1
|
Bamou R, Dao A, Yaro AS, Kouam C, Ergunay K, Bourke BP, Diallo M, Sanogo ZL, Samake D, YA A, Mohammed AR, Owusu-Asenso CM, Akosah-Brempong G, Pambit-Zong CM, Krajacich BJ, Faiman R, Pacheco MA, Escalante AA, Weaver SC, Nartey R, Chapman JW, Reynolds DR, Linton YM, Lehmann T. Pathogens spread by high-altitude windborne mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630351. [PMID: 39763833 PMCID: PMC11703268 DOI: 10.1101/2024.12.26.630351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Recent studies have revealed that many mosquito species regularly engage in high-altitude windborne migration, but its epidemiological significance was debated. The hypothesis that high-altitude mosquitoes spread pathogens over large distances has not been directly tested. Here, we report for the first time that high-altitude windborne mosquitoes are commonly infected with arboviruses, protozoans, and helminths affecting vertebrates and humans, and provide the first description of this pathogen-vector aerial network. A total of 1,017 female mosquitoes (81.4%, N=1,249) intercepted on nets suspended from helium balloons at altitudes of 120-290 m above ground over Mali and Ghana were screened for infection with arboviruses, plasmodia, and filariae, using pan-genus qPCR analyses followed by sequencing of positive samples. The mosquito fauna collected at altitude comprised 61 species, across 9 genera, dominated by Culex, Aedes, and Anopheles. Infection and infectiousness rates of high-altitude migrant mosquitoes were 7.2% and 4.4% with plasmodia, 1.6% and 0.6% with filariae, 3.5% and 1.1% with flaviviruses, respectively. Nineteen mosquito-borne pathogens were identified, including three arboviruses: dengue, West Nile and M'Poko viruses, 13 putative plasmodia species including Plasmodium matutinum and P. relictum, three filariids, including Pelecitus spp., 27 insect-specific viruses and 5 non-mosquito-borne pathogens (e.g., Trypanosoma theileri). Confirmed head-thorax (disseminated) infections of multiple pathogens in multiple mosquito species, eg., Culex perexiguus, Coquilletidia metallica, Mansonia uniformis, and Anopheles squamosus provides evidence that pathogens carried by high-altitude windborne mosquitoes are infectious and likely capable of infecting naïve hosts far from their starting location. This traffic of sylvatic pathogens may be key to their maintenance among foci as well as initiating outbreaks away from them.
Collapse
Affiliation(s)
- R Bamou
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - A Dao
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - AS Yaro
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - C Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - K Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland Maryland, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - BP Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland Maryland, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Diallo
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - ZL Sanogo
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - D Samake
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - Afrane YA
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
| | - AR Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
- Department of Animal Biology and Conservation Science, University of Ghana
| | - CM Owusu-Asenso
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
| | - G Akosah-Brempong
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, 25 Accra Ghana
| | - CM Pambit-Zong
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
| | - BJ Krajacich
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - R Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - MA Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - AA Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - SC Weaver
- Department of Microbiology & Immunology and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - R Nartey
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - JW Chapman
- Centre for Ecology and Conservation, and Environment and Sustainability Inst., University of Exeter, Penryn, Cornwall, UK
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China
| | - DR Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rothamsted Research, Harpenden, Hertfordshire, Kent, UK
| | - Y-M Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland Maryland, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - T Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| |
Collapse
|
2
|
Treindl AD, Stapley J, Croll D, Leuchtmann A. Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations. Mol Ecol 2024; 33:e17242. [PMID: 38084851 DOI: 10.1111/mec.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.
Collapse
Affiliation(s)
- Artemis D Treindl
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jessica Stapley
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Boixel AL, Goyeau H, Berder J, Moinard J, Suffert F, Soubeyrand S, Sache I, Vidal T. A landscape-scale field survey demonstrates the role of wheat volunteers as a local and diversified source of leaf rust inoculum. Sci Rep 2023; 13:20411. [PMID: 37990120 PMCID: PMC10663564 DOI: 10.1038/s41598-023-47499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Deploying disease-resistant cultivars is one of the most effective control strategies to manage crop diseases such as wheat leaf rust, caused by Puccinia triticina. After harvest, this biotrophic fungal pathogen can survive on wheat volunteers present at landscape scale and constitute a local source of primary inoculum for the next cropping season. In this study, we characterised the diversity of P. triticina populations surveyed on wheat volunteer seedlings for six consecutive years (2007-2012) at the landscape scale. A total of 642 leaf rust samples classified in 52 virulence profiles (pathotypes) were collected within a fixed 5-km radius. The pathotype composition (identity and abundance) of field-collected populations was analyzed according to the distance between the surveyed wheat plots and to the cultivars of origin of isolates. Our study emphasised the high diversity of P. triticina populations on wheat volunteers at the landscape scale. We observed an impact of cultivar of origin on pathogen population composition. Levels of population diversity differed between cultivars and their deployment in the study area. Our results suggest that wheat volunteers could provide a significant though highly variable contribution to the composition of primary inoculum and subsequent initiation of leaf rust epidemics.
Collapse
Affiliation(s)
- A-L Boixel
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | - H Goyeau
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | - J Berder
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | - J Moinard
- DRAAF Midi-Pyrénées, 31074, Toulouse, France
| | - F Suffert
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | | | - I Sache
- AgroParisTech, 91123, Palaiseau, France
| | - T Vidal
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France.
| |
Collapse
|
4
|
Ramírez-Sánchez D, Gibelin-Viala C, Roux F, Vailleau F. Genetic architecture of the response of Arabidopsis thaliana to a native plant-growth-promoting bacterial strain. FRONTIERS IN PLANT SCIENCE 2023; 14:1266032. [PMID: 38023938 PMCID: PMC10665851 DOI: 10.3389/fpls.2023.1266032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
By improving plant nutrition and alleviating abiotic and biotic stresses, plant growth-promoting bacteria (PGPB) can help to develop eco-friendly and sustainable agricultural practices. Besides climatic conditions, soil conditions, and microbe-microbe interactions, the host genotype influences the effectiveness of PGPB. Yet, most GWAS conducted to characterize the genetic architecture of response to PGPB are based on non-native interactions between a host plant and PGPB strains isolated from the belowground compartment of other plants. In this study, a GWAS was set up under in vitro conditions to describe the genetic architecture of the response of Arabidopsis thaliana to the PGPB Pseudomonas siliginis, by inoculating seeds of 162 natural accessions from the southwest of France with one strain isolated from the leaf compartment in the same geographical region. Strong genetic variation of plant growth response to this native PGPB was observed at a regional scale, with the strain having a positive effect on the vegetative growth of small plants and a negative effect on the vegetative growth of large plants. The polygenic genetic architecture underlying this negative trade-off showed suggestive signatures of local adaptation. The main eco-evolutionary relevant candidate genes are involved in seed and root development.
