1
|
Liang P, Zeng Y, Ning J, Wu X, Wang W, Ren J, Wu Q, Yang X, Wang S, Guo Z, Su Q, Zhou X, Turlings TCJ, Xie W, Zhang Y. A plant virus manipulates both its host plant and the insect that facilitates its transmission. SCIENCE ADVANCES 2025; 11:eadr4563. [PMID: 40020061 PMCID: PMC11870061 DOI: 10.1126/sciadv.adr4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a devastating pathogen of tomato crops, is vectored by the whitefly Bemisia tabaci, yet the mechanisms underlying TYLVC epidemics are poorly understood. We found that TYLCV triggers the up-regulation of two β-myrcene biosynthesis genes in tomato, leading to the attraction of nonviruliferous B. tabaci. We also identified BtMEDOR6 as a key whitefly olfactory receptor of β-myrcene involved in the distinct preference of B. tabaci MED for TYLCV-infected plants. TYLCV inhibits the expression of BtMEDOR6, canceling this preference and thereby facilitating TYLCV transmission to uninfected plants. Greenhouse experiments corroborated the role of β-myrcene in whitefly attraction. These findings reveal a sophisticated viral strategy whereby TYLCV modulates both host plant attractiveness and vector olfactory perception to enhance its spread.
Collapse
Affiliation(s)
- Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yang Zeng
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Jie Ning
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojie Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenlu Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Ren
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801-3795, USA
| | - Ted C. J. Turlings
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou 475004, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Chen S, Jing S, Ye M, Feng Y, Xu Y, Lin N, Kuai P, Turlings TCJ, Lou Y. A phytocytokine and its derived peptides in the frass of an insect elicit rice defenses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39878192 DOI: 10.1111/jipb.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
Upon recognizing elicitors derived from herbivores, many plants activate specific defenses. Most of the elicitors identified thus far are from the oral secretions and egg-laying fluids of herbivores; in contrast, herbivore fecal excreta have been sparsely studied in this context. In this study, we identified elicitors in the frass of the striped stem borer (SSB; Chilo suppressalis) larvae using a combination of molecular and chemical analyses, bioactivity tests and insect performance bioassays. Treating rice plants with SSB frass or a solution composed of SSB frass and buffer elicited mitogen-activated protein kinase (MPK) cascades and the jasmonic acid (JA)-signaling pathway. Moreover, the treatment induced both the expression of defense-related genes and the production of defensive compounds, and enhanced the resistance of rice plants to SSB. Heating SSB frass solution did not affect its induction activity, but eliminating proteins and peptides from the solution by adding proteinase K impaired its activity. Additional chemical analyses and bioassays revealed that the rice phytocytokine, immune response peptide 1(IRP1), together with some of its derived peptides in SSB frass, induced the MPK cascades, JA biosynthesis, the expression of defense genes and the production of defensive compounds in rice. These results reveal an important role for the plant-derived fecal peptide phytocytokine IRP1 and some of its derived peptides in inducing defenses in rice against SSB.
Collapse
Affiliation(s)
- Shuting Chen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyun Jing
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yubing Feng
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yayun Xu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Na Lin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
3
|
Zhao Y, Wang Y. Protein Dynamics in Plant Immunity: Insights into Plant-Pest Interactions. Int J Mol Sci 2024; 25:12951. [PMID: 39684662 DOI: 10.3390/ijms252312951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
All living organisms regulate biological activities by proteins. When plants encounter pest invasions, the delicate balance between protein synthesis and degradation becomes even more pivotal for mounting an effective defense response. In this review, we summarize the mechanisms by which plants regulate their proteins to effectively coordinate immune responses during plant-pest interactions. Additionally, we discuss the main pathway proteins through which pest effectors manipulate host protein homeostasis in plants to facilitate their infestation. Understanding these processes at the molecular level not only deepens our knowledge of plant immunity but also holds the potential to inform strategies for developing pest-resistant crops, contributing to sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanru Wang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Deng Q, Zhang X, Chen H, Hao M, Li R, Lou Y, Lu J. The jasmonate pathway and water loss in rice leaves induced by a stem-borer inhibit leaf-feeder growth. PLANT, CELL & ENVIRONMENT 2024; 47:4416-4431. [PMID: 39007434 DOI: 10.1111/pce.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Plant-mediated interactions between herbivores play an important role in regulating the composition of herbivore community. The fall armyworm (FAW), Spodoptera frugiperda, which has become one of the most serious pests on corn in China since it invaded in 2018, has been found feeding rice in the field. However, how FAW interacts with native rice insect pests remains largely unknown. Here, we investigated the interaction between FAW and a resident herbivore, striped stem borer (SSB, Chilo suppressalis) on rice. The infestation of rice leaf sheaths (LSs) by SSB larvae systemically enhanced the level of jasmonic acid (JA), abscisic acid (ABA), and trypsin proteinase inhibitors (TPIs), reduced relative water content (RWC) in leaf blades (LBs), and suppressed the growth of FAW larvae. In contrast, because FAW larvae infested LBs and did not affect defence responses in LSs, they did not influence the performance of SSB larvae. Using different mutants, together with bioassays and chemical analysis, we revealed that SSB-induced suppression of FAW larvae growth depended on both the SSB-activated JA pathway and RWC in LBs, whereas the ABA pathway activated by SSB larvae promoted the growth of FAW larvae by impeding water loss. These results provide new insights into mechanisms underlying plant-mediated interactions between herbivores.
