were elevated in the serum of male monkeys. Serum IgG responses to Campylobacter rectus, Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis were significantly elevated in female monkeys. While only the antibody to Fusobacterium nucleatum was significantly affected by the calorie-restricted diet in female monkeys, antibody levels to Prevotella intermedia, C. rectus and Treponema denticola demonstrated a similar trend. CONCLUSION In this investigation, only certain serum antibody levels were influenced by the age of male animals, which was seemingly related to increasing clinical disease in this gender. More generally, analytes were modulated by gender and/or diet in this oral model system of mucosal microbial challenge.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Symposium Proceedings: “IgA and Periodontal Disease” Abstracts of the IADR symposium 26 June 1998, Nice, France. Oral Dis 2008. [DOI: 10.1111/j.1601-0825.1999.tb00065.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Sharma DCG, Prasad SBM, Karthikeyan BV. Vaccination against periodontitis: the saga continues. Expert Rev Vaccines 2007; 6:579-90. [PMID: 17669011 DOI: 10.1586/14760584.6.4.579] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontal disease can be considered to be one of the most common chronic inflammatory diseases inflicting humans. With the advent of advanced molecular diagnostic techniques, a better understanding of the role of specific pathogens and the contributory role of the host immune response in the initiation and progression of periodontal disease has been possible - although not completely. However, successful vaccine development that fully utilizes the current level of understanding has not yet occurred for human use. This paper reviews various in vitro, animal studies and human trials undertaken to develop a vaccine against periodontal disease, with emphases on the shortfalls of these efforts and future prospects of developing a successful vaccine against periodontal disease.
Collapse
Affiliation(s)
- Dileep C G Sharma
- Department of Periodontics, KGF College of Dental Sciences, Kolar Gold Fields, Karnataka, India.
| | | | | |
Collapse
|
11
|
Nakagawa T, Sims T, Fan Q, Potempa J, Travis J, Houston L, Page RC. Functional characteristics of antibodies induced by Arg-gingipain (HRgpA) and Lys-gingipain (Kgp) from Porphyromonas gingivalis. ORAL MICROBIOLOGY AND IMMUNOLOGY 2001; 16:202-11. [PMID: 11442844 DOI: 10.1034/j.1399-302x.2001.160402.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Arginine-specific gingipain (HRgpA) and lysine-specific gingipain (Kgp), enzymes produced by Porphyromonas gingivalis, may be candidates for an anti-P. gingivalis vaccine. The purpose of our study was to determine whether HRgpA and Kgp have opsonic target sites and whether these sites are available and accessible on intact P. gingivalis cells. Rabbits were used to generate polyclonal antibodies to both proteins. Animals were immunized and immunoglobulin G (IgG) fractions were isolated from preimmune and immune sera. Functional characteristics of the antibodies were assessed by determining antibody titers by enzyme-linked immunosorbent assay (ELISA), generating Western immunoblots, and measuring antibody enhancement of P. gingivalis opsonization, phagocytosis and killing by polymorphonuclear leukocytes (PMN) of intact cells of strains of P. gingivalis representative of the four serotypes. Strains studied included 33277 (serotype A), A7A1-28 (serotype B), W50 (serotype C) and 381 (serotype D). Both HRgpA and Kgp induced high titers of IgG antibody. Anti-HRgpA and anti-Kgp bound to both HRgpA and Kgp demonstrating a large proportion of shared antigenic epitopes. The two antibodies bound equally well to all four P. gingivalis serotypes with titers ranging from 77 to 205 ELISA units when compared to preimmune IgG set at 1 ELISA unit. The immunoblot patterns of binding of the two antibodies to HRgpA and Kgp and to sonicates of the four P. gingivalis serotypes were virtually identical. Both antibodies detected components in HRgpA at 27, 35 and 45 kDa and in Kgp at 27, 32, 35, 40 and 55 kDa. The antibodies also detected components at or near these same positions in addition to multiple high molecular mass components in the cell sonicates of P. gingivalis. Both proteins induced antibodies that significantly enhanced opsonization as assessed by chemiluminescence, with values ranging from 130 mV to 375 mV for anti-HRgpA IgG and from 240 mV to 475 mV for anti-Kgp IgG. Both antibodies significantly enhanced PMN-mediated bacterial killing of the four P. gingivalis serotypes, although the percentage of killing varied among the serotypes (24-81% for anti-HRgpA and 37-89% for anti-Kgp). Thus, both HRgpA and Kgp express opsonic target sites and induce high titers of antibodies that opsonize and enhance killing of all four serotypes of P. gingivalis. These two proteins appear to be potential candidate antigens for an anti-P. gingivalis vaccine.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Periodontics, School of Dentistry, University of Washington, Seattle 98195-7480, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This review article emphasizes the critical role of nonhuman primates (NHPs) in biomedical research. It focuses on the most recent contributions that NHPs have made to the understanding, treatment, and prevention of important infectious diseases (e.g., acquired immunodeficiency syndrome, hepatitis, malaria) and chronic degenerative disorders of the central nervous system (e.g., Parkinson's and Alzheimer's diseases). The close phylogenetic relation of NHPs to humans not only opens avenues for testing the safety and efficacy of new drugs and vaccines but also offers promise for evaluating the potential of new gene-based treatments for human infectious and genetic diseases.