Collapse
|
5
|
Hulse SV, Antonovics J, Hood ME, Bruns EL. Host-pathogen coevolution promotes the evolution of general, broad-spectrum resistance and reduces foreign pathogen spillover risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.548430. [PMID: 37577528 PMCID: PMC10418218 DOI: 10.1101/2023.08.04.548430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genetic variation for disease resistance within host populations can strongly impact the spread of endemic pathogens. In plants, recent work has shown that within-population variation in resistance can also affect the transmission of foreign spillover pathogens if that resistance is general. However, most hosts also possess specific resistance mechanisms that provide strong defenses against coevolved endemic pathogens. Here we use a modeling approach to ask how antagonistic coevolution between hosts and their endemic pathogen at the specific resistance locus can affect the frequency of general resistance, and therefore a host's vulnerability to foreign pathogens. We develop a two-locus model with variable recombination that incorporates both general (resistance to all pathogens) and specific (resistance to endemic pathogens only). We find that introducing coevolution into our model greatly expands the regions where general resistance can evolve, decreasing the risk of foreign pathogen invasion. Furthermore, coevolution greatly expands which conditions maintain polymorphisms at both resistance loci, thereby driving greater genetic diversity within host populations. This genetic diversity often leads to positive correlations between host resistance to foreign and endemic pathogens, similar to those observed in natural populations. However, if resistance loci become linked, the resistance correlations can shift to negative. If we include a third, linkage modifying locus into our model, we find that selection often favors complete linkage. Our model demonstrates how coevolutionary dynamics with an endemic pathogen can mold the resistance structure of host populations in ways that affect its susceptibility to foreign pathogen spillovers, and that the nature of these outcomes depends on resistance costs, as well as the degree of linkage between resistance genes.
Collapse
|
6
|
Abstract
Plant diseases are strongly influenced by host biodiversity, spatial structure, and abiotic conditions. All of these are undergoing rapid change, as the climate is warming, habitats are being lost, and nitrogen deposition is changing nutrient dynamics of ecosystems with ensuing consequences for biodiversity. Here, I review examples of plant-pathogen associations to demonstrate how our ability to understand, model and predict disease dynamics is becoming increasingly difficult, as both plant and pathogen populations and communities are undergoing extensive change. The extent of this change is influenced via both direct and combined effects of global change drivers, and especially the latter are still poorly understood. Change at one trophic level is expected to drive change also at the other, and hence feedback loops between plants and their pathogens are expected to drive changes in disease risk both through ecological as well as evolutionary mechanisms. Many of the examples discussed here demonstrate an increase in disease risk as a result of ongoing change, suggesting that unless we successfully mitigate global environmental change, plant disease is going to become an increasingly heavy burden on our societies with far-reaching consequences for food security and functioning of ecosystems.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO BOX 65 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Demirjian C, Vailleau F, Berthomé R, Roux F. Genome-wide association studies in plant pathosystems: success or failure? TRENDS IN PLANT SCIENCE 2023; 28:471-485. [PMID: 36522258 DOI: 10.1016/j.tplants.2022.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
8
|
Eck JL, Kytöviita M, Laine A. Arbuscular mycorrhizal fungi influence host infection during epidemics in a wild plant pathosystem. THE NEW PHYTOLOGIST 2022; 236:1922-1935. [PMID: 36093733 PMCID: PMC9827988 DOI: 10.1111/nph.18481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
While pathogenic and mutualistic microbes are ubiquitous across ecosystems and often co-occur within hosts, how they interact to determine patterns of disease in genetically diverse wild populations is unknown. To test whether microbial mutualists provide protection against pathogens, and whether this varies among host genotypes, we conducted a field experiment in three naturally occurring epidemics of a fungal pathogen, Podosphaera plantaginis, infecting a host plant, Plantago lanceolata, in the Åland Islands, Finland. In each population, we collected epidemiological data on experimental plants from six allopatric populations that had been inoculated with a mixture of mutualistic arbuscular mycorrhizal fungi or a nonmycorrhizal control. Inoculation with arbuscular mycorrhizal fungi increased growth in plants from every population, but also increased host infection rate. Mycorrhizal effects on disease severity varied among host genotypes and strengthened over time during the epidemic. Host genotypes that were more susceptible to the pathogen received stronger protective effects from inoculation. Our results show that arbuscular mycorrhizal fungi introduce both benefits and risks to host plants, and shift patterns of infection in host populations under pathogen attack. Understanding how mutualists alter host susceptibility to disease will be important for predicting infection outcomes in ecological communities and in agriculture.
Collapse
Affiliation(s)
- Jenalle L. Eck
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich8057ZurichSwitzerland
| | - Minna‐Maarit Kytöviita
- Department of Biological and Environmental ScienceUniversity of Jyväskylä40014JyväskyläFinland
| | - Anna‐Liisa Laine
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich8057ZurichSwitzerland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of Helsinki00790HelsinkiFinland
| |
Collapse
|
9
|
Yoder JB, Dang A, MacGregor C, Plaza M. Plant‐associate interactions and diversification across trophic levels. Evol Lett 2022; 6:375-389. [PMID: 36254257 PMCID: PMC9554764 DOI: 10.1002/evl3.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/27/2022] [Indexed: 11/11/2022] Open
Abstract
Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.
Collapse
Affiliation(s)
- Jeremy B. Yoder
- Department of Biology California State University Northridge Northridge CA 91330 USA
| | - Albert Dang
- Department of Biology California State University Northridge Northridge CA 91330 USA
| | - Caitlin MacGregor
- Department of Biology California State University Northridge Northridge CA 91330 USA
| | - Mikhail Plaza
- Program in Plant Biology and Conservation Northwestern University Evanston IL 60208 USA
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60035 USA
| |
Collapse
|
10
|
Eck JL, Barrès B, Soubeyrand S, Sirén J, Numminen E, Laine AL. Strain Diversity and Spatial Distribution Are Linked to Epidemic Dynamics in Host Populations. Am Nat 2022; 199:59-74. [DOI: 10.1086/717179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Safdari P, Höckerstedt L, Brosche M, Salojärvi J, Laine AL. Genotype-Specific Expression and NLR Repertoire Contribute to Phenotypic Resistance Diversity in Plantago lanceolata. FRONTIERS IN PLANT SCIENCE 2021; 12:675760. [PMID: 34322142 PMCID: PMC8311189 DOI: 10.3389/fpls.2021.675760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
High levels of phenotypic variation in resistance appears to be nearly ubiquitous across natural host populations. Molecular processes contributing to this variation in nature are still poorly known, although theory predicts resistance to evolve at specific loci driven by pathogen-imposed selection. Nucleotide-binding leucine-rich repeat (NLR) genes play an important role in pathogen recognition, downstream defense responses and defense signaling. Identifying the natural variation in NLRs has the potential to increase our understanding of how NLR diversity is generated and maintained, and how to manage disease resistance. Here, we sequenced the transcriptomes of five different Plantago lanceolata genotypes when inoculated by the same strain of obligate fungal pathogen Podosphaera plantaginis. A de novo transcriptome assembly of RNA-sequencing data yielded 24,332 gene models with N50 value of 1,329 base pairs and gene space completeness of 66.5%. The gene expression data showed highly varying responses where each plant genotype demonstrated a unique expression profile in response to the pathogen, regardless of the resistance phenotype. Analysis on the conserved NB-ARC domain demonstrated a diverse NLR repertoire in P. lanceolata consistent with the high phenotypic resistance diversity in this species. We find evidence of selection generating diversity at some of the NLR loci. Jointly, our results demonstrate that phenotypic resistance diversity results from a crosstalk between different defense mechanisms. In conclusion, characterizing the architecture of resistance in natural host populations may shed unprecedented light on the potential of evolution to generate variation.