Collapse
Affiliation(s)
- Qinyu Deng
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohan Zhang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Chen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengqi Hao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Xiang X, Liu S, He Y, Li D, Ofori AD, Ghani Kandhro A, Zheng T, Yi X, Li P, Huang F, Zheng A. Genome wide association study reveals new genes for resistance to striped stem borer in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1466857. [PMID: 39345976 PMCID: PMC11427250 DOI: 10.3389/fpls.2024.1466857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Rice is one of the most important food crops in the world and is important for global food security. However, damage caused by striped stem borer (SSB) seriously threatens rice production and can cause significant yield losses. The development and use of resistant rice varieties or genes is currently the most effective strategy for controlling SSB. We genotyped 201 rice samples using 2849855 high-confidence single nucleotide polymorphisms (SNPs). We conducted a genome-wide association study (GWAS) based on observed variation data of 201 rice cultivars resistant to SSB. We obtained a quantitative trait locus (QTL)-qRSSB4 that confers resistance to SSB. Through annotation and analysis of genes within the qRSSB4 locus, as well as qRT-PCR detection in resistant rice cultivars, we ultimately selected the candidate gene LOC_Os04g34140 (named OsRSSB4) for further analysis. Next, we overexpressed the candidate gene OsRSSB4 in Nipponbare through transgenic methods, resulting in OsRSSB4 overexpressing lines (OsRSSB4OE). In addition, we evaluated the insect resistance of OsRSSB4OE lines using wild type (Nipponbare) as a control. The bioassay experiment results of live plants showed that after 20 days of inoculation with SSB, the withering heart rate of OsRSSB4OE-34 and OsRSSB4OE-39 lines was only 8.3% and 0%, with resistance levels of 1 and 0, respectively; however, the withering heart rate of the wild-type reached 100%, with a resistance level of 9. The results of the in vitro stem bioassay showed that, compared with the wild-type, the average corrected mortality rate of the SSB fed on the OsRSSB4OE line reached 94.3%, and the resistance reached a high level. In summary, we preliminarily confirmed that OsRSSB4 positively regulates the defense of rice against SSB. This research findings reveal new SSB resistance gene resources, providing an important genetic basis for SSB resistance breeding in rice crops.
Collapse
Affiliation(s)
- Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shuhua Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuewen He
- Guangan Vocational & Technical College, Guangan, China
| | - Deqiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqun Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Chen J, Liu Q, Yuan L, Shen W, Shi Q, Qi G, Chen T, Zhang Z. Osa-miR162a Enhances the Resistance to the Brown Planthopper via α-Linolenic Acid Metabolism in Rice ( Oryza sativa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11847-11859. [PMID: 37493591 DOI: 10.1021/acs.jafc.3c02637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The brown planthopper (BPH) is the most serious pest causing yield losses in rice. MicroRNAs (miRNAs) are emerging as key modulators of plant-pest interactions. In the study, we found that osa-miR162a is induced in response to BPH attack in the seedling stage and tunes rice resistance to the BPH via the α-linolenic acid metabolism pathway as indicated by gas chromatography/liquid chromatography-mass spectrometry analysis. Overexpression of osa-miR162a inhibited the development and growth of the BPH and simultaneously reduced the release of 3-hexenal and 3-hexen-1-ol to block host recognition in the BPH. Moreover, knockdown of OsDCL1, which is targeted by osa-miR162a, inhibited α-linolenic acid metabolism to enhance the resistance to the BPH, which was similar to that in miR162a-overexpressing plants. Our study revealed a novel defense mechanism mediated by plant miRNAs developed during the long-term evolution of plant-host interaction, provided new ideas for the identification of rice resistance resources, and promoted a better understanding of pest control.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qin Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Longyu Yuan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Wenzhong Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research Institute, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Zhenfei Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| |
Collapse
|
7
|
Zhao M, Guo Y, Sun H, Dai J, Peng X, Wu X, Yun H, Zhang L, Qian Y, Li X, He G, Zhang C. Lesion mimic mutant 8 balances disease resistance and growth in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1189926. [PMID: 37342136 PMCID: PMC10278592 DOI: 10.3389/fpls.2023.1189926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Lesion-mimic mutants (LMM) spontaneously produce necrotic spots, a process not affected by environmental stress or pathogen infection. In this study, we identified a LMM, lesion mimic mutant 8 (lmm8) in rice (Oryza sativa). The lmm8 mutant produces brown and off-white lesions on its leaves during the second- and third-leaf stages. The lesion mimic phenotype of the lmm8 mutant was enhanced by light. At the mature stage, lmm8 mutant are shorter and exhibit inferior agronomic traits than the wild type. Contents of photosynthetic pigments and chloroplast fluorescence were significantly reduced in lmm8 leaves, along with increased production of reactive oxygen species and programmed cell death compared to the wild type. The mutated gene was identified as LMM8 (LOC_Os01g18320) by map-based cloning. A point mutation occurred in LMM8, causing a Leu to Arg mutation of the 146th amino acid of LMM8. It is an allele of SPRL1, encoding a protoporphyrinogen IX oxidase (PPOX) located in chloroplasts and involved in the biosynthesis of tetrapyrrole in chloroplasts. The lmm8 mutant showed enhanced resistance and broad-spectrum resistance. Together, our results demonstrate the importance of rice LMM8 protein in defense responses and plant growth in rice, and provides theoretical support for resistance breeding to improve rice yield.
Collapse
|
8
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
9
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|
10
|
Li D, Zhou J, Zheng C, Zheng E, Liang W, Tan X, Xu R, Yan C, Yang Y, Yi K, Liu X, Chen J, Wang X. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. PLANT, CELL & ENVIRONMENT 2022; 45:1584-1602. [PMID: 35141931 DOI: 10.1111/pce.14288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Many TGA transcription factors participate in immune responses in the SA-mediated signaling pathway in Arabidopsis. This study identified a transcription factor OsTGAL1, which is induced upon infection by Xoo. Overexpression of OsTGAL1 increased the susceptibility of rice to Xoo. Plants overexpressing OsTGAL1 could affect the expression of many SA signaling-related genes. OsTGAL1 was able to interact with the promoter of OsSGT1, which encodes a key enzyme for SA metabolism. The transcript of OsSGT1 was induced by Xoo and this responsive expression was further increased in plants overexpressing OsTGAL1. OsSGT1 knockout lines had enhanced resistance to Xoo, and knocking out OsSGT1 in plants overexpressing OsTGAL1 blocked the susceptibility caused by OsTGAL1. Altered expression levels of several OsPRs in all the transgenic plants demonstrated that SA-mediated signaling had been affected. Furthermore, we identified an oxidoreductase of CC-type glutaredoxin, OsGRX17, which interacted with OsTGAL1. OsGRX17 reduced the regulation of OsTGAL1 on OsSGT1, and this may be due to its redox modulation. Thus, our results demonstrate that OsTGAL1 negatively regulates resistance to Xoo by its effects on SA metabolism via the activation of OsSGT1, which provides valuable targets for plant breeders in developing new cultivars that are resistant to Xoo.