Collapse
Affiliation(s)
- L R Sibal
- Foundation for Biomedical Research, Washington, D.C. USA
| | | |
Collapse
|
13
|
Fan Q, Sims TJ, Nakagawa T, Page RC. Antigenic cross-reactivity among Porphyromonas gingivalis serotypes. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:158-65. [PMID: 11154398 DOI: 10.1034/j.1399-302x.2000.150303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The goal of our research program is to develop a Porphyromonas gingivalis vaccine. Vaccine development requires identification of antigenic components shared by the many clonal types of P. gingivalis. The purpose of the present study was to evaluate the extent and nature of antigenic cross-reactivity among serotypes of P. gingivalis and to identify shared antigenic components. Strains selected to represent serotypes A-D were 33277, A7A1-28 W50 and 381, respectively. Using intact cells, antibodies were raised in rabbits. Titers were assessed by enzyme-linked immunosorbent assay (ELISA) using intact cells as antigen, Western blots were prepared and biologic activity was measured as opsonization (chemiluminescence expressed as mV) and enhancement of phagocytosis and killing by polymorphonuclear leukocytes. Extensive cross-reactivity that varied greatly among serotypes was observed by ELISA. The Western blots showed an even greater extent of cross-reactivity, with shared protein components at approximately 140, 130, 37, 32 and 28 kDa and a shared variable molecular mass smear considered to be lipopolysaccharide and other carbohydrate. Additional protein components at 110, 85, 35 and 20 kDa appeared to be shared by some but not all serotypes. In the functional assays, strains 33277 and 381 were equally well opsonized by anti-33277 and anti-381 (500-650 mV) but opsonized to a much lesser extent by anti-A7A1-28 and anti-W50 (roughly 125 mV and 350 mV respectively). A7A1-28 and W50 were opsonized by all four immune sera almost equally but to a much lower extent (roughly 400 mV and 250 mV respectively). Enhancement of phagocytosis and killing in the presence of active complement mirrored opsonization with the exception that 381 was reasonably well opsonized by anti-A7A1-28 (400 mV) and anti-W50 (350 mV), but poorly killed. The protein components at 140, 130, 37 and 28 kDa shared by all of the four serotypes appear to have potential as vaccine candidate antigens.
Collapse
Affiliation(s)
- Q Fan
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
14
|
Steffen MJ, Holt SC, Ebersole JL. Porphyromonas gingivalis induction of mediator and cytokine secretion by human gingival fibroblasts. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:172-80. [PMID: 11154400 DOI: 10.1034/j.1399-302x.2000.150305.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We hypothesized that bacterial viability and strain characteristics of Porphyromonas gingivalis could affect the induction of pro-inflammatory mediator secretion by human gingival fibroblast cultures. Both killed and viable P. gingivalis elicited production of prostaglandin E2, interleukin-1 beta (IL-1 beta), IL-6 and IL-8, although killed P. gingivalis induced generally higher levels, particularly IL-6 and IL-8, compared with the viable bacteria. P. gingivalis strains, which exhibited wild-type levels of trypsin-like protease activity, stimulated human gingival fibroblasts to secrete increased levels of prostaglandin E2 and IL-1 beta, although minimal levels of IL-6 and IL-8 were noted in supernatants from the gingival fibroblast cells. P. gingivalis strains BEI and NG4B19, which have either decreased or undetectable levels of trypsin-like protease, respectively, induced significantly greater IL-6 and IL-8 levels in gingival fibroblast cultures compared with the other strains. The ability of antibody to P. gingivalis to alter human gingival fibroblast production of pro-inflammatory mediators was tested using nonhuman primate antisera. Both immune and nonimmune sera altered the P. gingivalis-generated pattern of mediators from the gingival fibroblasts. We conclude that: (i) viable and killed P. gingivalis were capable of inducing various pro-inflammatory cytokines from human gingival fibroblasts; (ii) strain differences in cytokine induction were noted, and the expression of a trypsin-like protease activity was related to decreased extracellular levels of IL-6 and IL-8; and (iii) the presence of serum, particularly with specific antibody to P. gingivalis, significantly altered human gingival fibroblast cytokine production compared with P. gingivalis alone.