Collapse
Affiliation(s)
- Pezhman Safdari
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Layla Höckerstedt
- Climate System Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Kahlon PS, Verin M, Hückelhoven R, Stam R. Quantitative resistance differences between and within natural populations of Solanum chilense against the oomycete pathogen Phytophthora infestans. Ecol Evol 2021; 11:7768-7778. [PMID: 34188850 PMCID: PMC8216925 DOI: 10.1002/ece3.7610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate-unspecific.
Collapse
Affiliation(s)
| | - Melissa Verin
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ralph Hückelhoven
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Remco Stam
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
13
|
Locally adapted gut microbiomes mediate host stress tolerance. ISME JOURNAL 2021; 15:2401-2414. [PMID: 33658622 PMCID: PMC8319338 DOI: 10.1038/s41396-021-00940-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
While evidence for the role of the microbiome in shaping host stress tolerance is becoming well-established, to what extent this depends on the interaction between the host and its local microbiome is less clear. Therefore, we investigated whether locally adapted gut microbiomes affect host stress tolerance. In the water flea Daphnia magna, we studied if the host performs better when receiving a microbiome from their source region than from another region when facing a stressful condition, more in particular exposure to the toxic cyanobacteria Microcystis aeruginosa. Therefore, a reciprocal transplant experiment was performed in which recipient, germ-free D. magna, isolated from different ponds, received a donor microbiome from sympatric or allopatric D. magna that were pre-exposed to toxic cyanobacteria or not. We tested for effects on host life history traits and gut microbiome composition. Our data indicate that Daphnia interact with particular microbial strains mediating local adaptation in host stress tolerance. Most recipient D. magna individuals performed better when inoculated with sympatric than with allopatric microbiomes. This effect was most pronounced when the donors were pre-exposed to the toxic cyanobacteria, but this effect was also pond and genotype dependent. We discuss how this host fitness benefit is associated with microbiome diversity patterns.
Collapse
|
14
|
Kahlon PS, Seta SM, Zander G, Scheikl D, Hückelhoven R, Joosten MHAJ, Stam R. Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proc Biol Sci 2020; 287:20202723. [PMID: 33352079 DOI: 10.1098/rspb.2020.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Shallet Mindih Seta
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Gesche Zander
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Str. 2, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
15
|
Wu YH, Kamiyama MT, Chung CC, Tzeng HY, Hsieh CH, Yang CCS. Population Monitoring, Egg Parasitoids, and Genetic Structure of the Invasive Litchi Stink Bug, Tessaratoma papillosa in Taiwan. INSECTS 2020; 11:insects11100690. [PMID: 33053731 PMCID: PMC7600713 DOI: 10.3390/insects11100690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 01/31/2023]
Abstract
Simple Summary The litchi stink bug (LSB) was inadvertently introduced to Taiwan recently and has since become a severe pest with substantial economic losses. The aim of this study is therefore to improve our knowledge of this invasive pest through multiple approaches including population monitoring, surveillance of natural enemies, and population genetic analysis. Major findings include: (1) a population fluctuation trend that is largely similar to most native LSB populations, (2) a total of seven egg parasitoid species were discovered, two of which (Anastatusdexingensis and A. fulloi) being most abundant throughout the LSB infestation in Taiwan, and (3) the occurrence of multiple introductions of LSB to Taiwan. All these data represent a preliminary yet necessary step for the design of future integrated pest management strategies and would help mitigate negative impacts of this invasive pest in Taiwan. Abstract Here we assessed population dynamics, natural enemy fauna (with emphasis on egg parasitoid), and population genetic structure (based on mitochondrial DNA) of the invasive litchi stink bug (LSB), Tessaratoma papillosa in Taiwan. Our major findings include: (1) fluctuations of LSB in numbers of adults, mating pairs, and egg masses over a 2-year period in Taiwan generally resemble those in the native populations; (2) Anastatusdexingensis and A. fulloi are among the most dominant LSB egg parasitoids, with the former consistently outnumbering the latter throughout Taiwan; (3) the presence of two genetically distinct clades suggests LSB in Taiwan most likely derived from multiple invasions. All these data practically improve our understanding of this invasive insect pest, particularly its ecological and genetic characteristics in the introduced area, which represents critical baseline information for the design of future integrated pest management strategies.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli 36346, Taiwan; (Y.-H.W.); (C.-C.C.)
- Department of Forestry, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Matthew T. Kamiyama
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Chuan-Cheng Chung
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli 36346, Taiwan; (Y.-H.W.); (C.-C.C.)
| | - Hsy-Yu Tzeng
- Department of Forestry, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (C.-H.H.); (C.-C.S.Y.); Tel.: +886-2-2861-0511 (ext. 31334) (C.-H.H.); Tel.: +886-4-2284-0361 (ext. 540) (C.-C.S.Y.)