Collapse
Affiliation(s)
- Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ersong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaojing Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rumeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Keke Yi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Shimizu K, Suzuki H, Uemura T, Nozawa A, Desaki Y, Hoshino R, Yoshida A, Abe H, Nishiyama M, Nishiyama C, Sawasaki T, Arimura GI. Immune gene activation by NPR and TGA transcriptional regulators in the model monocot Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:470-481. [PMID: 35061931 DOI: 10.1111/tpj.15681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.
Collapse
Affiliation(s)
- Kohei Shimizu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hitomi Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoshitake Desaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryosuke Hoshino
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ayako Yoshida
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Center, Tsukuba, Japan
| | - Makoto Nishiyama
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
12
|
Moon H, Jeong AR, Kwon OK, Park CJ. Oryza-Specific Orphan Protein Triggers Enhanced Resistance to Xanthomonas oryzae pv. oryzae in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:859375. [PMID: 35360326 PMCID: PMC8961030 DOI: 10.3389/fpls.2022.859375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
All genomes carry lineage-specific orphan genes lacking homology in their closely related species. Identification and functional study of the orphan genes is fundamentally important for understanding lineage-specific adaptations including acquirement of resistance to pathogens. However, most orphan genes are of unknown function due to the difficulties in studying them using helpful comparative genomics. Here, we present a defense-related Oryza-specific orphan gene, Xio1, specifically induced by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) in an immune receptor XA21-dependent manner. Salicylic acid (SA) and ethephon (ET) also induced its expression, but methyl jasmonic acid (MeJA) reduced its basal expression. C-terminal green fluorescent protein (GFP) tagged Xio1 (Xio1-GFP) was visualized in the nucleus and the cytosol after polyethylene glycol (PEG)-mediated transformation in rice protoplasts and Agrobacterium-mediated infiltration in tobacco leaves. Transgenic rice plants overexpressing Xio1-GFP showed significantly enhanced resistance to Xoo with reduced lesion lengths and bacterial growth, in company with constitutive expression of defense-related genes. However, all of the transgenic plants displayed severe growth retardation and premature death. Reactive oxygen species (ROS) was significantly produced in rice protoplasts constitutively expressing Xio1-GFP. Overexpression of Xio1-GFP in non-Oryza plant species, Arabidopsis thaliana, failed to induce growth retardation and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. Our results suggest that the defense-related orphan gene Xio1 plays an important role in distinctive mechanisms evolved within the Oryza and provides a new source of Oryza-specific genes for crop-breeding programs.
Collapse
Affiliation(s)
- Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - A-Ram Jeong
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Oh-Kyu Kwon
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Chang-Jin Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| |
Collapse
|
13
|
Biological Efficacy of Cochlioquinone-9, a Natural Plant Defense Compound for White-Backed Planthopper Control in Rice. BIOLOGY 2021; 10:biology10121273. [PMID: 34943188 PMCID: PMC8698586 DOI: 10.3390/biology10121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary This study investigated the biological efficacy of cochlioquinone-9 (cq-9), a plant secondary metabolite, for controlling white-backed planthopper (WBPH) and compared the gene expression levels following cq-9 treatment. The results show that cq-9 enhances plant growth against WBPH and is associated with aromatic amino acid-related plant defense genes. This demonstrates the potential of cq-9 to replace chemical pesticides and suggests a new method for controlling WBPH. Abstract Rice is exposed to various biotic stresses in the natural environment. The white-backed planthopper (Sogatella furcifera, WBPH) is a pest that causes loss of rice yield and threatens the global food supply. In most cases, pesticides are used to control WBPH. However, excessive use of pesticides increases pesticide resistance to pests and causes environmental pollution. Therefore, it is necessary to develop natural product-based pesticides to control WBPH. Plants produce a variety of secondary metabolites for protection. Secondary metabolites act as a defense against pathogens and pests and are valuable as pesticides and breeding materials. Cochlioquinone is a secondary metabolite that exhibits various biological activities, has a negative effect on the growth and development of insects, and contributes to plant defense. Here, we compared plant growth after treatment with cochlioquinone-9 (cq-9), a quinone family member. cq-9 improved the ability of plants to resist WBPH and had an effect on plant growth. Gene expression analysis revealed that cq-9 interacts with various defense-related genes to confer resistance to WBPH, suggesting that it is related to flavonoid compounds. Overall, this study provides insight into the mechanisms of WBPH resistance and suggests that cq-9 represents an environmentally friendly agent for WBPH control.
Collapse
|
14
|
Zhang Y, Chen M, Zhou S, Lou Y, Lu J. Silencing an E3 Ubiquitin Ligase Gene OsJMJ715 Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways. Int J Mol Sci 2021; 22:13020. [PMID: 34884830 PMCID: PMC8657654 DOI: 10.3390/ijms222313020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The RING-type E3 ubiquitin ligases play an important role in plant growth, development, and defense responses to abiotic stresses and pathogens. However, their roles in the resistance of plants to herbivorous insects remain largely unknown. In this study, we isolated the rice gene OsJMJ715, which encodes a RING-domain containing protein, and investigated its role in rice resistance to brown planthopper (BPH, Nilaparvata lugens). OsJMJ715 is a nucleus-localized E3 ligase whose mRNA levels were upregulated by the infestation of gravid BPH females, mechanical wounding, and treatment with JA or ABA. Silencing OsJMJ715 enhanced BPH-elicited levels of ABA, JA, and JA-Ile as well as the amount of callose deposition in plants, which in turn increased the resistance of rice to BPH by reducing the feeding of BPH and the hatching rate of BPH eggs. These findings suggest that OsJMJ715 negative regulates the BPH-induced biosynthesis of ABA, JA, and JA-Ile and that BPH benefits by enhancing the expression of OsJMJ715.