Collapse
Affiliation(s)
- M J Steffen
- Department of Periodontics, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78284, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- S C Holt
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Graduate School of Biomedical Sciences, USA
| | | | | | | |
Collapse
|
16
|
Houston LS, Lukehart SA, Persson GR, Page RC. Function of anti-Porphyromonas gingivalis immunoglobulin classes in immunized Macaca fascicularis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:86-91. [PMID: 10219166 DOI: 10.1034/j.1399-302x.1999.140202.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously reported that Macaca fascicularis immunized with formalin-killed Porphyromonas gingivalis were protected against the bone loss of periodontitis. To examine mechanisms of protection, we determined specific immunoglobulin G (IgG), IgM and IgA titers and opsonic capacities of sera from immunized and control animals. Serum IgG and IgA titers to P. gingivalis appeared early and persisted throughout the 36-week observation period. IgM titers were elevated until 6 to 12 weeks and then decreased through week 36. A significant association was observed between peak IgM titers prior to ligature placement and protection against bone loss (measured at week 30). In control monkeys, no significant IgG, IgA or IgM titers were seen. In sera from immunized animals, significant opsonic capacity was seen by 6-12 weeks and persisted throughout the study. In contrast, control sera showed only low opsonization capacity. Anti P. gingivalis antibody titers in purified IgG, IgA and IgM fractions were determined by enzyme-linked immunosorbent assay, and opsonic activity was demonstrated only in the IgG fraction.
Collapse
Affiliation(s)
- L S Houston
- Department of Periodontics, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Porphyromonas gingivalis is one of the principal pathogens in the development of adult periodontitis. Several different animal models have been used to evaluate the complex interactions between P. gingivalis and the host and these have been an important research tool for studying the pathogenesis of P. gingivalis-mediated periodontal diseases.
Collapse
Affiliation(s)
- C A Genco
- Dept of Medicine, Boston University School of Medicine, MA 02118-2393, USA.
| | | | | |
Collapse
|
18
|
Moritz AJ, Cappelli D, Lantz MS, Holt SC, Ebersole JL. Immunization with Porphyromonas gingivalis cysteine protease: effects on experimental gingivitis and ligature-induced periodontitis in Macaca fascicularis. J Periodontol 1998; 69:686-97. [PMID: 9660338 DOI: 10.1902/jop.1998.69.6.686] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeting bacterial virulence factors such as proteases for immunization may hold the key to limiting or preventing loss of attachment and alveolar bone in periodontal disease. This study examined the clinical, microbiological, and immununological responses following active immunization with a purified Porphyromonas gingivalis cysteine protease (porphypain-2) in the nonhuman primate (Nhp) Macaca fascicularis. One group of Nhp was immunized with porphypain-2 antigen while control Nhp received placebo injections. All Nhp were subjected to experimental gingivitis followed by ligature-induced periodontitis in a split-mouth design. An enzyme-linked immunosorbent assay demonstrated that immunization elicited a significantly elevated and specific IgG antibody response to both whole cell P. gingivalis (36-fold) and to porphypain-2 (194-fold). Checkerboard hybridization DNA analysis of subgingival plaque from ligated sextants demonstrated that 25% more Gram-negative anaerobic species became significantly elevated from baseline and at earlier timepoints in the control group than in the immununized group. Immunization with this protease did not suppress the emergence of P. gingivalis. Clinical indices showed few changes related to immunization. Alveolar bone density changes demonstrated a highly significant loss in ligated sextants compared to non-ligated sextants within the control group (P < 0.001), and a smaller but significant difference within the immunized group (P = 0.043). Comparison of ligated sextants only demonstrated more bone loss in the control group versus the immunized group (-13.07+/-9.51 versus -9.41+/-6.18; computer-assisted densitometric image analysis units +/- SD); the difference approached, but did not reach, significance. The results suggest that porphypain-2 may contribute to the pathogenic potential of the subgingival plaque microbiota in the Nhp model of ligature-induced periodontitis, and that active immunization with porphypain-2 appeared capable of altering this pathogenic response.
Collapse
Affiliation(s)
- A J Moritz
- Department of Periodontics, The University of Texas Health Science Center, and Wilford Hall Medical Center, Lackland Air Force Base, San Antonio 78284, USA
| | | | | | | | | |
Collapse
|
19
|
Bowden GH, Hamilton IR. Survival of oral bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:54-85. [PMID: 9488248 DOI: 10.1177/10454411980090010401] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global distribution of individual species of oral bacteria demonstrates their ability to survive among their human hosts. Such an ubiquitous existence is the result of efficient transmission of strains and their persistence in the oral environment. Genetic analysis has identified specific clones of pathogenic bacteria causing infection. Presumably, these express virulence-associated characteristics enhancing colonization and survival in their hosts. A similar situation may occur with the oral resident flora, where genetic variants may express specific phenotypic characteristics related to survival. Survival in the mouth is enhanced by dental plaque formation, where persistence is associated with the bacteria's capacity not only to adhere and grow, but also to withstand oxygen, wide fluctuations in pH and carbohydrate concentration, and a diverse array of microbial interactions. Streptococcus mutans has been discussed as a 'model' organism possessing the biochemical flexibility that permits it to persist and dominate the indigenous microflora under conditions of stress.