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology, National Chung Hsing University, Taichung 402204, Taiwan
- Correspondence: (C.-H.H.); (C.-C.S.Y.); Tel.: +886-2-2861-0511 (ext. 31334) (C.-H.H.); Tel.: +886-4-2284-0361 (ext. 540) (C.-C.S.Y.)
| |
Collapse
|
16
|
Jiao J, Gilchrist MA, Fefferman NH. The impact of host metapopulation structure on short-term evolutionary rescue in the face of a novel pathogenic threat. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Halliday FW, Heckman RW, Wilfahrt PA, Mitchell CE. Eutrophication, biodiversity loss, and species invasions modify the relationship between host and parasite richness during host community assembly. GLOBAL CHANGE BIOLOGY 2020; 26:4854-4867. [PMID: 32427383 DOI: 10.1111/gcb.15165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/02/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Host and parasite richness are generally positively correlated, but the stability of this relationship in response to global change remains poorly understood. Rapidly changing biotic and abiotic conditions can alter host community assembly, which in turn, can alter parasite transmission. Consequently, if the relationship between host and parasite richness is sensitive to parasite transmission, then changes in host composition under various global change scenarios could strengthen or weaken the relationship between host and parasite richness. To test the hypothesis that host community assembly can alter the relationship between host and parasite richness in response to global change, we experimentally crossed host diversity (biodiversity loss) and resource supply to hosts (eutrophication), then allowed communities to assemble. As previously shown, initial host diversity and resource supply determined the trajectory of host community assembly, altering post-assembly host species richness, richness-independent host phylogenetic diversity, and colonization by exotic host species. Overall, host richness predicted parasite richness, and as predicted, this effect was moderated by exotic abundance-communities dominated by exotic species exhibited a stronger positive relationship between post-assembly host and parasite richness. Ultimately, these results suggest that, by modulating parasite transmission, community assembly can modify the relationship between host and parasite richness. These results thus provide a novel mechanism to explain how global environmental change can generate contingencies in a fundamental ecological relationship-the positive relationship between host and parasite richness.
Collapse
Affiliation(s)
- Fletcher W Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert W Heckman
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Peter A Wilfahrt
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Craig TP, Livingston‐Anderson A, Itami JK. A small‐tiled geographic mosaic of coevolution between
Eurosta solidaginis
and its natural enemies and host plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Timothy P. Craig
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| | | | - Joanne K. Itami
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| |
Collapse
|
19
|
Hartmann FE, Snirc A, Cornille A, Godé C, Touzet P, Van Rossum F, Fournier E, Le Prieur S, Shykoff J, Giraud T. Congruent population genetic structures and divergence histories in anther‐smut fungi and their host plants
Silene italica
and the
Silene nutans
species complex. Mol Ecol 2020; 29:1154-1172. [DOI: 10.1111/mec.15387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Alodie Snirc
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Amandine Cornille
- Genetique Quantitative et Evolution–Le Moulon AgroParisTech CNRS INRAE Universite Paris‐Saclay Gif‐sur‐Yvette France
| | - Cécile Godé
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Pascal Touzet
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Fabienne Van Rossum
- Meise Botanic Garden Meise Belgium
- Fédération Wallonie–Bruxelles Brussels Belgium
| | | | - Stéphanie Le Prieur
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Jacqui Shykoff
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Tatiana Giraud
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| |
Collapse
|
20
|
Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens. Biol Invasions 2020. [DOI: 10.1007/s10530-019-02109-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 2019; 15:e1007810. [PMID: 31136630 PMCID: PMC6555541 DOI: 10.1371/journal.ppat.1007810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild ecosystems through the analysis of plant-virus coevolution, which requires a negative effect of infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diversity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 individuals collected in 76 A. thaliana Iberian wild populations were inoculated with different CMV strains. Resistance was estimated from the level of virus multiplication in infected plants, and tolerance from the effect of infection on host progeny production. Resistance and tolerance to CMV showed substantial genetic variation within and between host populations, and depended on the virus x host genotype interaction, two conditions for coevolution. Resistance and tolerance were co-occurring independent traits that have evolved independently from related life-history traits involved in adaptation to climate. The comparison of the genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses) indicated that both defence traits are likely under uniform selection. These results strongly suggest that CMV infection selects for defence on A. thaliana populations, and support plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the field conditions of the wild A. thaliana populations studied.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
22
|
Rosa E, Woestmann L, Biere A, Saastamoinen M. A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore. OIKOS 2018. [DOI: 10.1111/oik.05437] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Rosa
- Organismal and Evolutionary Biology Research Programme; Univ. of Helsinki; PO Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Luisa Woestmann
- Organismal and Evolutionary Biology Research Programme; Univ. of Helsinki; PO Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Arjen Biere
- Netherlands Inst. of Ecology (NIOO-KNAW); Wageningen the Netherlands
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme; Univ. of Helsinki; PO Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| |
Collapse
|
23
|
Bucharova A, Bossdorf O, Hölzel N, Kollmann J, Prasse R, Durka W. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1067-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Mohd-Assaad N, McDonald BA, Croll D. Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. Genome Biol Evol 2018; 10:1315-1332. [PMID: 29722810 PMCID: PMC5972619 DOI: 10.1093/gbe/evy087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, respectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions. Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
Collapse
Affiliation(s)
- Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland
| |
Collapse
|
25
|
Meng JW, He DC, Zhu W, Yang LN, Wu EJ, Xie JH, Shang LP, Zhan J. Human-Mediated Gene Flow Contributes to Metapopulation Genetic Structure of the Pathogenic Fungus Alternaria alternata from Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:198. [PMID: 29497439 PMCID: PMC5818430 DOI: 10.3389/fpls.2018.00198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/01/2018] [Indexed: 06/01/2023]
Abstract
Metapopulation structure generated by recurrent extinctions and recolonizations plays an important role in the evolution of species but is rarely considered in agricultural systems. In this study, generation and mechanism of metapopulation structure were investigated by microsatellite assaying 725 isolates of Alternaria alternata sampled from potato hosts at 16 locations across China. We found a single major cluster, no isolate-geography associations and no bottlenecks in the A. alternata isolates, suggesting a metapopulation genetic structure of the pathogen. We also found weak isolation-by-distance, lower among than within cropping region population differentiation, concordant moving directions of potato products and net gene flow and the highest gene diversity in the region with the most potato imports. These results indicate that in addition to natural dispersal, human-mediated gene flow also contributes to the generation and dynamics of the metapopulation genetic structure of A. alternata in China. Metapopulation structure increases the adaptive capacity of the plant pathogen as a result of enhanced genetic variation and reduced population fragmentation. Consequently, rigid quarantine regulations may be required to reduce population connectivity and the evolutionary potential of A. alternata and other pathogens with a similar population dynamics for a sustainable plant disease management.
Collapse
Affiliation(s)
- Jing-Wen Meng
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dun-Chun He
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen Zhu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Na Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - E-Jiao Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Hui Xie
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Ping Shang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Host mating system and coevolutionary dynamics shape the evolution of parasite avoidance in Caenorhabditis elegans host populations. Parasitology 2017; 145:724-730. [DOI: 10.1017/s0031182017000804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractHosts exhibit a variety of defence mechanisms against parasites, including avoidance. Both host–parasite coevolutionary dynamics and the host mating system can alter the evolutionary trajectories of populations. Does the nature of host–parasite interactions and the host mating system affect the mechanisms that evolve to confer host defence? In a previous experimental evolution study, mixed mating and obligately outcrossing Caenorhabditis elegans host populations adapted to either coevolving or static Serratia marcescens parasite populations. Here, we assessed parasite avoidance as a mechanism underlying host adaptation. We measured host feeding preference for the coevolved and static parasites vs preference for Escherichia coli, to assess the evolution of avoidance behaviour within our experiment. We found that mixed mating host populations evolved a preference for E. coli relative to the static parasite strain; therefore, the hosts evolved parasite avoidance as a defence. However, mixed mating hosts did not exhibit E. coli preference when exposed to coevolved parasites, so avoidance cannot account for host adaptation to coevolving parasites. Further, the obligately outcrossing host populations did not exhibit parasite avoidance in the presence of either static or coevolved parasites. Therefore, both the nature of host–parasite interactions and the host mating system shaped the evolution of host defence.