Collapse
Affiliation(s)
- Yuebai Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuxing Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann AA, Zhu-Salzman K, Fang J. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. THE NEW PHYTOLOGIST 2021; 232:802-817. [PMID: 34260062 DOI: 10.1111/nph.17620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Shiying Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jiafei Ju
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| |
Collapse
|
16
|
Wang A, Shu X, Jing X, Jiao C, Chen L, Zhang J, Ma L, Jiang Y, Yamamoto N, Li S, Deng Q, Wang S, Zhu J, Liang Y, Zou T, Liu H, Wang L, Huang Y, Li P, Zheng A. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1553-1566. [PMID: 33600077 PMCID: PMC8384605 DOI: 10.1111/pbi.13569] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Rice sheath blight (RSB) is an economically significant disease affecting rice yield worldwide. Genetic resistance to RSB is associated with multiple minor genes, with each providing a minor phenotypic effect, but the underlying dominant resistance genes remain unknown. A genome-wide association study (GWAS) of 259 diverse rice varieties, with genotypes based on a single nucleotide polymorphism (SNP) and haplotype, was conducted to assess their sheath blight reactions at three developmental stages (seedlings, tillering and booting). A total of 653 genes were correlated with sheath blight resistance, of which the disease resistance protein RPM1 (OsRSR1) and protein kinase domain-containing protein (OsRLCK5) were validated by overexpression and knockdown assays. We further found that the coiled-coil (CC) domain of OsRSR1 (OsRSR1-CC) and full-length OsRLCK5 interacted with serine hydroxymethyltransferase 1 (OsSHM1) and glutaredoxin (OsGRX20), respectively. It was found that OsSHM1, which has a role in the reactive oxygen species (ROS) burst, and OsGRX20 enhanced the antioxidation ability of plants. A regulation model of the new RSB resistance though the glutathione (GSH)-ascorbic acid (AsA) antioxidant system was therefore revealed. These results enhance our understanding of RSB resistance mechanisms and provide better gene resources for the breeding of disease resistance in rice.
Collapse
Affiliation(s)
- Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Xinyue Shu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Xin Jing
- Novogene Bioinformatics InstituteBeijingChina
| | | | - Lei Chen
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Jinfeng Zhang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Li Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Yuqi Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Naoki Yamamoto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaChengduChina
- Rice Research Institute of Sichuan Agricultural UniversityChengduChina
- Key laboratory of Sichuan Crop Major DiseaseSichuan Agricultural UniversityChengduChina
| |
Collapse
|
17
|
Xu J, Wang X, Zu H, Zeng X, Baldwin IT, Lou Y, Li R. Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore. THE NEW PHYTOLOGIST 2021; 230:1639-1652. [PMID: 33533489 DOI: 10.1111/nph.17251] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Phytohormone, particularly jasmonate (JA) and salicylate (SA) signaling, plays a central role in plant responses to herbivore and pathogen attack. Generally, SA mediates resistance responses against biotrophic pathogens and phloem-feeding insects, while JA mediates responses against necrotrophic pathogens and chewing insects. The phytohormonal responses mediating rice resistance to a piercing-sucking herbivore, the brown planthopper (BPH), remains unknown. Here, we combined transcriptome analysis, hormone measurements, genetic analysis and a field study to address this issue. Infestation by BPH adult females resulted in significant transcriptional reprograming. The upregulated genes were enriched in the JA signaling pathway. Consistently, the concentrations of JAs, but not SA, were dramatically increased in response to BPH attack. Two JA-deficient lines (AOC and MYC2 knockout) and two SA-deficient lines (nahG overexpression and NPR1 knockout) were constructed. BPH performed better on JA-deficient lines than on wild-type (WT) plants, but similarly on SA-deficient and WT plants. During BPH attack, the accumulation of defensive secondary metabolites was attenuated in JA-deficient lines compared with WT plants. Moreover, MYC2 mutants were more susceptible to planthoppers than WT plants in nature. This study reveals that JA signaling functions in rice defense against BPH.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinjue Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyue Zu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Meng F, Yang C, Cao J, Chen H, Pang J, Zhao Q, Wang Z, Qing Fu Z, Liu J. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1552-1573. [PMID: 32129570 DOI: 10.1111/jipb.12922] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Crosstalk between plant hormone signaling pathways is vital for controlling the immune response during pathogen invasion. Salicylic acid (SA) and jasmonic acid (JA) often play important but antagonistic roles in the immune responses of higher plants. Here, we identify a basic helix-loop-helix transcription activator, OsbHLH6, which confers disease resistance in rice by regulating SA and JA signaling via nucleo-cytosolic trafficking in rice (Oryza sativa). OsbHLH6 expression was upregulated during Magnaporthe oryzae infection. Transgenic rice plants overexpressing OsbHLH6 display increased JA responsive gene expression and enhanced disease susceptibility to the pathogen. Nucleus-localized OsbHLH6 activates JA signaling and suppresses SA signaling; however, the SA regulator OsNPR1 (Nonexpressor of PR genes 1) sequesters OsbHLH6 in the cytosol to alleviate its effect. Our data suggest that OsbHLH6 controls disease resistance by dynamically regulating SA and JA signaling.