Collapse
Affiliation(s)
- G H Bowden
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
20
|
Ebersole JL, Bauman GR, Cox O'Dell SE, Giardino A. Evidence for serum immunoglobulin G (IgG) antibody responses in Macaca fascicularis identified by monoclonal antibodies to human IgG subclasses. ORAL MICROBIOLOGY AND IMMUNOLOGY 1997; 12:193-203. [PMID: 9467387 DOI: 10.1111/j.1399-302x.1997.tb00379.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This investigation determined the capacity of murine monoclonal antibodies directed to human immunoglobulin G (IgG) subclasses to identify molecules with conserved epitopes in the serum of the nonhuman primate, Macaca fascicularis. We subsequently utilized this cross-reactivity to document the characteristics of IgG subclass antibody responses in M. fascicularis to parenteral immunization with intact oral microorganisms, antigens from oral microorganisms, and finally a defined protein toxin, tetanus toxoid. The IgG response in nonhuman primates immunized with tetanus toxoid showed a 40-fold and 110-fold increase after primary and secondary immunizations, respectively. The major IgG subclass responses were IgG1 and IgG3, with little, though significant, responses in the IgG4 and IgG2 subclasses. Seventy-five to 94% of the natural IgG antibody in nonhuman primate sera to Porphyromonas gingivalis, Prevotella intermedia and Campylobacter rectus was IgG1. IgG2 and IgG3 predominated to Bacteroides fragilis, IgG4 to Actinomyces viscosus and an equal distribution among the subclasses was noted in response to Fusobacterium nucleatum. Parenteral immunization of nonhuman primates with intact P. gingivalis elicited primarily IgG3 and IgG4, while the post-immunization IgG response to P. intermedia was largely IgG1. Nonhuman primates were also parenterally immunized with cell envelope antigens of P. gingivalis, P. intermedia, or a combination of cell envelope antigen from C. rectus and F. nucleatum and cell wall antigens of A. viscosus. The greatest IgG antibody response seen post-immunization was reactive with anti-human IgG1 for all of these antigens except to C. rectus which bound nonhuman primate antibody reactive with anti-human IgG2. It appears that the bacteria and their products exhibit unique differences in their induction of serum IgG subclass antibody responses. The characteristics of their immunogenicity as detected by the nonhuman primate may contribute to the ability of the immune responses to effectively interact with these pathogens.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Periodontics, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | | | |
Collapse
|
21
|
Cox SE, Holt SC, Ebersole JL. Characteristics of systemic antibody responses of nonhuman primates to cell envelope and cell wall antigens from periodontal pathogens. ORAL MICROBIOLOGY AND IMMUNOLOGY 1997; 12:204-11. [PMID: 9467388 DOI: 10.1111/j.1399-302x.1997.tb00380.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune response of the primate, Macaca fascicularis, to cell envelope (CEA) or cell wall (CWA) antigens of several periodontal pathogens was examined to develop a strategy to interfere with ligature-induced periodontitis. Animals were parenterally immunized with CEA of either Porphyromonas gingivalis, Prevotella intermedia or a combination of CEA/CWA of Campylobacter rectus, Fusobacterium nucleatum and Actinomyces viscosus. Serum samples were taken every 2-4 weeks over a 4-month period, which included a 13-week interval with molar teeth ligated. All of the nonhuman primates in the study exhibited baseline levels of IgG, IgM and IgA antibody to formalinized whole cells of the bacteria. These levels increased significantly following immunization and were elevated above baseline throughout the remainder of the experiment. The largest change in antibody responses was seen in IgA antibody levels of P. gingivalis and C. rectus (42-fold above baseline), IgM antibody to P. intermedia, (41-fold increase) and IgG antibody to F. nucleatum and A. viscosus (32 and 63-fold increases). Moreover, the nonhuman primates exhibited differences in isotype response levels to whole microorganisms compared with the cell envelope antigens. These findings demonstrate the capacity of these nonhuman primates to produce an active immune response to microorganisms chronically colonizing the subgingival microbiota. Additionally, it appears that the bacteria may exhibit some unique differences in their immunogenicity as detected by the nonhuman primate and may contribute to the ability of the immune responses to effectively interact with these pathogens.
Collapse
Affiliation(s)
- S E Cox
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | |
Collapse
|