Collapse
|
27
|
Susi H, Laine AL. Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild. Evolution 2017; 71:2110-2119. [PMID: 28608539 DOI: 10.1111/evo.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022]
Abstract
Coinfection, whereby the same host is infected by more than one pathogen strain, may favor faster host exploitation rates as strains compete for the same limited resources. Hence, coinfection is expected to have major consequences for pathogen evolution, virulence, and epidemiology. Theory predicts genetic variation in host resistance and pathogen infectivity to play a key role in how coinfections are formed. The limited number of studies available has demonstrated coinfection to be a common phenomenon, but little is known about how coinfection varies in space, and what its determinants are. Our aim is to understand how variation in host resistance and pathogen infectivity and aggressiveness contribute to how coinfections are formed in the interaction between fungal pathogen Podosphaera plantaginis and Plantago lanceolata. Our phenotyping study reveals that more aggressive strains are more likely to form coinfections than less aggressive strains in the natural populations. In the natural populations most of the variation in coinfection is found at the individual plant level, and results from a common garden study confirm the prevalence of coinfection to vary significantly among host genotypes. These results show that genetic variation in both the host and pathogen populations are key determinants of coinfection in the wild.
Collapse
Affiliation(s)
- Hanna Susi
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1),, FI-00014, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1),, FI-00014, Finland
| |
Collapse
|
28
|
Modica MV, Russini V, Fassio G, Oliverio M. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development. MARINE ENVIRONMENTAL RESEARCH 2017; 127:92-101. [PMID: 28413103 DOI: 10.1016/j.marenvres.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 03/10/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
In marine environments, connectivity among populations of benthic invertebrates is provided primarily by dispersion of larvae, with the duration of pelagic larval phase (PLD) supposed to represent one of the major factor affecting connectivity. In marine gastropods, PLD is linked to specific larval development types, which may be entirely intracapsular (thus lacking a pelagic dispersal), or include a short pelagic lecithotrophic or a long planktotrophic phase. In the present study, we investigated two sibling species of the cosmopolitan neogastropod genus Columbella (commonly known as dove shells): Columbella adansoni Menke, 1853, from the Macaronesian Atlantic archipelagos, with planktotrophic development, and Columbella rustica Linnaeus, 1758, from the Mediterranean Sea, with intracapsular development. We expected to find differences between these two sister species, in terms of phylogeographic structure, levels of genetic diversification and spatial distribution of genetic diversity, if PLD was actually a relevant factor affecting connectivity. By analysing the sequence variation at the cytochrome c oxidase subunit I (COI) in 167 specimens of the two species, collected over a comparable geographic range, we found that Columbella adansoni, the species with planktotrophic development, and thus longer PLD, showed no phylogeographic structure, lower levels of genetic diversity, interpopulational variance lower than the intrapopulational one and no spatial structure in the distribution of the genetic diversity; Columbella rustica, the species with intracapsular development, thus with evidently lower dispersal abilities, showed a clear phylogeographic structure, higher levels of genetic diversity, high interpopulational and low intrapopulational variance, and a clear signature of global spatial structure in the distribution of the genetic diversity. Thus, in this study, two sibling species differing almost only in their larval ecology (and PLD), when compared for their genetic variation showed patterns supporting the hypothesis that PLD is a major factor affecting genetic connectivity. Therefore, it seems reasonable to expect that the ecological attributes of the marine communities - also in terms of the variation in larval ecology of the species involved - are taken into the due consideration in conservation actions, like the design of marine protected areas networks.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Biotechnologies "Charles Darwin", 'La Sapienza' University, Viale dell'Università 32, I-00185 Roma, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy.
| | - Valeria Russini
- Department of Biology and Biotechnologies "Charles Darwin", 'La Sapienza' University, Viale dell'Università 32, I-00185 Roma, Italy.
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", 'La Sapienza' University, Viale dell'Università 32, I-00185 Roma, Italy.
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", 'La Sapienza' University, Viale dell'Università 32, I-00185 Roma, Italy.
| |
Collapse
|
29
|
Mursinoff S, Tack AJM. Spatial variation in soil biota mediates plant adaptation to a foliar pathogen. THE NEW PHYTOLOGIST 2017; 214:644-654. [PMID: 28042886 DOI: 10.1111/nph.14402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Theory suggests that below-ground spatial heterogeneity may mediate host-parasite evolutionary dynamics and patterns of local adaptation, but this has rarely been tested in natural systems. Here, we test experimentally for the impact of spatial variation in the abiotic and biotic soil environment on the evolutionary outcome of the interaction between the host plant Plantago lanceolata and its specialist foliar pathogen Podosphaera plantaginis. Plants showed no adaptation to the local soil environment in the absence of natural enemies. However, quantitative, but not qualitative, plant resistance against local pathogens was higher when plants were grown in their local field soil than when they were grown in nonlocal field soil. This pattern was robust when extending the spatial scale beyond a single region, but disappeared with soil sterilization, indicating that soil biota mediated plant adaptation. We conclude that below-ground biotic heterogeneity mediates above-ground patterns of plant adaptation, resulting in increased plant resistance when plants are grown in their local soil environment. From an applied perspective, our findings emphasize the importance of using locally selected seeds in restoration ecology and low-input agriculture.
Collapse
Affiliation(s)
- Sini Mursinoff
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
30
|
Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol 2017; 26:1860-1876. [DOI: 10.1111/mec.13958] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Susanne A. Kraemer
- Ashworth Laboratories; University of Edinburgh; King's Buildings EH9 3FL Edinburgh UK
| | - Primrose J. Boynton
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
| |
Collapse
|
31
|
Stam R, Scheikl D, Tellier A. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations. PeerJ 2017; 5:e2910. [PMID: 28133579 PMCID: PMC5248578 DOI: 10.7717/peerj.2910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| |
Collapse
|
32
|
Miller I, Bruns E. The effect of disease on the evolution of females and the genetic basis of sex in populations with cytoplasmic male sterility. Proc Biol Sci 2017; 283:rspb.2015.3035. [PMID: 26865308 DOI: 10.1098/rspb.2015.3035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The evolution of separate males and females is an important evolutionary transition that has occurred multiple times in flowering plants. While empirical studies have stressed the potential importance of natural enemies and organismal interactions in the evolution of separate sexes, there has been no treatment of natural enemies in the theoretical literature. We investigated the effects of disease on the evolution of females in gynodioecious populations composed of females and hermaphrodites, where sex is determined by the interaction of cytoplasmic male sterility (CMS) and nuclear restorer genes. When females are significantly more resistant than hermaphrodites, disease drives an increase in the frequency of females and sex determination becomes nuclear, creating the pre-conditions for the evolution of separate males and females. However, when females are only moderately more resistant, disease drives changes in the frequency of CMS and restorer alleles, but has little effect on the frequency of females. We discuss our results in the context of the evolution of mating systems and cyto-nuclear epistasis.