Collapse
Affiliation(s)
- Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jidong Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Chen
- Department of Biological Science, University of South Carolina, Columbia, SC, 29028, USA
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiqi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Inner Mongolia, Hohhot, 010021, China
| | - Zongyi Wang
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, 102206, China
| | - Zheng Qing Fu
- Department of Biological Science, University of South Carolina, Columbia, SC, 29028, USA
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Wang Z, Ma LY, Li X, Zhao FY, Sarwar R, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. PLANT CELL REPORTS 2020; 39:709-722. [PMID: 32140767 DOI: 10.1007/s00299-020-02525-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The BnaNPR1-like gene family was identified in B. napus, and it was revealed that repression of BnaNPR1 significantly reduces resistance toS. sclerotiorum, intensifies ROS accumulation, and changes the expression of genes associated with SA and JA/ET signaling in response to this pathogen. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) and related NPR1-like genes play an important role in regulating plant defense. Oilseed rape (Brassica napus L.) is an important oilseed crop; however, little is known about the B. napus (Bna) NPR1-like gene family. Here, a total of 19 BnaNPR1-like genes were identified in the B. napus genome, and then named according to their respective best match in Arabidopsis thaliana (At), which led to the determination of B. napus homologs of every AtNPR1-like gene. Analysis of important protein domains and functional motifs indicated the conservation and variation among these homologs. Phylogenetic analysis of these BnaNPR1-like proteins and their Arabidopsis homologs revealed six distinct sub-clades, consequently indicating that their name classification totally conformed to their phylogenetic relationships. Further, B. napus transcriptomic data showed that the expression of three BnaNPR1s was significantly down-regulated in response to infection with Sclerotinia sclerotiorum, the most important pathogen of this crop, whereas BnaNPR2/3/4/5/6s did not show the expression differences in general. Further, we generated B. napus BnaNPR1-RNAi lines to interpret the effect of the down-regulated expression of BnaNPR1s on resistance to S. sclerotiorum. The results showed that BnaNPR1-RNAi significantly decreased this resistance. Further experiments revealed that BnaNPR1-RNAi intensified ROS production and changed defense responses in the interaction of plants with this pathogen. These results indicated that S. sclerotiorum might use BnaNPR1 to regulate specific physiological processes of B. napus, such as ROS production and SA defense response, for the infection.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Lu-Yue Ma
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Xiao Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Feng-Yun Zhao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Rehman Sarwar
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Li-Na Ding
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Yan-Hua Yang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
20
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
21
|
Jiang G, Yin D, Shi Y, Zhou Z, Li C, Liu P, Jia Y, Wang Y, Liu Z, Yu M, Wu X, Zhai W, Zhu L. OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight. Sci Rep 2020; 10:6313. [PMID: 32286394 PMCID: PMC7156675 DOI: 10.1038/s41598-020-63059-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Salicylic acid (SA) is a key natural component that mediates local and systemic resistance to pathogens in many dicotyledonous species. However, its function is controversial in disease resistance in rice plants. Here, we show that the SA signaling is involved in both pathogen-associated-molecular-patterns triggered immunity (PTI) and effector triggered immunity (ETI) to Xanthomonas oryzae pv. Oryzae (Xoo) mediated by the recessive gene xa5, in which OsNPR3.3 plays an important role through interacting with TGAL11. Rice plants containing homozygous xa5 gene respond positively to exogenous SA, and their endogenous SA levels are also especially induced upon infection by the Xoo strain, PXO86. Depletion of endogenous SA can significantly attenuate plant resistance to PXO86, even to 86∆HrpXG (mutant PXO86 with a damaged type III secretion system). These results indicated that SA plays an important role in disease resistance in rice plants, which can be clouded by high levels of endogenous SA and the use of particular rice varieties.
Collapse
Affiliation(s)
- Guanghuai Jiang
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Shi
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunrong Li
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengcheng Liu
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanfeng Jia
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyan Wang
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenzhen Liu
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minxiang Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianghong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxue Zhai
- Center for Molecular Agrobiology,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
22
|
Nguyen TH, Mai HTT, Moukouanga D, Lebrun M, Bellafiore S, Champion A. CRISPR/Cas9-Mediated Gene Editing of the Jasmonate Biosynthesis OsAOC Gene in Rice. Methods Mol Biol 2020; 2085:199-209. [PMID: 31734927 DOI: 10.1007/978-1-0716-0142-6_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The function of Jasmonate (JA) is well documented in different plant physiological processes as well as in the interactions with their environment. Mutants impaired in JA production and/or signaling are useful materials to study the function of this phytohormone. Genes involved in the JA biosynthesis pathway in rice have been described, but few mutants deficient in JA production and signaling have been identified. Moreover, these mutants are mostly generated through random mutagenesis approaches, such as irradiation, EMS treatment, or T-DNA insertion, and potentially harbor undesired mutations that could affect other biological processes. The CRISPR/Cas9 system is a precise and efficient genome editing tool that creates DNA modification at specific loci and limit undesired mutations.In this chapter, we describe a procedure to generate new JA-deficient mutant using CRISPR/Cas9 system in rice. The Allene Oxide Cyclase (OsAOC) gene is targeted since it is a single copy gene in the JA biosynthesis pathway in rice. The widely used variety Oryza sativa japonica Kitaake has been chosen due to its short life cycle and its ease of genetic transformation. This protocol describes the selection of the 20-nt target sequence, construction of the binary vector, and strategy for selecting the T-DNA-free mutant.
Collapse
Affiliation(s)
- Trang Hieu Nguyen
- Institut de Recherche pour le Developpement (IRD), Cirad, Universite fe Montpellier, DIADE, Montpellier, France
| | - Huong To Thi Mai
- Vietnam Academy of Science and Technology (VAST), LMI-RICE2, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam
| | - Daniel Moukouanga
- Institut de Recherche pour le Developpement (IRD), Cirad, Universite fe Montpellier, DIADE, Montpellier, France
| | - Michel Lebrun
- Institut de Recherche pour le Developpement (IRD), Cirad, Universite fe Montpellier, DIADE, Montpellier, France
- Vietnam Academy of Science and Technology (VAST), LMI-RICE2, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam
- IRD, Cirad, Univ Montpellier, LSTM, Montpellier, France
| | | | | |
Collapse
|
23
|
Jasmonates-the Master Regulator of Rice Development, Adaptation and Defense. PLANTS 2019; 8:plants8090339. [PMID: 31505882 PMCID: PMC6784130 DOI: 10.3390/plants8090339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Rice is one of the most important food crops worldwide, as well as the model plant in molecular studies on the cereals group. Many different biotic and abiotic agents often limit rice production and threaten food security. Understanding the molecular mechanism, by which the rice plant reacts and resists these constraints, is the key to improving rice production to meet the demand of an increasing population. The phytohormone jasmonic acid (JA) and related compounds, collectively called jasmonates, are key regulators in plant growth and development. They are also one of the central players in plant immunity against biotic attacks and adaptation to unfavorable environmental conditions. Here, we review the most recent knowledge about jasmonates signaling in the rice crop model. We highlight the functions of jasmonates signaling in many adaptive responses, and also in rice growth and development processes. We also draw special attention to different signaling modules that are controlled by jasmonates in rice.
Collapse
|
24
|
Wu X, Xu S, Zhao P, Zhang X, Yao X, Sun Y, Fang R, Ye J. The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance. PLoS Pathog 2019; 15:e1007897. [PMID: 31206553 PMCID: PMC6598649 DOI: 10.1371/journal.ppat.1007897] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/27/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022] Open
Abstract
Pandemics of vector-borne human and plant diseases often depend on the behaviors
of their arthropod vectors. Arboviruses, including many bunyaviruses, manipulate
vector behavior to accelerate their own transmission to vertebrates, birds,
insects, and plants. However, the molecular mechanism underlying this
manipulation remains elusive. Here, we report that the non-structural protein
NSs of Tomato spotted wilt orthotospovirus, a prototype of the
Tospoviridae family and the
Orthotospovirus genus, is a key viral factor that
indirectly modifies vector preference and increases vector performance. NSs
suppresses the biosynthesis of plant volatile monoterpenes, which serve as
repellents of the vector western flower thrips (WFT, Frankliniella
occidentalis). NSs directly interacts with MYC2, the jasmonate (JA)
signaling master regulator and its two close homologs MYC3 and MYC4, to disable
JA-mediated activation of terpene synthase genes. The
dysfunction of the MYCs subsequently attenuates host defenses, increases the
attraction of thrips, and improves thrips fitness. Moreover, MYC2 associated
with NSs of Tomato zonate spot orthotospovirus, another Euro/Asian-type
orthotospovirus, suggesting that MYC2 is an evolutionarily conserved target of
Orthotospovirus species for suppression of terpene-based
resistance to promote vector performance. These findings elucidate the molecular
mechanism through which an orthotospovirus indirectly manipulates vector
behaviors and therefore facilitates pathogen transmission. Our results provide
insights into the molecular mechanisms by which Orthotospovirus
NSs counteracts plant immunity for pathogen transmission. Most bunyaviruses are transmitted by arthropod vectors, and some of them can
modify the behaviors of their arthropod vectors to increase transmission to
mammals, birds, and plants. NSs is a non-structural bunyavirus protein with
multiple functions that acts as an avirulence determinant and silencing
suppressor. In this study, we identified a new function of NSs as a conserved
manipulator of vector behavior via plant. NSs suppresses jasmonate-mediated
plant immunity against thrips by directly interacting with several homologs of
MYC transcription factors, the core regulators of the jasmonate-signaling
pathway. This hijacking by NSs enhances thrips preference and performance.
Therefore, our data support the hypothesis that MYC2 is a convergent target that
plant pathogens manipulate to promote their survival in plants.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
| | - Shuang Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
| | - Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Yao
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing,
China
- * E-mail:
| |
Collapse
|
25
|
Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, A Homologue of Arabidopsis VIP1, May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice. Int J Mol Sci 2019; 20:ijms20092360. [PMID: 31086007 PMCID: PMC6539606 DOI: 10.3390/ijms20092360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops in the world. In plants, jasmonic acid (JA) plays essential roles in response to biotic and abiotic stresses. As one of the largest transcription factors (TFs), basic region/leucine zipper motif (bZIP) TFs play pivotal roles through the whole life of plant growth. However, the relationship between JA and bZIP TFs were rarely reported, especially in rice. In this study, we found two rice homologues of Arabidopsis VIP1 (VirE2-interacting protein 1), OsbZIP81, and OsbZIP84. OsbZIP81 has at least two alternative transcripts, OsbZIP81.1 and OsbZIP81.2. OsbZIP81.1 and OsbZIP84 are typical bZIP TFs, while OsbZIP81.2 is not. OsbZIP81.1 can directly bind OsPIOX and activate its expression. In OsbZIP81.1 overexpression transgenic rice plant, JA (Jasmonic Acid) and SA (Salicylic acid) were up-regulated, while ABA (Abscisic acid) was down-regulated. Moreover, Agrobacterium, Methyl Jasmonic Acid (MeJA), and PEG6000 can largely induce OsbZIP81. Based on ChIP-Seq and Random DNA Binding Selection Assay (RDSA), we identified a novel cis-element OVRE (Oryza VIP1 response element). Combining ChIP-Seq and RNA-Seq, we obtained 1332 targeted genes that were categorized in biotic and abiotic responses, including α-linolenic acid metabolism and fatty acid degradation. Together, these results suggest that OsbZIP81 may positively regulate JA levels by directly targeting the genes in JA signaling and metabolism pathway in rice.
Collapse
Affiliation(s)
- Defang Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaopeng Shi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhijun Hao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wentao Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
27
|
Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. Int J Mol Sci 2018; 19:ijms19041182. [PMID: 29652796 PMCID: PMC5979284 DOI: 10.3390/ijms19041182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinases (MPKs) play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB) Chilo suppressalis, and treatment with jasmonic acid (JA), but not by treatment with salicylic acid (SA). The overexpression of OsMPK4 (oe-MPK4) enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile), ethylene (ET), and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs), and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth.
Collapse
|
28
|
Zhao W, Zhou X, Lei H, Fan J, Yang R, Li Z, Hu C, Li M, Zhao F, Wang S. Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato. Physiol Genomics 2018; 50:197-207. [PMID: 29341868 DOI: 10.1152/physiolgenomics.00079.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
studies have demonstrated that jasmonic acid (JA) reduces root-knot nematode (RKN) infections in tomato plants. RKN invasion is sensed by roots, and root-derived JA signaling activates systemic defense responses, though this is poorly understood. Here, we investigate variations in the RKN-induced transcriptome in scion phloem between two tomato plant grafts: CM/CM ( Lycopersicum esculentum Mill. cv. Castlemart) and CM/ spr2 (a JA-deficient mutant). A total of 8,716 genes were differentially expressed in the scion phloem of the plants with JA-deficient rootstock via RNA sequencing. Among these genes, 535 upregulated and 153 downregulated genes with high copy numbers were identified as significantly differentially expressed. Among them, 34 predicted transcription factor genes were identified. Additionally, we used real-time quantitative PCR to analyze the expression patterns of 42 genes involved in the JA, ethylene, or salicylic acid pathway in phloem under RKN infection. The results suggested that in the absence of JA signaling, the ET signaling pathway is enhanced after RKN infection; however, alterations in the SA signaling pathway were not observed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaoxuan Zhou
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hui Lei
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengyan Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fukuan Zhao
- College of Biotechnology, Beijing University of Agriculture, Beijing, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
29
|
Sobhy IS, Miyake A, Shinya T, Galis I. Oral Secretions Affect HIPVs Induced by Generalist (Mythimna loreyi) and Specialist (Parnara guttata) Herbivores in Rice. J Chem Ecol 2017; 43:929-943. [DOI: 10.1007/s10886-017-0882-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
|
30
|
Huangfu J, Li J, Li R, Ye M, Kuai P, Zhang T, Lou Y. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens. Int J Mol Sci 2016; 17:ijms17060697. [PMID: 27258255 PMCID: PMC4926322 DOI: 10.3390/ijms17060697] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022] Open
Abstract
WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.