Collapse
Affiliation(s)
- Ian Miller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA Biology Distinguished Majors Program, University of Virginia, Charlottesville, VA 22904, USA
| | - Emily Bruns
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
33
|
Parratt SR, Numminen E, Laine AL. Infectious Disease Dynamics in Heterogeneous Landscapes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases dynamics are affected by both spatial and temporal heterogeneity in their environments. Our ability to quantify and predict how this heterogeneity impacts risks of infection and disease emergence is the key to successful disease prevention efforts. Here, we review the literature on infectious diseases from human, agricultural, and wildlife ecosystems to describe the rapid ecological and evolutionary responses in pathogens to environmental heterogeneity, with expected impacts on their epidemiology. To date, the underlying network structures through which disease transmission proceeds have been notoriously difficult to quantify because of this variation. We show that with recent advances in statistical methods and genomic approaches, it is now more feasible than ever to trace disease transmission networks, the molecular underpinning of infection, and the environmental variation relevant to disease dynamics. We end by identifying major new opportunities and challenges in understanding disease dynamics in an ever-changing world.
Collapse
Affiliation(s)
- Steven R. Parratt
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Elina Numminen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| |
Collapse
|
34
|
Kraemer SA, Kassen R. Temporal patterns of local adaptation in soil pseudomonads. Proc Biol Sci 2016; 283:20161652. [PMID: 27708150 PMCID: PMC5069515 DOI: 10.1098/rspb.2016.1652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Strong divergent selection leading to local adaptation is often invoked to explain the staggering diversity of bacteria in microbial ecosystems. However, examples of specialization by bacterial clones to alternative niches in nature are rare. Here, we investigate the extent of local adaptation in natural isolates of pseudomonads and their relatives to their soil environments across both space and time. Though most isolates grew well in most environments, patchily distributed low-quality environments were found to drive specialization. In contrast to experimental evolution work on microbial adaptation, temporal adaptation was stronger than spatial adaptation among the isolates and environments we sampled. Time-shift analysis of fitness across two seasons of growth revealed an unexpectedly strong effect of preadaptation. This pattern of apparent future adaptation may be caused by unknown abiotic properties of these environments, phages, bacterial competitors or general mechanisms of ecological niche release, and warrants future study.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Rees Kassen
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Kalbe M, Eizaguirre C, Scharsack JP, Jakobsen PJ. Reciprocal cross infection of sticklebacks with the diphyllobothriidean cestode Schistocephalus solidus reveals consistent population differences in parasite growth and host resistance. Parasit Vectors 2016; 9:130. [PMID: 26951744 PMCID: PMC4782366 DOI: 10.1186/s13071-016-1419-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022] Open
Abstract
Background In host-parasite evolutionary arms races, parasites are generally expected to adapt more rapidly, due to their large population sizes and short generation times. There exist systems, though, where parasites cannot outpace their hosts because of similar generation times in both antagonists. In those cases concomitant adaptation is expected. Methods We tested this hypothesis in the three-spined stickleback-Schistocephalus solidus tapeworm system, where generation times are comparable in both organisms. We chose two populations of sticklebacks which differ prominently in the prevalence of S. solidus and consequently in its level of selective pressure. We performed a full factorial common garden experiment. Particularly, Norwegian (NO) and German (DE) sticklebacks, as well as hybrids between both stickleback populations and in both parental combinations, were exposed each to a single S. solidus originating from the same two host populations. Results We found the infection phenotype to depend on the host population, the parasite population, but not their interaction. NO-parasites showed higher infectivity than DE-parasites, with NO-sticklebacks also being more resistant to DE-parasites than to the sympatric NO-parasite. Reciprocally, DE-hosts were more susceptible to the allopatric NO-parasite while DE-parasites grew less than NO-parasites in all stickleback groups. Despite this asymmetry, the ratio of worm to host weight, an indicator of parasite virulence, was identical in both sympatric combinations, suggesting an optimal virulence as a common outcome of parallel coevolved systems. In hybrid sticklebacks, intermediate infection rates and growth of S. solidus from either origin suggests a simple genetic basis of resistance. However, comparison of infection phenotypes in NO-maternal and DE-maternal hybrid sticklebacks indicates local adaptation to the sympatric counterpart in both the host and the parasite. Conclusions Host-parasite systems with similar generation time show evidence for concomitant reciprocal adaptation resulting in parasite optimal virulence and host parasite specific resistance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1419-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Christophe Eizaguirre
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany. .,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Jörn P Scharsack
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany. .,Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| | - Per J Jakobsen
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany. .,Institute for Biology, University of Bergen, Thor Møhlensgt. 55, 5020, Bergen, Norway.
| |
Collapse
|
36
|
Nuismer SL, Dybdahl MF. Quantifying the coevolutionary potential of multistep immune defenses. Evolution 2016; 70:282-95. [DOI: 10.1111/evo.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Scott L. Nuismer
- Department of Biological Sciences; University of Idaho; Moscow Idaho 83844
| | - Mark F. Dybdahl
- School of Biological Sciences; Washington State University; Pullman Washington 99164
| |
Collapse
|
37
|
Penczykowski RM, Laine A, Koskella B. Understanding the ecology and evolution of host-parasite interactions across scales. Evol Appl 2016; 9:37-52. [PMID: 27087838 PMCID: PMC4780374 DOI: 10.1111/eva.12294] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Predicting the emergence, spread and evolution of parasites within and among host populations requires insight to both the spatial and temporal scales of adaptation, including an understanding of within-host up through community-level dynamics. Although there are very few pathosystems for which such extensive data exist, there has been a recent push to integrate studies performed over multiple scales or to simultaneously test for dynamics occurring across scales. Drawing on examples from the literature, with primary emphasis on three diverse host-parasite case studies, we first examine current understanding of the spatial structure of host and parasite populations, including patterns of local adaptation and spatial variation in host resistance and parasite infectivity. We then explore the ways to measure temporal variation and dynamics in host-parasite interactions and discuss the need to examine change over both ecological and evolutionary timescales. Finally, we highlight new approaches and syntheses that allow for simultaneous analysis of dynamics across scales. We argue that there is great value in examining interplay among scales in studies of host-parasite interactions.