Collapse
Affiliation(s)
- Jiayi Huangfu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meng Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Peng Kuai
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tongfang Zhang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Liu Z, Zhang S, Sun N, Liu H, Zhao Y, Liang Y, Zhang L, Han Y. Functional diversity of jasmonates in rice. RICE (NEW YORK, N.Y.) 2015; 8:42. [PMID: 26054241 PMCID: PMC4773313 DOI: 10.1186/s12284-015-0042-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
Abstract
Phytohormone jasmonates (JA) play essential roles in plants, such as regulating development and growth, responding to environmental changes, and resisting abiotic and biotic stresses. During signaling, JA interacts, either synergistically or antagonistically, with other hormones, such as salicylic acid (SA), gibberellin (GA), ethylene (ET), auxin, brassinosteroid (BR), and abscisic acid (ABA), to regulate gene expression in regulatory networks, conferring physiological and metabolic adjustments in plants. As an important staple crop, rice is a major nutritional source for human beings and feeds one third of the world's population. Recent years have seen significant progress in the understanding of the JA pathway in rice. In this review, we summarize the diverse functions of JA, and discuss the JA interplay with other hormones, as well as light, in this economically important crop. We believe that a better understanding of the JA pathway will lead to practical biotechnological applications in rice breeding and cultivation.
Collapse
Affiliation(s)
- Zheng Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Shumin Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Ning Sun
- />The Affiliated School of Hebei Baoding Normal, Baoding, China
| | - Hongyun Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yanhong Zhao
- />College of Agriculture, Ludong University, Yantai, China
| | - Yuling Liang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Liping Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yuanhuai Han
- />School of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
- />Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, China
| |
Collapse
|
32
|
Li R, Zhang J, Li J, Zhou G, Wang Q, Bian W, Erb M, Lou Y. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. eLife 2015; 4:e04805. [PMID: 26083713 PMCID: PMC4491539 DOI: 10.7554/elife.04805] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/16/2015] [Indexed: 01/12/2023] Open
Abstract
Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI:http://dx.doi.org/10.7554/eLife.04805.001 Many different animals feed on plants, including almost half of all known insect species. Some herbivores—like caterpillars for example—feed by chewing. Others, such as aphids and planthoppers, use syringe-like mouthparts to pierce plants and then feed on the fluids within. To minimize the damage caused by these herbivores, plants activate specific defenses upon attack, including proteins that can inhibit the insect's digestive enzymes. The inhibitors are effective against chewing herbivores but seem to have little or no effect on some insects that feed by the ‘pierce-and-suck’ method. Investing in defense requires energy, and so plants attacked by herbivores actively slow their growth to meet this demand. Plants achieve this trade-off by changing the levels of different plant hormones. These hormones can control the expression of thousands of genes and have widespread effects throughout the plant. However, little is known about how prioritizing defense overgrowth in response to an attack by one herbivore affects the plant's ability to defend itself against other herbivores. Transcription factors are proteins that control which genes inside a cell are active or inactive. Li et al. searched for a transcription factor in rice plants that was specifically triggered in response to an attack by the caterpillars of a moth called the rice striped stem borer. This search identified a protein called WRKY70 as a transcription factor that prioritizes defense overgrowth. WRKY70 achieves this by increasing the levels of a defensive plant hormone (called jasmonic acid) while reducing the levels of a growth hormone (called gibberellin). Further experiments show that the increase in jasmonic acid production is required to activate the enzyme inhibitors and for resistance against these caterpillars. Li et al. then found that increased WRKY70 activity makes rice plants more susceptible to attack by a second herbivore, a piercing-sucking insect called the rice brown planthopper. Further experiments revealed that this is due to the reduced levels of gibberillin. These findings show that while prioritizing defense overgrowth is effective against some insect herbivores, it comes with a cost as it makes the plants more susceptible to attack by other herbivores. This trade-off has important implications for both the evolution of plant immunity, and efforts to exploit plant immunity to help protect crops from herbivore attack. DOI:http://dx.doi.org/10.7554/eLife.04805.002
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Guoxin Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wenbo Bian
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Li R, Tee CS, Jiang YL, Jiang XY, Venkatesh PN, Sarojam R, Ye J. A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against Potato virus X. Sci Rep 2015; 5:9682. [PMID: 25993114 PMCID: PMC4438586 DOI: 10.1038/srep09682] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/16/2015] [Indexed: 11/09/2022] Open
Abstract
Terpenoid phytoalexins function as defense compound against a broad spectrum of pathogens and pests in the plant kingdom. However, the role of phytoalexin in antiviral defense is still elusive. In this study, we identified the biosynthesis pathway of a sesquiterpenoid phytoalexin, capsidiol 3-acetate as an antiviral response against RNA virus Potato Virus X (PVX) in Nicotiana benthamiana. NbTPS1 and NbEAH genes were found strongly induced by PVX-infection. Enzymatic activity and genetic evidence indicated that both genes were involved in the PVX-induced biosynthesis of capsidiol 3-acetate. NbTPS1- or NbEAH-silenced plant was more susceptible to PVX. The accumulation of capsidiol 3-acetate in PVX-infected plant was partially regulated by jasmonic acid signaling receptor COI1. These findings provide an insight into a novel mechanism of how plant uses the basal arsenal machinery to mount a fight against virus attack even in susceptible species.
Collapse
Affiliation(s)
- Ran Li
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
| | - Chuan-Sia Tee
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
| | - Yu-Lin Jiang
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
| | - Xi-Yuan Jiang
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
| | - Prasanna Nori Venkatesh
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
| | - Jian Ye
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore 117604, Singapore
- State Key Laboratory of Plant Genomics, Institute of
Microbiology, Chinese Academy of Sciences, Beijing 100101,
China
| |
Collapse
|
34
|
|
35
|
Okada K, Abe H, Arimura GI. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. PLANT & CELL PHYSIOLOGY 2015; 56:16-27. [PMID: 25378688 DOI: 10.1093/pcp/pcu158] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Jasmonic acid (JA) and its derivatives (jasmonates, JAs) are phytohormones with essential roles in plant defense against pathogenesis and herbivorous arthropods. Both the up- and down-regulation of defense responses are dependent on signaling pathways mediated by JAs as well as other stress hormones (e.g. salicylic acid), generally those involving the transcriptional and post-transcriptional regulation of transcription factors via protein modification and epigenetic regulation. In addition to the typical model plant Arabidopsis (a dicotyledon), advances in genetics research have made rice a model monocot in which innovative pest control traits can be introduced and whose JA signaling pathway can be studied. In this review, we introduce the dynamic functions of JAs in plant defense strategy using defensive substances (e.g. indole alkaloids and terpenoid phytoalexins) and airborne signals (e.g. green leaf volatiles and volatile terpenes) in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores. We then discuss the important issue of how the mutualism of herbivorous arthropods with viruses or bacteria can cause cross-talk between JA and other phytohormones to counter the defense systems.
Collapse
Affiliation(s)
- Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Center, Tsukuba, 305-0074 Japan
| | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, 125-8585 Japan
| |
Collapse
|
36
|
Zhou G, Ren N, Qi J, Lu J, Xiang C, Ju H, Cheng J, Lou Y. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. PHYSIOLOGIA PLANTARUM 2014; 152:59-69. [PMID: 24410960 DOI: 10.1111/ppl.12148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 05/04/2023]
Abstract
Oxylipins produced by the 13-lipoxygenase (LOX) have been reported to play an important role in plant defense responses to herbivores. Yet, the role of oxylipins produced by the 9-LOX pathway in this process remains largely unknown. Here we cloned a gene encoding a chloroplast-localized 9-LOX, Osr9-LOX1, from rice. Transcriptional analysis revealed that herbivore infestation, mechanical wounding and jasmonic acid (JA) treatment either repressed or did not enhance the level of Osr9-LOX1 transcripts at early stages but did at later stages, whereas salicylic acid (SA) treatment quickly increased the transcript level of Osr9-LOX1. Antisense expression of Osr9-lox1 (as-r9lox1) decreased the amount of wound-induced (Z)-3-hexenal but increased levels of striped stem borer (SSB)-induced linolenic acid, JA, SA and trypsin protease inhibitors. These changes were associated with increased resistance in rice to the larvae of the SSB Chilo suppressalis. In contrast, although no significant differences were observed in the duration of the nymph stage or the number of eggs laid by female adults between the brown planthopper (BPH) Nilaparvata lugens that fed on as-r9lox1 lines and BPH that fed on wild-type (WT) rice plants, the survival rate of BPH nymphs that fed on as-r9lox1 lines was higher than that of nymphs that fed on WT plants, possibly because of a higher JA level. The results demonstrate that Osr9-LOX1 plays an important role in regulating an herbivore-induced JA burst and cross-talk between JA and SA, and in controlling resistance in rice to chewing and phloem-feeding herbivores.
Collapse
Affiliation(s)
- Guoxin Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Department of Plant Protection, Zhejiang Agriculture & Forestry University, Lin'an, 311300, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
De Vleesschauwer D, Xu J, Höfte M. Making sense of hormone-mediated defense networking: from rice to Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:611. [PMID: 25426127 PMCID: PMC4227482 DOI: 10.3389/fpls.2014.00611] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/20/2014] [Indexed: 05/19/2023]
Abstract
Phytohormones are not only essential for plant growth and development but also play central roles in triggering the plant immune signaling network. Historically, research aimed at elucidating the defense-associated role of hormones has tended to focus on the use of experimentally tractable dicot plants such as Arabidopsis thaliana. Emerging from these studies is a picture whereby complex crosstalk and induced hormonal changes mold plant health and disease, with outcomes largely dependent on the lifestyle and infection strategy of invading pathogens. However, recent studies in monocot plants are starting to provide additional important insights into the immune-regulatory roles of hormones, often revealing unique complexities. In this review, we address the latest discoveries dealing with hormone-mediated immunity in rice, one of the most important food crops and an excellent model for molecular genetic studies in monocots. Moreover, we highlight interactions between hormone signaling, rice defense and pathogen virulence, and discuss the differences and similarities with findings in Arabidopsis. Finally, we present a model for hormone defense networking in rice and describe how detailed knowledge of hormone crosstalk mechanisms can be used for engineering durable rice disease resistance.
Collapse
Affiliation(s)
- David De Vleesschauwer
- *Correspondence: David De Vleesschauwer, Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium e-mail:
| | | | | |
Collapse
|
38
|
Takatsuji H. Development of disease-resistant rice using regulatory components of induced disease resistance. FRONTIERS IN PLANT SCIENCE 2014; 5:630. [PMID: 25431577 PMCID: PMC4230042 DOI: 10.3389/fpls.2014.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 05/07/2023]
Abstract
Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants' disease resistance. However, the resistance associated with these regulatory components is often accompanied by fitness costs; that is, negative effects on plant growth and crop yield. Chemical defense inducers, such as benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to various pathogens without major fitness costs, owing to their 'priming effect.' Studies on how benzothiadiazole induces disease resistance in rice have identified WRKY45, a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants overexpressing WRKY45 were extremely resistant to rice blast disease caused by the fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small fitness costs on rice because of its priming effect. This priming effect was similar to that of chemical defense inducers, although the fitness costs were amplified by some environmental factors. WRKY45 is degraded by the ubiquitin-proteasome system, and the dual role of this degradation partly explains the priming effect. The synergistic interaction between SA and cytokinin signaling that activates WRKY45 also likely contributes to the priming effect. With a main focus on these studies, I review the current knowledge of SA-pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss potential strategies to develop disease-resistant rice using signaling components.
Collapse
Affiliation(s)
- Hiroshi Takatsuji
- *Correspondence: Hiroshi Takatsuji, Disease Resistant Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan e-mail:
| |
Collapse
|
39
|
De Vleesschauwer D, Gheysen G, Höfte M. Hormone defense networking in rice: tales from a different world. TRENDS IN PLANT SCIENCE 2013; 18:555-65. [PMID: 23910453 DOI: 10.1016/j.tplants.2013.07.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 05/08/2023]
Abstract
Recent advances in plant immunity research underpin the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our understanding comes from studies of dicot plants such as Arabidopsis thaliana, new studies in monocots are providing additional insights into the defense-regulatory role of phytohormones. Here, we review the roles of both classical and more recently identified stress hormones in regulating immunity in the model monocot rice (Oryza sativa) and highlight the importance of hormone crosstalk in shaping the outcome of rice-pathogen interactions. We also propose a defense model for rice that does not support a dichotomy between the pathogen lifestyle and the effectiveness of the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA).
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|