Collapse
Affiliation(s)
- Rachel M. Penczykowski
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Britt Koskella
- BiosciencesUniversity of ExeterTremoughUK
- Integrative BiologyUniversity of CaliforniaBerkeleyUSA
| |
Collapse
|
38
|
Weber AAT, Mérigot B, Valière S, Chenuil A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol Ecol 2015; 24:6080-94. [PMID: 26547515 DOI: 10.1111/mec.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 02/03/2023]
Abstract
Closely related species with divergent life history traits are excellent models to infer the role of such traits in genetic diversity and connectivity. Ophioderma longicauda is a brittle star species complex composed of different genetic clusters, including brooders and broadcasters. These species diverged very recently and some of them are sympatric and ecologically syntopic, making them particularly suitable to study the consequences of their trait differences. At the scale of the geographic distribution of the broadcasters (Mediterranean Sea and northeastern Atlantic), we sequenced the mitochondrial marker COI and genotyped an intron (i51) for 788 individuals. In addition, we sequenced 10 nuclear loci newly developed from transcriptome sequences, for six sympatric populations of brooders and broadcasters from Greece. At the large scale, we found a high genetic structure within the brooders (COI: 0.07 < F(ST) < 0.65) and no polymorphism at the nuclear locus i51. In contrast, the broadcasters displayed lower genetic structure (0 < F(ST) < 0.14) and were polymorphic at locus i51. At the regional scale, the multilocus analysis confirmed the contrasting genetic structure between species, with no structure in the broadcasters (global F(ST) < 0.001) and strong structure in the brooders (global F(ST) = 0.49), and revealed a higher genetic diversity in broadcasters. Our study showed that the lecithotrophic larval stage allows on average a 50-fold increase in migration rates, a 280-fold increase in effective size and a threefold to fourfold increase in genetic diversity. Our work, investigating complementary genetic markers on sympatric and syntopic taxa, highlights the strong impact of the larval phase on connectivity and genetic diversity.
Collapse
Affiliation(s)
- A A-T Weber
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Station Marine d'Endoume, Chemin de la Batterie des Lions, F-13007, Marseille, France.,Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - B Mérigot
- Université de Montpellier, UMR MARine Biodiversity, Exploitation and Conservation MARBEC (IRD, IFREMER, UM, CNRS), Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet - BP 171, 34203, Sète Cedex, France
| | - S Valière
- INRA, UAR1209 (Département de Génétique Animale), Get-PlaGe, Genotoul, F-31326, Castanet-Tolosan, France
| | - A Chenuil
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Station Marine d'Endoume, Chemin de la Batterie des Lions, F-13007, Marseille, France
| |
Collapse
|
39
|
Jenkins T, Delhaye J, Christe P. Testing Local Adaptation in a Natural Great Tit-Malaria System: An Experimental Approach. PLoS One 2015; 10:e0141391. [PMID: 26555892 PMCID: PMC4640884 DOI: 10.1371/journal.pone.0141391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 12/03/2022] Open
Abstract
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.
Collapse
Affiliation(s)
- Tania Jenkins
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jessica Delhaye
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Roulin AC, Mariadassou M, Hall MD, Walser JC, Haag C, Ebert D. High genetic variation in resting-stage production in a metapopulation: Is there evidence for local adaptation? Evolution 2015; 69:2747-56. [DOI: 10.1111/evo.12770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Anne C. Roulin
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Institute of Plant Biology; University of Zurich; Zollikerstrasse 107 8008 Zurich Switzerland
| | | | - Matthew D. Hall
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- School of Biological Sciences; Monash University; Melbourne 3800 Australia
| | - Jean-Claude Walser
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Genetic Diversity Centre; Universitätstrasse 16, CHN E 55 8092 Zürich Switzerland
| | - Christoph Haag
- CNRS-UMR5175 CEFE; 1919, Route de Mende 34293 Montpellier France
| | - Dieter Ebert
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Tvärminne Zoological Station; Helsinki University; Hanko Finland
| |
Collapse
|
41
|
Susi H, Vale PF, Laine AL. Host Genotype and Coinfection Modify the Relationship of within and between Host Transmission. Am Nat 2015; 186:252-63. [PMID: 26655153 DOI: 10.1086/682069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Variation in individual-level disease transmission is well documented, but the underlying causes of this variation are challenging to disentangle in natural epidemics. In general, within-host replication is critical in determining the extent to which infected hosts shed transmission propagules, but which factors cause variation in this relationship are poorly understood. Here, using a plant host, Plantago lanceolata, and the powdery mildew fungus Podosphaera plantaginis, we quantify how the distinct stages of within-host spread (autoinfection), spore release, and successful transmission to new hosts (alloinfection) are influenced by host genotype, pathogen genotype, and the coinfection status of the host. We find that within-host spread alone fails to predict transmission rates, as this relationship is modified by genetic variation in hosts and pathogens. Their contributions change throughout the course of the epidemic. Host genotype and coinfection had particularly pronounced effects on the dynamics of spore release from infected hosts. Confidently predicting disease spread from local levels of individual transmission, therefore, requires a more nuanced understanding of genotype-specific infection outcomes. This knowledge is key to better understanding the drivers of epidemiological dynamics and the resulting evolutionary trajectories of infectious disease.
Collapse
Affiliation(s)
- Hanna Susi
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
42
|
Fadini RF, Cintra R. Modeling occupancy of hosts by mistletoe seeds after accounting for imperfect detectability. PLoS One 2015; 10:e0127004. [PMID: 25973754 PMCID: PMC4431672 DOI: 10.1371/journal.pone.0127004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 04/10/2015] [Indexed: 11/18/2022] Open
Abstract
The detection of an organism in a given site is widely used as a state variable in many metapopulation and epidemiological studies. However, failure to detect the species does not necessarily mean that it is absent. Assessing detectability is important for occupancy (presence-absence) surveys; and identifying the factors reducing detectability may help improve survey precision and efficiency. A method was used to estimate the occupancy status of host trees colonized by mistletoe seeds of Psittacanthus plagiophyllus as a function of host covariates: host size and presence of mistletoe infections on the same or on the nearest neighboring host (the cashew tree Anacardium occidentale). The technique also evaluated the effect of taking detectability into account for estimating host occupancy by mistletoe seeds. Individual host trees were surveyed for presence of mistletoe seeds with the aid of two or three observers to estimate detectability and occupancy. Detectability was, on average, 17% higher in focal-host trees with infected neighbors, while decreased about 23 to 50% from smallest to largest hosts. The presence of mistletoe plants in the sample tree had negligible effect on detectability. Failure to detect hosts as occupied decreased occupancy by 2.5% on average, with maximum of 10% for large and isolated hosts. The method presented in this study has potential for use with metapopulation studies of mistletoes, especially those focusing on the seed stage, but also as improvement of accuracy in occupancy models estimates often used for metapopulation dynamics of tree-dwelling plants in general.
Collapse
Affiliation(s)
- Rodrigo F. Fadini
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, CP 478, Manaus, 69067–375, AM, Brazil
- * E-mail:
| | - Renato Cintra
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, 69067–375, AM, Brazil
| |
Collapse
|
43
|
Carlsson-Granér U, Thrall PH. Host resistance and pathogen infectivity in host populations with varying connectivity. Evolution 2015; 69:926-38. [DOI: 10.1111/evo.12631] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/18/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Ulla Carlsson-Granér
- Department of Ecology and Environmental Sciences; University of Umeå; S-90187 Umeå Sweden
| | - Peter H. Thrall
- CSIRO Agriculture Flagship GPO Box 1600; Canberra ACT 2601 Australia
| |
Collapse
|
44
|
Papaïx J, Burdon JJ, Zhan J, Thrall PH. Crop pathogen emergence and evolution in agro-ecological landscapes. Evol Appl 2015; 8:385-402. [PMID: 25926883 PMCID: PMC4408149 DOI: 10.1111/eva.12251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 12/22/2022] Open
Abstract
Remnant areas hosting natural vegetation in agricultural landscapes can impact the disease epidemiology and evolutionary dynamics of crop pathogens. However, the potential consequences for crop diseases of the composition, the spatial configuration and the persistence time of the agro-ecological interface - the area where crops and remnant vegetation are in contact - have been poorly studied. Here, we develop a demographic-genetic simulation model to study how the spatial and temporal distribution of remnant wild vegetation patches embedded in an agricultural landscape can drive the emergence of a crop pathogen and its subsequent specialization on the crop host. We found that landscape structures that promoted larger pathogen populations on the wild host facilitated the emergence of a crop pathogen, but such landscape structures also reduced the potential for the pathogen population to adapt to the crop. In addition, the evolutionary trajectory of the pathogen population was determined by interactions between the factors describing the landscape structure and those describing the pathogen life histories. Our study contributes to a better understanding of how the shift of land-use patterns in agricultural landscapes might influence crop diseases to provide predictive tools to evaluate management practices.
Collapse
Affiliation(s)
- Julien Papaïx
- UMR 1290 BIOGER, INRAThiverval-Grignon, France
- UR 341 MIA, INRAJouy-en-Josas, France
- UR 546 BioSP, INRAAvignon, France
- CSIRO Agriculture FlagshipCanberra, ACT, Australia
| | | | - Jiasui Zhan
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | |
Collapse
|
45
|
Laine AL, Burdon JJ, Nemri A, Thrall PH. Host ecotype generates evolutionary and epidemiological divergence across a pathogen metapopulation. Proc Biol Sci 2015; 281:rspb.2014.0522. [PMID: 24870042 DOI: 10.1098/rspb.2014.0522] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when--and where--pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Jeremy J Burdon
- CSIRO Plant Industry, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Adnane Nemri
- CSIRO Plant Industry, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | - Peter H Thrall
- CSIRO Plant Industry, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
46
|
Lion S, Gandon S. Evolution of spatially structured host-parasite interactions. J Evol Biol 2015; 28:10-28. [DOI: 10.1111/jeb.12551] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023]
Affiliation(s)
- S. Lion
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; Montpellier Cedex 5 France
| | - S. Gandon
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; Montpellier Cedex 5 France
| |
Collapse
|
47
|
Co-infection alters population dynamics of infectious disease. Nat Commun 2015; 6:5975. [PMID: 25569306 PMCID: PMC4354079 DOI: 10.1038/ncomms6975] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/27/2014] [Indexed: 12/14/2022] Open
Abstract
Co-infections by multiple pathogen strains are common in the wild. Theory predicts co-infections to have major consequences for both within- and between-host disease dynamics, but data are currently scarce. Here, using common garden populations of Plantago lanceolata infected by two strains of the pathogen Podosphaera plantaginis, either singly or under co-infection, we find the highest disease prevalence in co-infected treatments both at the host genotype and population levels. A spore-trapping experiment demonstrates that co-infected hosts shed more transmission propagules than singly infected hosts, thereby explaining the observed change in epidemiological dynamics. Our experimental findings are confirmed in natural pathogen populations-more devastating epidemics were measured in populations with higher levels of co-infection. Jointly, our results confirm the predictions made by theoretical and experimental studies for the potential of co-infection to alter disease dynamics across a large host-pathogen metapopulation.
Collapse
|
48
|
Schuck S, Weinhold A, Luu VT, Baldwin IT. Isolating fungal pathogens from a dynamic disease outbreak in a native plant population to establish plant-pathogen bioassays for the ecological model plant Nicotiana attenuata. PLoS One 2014; 9:e102915. [PMID: 25036191 PMCID: PMC4103856 DOI: 10.1371/journal.pone.0102915] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context.
Collapse
Affiliation(s)
- Stefan Schuck
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Arne Weinhold
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Van Thi Luu
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| |
Collapse
|
49
|
Morran LT, Parrish RC, Gelarden IA, Allen MB, Lively CM. Experimental coevolution: rapid local adaptation by parasites depends on host mating system. Am Nat 2014; 184 Suppl 1:S91-100. [PMID: 25061681 DOI: 10.1086/676930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Host-parasite interactions can drive rapid, reciprocal genetic changes (coevolution), provided both hosts and parasites have high heritabilities for resistance/infectivity. Similarly, the host's mating system should also affect the rate of coevolutionary change in host-parasite interactions. Using experimental coevolution, we determined the effect of obligate outcrossing verses partial self-fertilization (mixed mating) on the rate of evolutionary change in a nematode host (Caenorhabditis elegans) and its bacterial parasite (Serratia marcescens). Bacterial populations were derived from a common ancestor. We measured the effects of host mating system on host adaptation to the parasite. We then determined the extent of parasite adaptation to their local host populations. Obligately outcrossing hosts exhibited more rapid adaptation to parasites than did mixed mating hosts. In addition, most of the parasites became adapted to infecting their local hosts, but parasites from obligately outcrossing hosts showed a greater level of local adaptation. These results suggest that host populations evolved along separate trajectories and that outcrossing host populations diverged further than partially selfing populations. Finally, parasites tracking outcrossing host populations diverged further than parasites tracking the partially selfing host populations. These results show that the evolutionary trajectories of both hosts and parasites can be shaped by the host's mating system.
Collapse
Affiliation(s)
- Levi T Morran
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | | | | | |
Collapse
|
50
|
Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H, Tollenaere C, Laine AL. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 2014; 344:1289-93. [DOI: 10.1126/science.1253621] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|